1 /* 2 * Driver for OHCI 1394 controllers 3 * 4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 #include <linux/bitops.h> 22 #include <linux/bug.h> 23 #include <linux/compiler.h> 24 #include <linux/delay.h> 25 #include <linux/device.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/firewire.h> 28 #include <linux/firewire-constants.h> 29 #include <linux/init.h> 30 #include <linux/interrupt.h> 31 #include <linux/io.h> 32 #include <linux/kernel.h> 33 #include <linux/list.h> 34 #include <linux/mm.h> 35 #include <linux/module.h> 36 #include <linux/moduleparam.h> 37 #include <linux/mutex.h> 38 #include <linux/pci.h> 39 #include <linux/pci_ids.h> 40 #include <linux/slab.h> 41 #include <linux/spinlock.h> 42 #include <linux/string.h> 43 #include <linux/time.h> 44 #include <linux/vmalloc.h> 45 #include <linux/workqueue.h> 46 47 #include <asm/byteorder.h> 48 #include <asm/page.h> 49 50 #ifdef CONFIG_PPC_PMAC 51 #include <asm/pmac_feature.h> 52 #endif 53 54 #include "core.h" 55 #include "ohci.h" 56 57 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args) 58 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args) 59 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args) 60 61 #define DESCRIPTOR_OUTPUT_MORE 0 62 #define DESCRIPTOR_OUTPUT_LAST (1 << 12) 63 #define DESCRIPTOR_INPUT_MORE (2 << 12) 64 #define DESCRIPTOR_INPUT_LAST (3 << 12) 65 #define DESCRIPTOR_STATUS (1 << 11) 66 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8) 67 #define DESCRIPTOR_PING (1 << 7) 68 #define DESCRIPTOR_YY (1 << 6) 69 #define DESCRIPTOR_NO_IRQ (0 << 4) 70 #define DESCRIPTOR_IRQ_ERROR (1 << 4) 71 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4) 72 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2) 73 #define DESCRIPTOR_WAIT (3 << 0) 74 75 #define DESCRIPTOR_CMD (0xf << 12) 76 77 struct descriptor { 78 __le16 req_count; 79 __le16 control; 80 __le32 data_address; 81 __le32 branch_address; 82 __le16 res_count; 83 __le16 transfer_status; 84 } __attribute__((aligned(16))); 85 86 #define CONTROL_SET(regs) (regs) 87 #define CONTROL_CLEAR(regs) ((regs) + 4) 88 #define COMMAND_PTR(regs) ((regs) + 12) 89 #define CONTEXT_MATCH(regs) ((regs) + 16) 90 91 #define AR_BUFFER_SIZE (32*1024) 92 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE) 93 /* we need at least two pages for proper list management */ 94 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2) 95 96 #define MAX_ASYNC_PAYLOAD 4096 97 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4) 98 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE) 99 100 struct ar_context { 101 struct fw_ohci *ohci; 102 struct page *pages[AR_BUFFERS]; 103 void *buffer; 104 struct descriptor *descriptors; 105 dma_addr_t descriptors_bus; 106 void *pointer; 107 unsigned int last_buffer_index; 108 u32 regs; 109 struct tasklet_struct tasklet; 110 }; 111 112 struct context; 113 114 typedef int (*descriptor_callback_t)(struct context *ctx, 115 struct descriptor *d, 116 struct descriptor *last); 117 118 /* 119 * A buffer that contains a block of DMA-able coherent memory used for 120 * storing a portion of a DMA descriptor program. 121 */ 122 struct descriptor_buffer { 123 struct list_head list; 124 dma_addr_t buffer_bus; 125 size_t buffer_size; 126 size_t used; 127 struct descriptor buffer[0]; 128 }; 129 130 struct context { 131 struct fw_ohci *ohci; 132 u32 regs; 133 int total_allocation; 134 u32 current_bus; 135 bool running; 136 bool flushing; 137 138 /* 139 * List of page-sized buffers for storing DMA descriptors. 140 * Head of list contains buffers in use and tail of list contains 141 * free buffers. 142 */ 143 struct list_head buffer_list; 144 145 /* 146 * Pointer to a buffer inside buffer_list that contains the tail 147 * end of the current DMA program. 148 */ 149 struct descriptor_buffer *buffer_tail; 150 151 /* 152 * The descriptor containing the branch address of the first 153 * descriptor that has not yet been filled by the device. 154 */ 155 struct descriptor *last; 156 157 /* 158 * The last descriptor block in the DMA program. It contains the branch 159 * address that must be updated upon appending a new descriptor. 160 */ 161 struct descriptor *prev; 162 int prev_z; 163 164 descriptor_callback_t callback; 165 166 struct tasklet_struct tasklet; 167 }; 168 169 #define IT_HEADER_SY(v) ((v) << 0) 170 #define IT_HEADER_TCODE(v) ((v) << 4) 171 #define IT_HEADER_CHANNEL(v) ((v) << 8) 172 #define IT_HEADER_TAG(v) ((v) << 14) 173 #define IT_HEADER_SPEED(v) ((v) << 16) 174 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16) 175 176 struct iso_context { 177 struct fw_iso_context base; 178 struct context context; 179 void *header; 180 size_t header_length; 181 unsigned long flushing_completions; 182 u32 mc_buffer_bus; 183 u16 mc_completed; 184 u16 last_timestamp; 185 u8 sync; 186 u8 tags; 187 }; 188 189 #define CONFIG_ROM_SIZE 1024 190 191 struct fw_ohci { 192 struct fw_card card; 193 194 __iomem char *registers; 195 int node_id; 196 int generation; 197 int request_generation; /* for timestamping incoming requests */ 198 unsigned quirks; 199 unsigned int pri_req_max; 200 u32 bus_time; 201 bool bus_time_running; 202 bool is_root; 203 bool csr_state_setclear_abdicate; 204 int n_ir; 205 int n_it; 206 /* 207 * Spinlock for accessing fw_ohci data. Never call out of 208 * this driver with this lock held. 209 */ 210 spinlock_t lock; 211 212 struct mutex phy_reg_mutex; 213 214 void *misc_buffer; 215 dma_addr_t misc_buffer_bus; 216 217 struct ar_context ar_request_ctx; 218 struct ar_context ar_response_ctx; 219 struct context at_request_ctx; 220 struct context at_response_ctx; 221 222 u32 it_context_support; 223 u32 it_context_mask; /* unoccupied IT contexts */ 224 struct iso_context *it_context_list; 225 u64 ir_context_channels; /* unoccupied channels */ 226 u32 ir_context_support; 227 u32 ir_context_mask; /* unoccupied IR contexts */ 228 struct iso_context *ir_context_list; 229 u64 mc_channels; /* channels in use by the multichannel IR context */ 230 bool mc_allocated; 231 232 __be32 *config_rom; 233 dma_addr_t config_rom_bus; 234 __be32 *next_config_rom; 235 dma_addr_t next_config_rom_bus; 236 __be32 next_header; 237 238 __le32 *self_id; 239 dma_addr_t self_id_bus; 240 struct work_struct bus_reset_work; 241 242 u32 self_id_buffer[512]; 243 }; 244 245 static struct workqueue_struct *selfid_workqueue; 246 247 static inline struct fw_ohci *fw_ohci(struct fw_card *card) 248 { 249 return container_of(card, struct fw_ohci, card); 250 } 251 252 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000 253 #define IR_CONTEXT_BUFFER_FILL 0x80000000 254 #define IR_CONTEXT_ISOCH_HEADER 0x40000000 255 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000 256 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000 257 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000 258 259 #define CONTEXT_RUN 0x8000 260 #define CONTEXT_WAKE 0x1000 261 #define CONTEXT_DEAD 0x0800 262 #define CONTEXT_ACTIVE 0x0400 263 264 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf 265 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2 266 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8 267 268 #define OHCI1394_REGISTER_SIZE 0x800 269 #define OHCI1394_PCI_HCI_Control 0x40 270 #define SELF_ID_BUF_SIZE 0x800 271 #define OHCI_TCODE_PHY_PACKET 0x0e 272 #define OHCI_VERSION_1_1 0x010010 273 274 static char ohci_driver_name[] = KBUILD_MODNAME; 275 276 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd 277 #define PCI_DEVICE_ID_AGERE_FW643 0x5901 278 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001 279 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380 280 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009 281 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020 282 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025 283 #define PCI_DEVICE_ID_VIA_VT630X 0x3044 284 #define PCI_REV_ID_VIA_VT6306 0x46 285 #define PCI_DEVICE_ID_VIA_VT6315 0x3403 286 287 #define QUIRK_CYCLE_TIMER 0x1 288 #define QUIRK_RESET_PACKET 0x2 289 #define QUIRK_BE_HEADERS 0x4 290 #define QUIRK_NO_1394A 0x8 291 #define QUIRK_NO_MSI 0x10 292 #define QUIRK_TI_SLLZ059 0x20 293 #define QUIRK_IR_WAKE 0x40 294 295 /* In case of multiple matches in ohci_quirks[], only the first one is used. */ 296 static const struct { 297 unsigned short vendor, device, revision, flags; 298 } ohci_quirks[] = { 299 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID, 300 QUIRK_CYCLE_TIMER}, 301 302 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID, 303 QUIRK_BE_HEADERS}, 304 305 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6, 306 QUIRK_NO_MSI}, 307 308 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID, 309 QUIRK_RESET_PACKET}, 310 311 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID, 312 QUIRK_NO_MSI}, 313 314 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID, 315 QUIRK_CYCLE_TIMER}, 316 317 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID, 318 QUIRK_NO_MSI}, 319 320 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID, 321 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI}, 322 323 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID, 324 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A}, 325 326 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID, 327 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059}, 328 329 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID, 330 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059}, 331 332 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID, 333 QUIRK_RESET_PACKET}, 334 335 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306, 336 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE}, 337 338 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0, 339 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI}, 340 341 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID, 342 QUIRK_NO_MSI}, 343 344 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID, 345 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI}, 346 }; 347 348 /* This overrides anything that was found in ohci_quirks[]. */ 349 static int param_quirks; 350 module_param_named(quirks, param_quirks, int, 0644); 351 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0" 352 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER) 353 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET) 354 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS) 355 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A) 356 ", disable MSI = " __stringify(QUIRK_NO_MSI) 357 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059) 358 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE) 359 ")"); 360 361 #define OHCI_PARAM_DEBUG_AT_AR 1 362 #define OHCI_PARAM_DEBUG_SELFIDS 2 363 #define OHCI_PARAM_DEBUG_IRQS 4 364 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */ 365 366 static int param_debug; 367 module_param_named(debug, param_debug, int, 0644); 368 MODULE_PARM_DESC(debug, "Verbose logging (default = 0" 369 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR) 370 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS) 371 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS) 372 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS) 373 ", or a combination, or all = -1)"); 374 375 static bool param_remote_dma; 376 module_param_named(remote_dma, param_remote_dma, bool, 0444); 377 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)"); 378 379 static void log_irqs(struct fw_ohci *ohci, u32 evt) 380 { 381 if (likely(!(param_debug & 382 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS)))) 383 return; 384 385 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) && 386 !(evt & OHCI1394_busReset)) 387 return; 388 389 ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt, 390 evt & OHCI1394_selfIDComplete ? " selfID" : "", 391 evt & OHCI1394_RQPkt ? " AR_req" : "", 392 evt & OHCI1394_RSPkt ? " AR_resp" : "", 393 evt & OHCI1394_reqTxComplete ? " AT_req" : "", 394 evt & OHCI1394_respTxComplete ? " AT_resp" : "", 395 evt & OHCI1394_isochRx ? " IR" : "", 396 evt & OHCI1394_isochTx ? " IT" : "", 397 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "", 398 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "", 399 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "", 400 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "", 401 evt & OHCI1394_regAccessFail ? " regAccessFail" : "", 402 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "", 403 evt & OHCI1394_busReset ? " busReset" : "", 404 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt | 405 OHCI1394_RSPkt | OHCI1394_reqTxComplete | 406 OHCI1394_respTxComplete | OHCI1394_isochRx | 407 OHCI1394_isochTx | OHCI1394_postedWriteErr | 408 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds | 409 OHCI1394_cycleInconsistent | 410 OHCI1394_regAccessFail | OHCI1394_busReset) 411 ? " ?" : ""); 412 } 413 414 static const char *speed[] = { 415 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta", 416 }; 417 static const char *power[] = { 418 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W", 419 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W", 420 }; 421 static const char port[] = { '.', '-', 'p', 'c', }; 422 423 static char _p(u32 *s, int shift) 424 { 425 return port[*s >> shift & 3]; 426 } 427 428 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count) 429 { 430 u32 *s; 431 432 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS))) 433 return; 434 435 ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n", 436 self_id_count, generation, ohci->node_id); 437 438 for (s = ohci->self_id_buffer; self_id_count--; ++s) 439 if ((*s & 1 << 23) == 0) 440 ohci_notice(ohci, 441 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n", 442 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2), 443 speed[*s >> 14 & 3], *s >> 16 & 63, 444 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "", 445 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : ""); 446 else 447 ohci_notice(ohci, 448 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n", 449 *s, *s >> 24 & 63, 450 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10), 451 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2)); 452 } 453 454 static const char *evts[] = { 455 [0x00] = "evt_no_status", [0x01] = "-reserved-", 456 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack", 457 [0x04] = "evt_underrun", [0x05] = "evt_overrun", 458 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read", 459 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset", 460 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err", 461 [0x0c] = "-reserved-", [0x0d] = "-reserved-", 462 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed", 463 [0x10] = "-reserved-", [0x11] = "ack_complete", 464 [0x12] = "ack_pending ", [0x13] = "-reserved-", 465 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A", 466 [0x16] = "ack_busy_B", [0x17] = "-reserved-", 467 [0x18] = "-reserved-", [0x19] = "-reserved-", 468 [0x1a] = "-reserved-", [0x1b] = "ack_tardy", 469 [0x1c] = "-reserved-", [0x1d] = "ack_data_error", 470 [0x1e] = "ack_type_error", [0x1f] = "-reserved-", 471 [0x20] = "pending/cancelled", 472 }; 473 static const char *tcodes[] = { 474 [0x0] = "QW req", [0x1] = "BW req", 475 [0x2] = "W resp", [0x3] = "-reserved-", 476 [0x4] = "QR req", [0x5] = "BR req", 477 [0x6] = "QR resp", [0x7] = "BR resp", 478 [0x8] = "cycle start", [0x9] = "Lk req", 479 [0xa] = "async stream packet", [0xb] = "Lk resp", 480 [0xc] = "-reserved-", [0xd] = "-reserved-", 481 [0xe] = "link internal", [0xf] = "-reserved-", 482 }; 483 484 static void log_ar_at_event(struct fw_ohci *ohci, 485 char dir, int speed, u32 *header, int evt) 486 { 487 int tcode = header[0] >> 4 & 0xf; 488 char specific[12]; 489 490 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR))) 491 return; 492 493 if (unlikely(evt >= ARRAY_SIZE(evts))) 494 evt = 0x1f; 495 496 if (evt == OHCI1394_evt_bus_reset) { 497 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n", 498 dir, (header[2] >> 16) & 0xff); 499 return; 500 } 501 502 switch (tcode) { 503 case 0x0: case 0x6: case 0x8: 504 snprintf(specific, sizeof(specific), " = %08x", 505 be32_to_cpu((__force __be32)header[3])); 506 break; 507 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb: 508 snprintf(specific, sizeof(specific), " %x,%x", 509 header[3] >> 16, header[3] & 0xffff); 510 break; 511 default: 512 specific[0] = '\0'; 513 } 514 515 switch (tcode) { 516 case 0xa: 517 ohci_notice(ohci, "A%c %s, %s\n", 518 dir, evts[evt], tcodes[tcode]); 519 break; 520 case 0xe: 521 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n", 522 dir, evts[evt], header[1], header[2]); 523 break; 524 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9: 525 ohci_notice(ohci, 526 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n", 527 dir, speed, header[0] >> 10 & 0x3f, 528 header[1] >> 16, header[0] >> 16, evts[evt], 529 tcodes[tcode], header[1] & 0xffff, header[2], specific); 530 break; 531 default: 532 ohci_notice(ohci, 533 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n", 534 dir, speed, header[0] >> 10 & 0x3f, 535 header[1] >> 16, header[0] >> 16, evts[evt], 536 tcodes[tcode], specific); 537 } 538 } 539 540 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data) 541 { 542 writel(data, ohci->registers + offset); 543 } 544 545 static inline u32 reg_read(const struct fw_ohci *ohci, int offset) 546 { 547 return readl(ohci->registers + offset); 548 } 549 550 static inline void flush_writes(const struct fw_ohci *ohci) 551 { 552 /* Do a dummy read to flush writes. */ 553 reg_read(ohci, OHCI1394_Version); 554 } 555 556 /* 557 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and 558 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex. 559 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg() 560 * directly. Exceptions are intrinsically serialized contexts like pci_probe. 561 */ 562 static int read_phy_reg(struct fw_ohci *ohci, int addr) 563 { 564 u32 val; 565 int i; 566 567 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr)); 568 for (i = 0; i < 3 + 100; i++) { 569 val = reg_read(ohci, OHCI1394_PhyControl); 570 if (!~val) 571 return -ENODEV; /* Card was ejected. */ 572 573 if (val & OHCI1394_PhyControl_ReadDone) 574 return OHCI1394_PhyControl_ReadData(val); 575 576 /* 577 * Try a few times without waiting. Sleeping is necessary 578 * only when the link/PHY interface is busy. 579 */ 580 if (i >= 3) 581 msleep(1); 582 } 583 ohci_err(ohci, "failed to read phy reg %d\n", addr); 584 dump_stack(); 585 586 return -EBUSY; 587 } 588 589 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val) 590 { 591 int i; 592 593 reg_write(ohci, OHCI1394_PhyControl, 594 OHCI1394_PhyControl_Write(addr, val)); 595 for (i = 0; i < 3 + 100; i++) { 596 val = reg_read(ohci, OHCI1394_PhyControl); 597 if (!~val) 598 return -ENODEV; /* Card was ejected. */ 599 600 if (!(val & OHCI1394_PhyControl_WritePending)) 601 return 0; 602 603 if (i >= 3) 604 msleep(1); 605 } 606 ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val); 607 dump_stack(); 608 609 return -EBUSY; 610 } 611 612 static int update_phy_reg(struct fw_ohci *ohci, int addr, 613 int clear_bits, int set_bits) 614 { 615 int ret = read_phy_reg(ohci, addr); 616 if (ret < 0) 617 return ret; 618 619 /* 620 * The interrupt status bits are cleared by writing a one bit. 621 * Avoid clearing them unless explicitly requested in set_bits. 622 */ 623 if (addr == 5) 624 clear_bits |= PHY_INT_STATUS_BITS; 625 626 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits); 627 } 628 629 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr) 630 { 631 int ret; 632 633 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5); 634 if (ret < 0) 635 return ret; 636 637 return read_phy_reg(ohci, addr); 638 } 639 640 static int ohci_read_phy_reg(struct fw_card *card, int addr) 641 { 642 struct fw_ohci *ohci = fw_ohci(card); 643 int ret; 644 645 mutex_lock(&ohci->phy_reg_mutex); 646 ret = read_phy_reg(ohci, addr); 647 mutex_unlock(&ohci->phy_reg_mutex); 648 649 return ret; 650 } 651 652 static int ohci_update_phy_reg(struct fw_card *card, int addr, 653 int clear_bits, int set_bits) 654 { 655 struct fw_ohci *ohci = fw_ohci(card); 656 int ret; 657 658 mutex_lock(&ohci->phy_reg_mutex); 659 ret = update_phy_reg(ohci, addr, clear_bits, set_bits); 660 mutex_unlock(&ohci->phy_reg_mutex); 661 662 return ret; 663 } 664 665 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i) 666 { 667 return page_private(ctx->pages[i]); 668 } 669 670 static void ar_context_link_page(struct ar_context *ctx, unsigned int index) 671 { 672 struct descriptor *d; 673 674 d = &ctx->descriptors[index]; 675 d->branch_address &= cpu_to_le32(~0xf); 676 d->res_count = cpu_to_le16(PAGE_SIZE); 677 d->transfer_status = 0; 678 679 wmb(); /* finish init of new descriptors before branch_address update */ 680 d = &ctx->descriptors[ctx->last_buffer_index]; 681 d->branch_address |= cpu_to_le32(1); 682 683 ctx->last_buffer_index = index; 684 685 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); 686 } 687 688 static void ar_context_release(struct ar_context *ctx) 689 { 690 unsigned int i; 691 692 vunmap(ctx->buffer); 693 694 for (i = 0; i < AR_BUFFERS; i++) 695 if (ctx->pages[i]) { 696 dma_unmap_page(ctx->ohci->card.device, 697 ar_buffer_bus(ctx, i), 698 PAGE_SIZE, DMA_FROM_DEVICE); 699 __free_page(ctx->pages[i]); 700 } 701 } 702 703 static void ar_context_abort(struct ar_context *ctx, const char *error_msg) 704 { 705 struct fw_ohci *ohci = ctx->ohci; 706 707 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) { 708 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN); 709 flush_writes(ohci); 710 711 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg); 712 } 713 /* FIXME: restart? */ 714 } 715 716 static inline unsigned int ar_next_buffer_index(unsigned int index) 717 { 718 return (index + 1) % AR_BUFFERS; 719 } 720 721 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx) 722 { 723 return ar_next_buffer_index(ctx->last_buffer_index); 724 } 725 726 /* 727 * We search for the buffer that contains the last AR packet DMA data written 728 * by the controller. 729 */ 730 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx, 731 unsigned int *buffer_offset) 732 { 733 unsigned int i, next_i, last = ctx->last_buffer_index; 734 __le16 res_count, next_res_count; 735 736 i = ar_first_buffer_index(ctx); 737 res_count = READ_ONCE(ctx->descriptors[i].res_count); 738 739 /* A buffer that is not yet completely filled must be the last one. */ 740 while (i != last && res_count == 0) { 741 742 /* Peek at the next descriptor. */ 743 next_i = ar_next_buffer_index(i); 744 rmb(); /* read descriptors in order */ 745 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count); 746 /* 747 * If the next descriptor is still empty, we must stop at this 748 * descriptor. 749 */ 750 if (next_res_count == cpu_to_le16(PAGE_SIZE)) { 751 /* 752 * The exception is when the DMA data for one packet is 753 * split over three buffers; in this case, the middle 754 * buffer's descriptor might be never updated by the 755 * controller and look still empty, and we have to peek 756 * at the third one. 757 */ 758 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) { 759 next_i = ar_next_buffer_index(next_i); 760 rmb(); 761 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count); 762 if (next_res_count != cpu_to_le16(PAGE_SIZE)) 763 goto next_buffer_is_active; 764 } 765 766 break; 767 } 768 769 next_buffer_is_active: 770 i = next_i; 771 res_count = next_res_count; 772 } 773 774 rmb(); /* read res_count before the DMA data */ 775 776 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count); 777 if (*buffer_offset > PAGE_SIZE) { 778 *buffer_offset = 0; 779 ar_context_abort(ctx, "corrupted descriptor"); 780 } 781 782 return i; 783 } 784 785 static void ar_sync_buffers_for_cpu(struct ar_context *ctx, 786 unsigned int end_buffer_index, 787 unsigned int end_buffer_offset) 788 { 789 unsigned int i; 790 791 i = ar_first_buffer_index(ctx); 792 while (i != end_buffer_index) { 793 dma_sync_single_for_cpu(ctx->ohci->card.device, 794 ar_buffer_bus(ctx, i), 795 PAGE_SIZE, DMA_FROM_DEVICE); 796 i = ar_next_buffer_index(i); 797 } 798 if (end_buffer_offset > 0) 799 dma_sync_single_for_cpu(ctx->ohci->card.device, 800 ar_buffer_bus(ctx, i), 801 end_buffer_offset, DMA_FROM_DEVICE); 802 } 803 804 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32) 805 #define cond_le32_to_cpu(v) \ 806 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v)) 807 #else 808 #define cond_le32_to_cpu(v) le32_to_cpu(v) 809 #endif 810 811 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer) 812 { 813 struct fw_ohci *ohci = ctx->ohci; 814 struct fw_packet p; 815 u32 status, length, tcode; 816 int evt; 817 818 p.header[0] = cond_le32_to_cpu(buffer[0]); 819 p.header[1] = cond_le32_to_cpu(buffer[1]); 820 p.header[2] = cond_le32_to_cpu(buffer[2]); 821 822 tcode = (p.header[0] >> 4) & 0x0f; 823 switch (tcode) { 824 case TCODE_WRITE_QUADLET_REQUEST: 825 case TCODE_READ_QUADLET_RESPONSE: 826 p.header[3] = (__force __u32) buffer[3]; 827 p.header_length = 16; 828 p.payload_length = 0; 829 break; 830 831 case TCODE_READ_BLOCK_REQUEST : 832 p.header[3] = cond_le32_to_cpu(buffer[3]); 833 p.header_length = 16; 834 p.payload_length = 0; 835 break; 836 837 case TCODE_WRITE_BLOCK_REQUEST: 838 case TCODE_READ_BLOCK_RESPONSE: 839 case TCODE_LOCK_REQUEST: 840 case TCODE_LOCK_RESPONSE: 841 p.header[3] = cond_le32_to_cpu(buffer[3]); 842 p.header_length = 16; 843 p.payload_length = p.header[3] >> 16; 844 if (p.payload_length > MAX_ASYNC_PAYLOAD) { 845 ar_context_abort(ctx, "invalid packet length"); 846 return NULL; 847 } 848 break; 849 850 case TCODE_WRITE_RESPONSE: 851 case TCODE_READ_QUADLET_REQUEST: 852 case OHCI_TCODE_PHY_PACKET: 853 p.header_length = 12; 854 p.payload_length = 0; 855 break; 856 857 default: 858 ar_context_abort(ctx, "invalid tcode"); 859 return NULL; 860 } 861 862 p.payload = (void *) buffer + p.header_length; 863 864 /* FIXME: What to do about evt_* errors? */ 865 length = (p.header_length + p.payload_length + 3) / 4; 866 status = cond_le32_to_cpu(buffer[length]); 867 evt = (status >> 16) & 0x1f; 868 869 p.ack = evt - 16; 870 p.speed = (status >> 21) & 0x7; 871 p.timestamp = status & 0xffff; 872 p.generation = ohci->request_generation; 873 874 log_ar_at_event(ohci, 'R', p.speed, p.header, evt); 875 876 /* 877 * Several controllers, notably from NEC and VIA, forget to 878 * write ack_complete status at PHY packet reception. 879 */ 880 if (evt == OHCI1394_evt_no_status && 881 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4)) 882 p.ack = ACK_COMPLETE; 883 884 /* 885 * The OHCI bus reset handler synthesizes a PHY packet with 886 * the new generation number when a bus reset happens (see 887 * section 8.4.2.3). This helps us determine when a request 888 * was received and make sure we send the response in the same 889 * generation. We only need this for requests; for responses 890 * we use the unique tlabel for finding the matching 891 * request. 892 * 893 * Alas some chips sometimes emit bus reset packets with a 894 * wrong generation. We set the correct generation for these 895 * at a slightly incorrect time (in bus_reset_work). 896 */ 897 if (evt == OHCI1394_evt_bus_reset) { 898 if (!(ohci->quirks & QUIRK_RESET_PACKET)) 899 ohci->request_generation = (p.header[2] >> 16) & 0xff; 900 } else if (ctx == &ohci->ar_request_ctx) { 901 fw_core_handle_request(&ohci->card, &p); 902 } else { 903 fw_core_handle_response(&ohci->card, &p); 904 } 905 906 return buffer + length + 1; 907 } 908 909 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end) 910 { 911 void *next; 912 913 while (p < end) { 914 next = handle_ar_packet(ctx, p); 915 if (!next) 916 return p; 917 p = next; 918 } 919 920 return p; 921 } 922 923 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer) 924 { 925 unsigned int i; 926 927 i = ar_first_buffer_index(ctx); 928 while (i != end_buffer) { 929 dma_sync_single_for_device(ctx->ohci->card.device, 930 ar_buffer_bus(ctx, i), 931 PAGE_SIZE, DMA_FROM_DEVICE); 932 ar_context_link_page(ctx, i); 933 i = ar_next_buffer_index(i); 934 } 935 } 936 937 static void ar_context_tasklet(unsigned long data) 938 { 939 struct ar_context *ctx = (struct ar_context *)data; 940 unsigned int end_buffer_index, end_buffer_offset; 941 void *p, *end; 942 943 p = ctx->pointer; 944 if (!p) 945 return; 946 947 end_buffer_index = ar_search_last_active_buffer(ctx, 948 &end_buffer_offset); 949 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset); 950 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset; 951 952 if (end_buffer_index < ar_first_buffer_index(ctx)) { 953 /* 954 * The filled part of the overall buffer wraps around; handle 955 * all packets up to the buffer end here. If the last packet 956 * wraps around, its tail will be visible after the buffer end 957 * because the buffer start pages are mapped there again. 958 */ 959 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE; 960 p = handle_ar_packets(ctx, p, buffer_end); 961 if (p < buffer_end) 962 goto error; 963 /* adjust p to point back into the actual buffer */ 964 p -= AR_BUFFERS * PAGE_SIZE; 965 } 966 967 p = handle_ar_packets(ctx, p, end); 968 if (p != end) { 969 if (p > end) 970 ar_context_abort(ctx, "inconsistent descriptor"); 971 goto error; 972 } 973 974 ctx->pointer = p; 975 ar_recycle_buffers(ctx, end_buffer_index); 976 977 return; 978 979 error: 980 ctx->pointer = NULL; 981 } 982 983 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, 984 unsigned int descriptors_offset, u32 regs) 985 { 986 unsigned int i; 987 dma_addr_t dma_addr; 988 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES]; 989 struct descriptor *d; 990 991 ctx->regs = regs; 992 ctx->ohci = ohci; 993 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx); 994 995 for (i = 0; i < AR_BUFFERS; i++) { 996 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32); 997 if (!ctx->pages[i]) 998 goto out_of_memory; 999 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i], 1000 0, PAGE_SIZE, DMA_FROM_DEVICE); 1001 if (dma_mapping_error(ohci->card.device, dma_addr)) { 1002 __free_page(ctx->pages[i]); 1003 ctx->pages[i] = NULL; 1004 goto out_of_memory; 1005 } 1006 set_page_private(ctx->pages[i], dma_addr); 1007 } 1008 1009 for (i = 0; i < AR_BUFFERS; i++) 1010 pages[i] = ctx->pages[i]; 1011 for (i = 0; i < AR_WRAPAROUND_PAGES; i++) 1012 pages[AR_BUFFERS + i] = ctx->pages[i]; 1013 ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL); 1014 if (!ctx->buffer) 1015 goto out_of_memory; 1016 1017 ctx->descriptors = ohci->misc_buffer + descriptors_offset; 1018 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset; 1019 1020 for (i = 0; i < AR_BUFFERS; i++) { 1021 d = &ctx->descriptors[i]; 1022 d->req_count = cpu_to_le16(PAGE_SIZE); 1023 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE | 1024 DESCRIPTOR_STATUS | 1025 DESCRIPTOR_BRANCH_ALWAYS); 1026 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i)); 1027 d->branch_address = cpu_to_le32(ctx->descriptors_bus + 1028 ar_next_buffer_index(i) * sizeof(struct descriptor)); 1029 } 1030 1031 return 0; 1032 1033 out_of_memory: 1034 ar_context_release(ctx); 1035 1036 return -ENOMEM; 1037 } 1038 1039 static void ar_context_run(struct ar_context *ctx) 1040 { 1041 unsigned int i; 1042 1043 for (i = 0; i < AR_BUFFERS; i++) 1044 ar_context_link_page(ctx, i); 1045 1046 ctx->pointer = ctx->buffer; 1047 1048 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1); 1049 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN); 1050 } 1051 1052 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z) 1053 { 1054 __le16 branch; 1055 1056 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS); 1057 1058 /* figure out which descriptor the branch address goes in */ 1059 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) 1060 return d; 1061 else 1062 return d + z - 1; 1063 } 1064 1065 static void context_tasklet(unsigned long data) 1066 { 1067 struct context *ctx = (struct context *) data; 1068 struct descriptor *d, *last; 1069 u32 address; 1070 int z; 1071 struct descriptor_buffer *desc; 1072 1073 desc = list_entry(ctx->buffer_list.next, 1074 struct descriptor_buffer, list); 1075 last = ctx->last; 1076 while (last->branch_address != 0) { 1077 struct descriptor_buffer *old_desc = desc; 1078 address = le32_to_cpu(last->branch_address); 1079 z = address & 0xf; 1080 address &= ~0xf; 1081 ctx->current_bus = address; 1082 1083 /* If the branch address points to a buffer outside of the 1084 * current buffer, advance to the next buffer. */ 1085 if (address < desc->buffer_bus || 1086 address >= desc->buffer_bus + desc->used) 1087 desc = list_entry(desc->list.next, 1088 struct descriptor_buffer, list); 1089 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d); 1090 last = find_branch_descriptor(d, z); 1091 1092 if (!ctx->callback(ctx, d, last)) 1093 break; 1094 1095 if (old_desc != desc) { 1096 /* If we've advanced to the next buffer, move the 1097 * previous buffer to the free list. */ 1098 unsigned long flags; 1099 old_desc->used = 0; 1100 spin_lock_irqsave(&ctx->ohci->lock, flags); 1101 list_move_tail(&old_desc->list, &ctx->buffer_list); 1102 spin_unlock_irqrestore(&ctx->ohci->lock, flags); 1103 } 1104 ctx->last = last; 1105 } 1106 } 1107 1108 /* 1109 * Allocate a new buffer and add it to the list of free buffers for this 1110 * context. Must be called with ohci->lock held. 1111 */ 1112 static int context_add_buffer(struct context *ctx) 1113 { 1114 struct descriptor_buffer *desc; 1115 dma_addr_t uninitialized_var(bus_addr); 1116 int offset; 1117 1118 /* 1119 * 16MB of descriptors should be far more than enough for any DMA 1120 * program. This will catch run-away userspace or DoS attacks. 1121 */ 1122 if (ctx->total_allocation >= 16*1024*1024) 1123 return -ENOMEM; 1124 1125 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, 1126 &bus_addr, GFP_ATOMIC); 1127 if (!desc) 1128 return -ENOMEM; 1129 1130 offset = (void *)&desc->buffer - (void *)desc; 1131 /* 1132 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads 1133 * for descriptors, even 0x10-byte ones. This can cause page faults when 1134 * an IOMMU is in use and the oversized read crosses a page boundary. 1135 * Work around this by always leaving at least 0x10 bytes of padding. 1136 */ 1137 desc->buffer_size = PAGE_SIZE - offset - 0x10; 1138 desc->buffer_bus = bus_addr + offset; 1139 desc->used = 0; 1140 1141 list_add_tail(&desc->list, &ctx->buffer_list); 1142 ctx->total_allocation += PAGE_SIZE; 1143 1144 return 0; 1145 } 1146 1147 static int context_init(struct context *ctx, struct fw_ohci *ohci, 1148 u32 regs, descriptor_callback_t callback) 1149 { 1150 ctx->ohci = ohci; 1151 ctx->regs = regs; 1152 ctx->total_allocation = 0; 1153 1154 INIT_LIST_HEAD(&ctx->buffer_list); 1155 if (context_add_buffer(ctx) < 0) 1156 return -ENOMEM; 1157 1158 ctx->buffer_tail = list_entry(ctx->buffer_list.next, 1159 struct descriptor_buffer, list); 1160 1161 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx); 1162 ctx->callback = callback; 1163 1164 /* 1165 * We put a dummy descriptor in the buffer that has a NULL 1166 * branch address and looks like it's been sent. That way we 1167 * have a descriptor to append DMA programs to. 1168 */ 1169 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer)); 1170 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST); 1171 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011); 1172 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer); 1173 ctx->last = ctx->buffer_tail->buffer; 1174 ctx->prev = ctx->buffer_tail->buffer; 1175 ctx->prev_z = 1; 1176 1177 return 0; 1178 } 1179 1180 static void context_release(struct context *ctx) 1181 { 1182 struct fw_card *card = &ctx->ohci->card; 1183 struct descriptor_buffer *desc, *tmp; 1184 1185 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) 1186 dma_free_coherent(card->device, PAGE_SIZE, desc, 1187 desc->buffer_bus - 1188 ((void *)&desc->buffer - (void *)desc)); 1189 } 1190 1191 /* Must be called with ohci->lock held */ 1192 static struct descriptor *context_get_descriptors(struct context *ctx, 1193 int z, dma_addr_t *d_bus) 1194 { 1195 struct descriptor *d = NULL; 1196 struct descriptor_buffer *desc = ctx->buffer_tail; 1197 1198 if (z * sizeof(*d) > desc->buffer_size) 1199 return NULL; 1200 1201 if (z * sizeof(*d) > desc->buffer_size - desc->used) { 1202 /* No room for the descriptor in this buffer, so advance to the 1203 * next one. */ 1204 1205 if (desc->list.next == &ctx->buffer_list) { 1206 /* If there is no free buffer next in the list, 1207 * allocate one. */ 1208 if (context_add_buffer(ctx) < 0) 1209 return NULL; 1210 } 1211 desc = list_entry(desc->list.next, 1212 struct descriptor_buffer, list); 1213 ctx->buffer_tail = desc; 1214 } 1215 1216 d = desc->buffer + desc->used / sizeof(*d); 1217 memset(d, 0, z * sizeof(*d)); 1218 *d_bus = desc->buffer_bus + desc->used; 1219 1220 return d; 1221 } 1222 1223 static void context_run(struct context *ctx, u32 extra) 1224 { 1225 struct fw_ohci *ohci = ctx->ohci; 1226 1227 reg_write(ohci, COMMAND_PTR(ctx->regs), 1228 le32_to_cpu(ctx->last->branch_address)); 1229 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0); 1230 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra); 1231 ctx->running = true; 1232 flush_writes(ohci); 1233 } 1234 1235 static void context_append(struct context *ctx, 1236 struct descriptor *d, int z, int extra) 1237 { 1238 dma_addr_t d_bus; 1239 struct descriptor_buffer *desc = ctx->buffer_tail; 1240 struct descriptor *d_branch; 1241 1242 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d); 1243 1244 desc->used += (z + extra) * sizeof(*d); 1245 1246 wmb(); /* finish init of new descriptors before branch_address update */ 1247 1248 d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z); 1249 d_branch->branch_address = cpu_to_le32(d_bus | z); 1250 1251 /* 1252 * VT6306 incorrectly checks only the single descriptor at the 1253 * CommandPtr when the wake bit is written, so if it's a 1254 * multi-descriptor block starting with an INPUT_MORE, put a copy of 1255 * the branch address in the first descriptor. 1256 * 1257 * Not doing this for transmit contexts since not sure how it interacts 1258 * with skip addresses. 1259 */ 1260 if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) && 1261 d_branch != ctx->prev && 1262 (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) == 1263 cpu_to_le16(DESCRIPTOR_INPUT_MORE)) { 1264 ctx->prev->branch_address = cpu_to_le32(d_bus | z); 1265 } 1266 1267 ctx->prev = d; 1268 ctx->prev_z = z; 1269 } 1270 1271 static void context_stop(struct context *ctx) 1272 { 1273 struct fw_ohci *ohci = ctx->ohci; 1274 u32 reg; 1275 int i; 1276 1277 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN); 1278 ctx->running = false; 1279 1280 for (i = 0; i < 1000; i++) { 1281 reg = reg_read(ohci, CONTROL_SET(ctx->regs)); 1282 if ((reg & CONTEXT_ACTIVE) == 0) 1283 return; 1284 1285 if (i) 1286 udelay(10); 1287 } 1288 ohci_err(ohci, "DMA context still active (0x%08x)\n", reg); 1289 } 1290 1291 struct driver_data { 1292 u8 inline_data[8]; 1293 struct fw_packet *packet; 1294 }; 1295 1296 /* 1297 * This function apppends a packet to the DMA queue for transmission. 1298 * Must always be called with the ochi->lock held to ensure proper 1299 * generation handling and locking around packet queue manipulation. 1300 */ 1301 static int at_context_queue_packet(struct context *ctx, 1302 struct fw_packet *packet) 1303 { 1304 struct fw_ohci *ohci = ctx->ohci; 1305 dma_addr_t d_bus, uninitialized_var(payload_bus); 1306 struct driver_data *driver_data; 1307 struct descriptor *d, *last; 1308 __le32 *header; 1309 int z, tcode; 1310 1311 d = context_get_descriptors(ctx, 4, &d_bus); 1312 if (d == NULL) { 1313 packet->ack = RCODE_SEND_ERROR; 1314 return -1; 1315 } 1316 1317 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE); 1318 d[0].res_count = cpu_to_le16(packet->timestamp); 1319 1320 /* 1321 * The DMA format for asynchronous link packets is different 1322 * from the IEEE1394 layout, so shift the fields around 1323 * accordingly. 1324 */ 1325 1326 tcode = (packet->header[0] >> 4) & 0x0f; 1327 header = (__le32 *) &d[1]; 1328 switch (tcode) { 1329 case TCODE_WRITE_QUADLET_REQUEST: 1330 case TCODE_WRITE_BLOCK_REQUEST: 1331 case TCODE_WRITE_RESPONSE: 1332 case TCODE_READ_QUADLET_REQUEST: 1333 case TCODE_READ_BLOCK_REQUEST: 1334 case TCODE_READ_QUADLET_RESPONSE: 1335 case TCODE_READ_BLOCK_RESPONSE: 1336 case TCODE_LOCK_REQUEST: 1337 case TCODE_LOCK_RESPONSE: 1338 header[0] = cpu_to_le32((packet->header[0] & 0xffff) | 1339 (packet->speed << 16)); 1340 header[1] = cpu_to_le32((packet->header[1] & 0xffff) | 1341 (packet->header[0] & 0xffff0000)); 1342 header[2] = cpu_to_le32(packet->header[2]); 1343 1344 if (TCODE_IS_BLOCK_PACKET(tcode)) 1345 header[3] = cpu_to_le32(packet->header[3]); 1346 else 1347 header[3] = (__force __le32) packet->header[3]; 1348 1349 d[0].req_count = cpu_to_le16(packet->header_length); 1350 break; 1351 1352 case TCODE_LINK_INTERNAL: 1353 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) | 1354 (packet->speed << 16)); 1355 header[1] = cpu_to_le32(packet->header[1]); 1356 header[2] = cpu_to_le32(packet->header[2]); 1357 d[0].req_count = cpu_to_le16(12); 1358 1359 if (is_ping_packet(&packet->header[1])) 1360 d[0].control |= cpu_to_le16(DESCRIPTOR_PING); 1361 break; 1362 1363 case TCODE_STREAM_DATA: 1364 header[0] = cpu_to_le32((packet->header[0] & 0xffff) | 1365 (packet->speed << 16)); 1366 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000); 1367 d[0].req_count = cpu_to_le16(8); 1368 break; 1369 1370 default: 1371 /* BUG(); */ 1372 packet->ack = RCODE_SEND_ERROR; 1373 return -1; 1374 } 1375 1376 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor)); 1377 driver_data = (struct driver_data *) &d[3]; 1378 driver_data->packet = packet; 1379 packet->driver_data = driver_data; 1380 1381 if (packet->payload_length > 0) { 1382 if (packet->payload_length > sizeof(driver_data->inline_data)) { 1383 payload_bus = dma_map_single(ohci->card.device, 1384 packet->payload, 1385 packet->payload_length, 1386 DMA_TO_DEVICE); 1387 if (dma_mapping_error(ohci->card.device, payload_bus)) { 1388 packet->ack = RCODE_SEND_ERROR; 1389 return -1; 1390 } 1391 packet->payload_bus = payload_bus; 1392 packet->payload_mapped = true; 1393 } else { 1394 memcpy(driver_data->inline_data, packet->payload, 1395 packet->payload_length); 1396 payload_bus = d_bus + 3 * sizeof(*d); 1397 } 1398 1399 d[2].req_count = cpu_to_le16(packet->payload_length); 1400 d[2].data_address = cpu_to_le32(payload_bus); 1401 last = &d[2]; 1402 z = 3; 1403 } else { 1404 last = &d[0]; 1405 z = 2; 1406 } 1407 1408 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST | 1409 DESCRIPTOR_IRQ_ALWAYS | 1410 DESCRIPTOR_BRANCH_ALWAYS); 1411 1412 /* FIXME: Document how the locking works. */ 1413 if (ohci->generation != packet->generation) { 1414 if (packet->payload_mapped) 1415 dma_unmap_single(ohci->card.device, payload_bus, 1416 packet->payload_length, DMA_TO_DEVICE); 1417 packet->ack = RCODE_GENERATION; 1418 return -1; 1419 } 1420 1421 context_append(ctx, d, z, 4 - z); 1422 1423 if (ctx->running) 1424 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); 1425 else 1426 context_run(ctx, 0); 1427 1428 return 0; 1429 } 1430 1431 static void at_context_flush(struct context *ctx) 1432 { 1433 tasklet_disable(&ctx->tasklet); 1434 1435 ctx->flushing = true; 1436 context_tasklet((unsigned long)ctx); 1437 ctx->flushing = false; 1438 1439 tasklet_enable(&ctx->tasklet); 1440 } 1441 1442 static int handle_at_packet(struct context *context, 1443 struct descriptor *d, 1444 struct descriptor *last) 1445 { 1446 struct driver_data *driver_data; 1447 struct fw_packet *packet; 1448 struct fw_ohci *ohci = context->ohci; 1449 int evt; 1450 1451 if (last->transfer_status == 0 && !context->flushing) 1452 /* This descriptor isn't done yet, stop iteration. */ 1453 return 0; 1454 1455 driver_data = (struct driver_data *) &d[3]; 1456 packet = driver_data->packet; 1457 if (packet == NULL) 1458 /* This packet was cancelled, just continue. */ 1459 return 1; 1460 1461 if (packet->payload_mapped) 1462 dma_unmap_single(ohci->card.device, packet->payload_bus, 1463 packet->payload_length, DMA_TO_DEVICE); 1464 1465 evt = le16_to_cpu(last->transfer_status) & 0x1f; 1466 packet->timestamp = le16_to_cpu(last->res_count); 1467 1468 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt); 1469 1470 switch (evt) { 1471 case OHCI1394_evt_timeout: 1472 /* Async response transmit timed out. */ 1473 packet->ack = RCODE_CANCELLED; 1474 break; 1475 1476 case OHCI1394_evt_flushed: 1477 /* 1478 * The packet was flushed should give same error as 1479 * when we try to use a stale generation count. 1480 */ 1481 packet->ack = RCODE_GENERATION; 1482 break; 1483 1484 case OHCI1394_evt_missing_ack: 1485 if (context->flushing) 1486 packet->ack = RCODE_GENERATION; 1487 else { 1488 /* 1489 * Using a valid (current) generation count, but the 1490 * node is not on the bus or not sending acks. 1491 */ 1492 packet->ack = RCODE_NO_ACK; 1493 } 1494 break; 1495 1496 case ACK_COMPLETE + 0x10: 1497 case ACK_PENDING + 0x10: 1498 case ACK_BUSY_X + 0x10: 1499 case ACK_BUSY_A + 0x10: 1500 case ACK_BUSY_B + 0x10: 1501 case ACK_DATA_ERROR + 0x10: 1502 case ACK_TYPE_ERROR + 0x10: 1503 packet->ack = evt - 0x10; 1504 break; 1505 1506 case OHCI1394_evt_no_status: 1507 if (context->flushing) { 1508 packet->ack = RCODE_GENERATION; 1509 break; 1510 } 1511 /* fall through */ 1512 1513 default: 1514 packet->ack = RCODE_SEND_ERROR; 1515 break; 1516 } 1517 1518 packet->callback(packet, &ohci->card, packet->ack); 1519 1520 return 1; 1521 } 1522 1523 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff) 1524 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f) 1525 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff) 1526 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff) 1527 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff) 1528 1529 static void handle_local_rom(struct fw_ohci *ohci, 1530 struct fw_packet *packet, u32 csr) 1531 { 1532 struct fw_packet response; 1533 int tcode, length, i; 1534 1535 tcode = HEADER_GET_TCODE(packet->header[0]); 1536 if (TCODE_IS_BLOCK_PACKET(tcode)) 1537 length = HEADER_GET_DATA_LENGTH(packet->header[3]); 1538 else 1539 length = 4; 1540 1541 i = csr - CSR_CONFIG_ROM; 1542 if (i + length > CONFIG_ROM_SIZE) { 1543 fw_fill_response(&response, packet->header, 1544 RCODE_ADDRESS_ERROR, NULL, 0); 1545 } else if (!TCODE_IS_READ_REQUEST(tcode)) { 1546 fw_fill_response(&response, packet->header, 1547 RCODE_TYPE_ERROR, NULL, 0); 1548 } else { 1549 fw_fill_response(&response, packet->header, RCODE_COMPLETE, 1550 (void *) ohci->config_rom + i, length); 1551 } 1552 1553 fw_core_handle_response(&ohci->card, &response); 1554 } 1555 1556 static void handle_local_lock(struct fw_ohci *ohci, 1557 struct fw_packet *packet, u32 csr) 1558 { 1559 struct fw_packet response; 1560 int tcode, length, ext_tcode, sel, try; 1561 __be32 *payload, lock_old; 1562 u32 lock_arg, lock_data; 1563 1564 tcode = HEADER_GET_TCODE(packet->header[0]); 1565 length = HEADER_GET_DATA_LENGTH(packet->header[3]); 1566 payload = packet->payload; 1567 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]); 1568 1569 if (tcode == TCODE_LOCK_REQUEST && 1570 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) { 1571 lock_arg = be32_to_cpu(payload[0]); 1572 lock_data = be32_to_cpu(payload[1]); 1573 } else if (tcode == TCODE_READ_QUADLET_REQUEST) { 1574 lock_arg = 0; 1575 lock_data = 0; 1576 } else { 1577 fw_fill_response(&response, packet->header, 1578 RCODE_TYPE_ERROR, NULL, 0); 1579 goto out; 1580 } 1581 1582 sel = (csr - CSR_BUS_MANAGER_ID) / 4; 1583 reg_write(ohci, OHCI1394_CSRData, lock_data); 1584 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg); 1585 reg_write(ohci, OHCI1394_CSRControl, sel); 1586 1587 for (try = 0; try < 20; try++) 1588 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) { 1589 lock_old = cpu_to_be32(reg_read(ohci, 1590 OHCI1394_CSRData)); 1591 fw_fill_response(&response, packet->header, 1592 RCODE_COMPLETE, 1593 &lock_old, sizeof(lock_old)); 1594 goto out; 1595 } 1596 1597 ohci_err(ohci, "swap not done (CSR lock timeout)\n"); 1598 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0); 1599 1600 out: 1601 fw_core_handle_response(&ohci->card, &response); 1602 } 1603 1604 static void handle_local_request(struct context *ctx, struct fw_packet *packet) 1605 { 1606 u64 offset, csr; 1607 1608 if (ctx == &ctx->ohci->at_request_ctx) { 1609 packet->ack = ACK_PENDING; 1610 packet->callback(packet, &ctx->ohci->card, packet->ack); 1611 } 1612 1613 offset = 1614 ((unsigned long long) 1615 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) | 1616 packet->header[2]; 1617 csr = offset - CSR_REGISTER_BASE; 1618 1619 /* Handle config rom reads. */ 1620 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END) 1621 handle_local_rom(ctx->ohci, packet, csr); 1622 else switch (csr) { 1623 case CSR_BUS_MANAGER_ID: 1624 case CSR_BANDWIDTH_AVAILABLE: 1625 case CSR_CHANNELS_AVAILABLE_HI: 1626 case CSR_CHANNELS_AVAILABLE_LO: 1627 handle_local_lock(ctx->ohci, packet, csr); 1628 break; 1629 default: 1630 if (ctx == &ctx->ohci->at_request_ctx) 1631 fw_core_handle_request(&ctx->ohci->card, packet); 1632 else 1633 fw_core_handle_response(&ctx->ohci->card, packet); 1634 break; 1635 } 1636 1637 if (ctx == &ctx->ohci->at_response_ctx) { 1638 packet->ack = ACK_COMPLETE; 1639 packet->callback(packet, &ctx->ohci->card, packet->ack); 1640 } 1641 } 1642 1643 static void at_context_transmit(struct context *ctx, struct fw_packet *packet) 1644 { 1645 unsigned long flags; 1646 int ret; 1647 1648 spin_lock_irqsave(&ctx->ohci->lock, flags); 1649 1650 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id && 1651 ctx->ohci->generation == packet->generation) { 1652 spin_unlock_irqrestore(&ctx->ohci->lock, flags); 1653 handle_local_request(ctx, packet); 1654 return; 1655 } 1656 1657 ret = at_context_queue_packet(ctx, packet); 1658 spin_unlock_irqrestore(&ctx->ohci->lock, flags); 1659 1660 if (ret < 0) 1661 packet->callback(packet, &ctx->ohci->card, packet->ack); 1662 1663 } 1664 1665 static void detect_dead_context(struct fw_ohci *ohci, 1666 const char *name, unsigned int regs) 1667 { 1668 u32 ctl; 1669 1670 ctl = reg_read(ohci, CONTROL_SET(regs)); 1671 if (ctl & CONTEXT_DEAD) 1672 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n", 1673 name, evts[ctl & 0x1f]); 1674 } 1675 1676 static void handle_dead_contexts(struct fw_ohci *ohci) 1677 { 1678 unsigned int i; 1679 char name[8]; 1680 1681 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase); 1682 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase); 1683 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase); 1684 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase); 1685 for (i = 0; i < 32; ++i) { 1686 if (!(ohci->it_context_support & (1 << i))) 1687 continue; 1688 sprintf(name, "IT%u", i); 1689 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i)); 1690 } 1691 for (i = 0; i < 32; ++i) { 1692 if (!(ohci->ir_context_support & (1 << i))) 1693 continue; 1694 sprintf(name, "IR%u", i); 1695 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i)); 1696 } 1697 /* TODO: maybe try to flush and restart the dead contexts */ 1698 } 1699 1700 static u32 cycle_timer_ticks(u32 cycle_timer) 1701 { 1702 u32 ticks; 1703 1704 ticks = cycle_timer & 0xfff; 1705 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff); 1706 ticks += (3072 * 8000) * (cycle_timer >> 25); 1707 1708 return ticks; 1709 } 1710 1711 /* 1712 * Some controllers exhibit one or more of the following bugs when updating the 1713 * iso cycle timer register: 1714 * - When the lowest six bits are wrapping around to zero, a read that happens 1715 * at the same time will return garbage in the lowest ten bits. 1716 * - When the cycleOffset field wraps around to zero, the cycleCount field is 1717 * not incremented for about 60 ns. 1718 * - Occasionally, the entire register reads zero. 1719 * 1720 * To catch these, we read the register three times and ensure that the 1721 * difference between each two consecutive reads is approximately the same, i.e. 1722 * less than twice the other. Furthermore, any negative difference indicates an 1723 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to 1724 * execute, so we have enough precision to compute the ratio of the differences.) 1725 */ 1726 static u32 get_cycle_time(struct fw_ohci *ohci) 1727 { 1728 u32 c0, c1, c2; 1729 u32 t0, t1, t2; 1730 s32 diff01, diff12; 1731 int i; 1732 1733 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); 1734 1735 if (ohci->quirks & QUIRK_CYCLE_TIMER) { 1736 i = 0; 1737 c1 = c2; 1738 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); 1739 do { 1740 c0 = c1; 1741 c1 = c2; 1742 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); 1743 t0 = cycle_timer_ticks(c0); 1744 t1 = cycle_timer_ticks(c1); 1745 t2 = cycle_timer_ticks(c2); 1746 diff01 = t1 - t0; 1747 diff12 = t2 - t1; 1748 } while ((diff01 <= 0 || diff12 <= 0 || 1749 diff01 / diff12 >= 2 || diff12 / diff01 >= 2) 1750 && i++ < 20); 1751 } 1752 1753 return c2; 1754 } 1755 1756 /* 1757 * This function has to be called at least every 64 seconds. The bus_time 1758 * field stores not only the upper 25 bits of the BUS_TIME register but also 1759 * the most significant bit of the cycle timer in bit 6 so that we can detect 1760 * changes in this bit. 1761 */ 1762 static u32 update_bus_time(struct fw_ohci *ohci) 1763 { 1764 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25; 1765 1766 if (unlikely(!ohci->bus_time_running)) { 1767 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds); 1768 ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) | 1769 (cycle_time_seconds & 0x40); 1770 ohci->bus_time_running = true; 1771 } 1772 1773 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40)) 1774 ohci->bus_time += 0x40; 1775 1776 return ohci->bus_time | cycle_time_seconds; 1777 } 1778 1779 static int get_status_for_port(struct fw_ohci *ohci, int port_index) 1780 { 1781 int reg; 1782 1783 mutex_lock(&ohci->phy_reg_mutex); 1784 reg = write_phy_reg(ohci, 7, port_index); 1785 if (reg >= 0) 1786 reg = read_phy_reg(ohci, 8); 1787 mutex_unlock(&ohci->phy_reg_mutex); 1788 if (reg < 0) 1789 return reg; 1790 1791 switch (reg & 0x0f) { 1792 case 0x06: 1793 return 2; /* is child node (connected to parent node) */ 1794 case 0x0e: 1795 return 3; /* is parent node (connected to child node) */ 1796 } 1797 return 1; /* not connected */ 1798 } 1799 1800 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id, 1801 int self_id_count) 1802 { 1803 int i; 1804 u32 entry; 1805 1806 for (i = 0; i < self_id_count; i++) { 1807 entry = ohci->self_id_buffer[i]; 1808 if ((self_id & 0xff000000) == (entry & 0xff000000)) 1809 return -1; 1810 if ((self_id & 0xff000000) < (entry & 0xff000000)) 1811 return i; 1812 } 1813 return i; 1814 } 1815 1816 static int initiated_reset(struct fw_ohci *ohci) 1817 { 1818 int reg; 1819 int ret = 0; 1820 1821 mutex_lock(&ohci->phy_reg_mutex); 1822 reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */ 1823 if (reg >= 0) { 1824 reg = read_phy_reg(ohci, 8); 1825 reg |= 0x40; 1826 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */ 1827 if (reg >= 0) { 1828 reg = read_phy_reg(ohci, 12); /* read register 12 */ 1829 if (reg >= 0) { 1830 if ((reg & 0x08) == 0x08) { 1831 /* bit 3 indicates "initiated reset" */ 1832 ret = 0x2; 1833 } 1834 } 1835 } 1836 } 1837 mutex_unlock(&ohci->phy_reg_mutex); 1838 return ret; 1839 } 1840 1841 /* 1842 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally 1843 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059. 1844 * Construct the selfID from phy register contents. 1845 */ 1846 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count) 1847 { 1848 int reg, i, pos, status; 1849 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */ 1850 u32 self_id = 0x8040c800; 1851 1852 reg = reg_read(ohci, OHCI1394_NodeID); 1853 if (!(reg & OHCI1394_NodeID_idValid)) { 1854 ohci_notice(ohci, 1855 "node ID not valid, new bus reset in progress\n"); 1856 return -EBUSY; 1857 } 1858 self_id |= ((reg & 0x3f) << 24); /* phy ID */ 1859 1860 reg = ohci_read_phy_reg(&ohci->card, 4); 1861 if (reg < 0) 1862 return reg; 1863 self_id |= ((reg & 0x07) << 8); /* power class */ 1864 1865 reg = ohci_read_phy_reg(&ohci->card, 1); 1866 if (reg < 0) 1867 return reg; 1868 self_id |= ((reg & 0x3f) << 16); /* gap count */ 1869 1870 for (i = 0; i < 3; i++) { 1871 status = get_status_for_port(ohci, i); 1872 if (status < 0) 1873 return status; 1874 self_id |= ((status & 0x3) << (6 - (i * 2))); 1875 } 1876 1877 self_id |= initiated_reset(ohci); 1878 1879 pos = get_self_id_pos(ohci, self_id, self_id_count); 1880 if (pos >= 0) { 1881 memmove(&(ohci->self_id_buffer[pos+1]), 1882 &(ohci->self_id_buffer[pos]), 1883 (self_id_count - pos) * sizeof(*ohci->self_id_buffer)); 1884 ohci->self_id_buffer[pos] = self_id; 1885 self_id_count++; 1886 } 1887 return self_id_count; 1888 } 1889 1890 static void bus_reset_work(struct work_struct *work) 1891 { 1892 struct fw_ohci *ohci = 1893 container_of(work, struct fw_ohci, bus_reset_work); 1894 int self_id_count, generation, new_generation, i, j; 1895 u32 reg; 1896 void *free_rom = NULL; 1897 dma_addr_t free_rom_bus = 0; 1898 bool is_new_root; 1899 1900 reg = reg_read(ohci, OHCI1394_NodeID); 1901 if (!(reg & OHCI1394_NodeID_idValid)) { 1902 ohci_notice(ohci, 1903 "node ID not valid, new bus reset in progress\n"); 1904 return; 1905 } 1906 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) { 1907 ohci_notice(ohci, "malconfigured bus\n"); 1908 return; 1909 } 1910 ohci->node_id = reg & (OHCI1394_NodeID_busNumber | 1911 OHCI1394_NodeID_nodeNumber); 1912 1913 is_new_root = (reg & OHCI1394_NodeID_root) != 0; 1914 if (!(ohci->is_root && is_new_root)) 1915 reg_write(ohci, OHCI1394_LinkControlSet, 1916 OHCI1394_LinkControl_cycleMaster); 1917 ohci->is_root = is_new_root; 1918 1919 reg = reg_read(ohci, OHCI1394_SelfIDCount); 1920 if (reg & OHCI1394_SelfIDCount_selfIDError) { 1921 ohci_notice(ohci, "self ID receive error\n"); 1922 return; 1923 } 1924 /* 1925 * The count in the SelfIDCount register is the number of 1926 * bytes in the self ID receive buffer. Since we also receive 1927 * the inverted quadlets and a header quadlet, we shift one 1928 * bit extra to get the actual number of self IDs. 1929 */ 1930 self_id_count = (reg >> 3) & 0xff; 1931 1932 if (self_id_count > 252) { 1933 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg); 1934 return; 1935 } 1936 1937 generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff; 1938 rmb(); 1939 1940 for (i = 1, j = 0; j < self_id_count; i += 2, j++) { 1941 u32 id = cond_le32_to_cpu(ohci->self_id[i]); 1942 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]); 1943 1944 if (id != ~id2) { 1945 /* 1946 * If the invalid data looks like a cycle start packet, 1947 * it's likely to be the result of the cycle master 1948 * having a wrong gap count. In this case, the self IDs 1949 * so far are valid and should be processed so that the 1950 * bus manager can then correct the gap count. 1951 */ 1952 if (id == 0xffff008f) { 1953 ohci_notice(ohci, "ignoring spurious self IDs\n"); 1954 self_id_count = j; 1955 break; 1956 } 1957 1958 ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n", 1959 j, self_id_count, id, id2); 1960 return; 1961 } 1962 ohci->self_id_buffer[j] = id; 1963 } 1964 1965 if (ohci->quirks & QUIRK_TI_SLLZ059) { 1966 self_id_count = find_and_insert_self_id(ohci, self_id_count); 1967 if (self_id_count < 0) { 1968 ohci_notice(ohci, 1969 "could not construct local self ID\n"); 1970 return; 1971 } 1972 } 1973 1974 if (self_id_count == 0) { 1975 ohci_notice(ohci, "no self IDs\n"); 1976 return; 1977 } 1978 rmb(); 1979 1980 /* 1981 * Check the consistency of the self IDs we just read. The 1982 * problem we face is that a new bus reset can start while we 1983 * read out the self IDs from the DMA buffer. If this happens, 1984 * the DMA buffer will be overwritten with new self IDs and we 1985 * will read out inconsistent data. The OHCI specification 1986 * (section 11.2) recommends a technique similar to 1987 * linux/seqlock.h, where we remember the generation of the 1988 * self IDs in the buffer before reading them out and compare 1989 * it to the current generation after reading them out. If 1990 * the two generations match we know we have a consistent set 1991 * of self IDs. 1992 */ 1993 1994 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff; 1995 if (new_generation != generation) { 1996 ohci_notice(ohci, "new bus reset, discarding self ids\n"); 1997 return; 1998 } 1999 2000 /* FIXME: Document how the locking works. */ 2001 spin_lock_irq(&ohci->lock); 2002 2003 ohci->generation = -1; /* prevent AT packet queueing */ 2004 context_stop(&ohci->at_request_ctx); 2005 context_stop(&ohci->at_response_ctx); 2006 2007 spin_unlock_irq(&ohci->lock); 2008 2009 /* 2010 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent 2011 * packets in the AT queues and software needs to drain them. 2012 * Some OHCI 1.1 controllers (JMicron) apparently require this too. 2013 */ 2014 at_context_flush(&ohci->at_request_ctx); 2015 at_context_flush(&ohci->at_response_ctx); 2016 2017 spin_lock_irq(&ohci->lock); 2018 2019 ohci->generation = generation; 2020 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset); 2021 2022 if (ohci->quirks & QUIRK_RESET_PACKET) 2023 ohci->request_generation = generation; 2024 2025 /* 2026 * This next bit is unrelated to the AT context stuff but we 2027 * have to do it under the spinlock also. If a new config rom 2028 * was set up before this reset, the old one is now no longer 2029 * in use and we can free it. Update the config rom pointers 2030 * to point to the current config rom and clear the 2031 * next_config_rom pointer so a new update can take place. 2032 */ 2033 2034 if (ohci->next_config_rom != NULL) { 2035 if (ohci->next_config_rom != ohci->config_rom) { 2036 free_rom = ohci->config_rom; 2037 free_rom_bus = ohci->config_rom_bus; 2038 } 2039 ohci->config_rom = ohci->next_config_rom; 2040 ohci->config_rom_bus = ohci->next_config_rom_bus; 2041 ohci->next_config_rom = NULL; 2042 2043 /* 2044 * Restore config_rom image and manually update 2045 * config_rom registers. Writing the header quadlet 2046 * will indicate that the config rom is ready, so we 2047 * do that last. 2048 */ 2049 reg_write(ohci, OHCI1394_BusOptions, 2050 be32_to_cpu(ohci->config_rom[2])); 2051 ohci->config_rom[0] = ohci->next_header; 2052 reg_write(ohci, OHCI1394_ConfigROMhdr, 2053 be32_to_cpu(ohci->next_header)); 2054 } 2055 2056 if (param_remote_dma) { 2057 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0); 2058 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0); 2059 } 2060 2061 spin_unlock_irq(&ohci->lock); 2062 2063 if (free_rom) 2064 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, 2065 free_rom, free_rom_bus); 2066 2067 log_selfids(ohci, generation, self_id_count); 2068 2069 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation, 2070 self_id_count, ohci->self_id_buffer, 2071 ohci->csr_state_setclear_abdicate); 2072 ohci->csr_state_setclear_abdicate = false; 2073 } 2074 2075 static irqreturn_t irq_handler(int irq, void *data) 2076 { 2077 struct fw_ohci *ohci = data; 2078 u32 event, iso_event; 2079 int i; 2080 2081 event = reg_read(ohci, OHCI1394_IntEventClear); 2082 2083 if (!event || !~event) 2084 return IRQ_NONE; 2085 2086 /* 2087 * busReset and postedWriteErr must not be cleared yet 2088 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1) 2089 */ 2090 reg_write(ohci, OHCI1394_IntEventClear, 2091 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr)); 2092 log_irqs(ohci, event); 2093 2094 if (event & OHCI1394_selfIDComplete) 2095 queue_work(selfid_workqueue, &ohci->bus_reset_work); 2096 2097 if (event & OHCI1394_RQPkt) 2098 tasklet_schedule(&ohci->ar_request_ctx.tasklet); 2099 2100 if (event & OHCI1394_RSPkt) 2101 tasklet_schedule(&ohci->ar_response_ctx.tasklet); 2102 2103 if (event & OHCI1394_reqTxComplete) 2104 tasklet_schedule(&ohci->at_request_ctx.tasklet); 2105 2106 if (event & OHCI1394_respTxComplete) 2107 tasklet_schedule(&ohci->at_response_ctx.tasklet); 2108 2109 if (event & OHCI1394_isochRx) { 2110 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear); 2111 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event); 2112 2113 while (iso_event) { 2114 i = ffs(iso_event) - 1; 2115 tasklet_schedule( 2116 &ohci->ir_context_list[i].context.tasklet); 2117 iso_event &= ~(1 << i); 2118 } 2119 } 2120 2121 if (event & OHCI1394_isochTx) { 2122 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear); 2123 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event); 2124 2125 while (iso_event) { 2126 i = ffs(iso_event) - 1; 2127 tasklet_schedule( 2128 &ohci->it_context_list[i].context.tasklet); 2129 iso_event &= ~(1 << i); 2130 } 2131 } 2132 2133 if (unlikely(event & OHCI1394_regAccessFail)) 2134 ohci_err(ohci, "register access failure\n"); 2135 2136 if (unlikely(event & OHCI1394_postedWriteErr)) { 2137 reg_read(ohci, OHCI1394_PostedWriteAddressHi); 2138 reg_read(ohci, OHCI1394_PostedWriteAddressLo); 2139 reg_write(ohci, OHCI1394_IntEventClear, 2140 OHCI1394_postedWriteErr); 2141 if (printk_ratelimit()) 2142 ohci_err(ohci, "PCI posted write error\n"); 2143 } 2144 2145 if (unlikely(event & OHCI1394_cycleTooLong)) { 2146 if (printk_ratelimit()) 2147 ohci_notice(ohci, "isochronous cycle too long\n"); 2148 reg_write(ohci, OHCI1394_LinkControlSet, 2149 OHCI1394_LinkControl_cycleMaster); 2150 } 2151 2152 if (unlikely(event & OHCI1394_cycleInconsistent)) { 2153 /* 2154 * We need to clear this event bit in order to make 2155 * cycleMatch isochronous I/O work. In theory we should 2156 * stop active cycleMatch iso contexts now and restart 2157 * them at least two cycles later. (FIXME?) 2158 */ 2159 if (printk_ratelimit()) 2160 ohci_notice(ohci, "isochronous cycle inconsistent\n"); 2161 } 2162 2163 if (unlikely(event & OHCI1394_unrecoverableError)) 2164 handle_dead_contexts(ohci); 2165 2166 if (event & OHCI1394_cycle64Seconds) { 2167 spin_lock(&ohci->lock); 2168 update_bus_time(ohci); 2169 spin_unlock(&ohci->lock); 2170 } else 2171 flush_writes(ohci); 2172 2173 return IRQ_HANDLED; 2174 } 2175 2176 static int software_reset(struct fw_ohci *ohci) 2177 { 2178 u32 val; 2179 int i; 2180 2181 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset); 2182 for (i = 0; i < 500; i++) { 2183 val = reg_read(ohci, OHCI1394_HCControlSet); 2184 if (!~val) 2185 return -ENODEV; /* Card was ejected. */ 2186 2187 if (!(val & OHCI1394_HCControl_softReset)) 2188 return 0; 2189 2190 msleep(1); 2191 } 2192 2193 return -EBUSY; 2194 } 2195 2196 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length) 2197 { 2198 size_t size = length * 4; 2199 2200 memcpy(dest, src, size); 2201 if (size < CONFIG_ROM_SIZE) 2202 memset(&dest[length], 0, CONFIG_ROM_SIZE - size); 2203 } 2204 2205 static int configure_1394a_enhancements(struct fw_ohci *ohci) 2206 { 2207 bool enable_1394a; 2208 int ret, clear, set, offset; 2209 2210 /* Check if the driver should configure link and PHY. */ 2211 if (!(reg_read(ohci, OHCI1394_HCControlSet) & 2212 OHCI1394_HCControl_programPhyEnable)) 2213 return 0; 2214 2215 /* Paranoia: check whether the PHY supports 1394a, too. */ 2216 enable_1394a = false; 2217 ret = read_phy_reg(ohci, 2); 2218 if (ret < 0) 2219 return ret; 2220 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) { 2221 ret = read_paged_phy_reg(ohci, 1, 8); 2222 if (ret < 0) 2223 return ret; 2224 if (ret >= 1) 2225 enable_1394a = true; 2226 } 2227 2228 if (ohci->quirks & QUIRK_NO_1394A) 2229 enable_1394a = false; 2230 2231 /* Configure PHY and link consistently. */ 2232 if (enable_1394a) { 2233 clear = 0; 2234 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI; 2235 } else { 2236 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI; 2237 set = 0; 2238 } 2239 ret = update_phy_reg(ohci, 5, clear, set); 2240 if (ret < 0) 2241 return ret; 2242 2243 if (enable_1394a) 2244 offset = OHCI1394_HCControlSet; 2245 else 2246 offset = OHCI1394_HCControlClear; 2247 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable); 2248 2249 /* Clean up: configuration has been taken care of. */ 2250 reg_write(ohci, OHCI1394_HCControlClear, 2251 OHCI1394_HCControl_programPhyEnable); 2252 2253 return 0; 2254 } 2255 2256 static int probe_tsb41ba3d(struct fw_ohci *ohci) 2257 { 2258 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */ 2259 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, }; 2260 int reg, i; 2261 2262 reg = read_phy_reg(ohci, 2); 2263 if (reg < 0) 2264 return reg; 2265 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS) 2266 return 0; 2267 2268 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) { 2269 reg = read_paged_phy_reg(ohci, 1, i + 10); 2270 if (reg < 0) 2271 return reg; 2272 if (reg != id[i]) 2273 return 0; 2274 } 2275 return 1; 2276 } 2277 2278 static int ohci_enable(struct fw_card *card, 2279 const __be32 *config_rom, size_t length) 2280 { 2281 struct fw_ohci *ohci = fw_ohci(card); 2282 u32 lps, version, irqs; 2283 int i, ret; 2284 2285 ret = software_reset(ohci); 2286 if (ret < 0) { 2287 ohci_err(ohci, "failed to reset ohci card\n"); 2288 return ret; 2289 } 2290 2291 /* 2292 * Now enable LPS, which we need in order to start accessing 2293 * most of the registers. In fact, on some cards (ALI M5251), 2294 * accessing registers in the SClk domain without LPS enabled 2295 * will lock up the machine. Wait 50msec to make sure we have 2296 * full link enabled. However, with some cards (well, at least 2297 * a JMicron PCIe card), we have to try again sometimes. 2298 * 2299 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but 2300 * cannot actually use the phy at that time. These need tens of 2301 * millisecods pause between LPS write and first phy access too. 2302 */ 2303 2304 reg_write(ohci, OHCI1394_HCControlSet, 2305 OHCI1394_HCControl_LPS | 2306 OHCI1394_HCControl_postedWriteEnable); 2307 flush_writes(ohci); 2308 2309 for (lps = 0, i = 0; !lps && i < 3; i++) { 2310 msleep(50); 2311 lps = reg_read(ohci, OHCI1394_HCControlSet) & 2312 OHCI1394_HCControl_LPS; 2313 } 2314 2315 if (!lps) { 2316 ohci_err(ohci, "failed to set Link Power Status\n"); 2317 return -EIO; 2318 } 2319 2320 if (ohci->quirks & QUIRK_TI_SLLZ059) { 2321 ret = probe_tsb41ba3d(ohci); 2322 if (ret < 0) 2323 return ret; 2324 if (ret) 2325 ohci_notice(ohci, "local TSB41BA3D phy\n"); 2326 else 2327 ohci->quirks &= ~QUIRK_TI_SLLZ059; 2328 } 2329 2330 reg_write(ohci, OHCI1394_HCControlClear, 2331 OHCI1394_HCControl_noByteSwapData); 2332 2333 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus); 2334 reg_write(ohci, OHCI1394_LinkControlSet, 2335 OHCI1394_LinkControl_cycleTimerEnable | 2336 OHCI1394_LinkControl_cycleMaster); 2337 2338 reg_write(ohci, OHCI1394_ATRetries, 2339 OHCI1394_MAX_AT_REQ_RETRIES | 2340 (OHCI1394_MAX_AT_RESP_RETRIES << 4) | 2341 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) | 2342 (200 << 16)); 2343 2344 ohci->bus_time_running = false; 2345 2346 for (i = 0; i < 32; i++) 2347 if (ohci->ir_context_support & (1 << i)) 2348 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i), 2349 IR_CONTEXT_MULTI_CHANNEL_MODE); 2350 2351 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff; 2352 if (version >= OHCI_VERSION_1_1) { 2353 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi, 2354 0xfffffffe); 2355 card->broadcast_channel_auto_allocated = true; 2356 } 2357 2358 /* Get implemented bits of the priority arbitration request counter. */ 2359 reg_write(ohci, OHCI1394_FairnessControl, 0x3f); 2360 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f; 2361 reg_write(ohci, OHCI1394_FairnessControl, 0); 2362 card->priority_budget_implemented = ohci->pri_req_max != 0; 2363 2364 reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16); 2365 reg_write(ohci, OHCI1394_IntEventClear, ~0); 2366 reg_write(ohci, OHCI1394_IntMaskClear, ~0); 2367 2368 ret = configure_1394a_enhancements(ohci); 2369 if (ret < 0) 2370 return ret; 2371 2372 /* Activate link_on bit and contender bit in our self ID packets.*/ 2373 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER); 2374 if (ret < 0) 2375 return ret; 2376 2377 /* 2378 * When the link is not yet enabled, the atomic config rom 2379 * update mechanism described below in ohci_set_config_rom() 2380 * is not active. We have to update ConfigRomHeader and 2381 * BusOptions manually, and the write to ConfigROMmap takes 2382 * effect immediately. We tie this to the enabling of the 2383 * link, so we have a valid config rom before enabling - the 2384 * OHCI requires that ConfigROMhdr and BusOptions have valid 2385 * values before enabling. 2386 * 2387 * However, when the ConfigROMmap is written, some controllers 2388 * always read back quadlets 0 and 2 from the config rom to 2389 * the ConfigRomHeader and BusOptions registers on bus reset. 2390 * They shouldn't do that in this initial case where the link 2391 * isn't enabled. This means we have to use the same 2392 * workaround here, setting the bus header to 0 and then write 2393 * the right values in the bus reset tasklet. 2394 */ 2395 2396 if (config_rom) { 2397 ohci->next_config_rom = 2398 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, 2399 &ohci->next_config_rom_bus, 2400 GFP_KERNEL); 2401 if (ohci->next_config_rom == NULL) 2402 return -ENOMEM; 2403 2404 copy_config_rom(ohci->next_config_rom, config_rom, length); 2405 } else { 2406 /* 2407 * In the suspend case, config_rom is NULL, which 2408 * means that we just reuse the old config rom. 2409 */ 2410 ohci->next_config_rom = ohci->config_rom; 2411 ohci->next_config_rom_bus = ohci->config_rom_bus; 2412 } 2413 2414 ohci->next_header = ohci->next_config_rom[0]; 2415 ohci->next_config_rom[0] = 0; 2416 reg_write(ohci, OHCI1394_ConfigROMhdr, 0); 2417 reg_write(ohci, OHCI1394_BusOptions, 2418 be32_to_cpu(ohci->next_config_rom[2])); 2419 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); 2420 2421 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000); 2422 2423 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete | 2424 OHCI1394_RQPkt | OHCI1394_RSPkt | 2425 OHCI1394_isochTx | OHCI1394_isochRx | 2426 OHCI1394_postedWriteErr | 2427 OHCI1394_selfIDComplete | 2428 OHCI1394_regAccessFail | 2429 OHCI1394_cycleInconsistent | 2430 OHCI1394_unrecoverableError | 2431 OHCI1394_cycleTooLong | 2432 OHCI1394_masterIntEnable; 2433 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS) 2434 irqs |= OHCI1394_busReset; 2435 reg_write(ohci, OHCI1394_IntMaskSet, irqs); 2436 2437 reg_write(ohci, OHCI1394_HCControlSet, 2438 OHCI1394_HCControl_linkEnable | 2439 OHCI1394_HCControl_BIBimageValid); 2440 2441 reg_write(ohci, OHCI1394_LinkControlSet, 2442 OHCI1394_LinkControl_rcvSelfID | 2443 OHCI1394_LinkControl_rcvPhyPkt); 2444 2445 ar_context_run(&ohci->ar_request_ctx); 2446 ar_context_run(&ohci->ar_response_ctx); 2447 2448 flush_writes(ohci); 2449 2450 /* We are ready to go, reset bus to finish initialization. */ 2451 fw_schedule_bus_reset(&ohci->card, false, true); 2452 2453 return 0; 2454 } 2455 2456 static int ohci_set_config_rom(struct fw_card *card, 2457 const __be32 *config_rom, size_t length) 2458 { 2459 struct fw_ohci *ohci; 2460 __be32 *next_config_rom; 2461 dma_addr_t uninitialized_var(next_config_rom_bus); 2462 2463 ohci = fw_ohci(card); 2464 2465 /* 2466 * When the OHCI controller is enabled, the config rom update 2467 * mechanism is a bit tricky, but easy enough to use. See 2468 * section 5.5.6 in the OHCI specification. 2469 * 2470 * The OHCI controller caches the new config rom address in a 2471 * shadow register (ConfigROMmapNext) and needs a bus reset 2472 * for the changes to take place. When the bus reset is 2473 * detected, the controller loads the new values for the 2474 * ConfigRomHeader and BusOptions registers from the specified 2475 * config rom and loads ConfigROMmap from the ConfigROMmapNext 2476 * shadow register. All automatically and atomically. 2477 * 2478 * Now, there's a twist to this story. The automatic load of 2479 * ConfigRomHeader and BusOptions doesn't honor the 2480 * noByteSwapData bit, so with a be32 config rom, the 2481 * controller will load be32 values in to these registers 2482 * during the atomic update, even on litte endian 2483 * architectures. The workaround we use is to put a 0 in the 2484 * header quadlet; 0 is endian agnostic and means that the 2485 * config rom isn't ready yet. In the bus reset tasklet we 2486 * then set up the real values for the two registers. 2487 * 2488 * We use ohci->lock to avoid racing with the code that sets 2489 * ohci->next_config_rom to NULL (see bus_reset_work). 2490 */ 2491 2492 next_config_rom = 2493 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, 2494 &next_config_rom_bus, GFP_KERNEL); 2495 if (next_config_rom == NULL) 2496 return -ENOMEM; 2497 2498 spin_lock_irq(&ohci->lock); 2499 2500 /* 2501 * If there is not an already pending config_rom update, 2502 * push our new allocation into the ohci->next_config_rom 2503 * and then mark the local variable as null so that we 2504 * won't deallocate the new buffer. 2505 * 2506 * OTOH, if there is a pending config_rom update, just 2507 * use that buffer with the new config_rom data, and 2508 * let this routine free the unused DMA allocation. 2509 */ 2510 2511 if (ohci->next_config_rom == NULL) { 2512 ohci->next_config_rom = next_config_rom; 2513 ohci->next_config_rom_bus = next_config_rom_bus; 2514 next_config_rom = NULL; 2515 } 2516 2517 copy_config_rom(ohci->next_config_rom, config_rom, length); 2518 2519 ohci->next_header = config_rom[0]; 2520 ohci->next_config_rom[0] = 0; 2521 2522 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); 2523 2524 spin_unlock_irq(&ohci->lock); 2525 2526 /* If we didn't use the DMA allocation, delete it. */ 2527 if (next_config_rom != NULL) 2528 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, 2529 next_config_rom, next_config_rom_bus); 2530 2531 /* 2532 * Now initiate a bus reset to have the changes take 2533 * effect. We clean up the old config rom memory and DMA 2534 * mappings in the bus reset tasklet, since the OHCI 2535 * controller could need to access it before the bus reset 2536 * takes effect. 2537 */ 2538 2539 fw_schedule_bus_reset(&ohci->card, true, true); 2540 2541 return 0; 2542 } 2543 2544 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet) 2545 { 2546 struct fw_ohci *ohci = fw_ohci(card); 2547 2548 at_context_transmit(&ohci->at_request_ctx, packet); 2549 } 2550 2551 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet) 2552 { 2553 struct fw_ohci *ohci = fw_ohci(card); 2554 2555 at_context_transmit(&ohci->at_response_ctx, packet); 2556 } 2557 2558 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet) 2559 { 2560 struct fw_ohci *ohci = fw_ohci(card); 2561 struct context *ctx = &ohci->at_request_ctx; 2562 struct driver_data *driver_data = packet->driver_data; 2563 int ret = -ENOENT; 2564 2565 tasklet_disable(&ctx->tasklet); 2566 2567 if (packet->ack != 0) 2568 goto out; 2569 2570 if (packet->payload_mapped) 2571 dma_unmap_single(ohci->card.device, packet->payload_bus, 2572 packet->payload_length, DMA_TO_DEVICE); 2573 2574 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20); 2575 driver_data->packet = NULL; 2576 packet->ack = RCODE_CANCELLED; 2577 packet->callback(packet, &ohci->card, packet->ack); 2578 ret = 0; 2579 out: 2580 tasklet_enable(&ctx->tasklet); 2581 2582 return ret; 2583 } 2584 2585 static int ohci_enable_phys_dma(struct fw_card *card, 2586 int node_id, int generation) 2587 { 2588 struct fw_ohci *ohci = fw_ohci(card); 2589 unsigned long flags; 2590 int n, ret = 0; 2591 2592 if (param_remote_dma) 2593 return 0; 2594 2595 /* 2596 * FIXME: Make sure this bitmask is cleared when we clear the busReset 2597 * interrupt bit. Clear physReqResourceAllBuses on bus reset. 2598 */ 2599 2600 spin_lock_irqsave(&ohci->lock, flags); 2601 2602 if (ohci->generation != generation) { 2603 ret = -ESTALE; 2604 goto out; 2605 } 2606 2607 /* 2608 * Note, if the node ID contains a non-local bus ID, physical DMA is 2609 * enabled for _all_ nodes on remote buses. 2610 */ 2611 2612 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63; 2613 if (n < 32) 2614 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n); 2615 else 2616 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32)); 2617 2618 flush_writes(ohci); 2619 out: 2620 spin_unlock_irqrestore(&ohci->lock, flags); 2621 2622 return ret; 2623 } 2624 2625 static u32 ohci_read_csr(struct fw_card *card, int csr_offset) 2626 { 2627 struct fw_ohci *ohci = fw_ohci(card); 2628 unsigned long flags; 2629 u32 value; 2630 2631 switch (csr_offset) { 2632 case CSR_STATE_CLEAR: 2633 case CSR_STATE_SET: 2634 if (ohci->is_root && 2635 (reg_read(ohci, OHCI1394_LinkControlSet) & 2636 OHCI1394_LinkControl_cycleMaster)) 2637 value = CSR_STATE_BIT_CMSTR; 2638 else 2639 value = 0; 2640 if (ohci->csr_state_setclear_abdicate) 2641 value |= CSR_STATE_BIT_ABDICATE; 2642 2643 return value; 2644 2645 case CSR_NODE_IDS: 2646 return reg_read(ohci, OHCI1394_NodeID) << 16; 2647 2648 case CSR_CYCLE_TIME: 2649 return get_cycle_time(ohci); 2650 2651 case CSR_BUS_TIME: 2652 /* 2653 * We might be called just after the cycle timer has wrapped 2654 * around but just before the cycle64Seconds handler, so we 2655 * better check here, too, if the bus time needs to be updated. 2656 */ 2657 spin_lock_irqsave(&ohci->lock, flags); 2658 value = update_bus_time(ohci); 2659 spin_unlock_irqrestore(&ohci->lock, flags); 2660 return value; 2661 2662 case CSR_BUSY_TIMEOUT: 2663 value = reg_read(ohci, OHCI1394_ATRetries); 2664 return (value >> 4) & 0x0ffff00f; 2665 2666 case CSR_PRIORITY_BUDGET: 2667 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) | 2668 (ohci->pri_req_max << 8); 2669 2670 default: 2671 WARN_ON(1); 2672 return 0; 2673 } 2674 } 2675 2676 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value) 2677 { 2678 struct fw_ohci *ohci = fw_ohci(card); 2679 unsigned long flags; 2680 2681 switch (csr_offset) { 2682 case CSR_STATE_CLEAR: 2683 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) { 2684 reg_write(ohci, OHCI1394_LinkControlClear, 2685 OHCI1394_LinkControl_cycleMaster); 2686 flush_writes(ohci); 2687 } 2688 if (value & CSR_STATE_BIT_ABDICATE) 2689 ohci->csr_state_setclear_abdicate = false; 2690 break; 2691 2692 case CSR_STATE_SET: 2693 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) { 2694 reg_write(ohci, OHCI1394_LinkControlSet, 2695 OHCI1394_LinkControl_cycleMaster); 2696 flush_writes(ohci); 2697 } 2698 if (value & CSR_STATE_BIT_ABDICATE) 2699 ohci->csr_state_setclear_abdicate = true; 2700 break; 2701 2702 case CSR_NODE_IDS: 2703 reg_write(ohci, OHCI1394_NodeID, value >> 16); 2704 flush_writes(ohci); 2705 break; 2706 2707 case CSR_CYCLE_TIME: 2708 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value); 2709 reg_write(ohci, OHCI1394_IntEventSet, 2710 OHCI1394_cycleInconsistent); 2711 flush_writes(ohci); 2712 break; 2713 2714 case CSR_BUS_TIME: 2715 spin_lock_irqsave(&ohci->lock, flags); 2716 ohci->bus_time = (update_bus_time(ohci) & 0x40) | 2717 (value & ~0x7f); 2718 spin_unlock_irqrestore(&ohci->lock, flags); 2719 break; 2720 2721 case CSR_BUSY_TIMEOUT: 2722 value = (value & 0xf) | ((value & 0xf) << 4) | 2723 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4); 2724 reg_write(ohci, OHCI1394_ATRetries, value); 2725 flush_writes(ohci); 2726 break; 2727 2728 case CSR_PRIORITY_BUDGET: 2729 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f); 2730 flush_writes(ohci); 2731 break; 2732 2733 default: 2734 WARN_ON(1); 2735 break; 2736 } 2737 } 2738 2739 static void flush_iso_completions(struct iso_context *ctx) 2740 { 2741 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp, 2742 ctx->header_length, ctx->header, 2743 ctx->base.callback_data); 2744 ctx->header_length = 0; 2745 } 2746 2747 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr) 2748 { 2749 u32 *ctx_hdr; 2750 2751 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) { 2752 if (ctx->base.drop_overflow_headers) 2753 return; 2754 flush_iso_completions(ctx); 2755 } 2756 2757 ctx_hdr = ctx->header + ctx->header_length; 2758 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]); 2759 2760 /* 2761 * The two iso header quadlets are byteswapped to little 2762 * endian by the controller, but we want to present them 2763 * as big endian for consistency with the bus endianness. 2764 */ 2765 if (ctx->base.header_size > 0) 2766 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */ 2767 if (ctx->base.header_size > 4) 2768 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */ 2769 if (ctx->base.header_size > 8) 2770 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8); 2771 ctx->header_length += ctx->base.header_size; 2772 } 2773 2774 static int handle_ir_packet_per_buffer(struct context *context, 2775 struct descriptor *d, 2776 struct descriptor *last) 2777 { 2778 struct iso_context *ctx = 2779 container_of(context, struct iso_context, context); 2780 struct descriptor *pd; 2781 u32 buffer_dma; 2782 2783 for (pd = d; pd <= last; pd++) 2784 if (pd->transfer_status) 2785 break; 2786 if (pd > last) 2787 /* Descriptor(s) not done yet, stop iteration */ 2788 return 0; 2789 2790 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) { 2791 d++; 2792 buffer_dma = le32_to_cpu(d->data_address); 2793 dma_sync_single_range_for_cpu(context->ohci->card.device, 2794 buffer_dma & PAGE_MASK, 2795 buffer_dma & ~PAGE_MASK, 2796 le16_to_cpu(d->req_count), 2797 DMA_FROM_DEVICE); 2798 } 2799 2800 copy_iso_headers(ctx, (u32 *) (last + 1)); 2801 2802 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) 2803 flush_iso_completions(ctx); 2804 2805 return 1; 2806 } 2807 2808 /* d == last because each descriptor block is only a single descriptor. */ 2809 static int handle_ir_buffer_fill(struct context *context, 2810 struct descriptor *d, 2811 struct descriptor *last) 2812 { 2813 struct iso_context *ctx = 2814 container_of(context, struct iso_context, context); 2815 unsigned int req_count, res_count, completed; 2816 u32 buffer_dma; 2817 2818 req_count = le16_to_cpu(last->req_count); 2819 res_count = le16_to_cpu(READ_ONCE(last->res_count)); 2820 completed = req_count - res_count; 2821 buffer_dma = le32_to_cpu(last->data_address); 2822 2823 if (completed > 0) { 2824 ctx->mc_buffer_bus = buffer_dma; 2825 ctx->mc_completed = completed; 2826 } 2827 2828 if (res_count != 0) 2829 /* Descriptor(s) not done yet, stop iteration */ 2830 return 0; 2831 2832 dma_sync_single_range_for_cpu(context->ohci->card.device, 2833 buffer_dma & PAGE_MASK, 2834 buffer_dma & ~PAGE_MASK, 2835 completed, DMA_FROM_DEVICE); 2836 2837 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) { 2838 ctx->base.callback.mc(&ctx->base, 2839 buffer_dma + completed, 2840 ctx->base.callback_data); 2841 ctx->mc_completed = 0; 2842 } 2843 2844 return 1; 2845 } 2846 2847 static void flush_ir_buffer_fill(struct iso_context *ctx) 2848 { 2849 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device, 2850 ctx->mc_buffer_bus & PAGE_MASK, 2851 ctx->mc_buffer_bus & ~PAGE_MASK, 2852 ctx->mc_completed, DMA_FROM_DEVICE); 2853 2854 ctx->base.callback.mc(&ctx->base, 2855 ctx->mc_buffer_bus + ctx->mc_completed, 2856 ctx->base.callback_data); 2857 ctx->mc_completed = 0; 2858 } 2859 2860 static inline void sync_it_packet_for_cpu(struct context *context, 2861 struct descriptor *pd) 2862 { 2863 __le16 control; 2864 u32 buffer_dma; 2865 2866 /* only packets beginning with OUTPUT_MORE* have data buffers */ 2867 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) 2868 return; 2869 2870 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */ 2871 pd += 2; 2872 2873 /* 2874 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's 2875 * data buffer is in the context program's coherent page and must not 2876 * be synced. 2877 */ 2878 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) == 2879 (context->current_bus & PAGE_MASK)) { 2880 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) 2881 return; 2882 pd++; 2883 } 2884 2885 do { 2886 buffer_dma = le32_to_cpu(pd->data_address); 2887 dma_sync_single_range_for_cpu(context->ohci->card.device, 2888 buffer_dma & PAGE_MASK, 2889 buffer_dma & ~PAGE_MASK, 2890 le16_to_cpu(pd->req_count), 2891 DMA_TO_DEVICE); 2892 control = pd->control; 2893 pd++; 2894 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))); 2895 } 2896 2897 static int handle_it_packet(struct context *context, 2898 struct descriptor *d, 2899 struct descriptor *last) 2900 { 2901 struct iso_context *ctx = 2902 container_of(context, struct iso_context, context); 2903 struct descriptor *pd; 2904 __be32 *ctx_hdr; 2905 2906 for (pd = d; pd <= last; pd++) 2907 if (pd->transfer_status) 2908 break; 2909 if (pd > last) 2910 /* Descriptor(s) not done yet, stop iteration */ 2911 return 0; 2912 2913 sync_it_packet_for_cpu(context, d); 2914 2915 if (ctx->header_length + 4 > PAGE_SIZE) { 2916 if (ctx->base.drop_overflow_headers) 2917 return 1; 2918 flush_iso_completions(ctx); 2919 } 2920 2921 ctx_hdr = ctx->header + ctx->header_length; 2922 ctx->last_timestamp = le16_to_cpu(last->res_count); 2923 /* Present this value as big-endian to match the receive code */ 2924 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) | 2925 le16_to_cpu(pd->res_count)); 2926 ctx->header_length += 4; 2927 2928 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) 2929 flush_iso_completions(ctx); 2930 2931 return 1; 2932 } 2933 2934 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels) 2935 { 2936 u32 hi = channels >> 32, lo = channels; 2937 2938 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi); 2939 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo); 2940 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi); 2941 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo); 2942 mmiowb(); 2943 ohci->mc_channels = channels; 2944 } 2945 2946 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card, 2947 int type, int channel, size_t header_size) 2948 { 2949 struct fw_ohci *ohci = fw_ohci(card); 2950 struct iso_context *uninitialized_var(ctx); 2951 descriptor_callback_t uninitialized_var(callback); 2952 u64 *uninitialized_var(channels); 2953 u32 *uninitialized_var(mask), uninitialized_var(regs); 2954 int index, ret = -EBUSY; 2955 2956 spin_lock_irq(&ohci->lock); 2957 2958 switch (type) { 2959 case FW_ISO_CONTEXT_TRANSMIT: 2960 mask = &ohci->it_context_mask; 2961 callback = handle_it_packet; 2962 index = ffs(*mask) - 1; 2963 if (index >= 0) { 2964 *mask &= ~(1 << index); 2965 regs = OHCI1394_IsoXmitContextBase(index); 2966 ctx = &ohci->it_context_list[index]; 2967 } 2968 break; 2969 2970 case FW_ISO_CONTEXT_RECEIVE: 2971 channels = &ohci->ir_context_channels; 2972 mask = &ohci->ir_context_mask; 2973 callback = handle_ir_packet_per_buffer; 2974 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1; 2975 if (index >= 0) { 2976 *channels &= ~(1ULL << channel); 2977 *mask &= ~(1 << index); 2978 regs = OHCI1394_IsoRcvContextBase(index); 2979 ctx = &ohci->ir_context_list[index]; 2980 } 2981 break; 2982 2983 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 2984 mask = &ohci->ir_context_mask; 2985 callback = handle_ir_buffer_fill; 2986 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1; 2987 if (index >= 0) { 2988 ohci->mc_allocated = true; 2989 *mask &= ~(1 << index); 2990 regs = OHCI1394_IsoRcvContextBase(index); 2991 ctx = &ohci->ir_context_list[index]; 2992 } 2993 break; 2994 2995 default: 2996 index = -1; 2997 ret = -ENOSYS; 2998 } 2999 3000 spin_unlock_irq(&ohci->lock); 3001 3002 if (index < 0) 3003 return ERR_PTR(ret); 3004 3005 memset(ctx, 0, sizeof(*ctx)); 3006 ctx->header_length = 0; 3007 ctx->header = (void *) __get_free_page(GFP_KERNEL); 3008 if (ctx->header == NULL) { 3009 ret = -ENOMEM; 3010 goto out; 3011 } 3012 ret = context_init(&ctx->context, ohci, regs, callback); 3013 if (ret < 0) 3014 goto out_with_header; 3015 3016 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) { 3017 set_multichannel_mask(ohci, 0); 3018 ctx->mc_completed = 0; 3019 } 3020 3021 return &ctx->base; 3022 3023 out_with_header: 3024 free_page((unsigned long)ctx->header); 3025 out: 3026 spin_lock_irq(&ohci->lock); 3027 3028 switch (type) { 3029 case FW_ISO_CONTEXT_RECEIVE: 3030 *channels |= 1ULL << channel; 3031 break; 3032 3033 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3034 ohci->mc_allocated = false; 3035 break; 3036 } 3037 *mask |= 1 << index; 3038 3039 spin_unlock_irq(&ohci->lock); 3040 3041 return ERR_PTR(ret); 3042 } 3043 3044 static int ohci_start_iso(struct fw_iso_context *base, 3045 s32 cycle, u32 sync, u32 tags) 3046 { 3047 struct iso_context *ctx = container_of(base, struct iso_context, base); 3048 struct fw_ohci *ohci = ctx->context.ohci; 3049 u32 control = IR_CONTEXT_ISOCH_HEADER, match; 3050 int index; 3051 3052 /* the controller cannot start without any queued packets */ 3053 if (ctx->context.last->branch_address == 0) 3054 return -ENODATA; 3055 3056 switch (ctx->base.type) { 3057 case FW_ISO_CONTEXT_TRANSMIT: 3058 index = ctx - ohci->it_context_list; 3059 match = 0; 3060 if (cycle >= 0) 3061 match = IT_CONTEXT_CYCLE_MATCH_ENABLE | 3062 (cycle & 0x7fff) << 16; 3063 3064 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index); 3065 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index); 3066 context_run(&ctx->context, match); 3067 break; 3068 3069 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3070 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE; 3071 /* fall through */ 3072 case FW_ISO_CONTEXT_RECEIVE: 3073 index = ctx - ohci->ir_context_list; 3074 match = (tags << 28) | (sync << 8) | ctx->base.channel; 3075 if (cycle >= 0) { 3076 match |= (cycle & 0x07fff) << 12; 3077 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE; 3078 } 3079 3080 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index); 3081 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index); 3082 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match); 3083 context_run(&ctx->context, control); 3084 3085 ctx->sync = sync; 3086 ctx->tags = tags; 3087 3088 break; 3089 } 3090 3091 return 0; 3092 } 3093 3094 static int ohci_stop_iso(struct fw_iso_context *base) 3095 { 3096 struct fw_ohci *ohci = fw_ohci(base->card); 3097 struct iso_context *ctx = container_of(base, struct iso_context, base); 3098 int index; 3099 3100 switch (ctx->base.type) { 3101 case FW_ISO_CONTEXT_TRANSMIT: 3102 index = ctx - ohci->it_context_list; 3103 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index); 3104 break; 3105 3106 case FW_ISO_CONTEXT_RECEIVE: 3107 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3108 index = ctx - ohci->ir_context_list; 3109 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index); 3110 break; 3111 } 3112 flush_writes(ohci); 3113 context_stop(&ctx->context); 3114 tasklet_kill(&ctx->context.tasklet); 3115 3116 return 0; 3117 } 3118 3119 static void ohci_free_iso_context(struct fw_iso_context *base) 3120 { 3121 struct fw_ohci *ohci = fw_ohci(base->card); 3122 struct iso_context *ctx = container_of(base, struct iso_context, base); 3123 unsigned long flags; 3124 int index; 3125 3126 ohci_stop_iso(base); 3127 context_release(&ctx->context); 3128 free_page((unsigned long)ctx->header); 3129 3130 spin_lock_irqsave(&ohci->lock, flags); 3131 3132 switch (base->type) { 3133 case FW_ISO_CONTEXT_TRANSMIT: 3134 index = ctx - ohci->it_context_list; 3135 ohci->it_context_mask |= 1 << index; 3136 break; 3137 3138 case FW_ISO_CONTEXT_RECEIVE: 3139 index = ctx - ohci->ir_context_list; 3140 ohci->ir_context_mask |= 1 << index; 3141 ohci->ir_context_channels |= 1ULL << base->channel; 3142 break; 3143 3144 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3145 index = ctx - ohci->ir_context_list; 3146 ohci->ir_context_mask |= 1 << index; 3147 ohci->ir_context_channels |= ohci->mc_channels; 3148 ohci->mc_channels = 0; 3149 ohci->mc_allocated = false; 3150 break; 3151 } 3152 3153 spin_unlock_irqrestore(&ohci->lock, flags); 3154 } 3155 3156 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels) 3157 { 3158 struct fw_ohci *ohci = fw_ohci(base->card); 3159 unsigned long flags; 3160 int ret; 3161 3162 switch (base->type) { 3163 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3164 3165 spin_lock_irqsave(&ohci->lock, flags); 3166 3167 /* Don't allow multichannel to grab other contexts' channels. */ 3168 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) { 3169 *channels = ohci->ir_context_channels; 3170 ret = -EBUSY; 3171 } else { 3172 set_multichannel_mask(ohci, *channels); 3173 ret = 0; 3174 } 3175 3176 spin_unlock_irqrestore(&ohci->lock, flags); 3177 3178 break; 3179 default: 3180 ret = -EINVAL; 3181 } 3182 3183 return ret; 3184 } 3185 3186 #ifdef CONFIG_PM 3187 static void ohci_resume_iso_dma(struct fw_ohci *ohci) 3188 { 3189 int i; 3190 struct iso_context *ctx; 3191 3192 for (i = 0 ; i < ohci->n_ir ; i++) { 3193 ctx = &ohci->ir_context_list[i]; 3194 if (ctx->context.running) 3195 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags); 3196 } 3197 3198 for (i = 0 ; i < ohci->n_it ; i++) { 3199 ctx = &ohci->it_context_list[i]; 3200 if (ctx->context.running) 3201 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags); 3202 } 3203 } 3204 #endif 3205 3206 static int queue_iso_transmit(struct iso_context *ctx, 3207 struct fw_iso_packet *packet, 3208 struct fw_iso_buffer *buffer, 3209 unsigned long payload) 3210 { 3211 struct descriptor *d, *last, *pd; 3212 struct fw_iso_packet *p; 3213 __le32 *header; 3214 dma_addr_t d_bus, page_bus; 3215 u32 z, header_z, payload_z, irq; 3216 u32 payload_index, payload_end_index, next_page_index; 3217 int page, end_page, i, length, offset; 3218 3219 p = packet; 3220 payload_index = payload; 3221 3222 if (p->skip) 3223 z = 1; 3224 else 3225 z = 2; 3226 if (p->header_length > 0) 3227 z++; 3228 3229 /* Determine the first page the payload isn't contained in. */ 3230 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT; 3231 if (p->payload_length > 0) 3232 payload_z = end_page - (payload_index >> PAGE_SHIFT); 3233 else 3234 payload_z = 0; 3235 3236 z += payload_z; 3237 3238 /* Get header size in number of descriptors. */ 3239 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d)); 3240 3241 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus); 3242 if (d == NULL) 3243 return -ENOMEM; 3244 3245 if (!p->skip) { 3246 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE); 3247 d[0].req_count = cpu_to_le16(8); 3248 /* 3249 * Link the skip address to this descriptor itself. This causes 3250 * a context to skip a cycle whenever lost cycles or FIFO 3251 * overruns occur, without dropping the data. The application 3252 * should then decide whether this is an error condition or not. 3253 * FIXME: Make the context's cycle-lost behaviour configurable? 3254 */ 3255 d[0].branch_address = cpu_to_le32(d_bus | z); 3256 3257 header = (__le32 *) &d[1]; 3258 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) | 3259 IT_HEADER_TAG(p->tag) | 3260 IT_HEADER_TCODE(TCODE_STREAM_DATA) | 3261 IT_HEADER_CHANNEL(ctx->base.channel) | 3262 IT_HEADER_SPEED(ctx->base.speed)); 3263 header[1] = 3264 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length + 3265 p->payload_length)); 3266 } 3267 3268 if (p->header_length > 0) { 3269 d[2].req_count = cpu_to_le16(p->header_length); 3270 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d)); 3271 memcpy(&d[z], p->header, p->header_length); 3272 } 3273 3274 pd = d + z - payload_z; 3275 payload_end_index = payload_index + p->payload_length; 3276 for (i = 0; i < payload_z; i++) { 3277 page = payload_index >> PAGE_SHIFT; 3278 offset = payload_index & ~PAGE_MASK; 3279 next_page_index = (page + 1) << PAGE_SHIFT; 3280 length = 3281 min(next_page_index, payload_end_index) - payload_index; 3282 pd[i].req_count = cpu_to_le16(length); 3283 3284 page_bus = page_private(buffer->pages[page]); 3285 pd[i].data_address = cpu_to_le32(page_bus + offset); 3286 3287 dma_sync_single_range_for_device(ctx->context.ohci->card.device, 3288 page_bus, offset, length, 3289 DMA_TO_DEVICE); 3290 3291 payload_index += length; 3292 } 3293 3294 if (p->interrupt) 3295 irq = DESCRIPTOR_IRQ_ALWAYS; 3296 else 3297 irq = DESCRIPTOR_NO_IRQ; 3298 3299 last = z == 2 ? d : d + z - 1; 3300 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST | 3301 DESCRIPTOR_STATUS | 3302 DESCRIPTOR_BRANCH_ALWAYS | 3303 irq); 3304 3305 context_append(&ctx->context, d, z, header_z); 3306 3307 return 0; 3308 } 3309 3310 static int queue_iso_packet_per_buffer(struct iso_context *ctx, 3311 struct fw_iso_packet *packet, 3312 struct fw_iso_buffer *buffer, 3313 unsigned long payload) 3314 { 3315 struct device *device = ctx->context.ohci->card.device; 3316 struct descriptor *d, *pd; 3317 dma_addr_t d_bus, page_bus; 3318 u32 z, header_z, rest; 3319 int i, j, length; 3320 int page, offset, packet_count, header_size, payload_per_buffer; 3321 3322 /* 3323 * The OHCI controller puts the isochronous header and trailer in the 3324 * buffer, so we need at least 8 bytes. 3325 */ 3326 packet_count = packet->header_length / ctx->base.header_size; 3327 header_size = max(ctx->base.header_size, (size_t)8); 3328 3329 /* Get header size in number of descriptors. */ 3330 header_z = DIV_ROUND_UP(header_size, sizeof(*d)); 3331 page = payload >> PAGE_SHIFT; 3332 offset = payload & ~PAGE_MASK; 3333 payload_per_buffer = packet->payload_length / packet_count; 3334 3335 for (i = 0; i < packet_count; i++) { 3336 /* d points to the header descriptor */ 3337 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1; 3338 d = context_get_descriptors(&ctx->context, 3339 z + header_z, &d_bus); 3340 if (d == NULL) 3341 return -ENOMEM; 3342 3343 d->control = cpu_to_le16(DESCRIPTOR_STATUS | 3344 DESCRIPTOR_INPUT_MORE); 3345 if (packet->skip && i == 0) 3346 d->control |= cpu_to_le16(DESCRIPTOR_WAIT); 3347 d->req_count = cpu_to_le16(header_size); 3348 d->res_count = d->req_count; 3349 d->transfer_status = 0; 3350 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d))); 3351 3352 rest = payload_per_buffer; 3353 pd = d; 3354 for (j = 1; j < z; j++) { 3355 pd++; 3356 pd->control = cpu_to_le16(DESCRIPTOR_STATUS | 3357 DESCRIPTOR_INPUT_MORE); 3358 3359 if (offset + rest < PAGE_SIZE) 3360 length = rest; 3361 else 3362 length = PAGE_SIZE - offset; 3363 pd->req_count = cpu_to_le16(length); 3364 pd->res_count = pd->req_count; 3365 pd->transfer_status = 0; 3366 3367 page_bus = page_private(buffer->pages[page]); 3368 pd->data_address = cpu_to_le32(page_bus + offset); 3369 3370 dma_sync_single_range_for_device(device, page_bus, 3371 offset, length, 3372 DMA_FROM_DEVICE); 3373 3374 offset = (offset + length) & ~PAGE_MASK; 3375 rest -= length; 3376 if (offset == 0) 3377 page++; 3378 } 3379 pd->control = cpu_to_le16(DESCRIPTOR_STATUS | 3380 DESCRIPTOR_INPUT_LAST | 3381 DESCRIPTOR_BRANCH_ALWAYS); 3382 if (packet->interrupt && i == packet_count - 1) 3383 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS); 3384 3385 context_append(&ctx->context, d, z, header_z); 3386 } 3387 3388 return 0; 3389 } 3390 3391 static int queue_iso_buffer_fill(struct iso_context *ctx, 3392 struct fw_iso_packet *packet, 3393 struct fw_iso_buffer *buffer, 3394 unsigned long payload) 3395 { 3396 struct descriptor *d; 3397 dma_addr_t d_bus, page_bus; 3398 int page, offset, rest, z, i, length; 3399 3400 page = payload >> PAGE_SHIFT; 3401 offset = payload & ~PAGE_MASK; 3402 rest = packet->payload_length; 3403 3404 /* We need one descriptor for each page in the buffer. */ 3405 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE); 3406 3407 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count)) 3408 return -EFAULT; 3409 3410 for (i = 0; i < z; i++) { 3411 d = context_get_descriptors(&ctx->context, 1, &d_bus); 3412 if (d == NULL) 3413 return -ENOMEM; 3414 3415 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE | 3416 DESCRIPTOR_BRANCH_ALWAYS); 3417 if (packet->skip && i == 0) 3418 d->control |= cpu_to_le16(DESCRIPTOR_WAIT); 3419 if (packet->interrupt && i == z - 1) 3420 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS); 3421 3422 if (offset + rest < PAGE_SIZE) 3423 length = rest; 3424 else 3425 length = PAGE_SIZE - offset; 3426 d->req_count = cpu_to_le16(length); 3427 d->res_count = d->req_count; 3428 d->transfer_status = 0; 3429 3430 page_bus = page_private(buffer->pages[page]); 3431 d->data_address = cpu_to_le32(page_bus + offset); 3432 3433 dma_sync_single_range_for_device(ctx->context.ohci->card.device, 3434 page_bus, offset, length, 3435 DMA_FROM_DEVICE); 3436 3437 rest -= length; 3438 offset = 0; 3439 page++; 3440 3441 context_append(&ctx->context, d, 1, 0); 3442 } 3443 3444 return 0; 3445 } 3446 3447 static int ohci_queue_iso(struct fw_iso_context *base, 3448 struct fw_iso_packet *packet, 3449 struct fw_iso_buffer *buffer, 3450 unsigned long payload) 3451 { 3452 struct iso_context *ctx = container_of(base, struct iso_context, base); 3453 unsigned long flags; 3454 int ret = -ENOSYS; 3455 3456 spin_lock_irqsave(&ctx->context.ohci->lock, flags); 3457 switch (base->type) { 3458 case FW_ISO_CONTEXT_TRANSMIT: 3459 ret = queue_iso_transmit(ctx, packet, buffer, payload); 3460 break; 3461 case FW_ISO_CONTEXT_RECEIVE: 3462 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload); 3463 break; 3464 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3465 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload); 3466 break; 3467 } 3468 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags); 3469 3470 return ret; 3471 } 3472 3473 static void ohci_flush_queue_iso(struct fw_iso_context *base) 3474 { 3475 struct context *ctx = 3476 &container_of(base, struct iso_context, base)->context; 3477 3478 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); 3479 } 3480 3481 static int ohci_flush_iso_completions(struct fw_iso_context *base) 3482 { 3483 struct iso_context *ctx = container_of(base, struct iso_context, base); 3484 int ret = 0; 3485 3486 tasklet_disable(&ctx->context.tasklet); 3487 3488 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) { 3489 context_tasklet((unsigned long)&ctx->context); 3490 3491 switch (base->type) { 3492 case FW_ISO_CONTEXT_TRANSMIT: 3493 case FW_ISO_CONTEXT_RECEIVE: 3494 if (ctx->header_length != 0) 3495 flush_iso_completions(ctx); 3496 break; 3497 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3498 if (ctx->mc_completed != 0) 3499 flush_ir_buffer_fill(ctx); 3500 break; 3501 default: 3502 ret = -ENOSYS; 3503 } 3504 3505 clear_bit_unlock(0, &ctx->flushing_completions); 3506 smp_mb__after_atomic(); 3507 } 3508 3509 tasklet_enable(&ctx->context.tasklet); 3510 3511 return ret; 3512 } 3513 3514 static const struct fw_card_driver ohci_driver = { 3515 .enable = ohci_enable, 3516 .read_phy_reg = ohci_read_phy_reg, 3517 .update_phy_reg = ohci_update_phy_reg, 3518 .set_config_rom = ohci_set_config_rom, 3519 .send_request = ohci_send_request, 3520 .send_response = ohci_send_response, 3521 .cancel_packet = ohci_cancel_packet, 3522 .enable_phys_dma = ohci_enable_phys_dma, 3523 .read_csr = ohci_read_csr, 3524 .write_csr = ohci_write_csr, 3525 3526 .allocate_iso_context = ohci_allocate_iso_context, 3527 .free_iso_context = ohci_free_iso_context, 3528 .set_iso_channels = ohci_set_iso_channels, 3529 .queue_iso = ohci_queue_iso, 3530 .flush_queue_iso = ohci_flush_queue_iso, 3531 .flush_iso_completions = ohci_flush_iso_completions, 3532 .start_iso = ohci_start_iso, 3533 .stop_iso = ohci_stop_iso, 3534 }; 3535 3536 #ifdef CONFIG_PPC_PMAC 3537 static void pmac_ohci_on(struct pci_dev *dev) 3538 { 3539 if (machine_is(powermac)) { 3540 struct device_node *ofn = pci_device_to_OF_node(dev); 3541 3542 if (ofn) { 3543 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1); 3544 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1); 3545 } 3546 } 3547 } 3548 3549 static void pmac_ohci_off(struct pci_dev *dev) 3550 { 3551 if (machine_is(powermac)) { 3552 struct device_node *ofn = pci_device_to_OF_node(dev); 3553 3554 if (ofn) { 3555 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0); 3556 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0); 3557 } 3558 } 3559 } 3560 #else 3561 static inline void pmac_ohci_on(struct pci_dev *dev) {} 3562 static inline void pmac_ohci_off(struct pci_dev *dev) {} 3563 #endif /* CONFIG_PPC_PMAC */ 3564 3565 static int pci_probe(struct pci_dev *dev, 3566 const struct pci_device_id *ent) 3567 { 3568 struct fw_ohci *ohci; 3569 u32 bus_options, max_receive, link_speed, version; 3570 u64 guid; 3571 int i, err; 3572 size_t size; 3573 3574 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) { 3575 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n"); 3576 return -ENOSYS; 3577 } 3578 3579 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL); 3580 if (ohci == NULL) { 3581 err = -ENOMEM; 3582 goto fail; 3583 } 3584 3585 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev); 3586 3587 pmac_ohci_on(dev); 3588 3589 err = pci_enable_device(dev); 3590 if (err) { 3591 dev_err(&dev->dev, "failed to enable OHCI hardware\n"); 3592 goto fail_free; 3593 } 3594 3595 pci_set_master(dev); 3596 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0); 3597 pci_set_drvdata(dev, ohci); 3598 3599 spin_lock_init(&ohci->lock); 3600 mutex_init(&ohci->phy_reg_mutex); 3601 3602 INIT_WORK(&ohci->bus_reset_work, bus_reset_work); 3603 3604 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) || 3605 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) { 3606 ohci_err(ohci, "invalid MMIO resource\n"); 3607 err = -ENXIO; 3608 goto fail_disable; 3609 } 3610 3611 err = pci_request_region(dev, 0, ohci_driver_name); 3612 if (err) { 3613 ohci_err(ohci, "MMIO resource unavailable\n"); 3614 goto fail_disable; 3615 } 3616 3617 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE); 3618 if (ohci->registers == NULL) { 3619 ohci_err(ohci, "failed to remap registers\n"); 3620 err = -ENXIO; 3621 goto fail_iomem; 3622 } 3623 3624 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++) 3625 if ((ohci_quirks[i].vendor == dev->vendor) && 3626 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID || 3627 ohci_quirks[i].device == dev->device) && 3628 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID || 3629 ohci_quirks[i].revision >= dev->revision)) { 3630 ohci->quirks = ohci_quirks[i].flags; 3631 break; 3632 } 3633 if (param_quirks) 3634 ohci->quirks = param_quirks; 3635 3636 /* 3637 * Because dma_alloc_coherent() allocates at least one page, 3638 * we save space by using a common buffer for the AR request/ 3639 * response descriptors and the self IDs buffer. 3640 */ 3641 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4); 3642 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2); 3643 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device, 3644 PAGE_SIZE, 3645 &ohci->misc_buffer_bus, 3646 GFP_KERNEL); 3647 if (!ohci->misc_buffer) { 3648 err = -ENOMEM; 3649 goto fail_iounmap; 3650 } 3651 3652 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0, 3653 OHCI1394_AsReqRcvContextControlSet); 3654 if (err < 0) 3655 goto fail_misc_buf; 3656 3657 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4, 3658 OHCI1394_AsRspRcvContextControlSet); 3659 if (err < 0) 3660 goto fail_arreq_ctx; 3661 3662 err = context_init(&ohci->at_request_ctx, ohci, 3663 OHCI1394_AsReqTrContextControlSet, handle_at_packet); 3664 if (err < 0) 3665 goto fail_arrsp_ctx; 3666 3667 err = context_init(&ohci->at_response_ctx, ohci, 3668 OHCI1394_AsRspTrContextControlSet, handle_at_packet); 3669 if (err < 0) 3670 goto fail_atreq_ctx; 3671 3672 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0); 3673 ohci->ir_context_channels = ~0ULL; 3674 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet); 3675 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0); 3676 ohci->ir_context_mask = ohci->ir_context_support; 3677 ohci->n_ir = hweight32(ohci->ir_context_mask); 3678 size = sizeof(struct iso_context) * ohci->n_ir; 3679 ohci->ir_context_list = kzalloc(size, GFP_KERNEL); 3680 3681 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0); 3682 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet); 3683 /* JMicron JMB38x often shows 0 at first read, just ignore it */ 3684 if (!ohci->it_context_support) { 3685 ohci_notice(ohci, "overriding IsoXmitIntMask\n"); 3686 ohci->it_context_support = 0xf; 3687 } 3688 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0); 3689 ohci->it_context_mask = ohci->it_context_support; 3690 ohci->n_it = hweight32(ohci->it_context_mask); 3691 size = sizeof(struct iso_context) * ohci->n_it; 3692 ohci->it_context_list = kzalloc(size, GFP_KERNEL); 3693 3694 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) { 3695 err = -ENOMEM; 3696 goto fail_contexts; 3697 } 3698 3699 ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2; 3700 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2; 3701 3702 bus_options = reg_read(ohci, OHCI1394_BusOptions); 3703 max_receive = (bus_options >> 12) & 0xf; 3704 link_speed = bus_options & 0x7; 3705 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) | 3706 reg_read(ohci, OHCI1394_GUIDLo); 3707 3708 if (!(ohci->quirks & QUIRK_NO_MSI)) 3709 pci_enable_msi(dev); 3710 if (request_irq(dev->irq, irq_handler, 3711 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, 3712 ohci_driver_name, ohci)) { 3713 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq); 3714 err = -EIO; 3715 goto fail_msi; 3716 } 3717 3718 err = fw_card_add(&ohci->card, max_receive, link_speed, guid); 3719 if (err) 3720 goto fail_irq; 3721 3722 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff; 3723 ohci_notice(ohci, 3724 "added OHCI v%x.%x device as card %d, " 3725 "%d IR + %d IT contexts, quirks 0x%x%s\n", 3726 version >> 16, version & 0xff, ohci->card.index, 3727 ohci->n_ir, ohci->n_it, ohci->quirks, 3728 reg_read(ohci, OHCI1394_PhyUpperBound) ? 3729 ", physUB" : ""); 3730 3731 return 0; 3732 3733 fail_irq: 3734 free_irq(dev->irq, ohci); 3735 fail_msi: 3736 pci_disable_msi(dev); 3737 fail_contexts: 3738 kfree(ohci->ir_context_list); 3739 kfree(ohci->it_context_list); 3740 context_release(&ohci->at_response_ctx); 3741 fail_atreq_ctx: 3742 context_release(&ohci->at_request_ctx); 3743 fail_arrsp_ctx: 3744 ar_context_release(&ohci->ar_response_ctx); 3745 fail_arreq_ctx: 3746 ar_context_release(&ohci->ar_request_ctx); 3747 fail_misc_buf: 3748 dma_free_coherent(ohci->card.device, PAGE_SIZE, 3749 ohci->misc_buffer, ohci->misc_buffer_bus); 3750 fail_iounmap: 3751 pci_iounmap(dev, ohci->registers); 3752 fail_iomem: 3753 pci_release_region(dev, 0); 3754 fail_disable: 3755 pci_disable_device(dev); 3756 fail_free: 3757 kfree(ohci); 3758 pmac_ohci_off(dev); 3759 fail: 3760 return err; 3761 } 3762 3763 static void pci_remove(struct pci_dev *dev) 3764 { 3765 struct fw_ohci *ohci = pci_get_drvdata(dev); 3766 3767 /* 3768 * If the removal is happening from the suspend state, LPS won't be 3769 * enabled and host registers (eg., IntMaskClear) won't be accessible. 3770 */ 3771 if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) { 3772 reg_write(ohci, OHCI1394_IntMaskClear, ~0); 3773 flush_writes(ohci); 3774 } 3775 cancel_work_sync(&ohci->bus_reset_work); 3776 fw_core_remove_card(&ohci->card); 3777 3778 /* 3779 * FIXME: Fail all pending packets here, now that the upper 3780 * layers can't queue any more. 3781 */ 3782 3783 software_reset(ohci); 3784 free_irq(dev->irq, ohci); 3785 3786 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom) 3787 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, 3788 ohci->next_config_rom, ohci->next_config_rom_bus); 3789 if (ohci->config_rom) 3790 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, 3791 ohci->config_rom, ohci->config_rom_bus); 3792 ar_context_release(&ohci->ar_request_ctx); 3793 ar_context_release(&ohci->ar_response_ctx); 3794 dma_free_coherent(ohci->card.device, PAGE_SIZE, 3795 ohci->misc_buffer, ohci->misc_buffer_bus); 3796 context_release(&ohci->at_request_ctx); 3797 context_release(&ohci->at_response_ctx); 3798 kfree(ohci->it_context_list); 3799 kfree(ohci->ir_context_list); 3800 pci_disable_msi(dev); 3801 pci_iounmap(dev, ohci->registers); 3802 pci_release_region(dev, 0); 3803 pci_disable_device(dev); 3804 kfree(ohci); 3805 pmac_ohci_off(dev); 3806 3807 dev_notice(&dev->dev, "removed fw-ohci device\n"); 3808 } 3809 3810 #ifdef CONFIG_PM 3811 static int pci_suspend(struct pci_dev *dev, pm_message_t state) 3812 { 3813 struct fw_ohci *ohci = pci_get_drvdata(dev); 3814 int err; 3815 3816 software_reset(ohci); 3817 err = pci_save_state(dev); 3818 if (err) { 3819 ohci_err(ohci, "pci_save_state failed\n"); 3820 return err; 3821 } 3822 err = pci_set_power_state(dev, pci_choose_state(dev, state)); 3823 if (err) 3824 ohci_err(ohci, "pci_set_power_state failed with %d\n", err); 3825 pmac_ohci_off(dev); 3826 3827 return 0; 3828 } 3829 3830 static int pci_resume(struct pci_dev *dev) 3831 { 3832 struct fw_ohci *ohci = pci_get_drvdata(dev); 3833 int err; 3834 3835 pmac_ohci_on(dev); 3836 pci_set_power_state(dev, PCI_D0); 3837 pci_restore_state(dev); 3838 err = pci_enable_device(dev); 3839 if (err) { 3840 ohci_err(ohci, "pci_enable_device failed\n"); 3841 return err; 3842 } 3843 3844 /* Some systems don't setup GUID register on resume from ram */ 3845 if (!reg_read(ohci, OHCI1394_GUIDLo) && 3846 !reg_read(ohci, OHCI1394_GUIDHi)) { 3847 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid); 3848 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32)); 3849 } 3850 3851 err = ohci_enable(&ohci->card, NULL, 0); 3852 if (err) 3853 return err; 3854 3855 ohci_resume_iso_dma(ohci); 3856 3857 return 0; 3858 } 3859 #endif 3860 3861 static const struct pci_device_id pci_table[] = { 3862 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) }, 3863 { } 3864 }; 3865 3866 MODULE_DEVICE_TABLE(pci, pci_table); 3867 3868 static struct pci_driver fw_ohci_pci_driver = { 3869 .name = ohci_driver_name, 3870 .id_table = pci_table, 3871 .probe = pci_probe, 3872 .remove = pci_remove, 3873 #ifdef CONFIG_PM 3874 .resume = pci_resume, 3875 .suspend = pci_suspend, 3876 #endif 3877 }; 3878 3879 static int __init fw_ohci_init(void) 3880 { 3881 selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0); 3882 if (!selfid_workqueue) 3883 return -ENOMEM; 3884 3885 return pci_register_driver(&fw_ohci_pci_driver); 3886 } 3887 3888 static void __exit fw_ohci_cleanup(void) 3889 { 3890 pci_unregister_driver(&fw_ohci_pci_driver); 3891 destroy_workqueue(selfid_workqueue); 3892 } 3893 3894 module_init(fw_ohci_init); 3895 module_exit(fw_ohci_cleanup); 3896 3897 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 3898 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers"); 3899 MODULE_LICENSE("GPL"); 3900 3901 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 3902 MODULE_ALIAS("ohci1394"); 3903