xref: /openbmc/linux/drivers/firewire/ohci.c (revision e190bfe5)
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kernel.h>
31 #include <linux/list.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/pci_ids.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40 
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
44 
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
48 
49 #include "core.h"
50 #include "ohci.h"
51 
52 #define DESCRIPTOR_OUTPUT_MORE		0
53 #define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
54 #define DESCRIPTOR_INPUT_MORE		(2 << 12)
55 #define DESCRIPTOR_INPUT_LAST		(3 << 12)
56 #define DESCRIPTOR_STATUS		(1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
58 #define DESCRIPTOR_PING			(1 << 7)
59 #define DESCRIPTOR_YY			(1 << 6)
60 #define DESCRIPTOR_NO_IRQ		(0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR		(1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
64 #define DESCRIPTOR_WAIT			(3 << 0)
65 
66 struct descriptor {
67 	__le16 req_count;
68 	__le16 control;
69 	__le32 data_address;
70 	__le32 branch_address;
71 	__le16 res_count;
72 	__le16 transfer_status;
73 } __attribute__((aligned(16)));
74 
75 #define CONTROL_SET(regs)	(regs)
76 #define CONTROL_CLEAR(regs)	((regs) + 4)
77 #define COMMAND_PTR(regs)	((regs) + 12)
78 #define CONTEXT_MATCH(regs)	((regs) + 16)
79 
80 struct ar_buffer {
81 	struct descriptor descriptor;
82 	struct ar_buffer *next;
83 	__le32 data[0];
84 };
85 
86 struct ar_context {
87 	struct fw_ohci *ohci;
88 	struct ar_buffer *current_buffer;
89 	struct ar_buffer *last_buffer;
90 	void *pointer;
91 	u32 regs;
92 	struct tasklet_struct tasklet;
93 };
94 
95 struct context;
96 
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98 				     struct descriptor *d,
99 				     struct descriptor *last);
100 
101 /*
102  * A buffer that contains a block of DMA-able coherent memory used for
103  * storing a portion of a DMA descriptor program.
104  */
105 struct descriptor_buffer {
106 	struct list_head list;
107 	dma_addr_t buffer_bus;
108 	size_t buffer_size;
109 	size_t used;
110 	struct descriptor buffer[0];
111 };
112 
113 struct context {
114 	struct fw_ohci *ohci;
115 	u32 regs;
116 	int total_allocation;
117 
118 	/*
119 	 * List of page-sized buffers for storing DMA descriptors.
120 	 * Head of list contains buffers in use and tail of list contains
121 	 * free buffers.
122 	 */
123 	struct list_head buffer_list;
124 
125 	/*
126 	 * Pointer to a buffer inside buffer_list that contains the tail
127 	 * end of the current DMA program.
128 	 */
129 	struct descriptor_buffer *buffer_tail;
130 
131 	/*
132 	 * The descriptor containing the branch address of the first
133 	 * descriptor that has not yet been filled by the device.
134 	 */
135 	struct descriptor *last;
136 
137 	/*
138 	 * The last descriptor in the DMA program.  It contains the branch
139 	 * address that must be updated upon appending a new descriptor.
140 	 */
141 	struct descriptor *prev;
142 
143 	descriptor_callback_t callback;
144 
145 	struct tasklet_struct tasklet;
146 };
147 
148 #define IT_HEADER_SY(v)          ((v) <<  0)
149 #define IT_HEADER_TCODE(v)       ((v) <<  4)
150 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
151 #define IT_HEADER_TAG(v)         ((v) << 14)
152 #define IT_HEADER_SPEED(v)       ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154 
155 struct iso_context {
156 	struct fw_iso_context base;
157 	struct context context;
158 	int excess_bytes;
159 	void *header;
160 	size_t header_length;
161 };
162 
163 #define CONFIG_ROM_SIZE 1024
164 
165 struct fw_ohci {
166 	struct fw_card card;
167 
168 	__iomem char *registers;
169 	int node_id;
170 	int generation;
171 	int request_generation;	/* for timestamping incoming requests */
172 	unsigned quirks;
173 
174 	/*
175 	 * Spinlock for accessing fw_ohci data.  Never call out of
176 	 * this driver with this lock held.
177 	 */
178 	spinlock_t lock;
179 
180 	struct ar_context ar_request_ctx;
181 	struct ar_context ar_response_ctx;
182 	struct context at_request_ctx;
183 	struct context at_response_ctx;
184 
185 	u32 it_context_mask;
186 	struct iso_context *it_context_list;
187 	u64 ir_context_channels;
188 	u32 ir_context_mask;
189 	struct iso_context *ir_context_list;
190 
191 	__be32    *config_rom;
192 	dma_addr_t config_rom_bus;
193 	__be32    *next_config_rom;
194 	dma_addr_t next_config_rom_bus;
195 	__be32     next_header;
196 
197 	__le32    *self_id_cpu;
198 	dma_addr_t self_id_bus;
199 	struct tasklet_struct bus_reset_tasklet;
200 
201 	u32 self_id_buffer[512];
202 };
203 
204 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 {
206 	return container_of(card, struct fw_ohci, card);
207 }
208 
209 #define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
210 #define IR_CONTEXT_BUFFER_FILL		0x80000000
211 #define IR_CONTEXT_ISOCH_HEADER		0x40000000
212 #define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
213 #define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
214 #define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
215 
216 #define CONTEXT_RUN	0x8000
217 #define CONTEXT_WAKE	0x1000
218 #define CONTEXT_DEAD	0x0800
219 #define CONTEXT_ACTIVE	0x0400
220 
221 #define OHCI1394_MAX_AT_REQ_RETRIES	0xf
222 #define OHCI1394_MAX_AT_RESP_RETRIES	0x2
223 #define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
224 
225 #define OHCI1394_REGISTER_SIZE		0x800
226 #define OHCI_LOOP_COUNT			500
227 #define OHCI1394_PCI_HCI_Control	0x40
228 #define SELF_ID_BUF_SIZE		0x800
229 #define OHCI_TCODE_PHY_PACKET		0x0e
230 #define OHCI_VERSION_1_1		0x010010
231 
232 static char ohci_driver_name[] = KBUILD_MODNAME;
233 
234 #define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
235 
236 #define QUIRK_CYCLE_TIMER		1
237 #define QUIRK_RESET_PACKET		2
238 #define QUIRK_BE_HEADERS		4
239 #define QUIRK_NO_1394A			8
240 
241 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
242 static const struct {
243 	unsigned short vendor, device, flags;
244 } ohci_quirks[] = {
245 	{PCI_VENDOR_ID_TI,	PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
246 							    QUIRK_RESET_PACKET |
247 							    QUIRK_NO_1394A},
248 	{PCI_VENDOR_ID_TI,	PCI_ANY_ID,	QUIRK_RESET_PACKET},
249 	{PCI_VENDOR_ID_AL,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
250 	{PCI_VENDOR_ID_NEC,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
251 	{PCI_VENDOR_ID_VIA,	PCI_ANY_ID,	QUIRK_CYCLE_TIMER},
252 	{PCI_VENDOR_ID_APPLE,	PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
253 };
254 
255 /* This overrides anything that was found in ohci_quirks[]. */
256 static int param_quirks;
257 module_param_named(quirks, param_quirks, int, 0644);
258 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
259 	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
260 	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
261 	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
262 	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
263 	")");
264 
265 #define OHCI_PARAM_DEBUG_AT_AR		1
266 #define OHCI_PARAM_DEBUG_SELFIDS	2
267 #define OHCI_PARAM_DEBUG_IRQS		4
268 #define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
269 
270 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
271 
272 static int param_debug;
273 module_param_named(debug, param_debug, int, 0644);
274 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
275 	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
276 	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
277 	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
278 	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
279 	", or a combination, or all = -1)");
280 
281 static void log_irqs(u32 evt)
282 {
283 	if (likely(!(param_debug &
284 			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
285 		return;
286 
287 	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
288 	    !(evt & OHCI1394_busReset))
289 		return;
290 
291 	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
292 	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
293 	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
294 	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
295 	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
296 	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
297 	    evt & OHCI1394_isochRx		? " IR"			: "",
298 	    evt & OHCI1394_isochTx		? " IT"			: "",
299 	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
300 	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
301 	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
302 	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
303 	    evt & OHCI1394_busReset		? " busReset"		: "",
304 	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
305 		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
306 		    OHCI1394_respTxComplete | OHCI1394_isochRx |
307 		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
308 		    OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
309 		    OHCI1394_regAccessFail | OHCI1394_busReset)
310 						? " ?"			: "");
311 }
312 
313 static const char *speed[] = {
314 	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
315 };
316 static const char *power[] = {
317 	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
318 	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
319 };
320 static const char port[] = { '.', '-', 'p', 'c', };
321 
322 static char _p(u32 *s, int shift)
323 {
324 	return port[*s >> shift & 3];
325 }
326 
327 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
328 {
329 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
330 		return;
331 
332 	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
333 		  self_id_count, generation, node_id);
334 
335 	for (; self_id_count--; ++s)
336 		if ((*s & 1 << 23) == 0)
337 			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
338 			    "%s gc=%d %s %s%s%s\n",
339 			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
340 			    speed[*s >> 14 & 3], *s >> 16 & 63,
341 			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
342 			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
343 		else
344 			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
345 			    *s, *s >> 24 & 63,
346 			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
347 			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
348 }
349 
350 static const char *evts[] = {
351 	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
352 	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
353 	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
354 	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
355 	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
356 	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
357 	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
358 	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
359 	[0x10] = "-reserved-",		[0x11] = "ack_complete",
360 	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
361 	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
362 	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
363 	[0x18] = "-reserved-",		[0x19] = "-reserved-",
364 	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
365 	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
366 	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
367 	[0x20] = "pending/cancelled",
368 };
369 static const char *tcodes[] = {
370 	[0x0] = "QW req",		[0x1] = "BW req",
371 	[0x2] = "W resp",		[0x3] = "-reserved-",
372 	[0x4] = "QR req",		[0x5] = "BR req",
373 	[0x6] = "QR resp",		[0x7] = "BR resp",
374 	[0x8] = "cycle start",		[0x9] = "Lk req",
375 	[0xa] = "async stream packet",	[0xb] = "Lk resp",
376 	[0xc] = "-reserved-",		[0xd] = "-reserved-",
377 	[0xe] = "link internal",	[0xf] = "-reserved-",
378 };
379 static const char *phys[] = {
380 	[0x0] = "phy config packet",	[0x1] = "link-on packet",
381 	[0x2] = "self-id packet",	[0x3] = "-reserved-",
382 };
383 
384 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
385 {
386 	int tcode = header[0] >> 4 & 0xf;
387 	char specific[12];
388 
389 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
390 		return;
391 
392 	if (unlikely(evt >= ARRAY_SIZE(evts)))
393 			evt = 0x1f;
394 
395 	if (evt == OHCI1394_evt_bus_reset) {
396 		fw_notify("A%c evt_bus_reset, generation %d\n",
397 		    dir, (header[2] >> 16) & 0xff);
398 		return;
399 	}
400 
401 	if (header[0] == ~header[1]) {
402 		fw_notify("A%c %s, %s, %08x\n",
403 		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
404 		return;
405 	}
406 
407 	switch (tcode) {
408 	case 0x0: case 0x6: case 0x8:
409 		snprintf(specific, sizeof(specific), " = %08x",
410 			 be32_to_cpu((__force __be32)header[3]));
411 		break;
412 	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
413 		snprintf(specific, sizeof(specific), " %x,%x",
414 			 header[3] >> 16, header[3] & 0xffff);
415 		break;
416 	default:
417 		specific[0] = '\0';
418 	}
419 
420 	switch (tcode) {
421 	case 0xe: case 0xa:
422 		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
423 		break;
424 	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
425 		fw_notify("A%c spd %x tl %02x, "
426 		    "%04x -> %04x, %s, "
427 		    "%s, %04x%08x%s\n",
428 		    dir, speed, header[0] >> 10 & 0x3f,
429 		    header[1] >> 16, header[0] >> 16, evts[evt],
430 		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
431 		break;
432 	default:
433 		fw_notify("A%c spd %x tl %02x, "
434 		    "%04x -> %04x, %s, "
435 		    "%s%s\n",
436 		    dir, speed, header[0] >> 10 & 0x3f,
437 		    header[1] >> 16, header[0] >> 16, evts[evt],
438 		    tcodes[tcode], specific);
439 	}
440 }
441 
442 #else
443 
444 #define param_debug 0
445 static inline void log_irqs(u32 evt) {}
446 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
447 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
448 
449 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
450 
451 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
452 {
453 	writel(data, ohci->registers + offset);
454 }
455 
456 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
457 {
458 	return readl(ohci->registers + offset);
459 }
460 
461 static inline void flush_writes(const struct fw_ohci *ohci)
462 {
463 	/* Do a dummy read to flush writes. */
464 	reg_read(ohci, OHCI1394_Version);
465 }
466 
467 static int read_phy_reg(struct fw_ohci *ohci, int addr)
468 {
469 	u32 val;
470 	int i;
471 
472 	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
473 	for (i = 0; i < 10; i++) {
474 		val = reg_read(ohci, OHCI1394_PhyControl);
475 		if (val & OHCI1394_PhyControl_ReadDone)
476 			return OHCI1394_PhyControl_ReadData(val);
477 
478 		msleep(1);
479 	}
480 	fw_error("failed to read phy reg\n");
481 
482 	return -EBUSY;
483 }
484 
485 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
486 {
487 	int i;
488 
489 	reg_write(ohci, OHCI1394_PhyControl,
490 		  OHCI1394_PhyControl_Write(addr, val));
491 	for (i = 0; i < 100; i++) {
492 		val = reg_read(ohci, OHCI1394_PhyControl);
493 		if (!(val & OHCI1394_PhyControl_WritePending))
494 			return 0;
495 
496 		msleep(1);
497 	}
498 	fw_error("failed to write phy reg\n");
499 
500 	return -EBUSY;
501 }
502 
503 static int ohci_update_phy_reg(struct fw_card *card, int addr,
504 			       int clear_bits, int set_bits)
505 {
506 	struct fw_ohci *ohci = fw_ohci(card);
507 	int ret;
508 
509 	ret = read_phy_reg(ohci, addr);
510 	if (ret < 0)
511 		return ret;
512 
513 	/*
514 	 * The interrupt status bits are cleared by writing a one bit.
515 	 * Avoid clearing them unless explicitly requested in set_bits.
516 	 */
517 	if (addr == 5)
518 		clear_bits |= PHY_INT_STATUS_BITS;
519 
520 	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
521 }
522 
523 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
524 {
525 	int ret;
526 
527 	ret = ohci_update_phy_reg(&ohci->card, 7, PHY_PAGE_SELECT, page << 5);
528 	if (ret < 0)
529 		return ret;
530 
531 	return read_phy_reg(ohci, addr);
532 }
533 
534 static int ar_context_add_page(struct ar_context *ctx)
535 {
536 	struct device *dev = ctx->ohci->card.device;
537 	struct ar_buffer *ab;
538 	dma_addr_t uninitialized_var(ab_bus);
539 	size_t offset;
540 
541 	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
542 	if (ab == NULL)
543 		return -ENOMEM;
544 
545 	ab->next = NULL;
546 	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
547 	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
548 						    DESCRIPTOR_STATUS |
549 						    DESCRIPTOR_BRANCH_ALWAYS);
550 	offset = offsetof(struct ar_buffer, data);
551 	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
552 	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
553 	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
554 	ab->descriptor.branch_address = 0;
555 
556 	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
557 	ctx->last_buffer->next = ab;
558 	ctx->last_buffer = ab;
559 
560 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
561 	flush_writes(ctx->ohci);
562 
563 	return 0;
564 }
565 
566 static void ar_context_release(struct ar_context *ctx)
567 {
568 	struct ar_buffer *ab, *ab_next;
569 	size_t offset;
570 	dma_addr_t ab_bus;
571 
572 	for (ab = ctx->current_buffer; ab; ab = ab_next) {
573 		ab_next = ab->next;
574 		offset = offsetof(struct ar_buffer, data);
575 		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
576 		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
577 				  ab, ab_bus);
578 	}
579 }
580 
581 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
582 #define cond_le32_to_cpu(v) \
583 	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
584 #else
585 #define cond_le32_to_cpu(v) le32_to_cpu(v)
586 #endif
587 
588 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
589 {
590 	struct fw_ohci *ohci = ctx->ohci;
591 	struct fw_packet p;
592 	u32 status, length, tcode;
593 	int evt;
594 
595 	p.header[0] = cond_le32_to_cpu(buffer[0]);
596 	p.header[1] = cond_le32_to_cpu(buffer[1]);
597 	p.header[2] = cond_le32_to_cpu(buffer[2]);
598 
599 	tcode = (p.header[0] >> 4) & 0x0f;
600 	switch (tcode) {
601 	case TCODE_WRITE_QUADLET_REQUEST:
602 	case TCODE_READ_QUADLET_RESPONSE:
603 		p.header[3] = (__force __u32) buffer[3];
604 		p.header_length = 16;
605 		p.payload_length = 0;
606 		break;
607 
608 	case TCODE_READ_BLOCK_REQUEST :
609 		p.header[3] = cond_le32_to_cpu(buffer[3]);
610 		p.header_length = 16;
611 		p.payload_length = 0;
612 		break;
613 
614 	case TCODE_WRITE_BLOCK_REQUEST:
615 	case TCODE_READ_BLOCK_RESPONSE:
616 	case TCODE_LOCK_REQUEST:
617 	case TCODE_LOCK_RESPONSE:
618 		p.header[3] = cond_le32_to_cpu(buffer[3]);
619 		p.header_length = 16;
620 		p.payload_length = p.header[3] >> 16;
621 		break;
622 
623 	case TCODE_WRITE_RESPONSE:
624 	case TCODE_READ_QUADLET_REQUEST:
625 	case OHCI_TCODE_PHY_PACKET:
626 		p.header_length = 12;
627 		p.payload_length = 0;
628 		break;
629 
630 	default:
631 		/* FIXME: Stop context, discard everything, and restart? */
632 		p.header_length = 0;
633 		p.payload_length = 0;
634 	}
635 
636 	p.payload = (void *) buffer + p.header_length;
637 
638 	/* FIXME: What to do about evt_* errors? */
639 	length = (p.header_length + p.payload_length + 3) / 4;
640 	status = cond_le32_to_cpu(buffer[length]);
641 	evt    = (status >> 16) & 0x1f;
642 
643 	p.ack        = evt - 16;
644 	p.speed      = (status >> 21) & 0x7;
645 	p.timestamp  = status & 0xffff;
646 	p.generation = ohci->request_generation;
647 
648 	log_ar_at_event('R', p.speed, p.header, evt);
649 
650 	/*
651 	 * The OHCI bus reset handler synthesizes a phy packet with
652 	 * the new generation number when a bus reset happens (see
653 	 * section 8.4.2.3).  This helps us determine when a request
654 	 * was received and make sure we send the response in the same
655 	 * generation.  We only need this for requests; for responses
656 	 * we use the unique tlabel for finding the matching
657 	 * request.
658 	 *
659 	 * Alas some chips sometimes emit bus reset packets with a
660 	 * wrong generation.  We set the correct generation for these
661 	 * at a slightly incorrect time (in bus_reset_tasklet).
662 	 */
663 	if (evt == OHCI1394_evt_bus_reset) {
664 		if (!(ohci->quirks & QUIRK_RESET_PACKET))
665 			ohci->request_generation = (p.header[2] >> 16) & 0xff;
666 	} else if (ctx == &ohci->ar_request_ctx) {
667 		fw_core_handle_request(&ohci->card, &p);
668 	} else {
669 		fw_core_handle_response(&ohci->card, &p);
670 	}
671 
672 	return buffer + length + 1;
673 }
674 
675 static void ar_context_tasklet(unsigned long data)
676 {
677 	struct ar_context *ctx = (struct ar_context *)data;
678 	struct fw_ohci *ohci = ctx->ohci;
679 	struct ar_buffer *ab;
680 	struct descriptor *d;
681 	void *buffer, *end;
682 
683 	ab = ctx->current_buffer;
684 	d = &ab->descriptor;
685 
686 	if (d->res_count == 0) {
687 		size_t size, rest, offset;
688 		dma_addr_t start_bus;
689 		void *start;
690 
691 		/*
692 		 * This descriptor is finished and we may have a
693 		 * packet split across this and the next buffer. We
694 		 * reuse the page for reassembling the split packet.
695 		 */
696 
697 		offset = offsetof(struct ar_buffer, data);
698 		start = buffer = ab;
699 		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
700 
701 		ab = ab->next;
702 		d = &ab->descriptor;
703 		size = buffer + PAGE_SIZE - ctx->pointer;
704 		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
705 		memmove(buffer, ctx->pointer, size);
706 		memcpy(buffer + size, ab->data, rest);
707 		ctx->current_buffer = ab;
708 		ctx->pointer = (void *) ab->data + rest;
709 		end = buffer + size + rest;
710 
711 		while (buffer < end)
712 			buffer = handle_ar_packet(ctx, buffer);
713 
714 		dma_free_coherent(ohci->card.device, PAGE_SIZE,
715 				  start, start_bus);
716 		ar_context_add_page(ctx);
717 	} else {
718 		buffer = ctx->pointer;
719 		ctx->pointer = end =
720 			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
721 
722 		while (buffer < end)
723 			buffer = handle_ar_packet(ctx, buffer);
724 	}
725 }
726 
727 static int ar_context_init(struct ar_context *ctx,
728 			   struct fw_ohci *ohci, u32 regs)
729 {
730 	struct ar_buffer ab;
731 
732 	ctx->regs        = regs;
733 	ctx->ohci        = ohci;
734 	ctx->last_buffer = &ab;
735 	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
736 
737 	ar_context_add_page(ctx);
738 	ar_context_add_page(ctx);
739 	ctx->current_buffer = ab.next;
740 	ctx->pointer = ctx->current_buffer->data;
741 
742 	return 0;
743 }
744 
745 static void ar_context_run(struct ar_context *ctx)
746 {
747 	struct ar_buffer *ab = ctx->current_buffer;
748 	dma_addr_t ab_bus;
749 	size_t offset;
750 
751 	offset = offsetof(struct ar_buffer, data);
752 	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
753 
754 	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
755 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
756 	flush_writes(ctx->ohci);
757 }
758 
759 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
760 {
761 	int b, key;
762 
763 	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
764 	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
765 
766 	/* figure out which descriptor the branch address goes in */
767 	if (z == 2 && (b == 3 || key == 2))
768 		return d;
769 	else
770 		return d + z - 1;
771 }
772 
773 static void context_tasklet(unsigned long data)
774 {
775 	struct context *ctx = (struct context *) data;
776 	struct descriptor *d, *last;
777 	u32 address;
778 	int z;
779 	struct descriptor_buffer *desc;
780 
781 	desc = list_entry(ctx->buffer_list.next,
782 			struct descriptor_buffer, list);
783 	last = ctx->last;
784 	while (last->branch_address != 0) {
785 		struct descriptor_buffer *old_desc = desc;
786 		address = le32_to_cpu(last->branch_address);
787 		z = address & 0xf;
788 		address &= ~0xf;
789 
790 		/* If the branch address points to a buffer outside of the
791 		 * current buffer, advance to the next buffer. */
792 		if (address < desc->buffer_bus ||
793 				address >= desc->buffer_bus + desc->used)
794 			desc = list_entry(desc->list.next,
795 					struct descriptor_buffer, list);
796 		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
797 		last = find_branch_descriptor(d, z);
798 
799 		if (!ctx->callback(ctx, d, last))
800 			break;
801 
802 		if (old_desc != desc) {
803 			/* If we've advanced to the next buffer, move the
804 			 * previous buffer to the free list. */
805 			unsigned long flags;
806 			old_desc->used = 0;
807 			spin_lock_irqsave(&ctx->ohci->lock, flags);
808 			list_move_tail(&old_desc->list, &ctx->buffer_list);
809 			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
810 		}
811 		ctx->last = last;
812 	}
813 }
814 
815 /*
816  * Allocate a new buffer and add it to the list of free buffers for this
817  * context.  Must be called with ohci->lock held.
818  */
819 static int context_add_buffer(struct context *ctx)
820 {
821 	struct descriptor_buffer *desc;
822 	dma_addr_t uninitialized_var(bus_addr);
823 	int offset;
824 
825 	/*
826 	 * 16MB of descriptors should be far more than enough for any DMA
827 	 * program.  This will catch run-away userspace or DoS attacks.
828 	 */
829 	if (ctx->total_allocation >= 16*1024*1024)
830 		return -ENOMEM;
831 
832 	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
833 			&bus_addr, GFP_ATOMIC);
834 	if (!desc)
835 		return -ENOMEM;
836 
837 	offset = (void *)&desc->buffer - (void *)desc;
838 	desc->buffer_size = PAGE_SIZE - offset;
839 	desc->buffer_bus = bus_addr + offset;
840 	desc->used = 0;
841 
842 	list_add_tail(&desc->list, &ctx->buffer_list);
843 	ctx->total_allocation += PAGE_SIZE;
844 
845 	return 0;
846 }
847 
848 static int context_init(struct context *ctx, struct fw_ohci *ohci,
849 			u32 regs, descriptor_callback_t callback)
850 {
851 	ctx->ohci = ohci;
852 	ctx->regs = regs;
853 	ctx->total_allocation = 0;
854 
855 	INIT_LIST_HEAD(&ctx->buffer_list);
856 	if (context_add_buffer(ctx) < 0)
857 		return -ENOMEM;
858 
859 	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
860 			struct descriptor_buffer, list);
861 
862 	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
863 	ctx->callback = callback;
864 
865 	/*
866 	 * We put a dummy descriptor in the buffer that has a NULL
867 	 * branch address and looks like it's been sent.  That way we
868 	 * have a descriptor to append DMA programs to.
869 	 */
870 	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
871 	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
872 	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
873 	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
874 	ctx->last = ctx->buffer_tail->buffer;
875 	ctx->prev = ctx->buffer_tail->buffer;
876 
877 	return 0;
878 }
879 
880 static void context_release(struct context *ctx)
881 {
882 	struct fw_card *card = &ctx->ohci->card;
883 	struct descriptor_buffer *desc, *tmp;
884 
885 	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
886 		dma_free_coherent(card->device, PAGE_SIZE, desc,
887 			desc->buffer_bus -
888 			((void *)&desc->buffer - (void *)desc));
889 }
890 
891 /* Must be called with ohci->lock held */
892 static struct descriptor *context_get_descriptors(struct context *ctx,
893 						  int z, dma_addr_t *d_bus)
894 {
895 	struct descriptor *d = NULL;
896 	struct descriptor_buffer *desc = ctx->buffer_tail;
897 
898 	if (z * sizeof(*d) > desc->buffer_size)
899 		return NULL;
900 
901 	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
902 		/* No room for the descriptor in this buffer, so advance to the
903 		 * next one. */
904 
905 		if (desc->list.next == &ctx->buffer_list) {
906 			/* If there is no free buffer next in the list,
907 			 * allocate one. */
908 			if (context_add_buffer(ctx) < 0)
909 				return NULL;
910 		}
911 		desc = list_entry(desc->list.next,
912 				struct descriptor_buffer, list);
913 		ctx->buffer_tail = desc;
914 	}
915 
916 	d = desc->buffer + desc->used / sizeof(*d);
917 	memset(d, 0, z * sizeof(*d));
918 	*d_bus = desc->buffer_bus + desc->used;
919 
920 	return d;
921 }
922 
923 static void context_run(struct context *ctx, u32 extra)
924 {
925 	struct fw_ohci *ohci = ctx->ohci;
926 
927 	reg_write(ohci, COMMAND_PTR(ctx->regs),
928 		  le32_to_cpu(ctx->last->branch_address));
929 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
930 	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
931 	flush_writes(ohci);
932 }
933 
934 static void context_append(struct context *ctx,
935 			   struct descriptor *d, int z, int extra)
936 {
937 	dma_addr_t d_bus;
938 	struct descriptor_buffer *desc = ctx->buffer_tail;
939 
940 	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
941 
942 	desc->used += (z + extra) * sizeof(*d);
943 	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
944 	ctx->prev = find_branch_descriptor(d, z);
945 
946 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
947 	flush_writes(ctx->ohci);
948 }
949 
950 static void context_stop(struct context *ctx)
951 {
952 	u32 reg;
953 	int i;
954 
955 	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
956 	flush_writes(ctx->ohci);
957 
958 	for (i = 0; i < 10; i++) {
959 		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
960 		if ((reg & CONTEXT_ACTIVE) == 0)
961 			return;
962 
963 		mdelay(1);
964 	}
965 	fw_error("Error: DMA context still active (0x%08x)\n", reg);
966 }
967 
968 struct driver_data {
969 	struct fw_packet *packet;
970 };
971 
972 /*
973  * This function apppends a packet to the DMA queue for transmission.
974  * Must always be called with the ochi->lock held to ensure proper
975  * generation handling and locking around packet queue manipulation.
976  */
977 static int at_context_queue_packet(struct context *ctx,
978 				   struct fw_packet *packet)
979 {
980 	struct fw_ohci *ohci = ctx->ohci;
981 	dma_addr_t d_bus, uninitialized_var(payload_bus);
982 	struct driver_data *driver_data;
983 	struct descriptor *d, *last;
984 	__le32 *header;
985 	int z, tcode;
986 	u32 reg;
987 
988 	d = context_get_descriptors(ctx, 4, &d_bus);
989 	if (d == NULL) {
990 		packet->ack = RCODE_SEND_ERROR;
991 		return -1;
992 	}
993 
994 	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
995 	d[0].res_count = cpu_to_le16(packet->timestamp);
996 
997 	/*
998 	 * The DMA format for asyncronous link packets is different
999 	 * from the IEEE1394 layout, so shift the fields around
1000 	 * accordingly.  If header_length is 8, it's a PHY packet, to
1001 	 * which we need to prepend an extra quadlet.
1002 	 */
1003 
1004 	header = (__le32 *) &d[1];
1005 	switch (packet->header_length) {
1006 	case 16:
1007 	case 12:
1008 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1009 					(packet->speed << 16));
1010 		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1011 					(packet->header[0] & 0xffff0000));
1012 		header[2] = cpu_to_le32(packet->header[2]);
1013 
1014 		tcode = (packet->header[0] >> 4) & 0x0f;
1015 		if (TCODE_IS_BLOCK_PACKET(tcode))
1016 			header[3] = cpu_to_le32(packet->header[3]);
1017 		else
1018 			header[3] = (__force __le32) packet->header[3];
1019 
1020 		d[0].req_count = cpu_to_le16(packet->header_length);
1021 		break;
1022 
1023 	case 8:
1024 		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1025 					(packet->speed << 16));
1026 		header[1] = cpu_to_le32(packet->header[0]);
1027 		header[2] = cpu_to_le32(packet->header[1]);
1028 		d[0].req_count = cpu_to_le16(12);
1029 		break;
1030 
1031 	case 4:
1032 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1033 					(packet->speed << 16));
1034 		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1035 		d[0].req_count = cpu_to_le16(8);
1036 		break;
1037 
1038 	default:
1039 		/* BUG(); */
1040 		packet->ack = RCODE_SEND_ERROR;
1041 		return -1;
1042 	}
1043 
1044 	driver_data = (struct driver_data *) &d[3];
1045 	driver_data->packet = packet;
1046 	packet->driver_data = driver_data;
1047 
1048 	if (packet->payload_length > 0) {
1049 		payload_bus =
1050 			dma_map_single(ohci->card.device, packet->payload,
1051 				       packet->payload_length, DMA_TO_DEVICE);
1052 		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1053 			packet->ack = RCODE_SEND_ERROR;
1054 			return -1;
1055 		}
1056 		packet->payload_bus	= payload_bus;
1057 		packet->payload_mapped	= true;
1058 
1059 		d[2].req_count    = cpu_to_le16(packet->payload_length);
1060 		d[2].data_address = cpu_to_le32(payload_bus);
1061 		last = &d[2];
1062 		z = 3;
1063 	} else {
1064 		last = &d[0];
1065 		z = 2;
1066 	}
1067 
1068 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1069 				     DESCRIPTOR_IRQ_ALWAYS |
1070 				     DESCRIPTOR_BRANCH_ALWAYS);
1071 
1072 	/*
1073 	 * If the controller and packet generations don't match, we need to
1074 	 * bail out and try again.  If IntEvent.busReset is set, the AT context
1075 	 * is halted, so appending to the context and trying to run it is
1076 	 * futile.  Most controllers do the right thing and just flush the AT
1077 	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1078 	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1079 	 * up stalling out.  So we just bail out in software and try again
1080 	 * later, and everyone is happy.
1081 	 * FIXME: Document how the locking works.
1082 	 */
1083 	if (ohci->generation != packet->generation ||
1084 	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1085 		if (packet->payload_mapped)
1086 			dma_unmap_single(ohci->card.device, payload_bus,
1087 					 packet->payload_length, DMA_TO_DEVICE);
1088 		packet->ack = RCODE_GENERATION;
1089 		return -1;
1090 	}
1091 
1092 	context_append(ctx, d, z, 4 - z);
1093 
1094 	/* If the context isn't already running, start it up. */
1095 	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1096 	if ((reg & CONTEXT_RUN) == 0)
1097 		context_run(ctx, 0);
1098 
1099 	return 0;
1100 }
1101 
1102 static int handle_at_packet(struct context *context,
1103 			    struct descriptor *d,
1104 			    struct descriptor *last)
1105 {
1106 	struct driver_data *driver_data;
1107 	struct fw_packet *packet;
1108 	struct fw_ohci *ohci = context->ohci;
1109 	int evt;
1110 
1111 	if (last->transfer_status == 0)
1112 		/* This descriptor isn't done yet, stop iteration. */
1113 		return 0;
1114 
1115 	driver_data = (struct driver_data *) &d[3];
1116 	packet = driver_data->packet;
1117 	if (packet == NULL)
1118 		/* This packet was cancelled, just continue. */
1119 		return 1;
1120 
1121 	if (packet->payload_mapped)
1122 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1123 				 packet->payload_length, DMA_TO_DEVICE);
1124 
1125 	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1126 	packet->timestamp = le16_to_cpu(last->res_count);
1127 
1128 	log_ar_at_event('T', packet->speed, packet->header, evt);
1129 
1130 	switch (evt) {
1131 	case OHCI1394_evt_timeout:
1132 		/* Async response transmit timed out. */
1133 		packet->ack = RCODE_CANCELLED;
1134 		break;
1135 
1136 	case OHCI1394_evt_flushed:
1137 		/*
1138 		 * The packet was flushed should give same error as
1139 		 * when we try to use a stale generation count.
1140 		 */
1141 		packet->ack = RCODE_GENERATION;
1142 		break;
1143 
1144 	case OHCI1394_evt_missing_ack:
1145 		/*
1146 		 * Using a valid (current) generation count, but the
1147 		 * node is not on the bus or not sending acks.
1148 		 */
1149 		packet->ack = RCODE_NO_ACK;
1150 		break;
1151 
1152 	case ACK_COMPLETE + 0x10:
1153 	case ACK_PENDING + 0x10:
1154 	case ACK_BUSY_X + 0x10:
1155 	case ACK_BUSY_A + 0x10:
1156 	case ACK_BUSY_B + 0x10:
1157 	case ACK_DATA_ERROR + 0x10:
1158 	case ACK_TYPE_ERROR + 0x10:
1159 		packet->ack = evt - 0x10;
1160 		break;
1161 
1162 	default:
1163 		packet->ack = RCODE_SEND_ERROR;
1164 		break;
1165 	}
1166 
1167 	packet->callback(packet, &ohci->card, packet->ack);
1168 
1169 	return 1;
1170 }
1171 
1172 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1173 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1174 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1175 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1176 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1177 
1178 static void handle_local_rom(struct fw_ohci *ohci,
1179 			     struct fw_packet *packet, u32 csr)
1180 {
1181 	struct fw_packet response;
1182 	int tcode, length, i;
1183 
1184 	tcode = HEADER_GET_TCODE(packet->header[0]);
1185 	if (TCODE_IS_BLOCK_PACKET(tcode))
1186 		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1187 	else
1188 		length = 4;
1189 
1190 	i = csr - CSR_CONFIG_ROM;
1191 	if (i + length > CONFIG_ROM_SIZE) {
1192 		fw_fill_response(&response, packet->header,
1193 				 RCODE_ADDRESS_ERROR, NULL, 0);
1194 	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1195 		fw_fill_response(&response, packet->header,
1196 				 RCODE_TYPE_ERROR, NULL, 0);
1197 	} else {
1198 		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1199 				 (void *) ohci->config_rom + i, length);
1200 	}
1201 
1202 	fw_core_handle_response(&ohci->card, &response);
1203 }
1204 
1205 static void handle_local_lock(struct fw_ohci *ohci,
1206 			      struct fw_packet *packet, u32 csr)
1207 {
1208 	struct fw_packet response;
1209 	int tcode, length, ext_tcode, sel, try;
1210 	__be32 *payload, lock_old;
1211 	u32 lock_arg, lock_data;
1212 
1213 	tcode = HEADER_GET_TCODE(packet->header[0]);
1214 	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1215 	payload = packet->payload;
1216 	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1217 
1218 	if (tcode == TCODE_LOCK_REQUEST &&
1219 	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1220 		lock_arg = be32_to_cpu(payload[0]);
1221 		lock_data = be32_to_cpu(payload[1]);
1222 	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1223 		lock_arg = 0;
1224 		lock_data = 0;
1225 	} else {
1226 		fw_fill_response(&response, packet->header,
1227 				 RCODE_TYPE_ERROR, NULL, 0);
1228 		goto out;
1229 	}
1230 
1231 	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1232 	reg_write(ohci, OHCI1394_CSRData, lock_data);
1233 	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1234 	reg_write(ohci, OHCI1394_CSRControl, sel);
1235 
1236 	for (try = 0; try < 20; try++)
1237 		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1238 			lock_old = cpu_to_be32(reg_read(ohci,
1239 							OHCI1394_CSRData));
1240 			fw_fill_response(&response, packet->header,
1241 					 RCODE_COMPLETE,
1242 					 &lock_old, sizeof(lock_old));
1243 			goto out;
1244 		}
1245 
1246 	fw_error("swap not done (CSR lock timeout)\n");
1247 	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1248 
1249  out:
1250 	fw_core_handle_response(&ohci->card, &response);
1251 }
1252 
1253 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1254 {
1255 	u64 offset, csr;
1256 
1257 	if (ctx == &ctx->ohci->at_request_ctx) {
1258 		packet->ack = ACK_PENDING;
1259 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1260 	}
1261 
1262 	offset =
1263 		((unsigned long long)
1264 		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1265 		packet->header[2];
1266 	csr = offset - CSR_REGISTER_BASE;
1267 
1268 	/* Handle config rom reads. */
1269 	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1270 		handle_local_rom(ctx->ohci, packet, csr);
1271 	else switch (csr) {
1272 	case CSR_BUS_MANAGER_ID:
1273 	case CSR_BANDWIDTH_AVAILABLE:
1274 	case CSR_CHANNELS_AVAILABLE_HI:
1275 	case CSR_CHANNELS_AVAILABLE_LO:
1276 		handle_local_lock(ctx->ohci, packet, csr);
1277 		break;
1278 	default:
1279 		if (ctx == &ctx->ohci->at_request_ctx)
1280 			fw_core_handle_request(&ctx->ohci->card, packet);
1281 		else
1282 			fw_core_handle_response(&ctx->ohci->card, packet);
1283 		break;
1284 	}
1285 
1286 	if (ctx == &ctx->ohci->at_response_ctx) {
1287 		packet->ack = ACK_COMPLETE;
1288 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1289 	}
1290 }
1291 
1292 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1293 {
1294 	unsigned long flags;
1295 	int ret;
1296 
1297 	spin_lock_irqsave(&ctx->ohci->lock, flags);
1298 
1299 	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1300 	    ctx->ohci->generation == packet->generation) {
1301 		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1302 		handle_local_request(ctx, packet);
1303 		return;
1304 	}
1305 
1306 	ret = at_context_queue_packet(ctx, packet);
1307 	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1308 
1309 	if (ret < 0)
1310 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1311 
1312 }
1313 
1314 static void bus_reset_tasklet(unsigned long data)
1315 {
1316 	struct fw_ohci *ohci = (struct fw_ohci *)data;
1317 	int self_id_count, i, j, reg;
1318 	int generation, new_generation;
1319 	unsigned long flags;
1320 	void *free_rom = NULL;
1321 	dma_addr_t free_rom_bus = 0;
1322 
1323 	reg = reg_read(ohci, OHCI1394_NodeID);
1324 	if (!(reg & OHCI1394_NodeID_idValid)) {
1325 		fw_notify("node ID not valid, new bus reset in progress\n");
1326 		return;
1327 	}
1328 	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1329 		fw_notify("malconfigured bus\n");
1330 		return;
1331 	}
1332 	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1333 			       OHCI1394_NodeID_nodeNumber);
1334 
1335 	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1336 	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1337 		fw_notify("inconsistent self IDs\n");
1338 		return;
1339 	}
1340 	/*
1341 	 * The count in the SelfIDCount register is the number of
1342 	 * bytes in the self ID receive buffer.  Since we also receive
1343 	 * the inverted quadlets and a header quadlet, we shift one
1344 	 * bit extra to get the actual number of self IDs.
1345 	 */
1346 	self_id_count = (reg >> 3) & 0xff;
1347 	if (self_id_count == 0 || self_id_count > 252) {
1348 		fw_notify("inconsistent self IDs\n");
1349 		return;
1350 	}
1351 	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1352 	rmb();
1353 
1354 	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1355 		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1356 			fw_notify("inconsistent self IDs\n");
1357 			return;
1358 		}
1359 		ohci->self_id_buffer[j] =
1360 				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1361 	}
1362 	rmb();
1363 
1364 	/*
1365 	 * Check the consistency of the self IDs we just read.  The
1366 	 * problem we face is that a new bus reset can start while we
1367 	 * read out the self IDs from the DMA buffer. If this happens,
1368 	 * the DMA buffer will be overwritten with new self IDs and we
1369 	 * will read out inconsistent data.  The OHCI specification
1370 	 * (section 11.2) recommends a technique similar to
1371 	 * linux/seqlock.h, where we remember the generation of the
1372 	 * self IDs in the buffer before reading them out and compare
1373 	 * it to the current generation after reading them out.  If
1374 	 * the two generations match we know we have a consistent set
1375 	 * of self IDs.
1376 	 */
1377 
1378 	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1379 	if (new_generation != generation) {
1380 		fw_notify("recursive bus reset detected, "
1381 			  "discarding self ids\n");
1382 		return;
1383 	}
1384 
1385 	/* FIXME: Document how the locking works. */
1386 	spin_lock_irqsave(&ohci->lock, flags);
1387 
1388 	ohci->generation = generation;
1389 	context_stop(&ohci->at_request_ctx);
1390 	context_stop(&ohci->at_response_ctx);
1391 	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1392 
1393 	if (ohci->quirks & QUIRK_RESET_PACKET)
1394 		ohci->request_generation = generation;
1395 
1396 	/*
1397 	 * This next bit is unrelated to the AT context stuff but we
1398 	 * have to do it under the spinlock also.  If a new config rom
1399 	 * was set up before this reset, the old one is now no longer
1400 	 * in use and we can free it. Update the config rom pointers
1401 	 * to point to the current config rom and clear the
1402 	 * next_config_rom pointer so a new update can take place.
1403 	 */
1404 
1405 	if (ohci->next_config_rom != NULL) {
1406 		if (ohci->next_config_rom != ohci->config_rom) {
1407 			free_rom      = ohci->config_rom;
1408 			free_rom_bus  = ohci->config_rom_bus;
1409 		}
1410 		ohci->config_rom      = ohci->next_config_rom;
1411 		ohci->config_rom_bus  = ohci->next_config_rom_bus;
1412 		ohci->next_config_rom = NULL;
1413 
1414 		/*
1415 		 * Restore config_rom image and manually update
1416 		 * config_rom registers.  Writing the header quadlet
1417 		 * will indicate that the config rom is ready, so we
1418 		 * do that last.
1419 		 */
1420 		reg_write(ohci, OHCI1394_BusOptions,
1421 			  be32_to_cpu(ohci->config_rom[2]));
1422 		ohci->config_rom[0] = ohci->next_header;
1423 		reg_write(ohci, OHCI1394_ConfigROMhdr,
1424 			  be32_to_cpu(ohci->next_header));
1425 	}
1426 
1427 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1428 	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1429 	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1430 #endif
1431 
1432 	spin_unlock_irqrestore(&ohci->lock, flags);
1433 
1434 	if (free_rom)
1435 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1436 				  free_rom, free_rom_bus);
1437 
1438 	log_selfids(ohci->node_id, generation,
1439 		    self_id_count, ohci->self_id_buffer);
1440 
1441 	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1442 				 self_id_count, ohci->self_id_buffer);
1443 }
1444 
1445 static irqreturn_t irq_handler(int irq, void *data)
1446 {
1447 	struct fw_ohci *ohci = data;
1448 	u32 event, iso_event;
1449 	int i;
1450 
1451 	event = reg_read(ohci, OHCI1394_IntEventClear);
1452 
1453 	if (!event || !~event)
1454 		return IRQ_NONE;
1455 
1456 	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1457 	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1458 	log_irqs(event);
1459 
1460 	if (event & OHCI1394_selfIDComplete)
1461 		tasklet_schedule(&ohci->bus_reset_tasklet);
1462 
1463 	if (event & OHCI1394_RQPkt)
1464 		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1465 
1466 	if (event & OHCI1394_RSPkt)
1467 		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1468 
1469 	if (event & OHCI1394_reqTxComplete)
1470 		tasklet_schedule(&ohci->at_request_ctx.tasklet);
1471 
1472 	if (event & OHCI1394_respTxComplete)
1473 		tasklet_schedule(&ohci->at_response_ctx.tasklet);
1474 
1475 	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1476 	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1477 
1478 	while (iso_event) {
1479 		i = ffs(iso_event) - 1;
1480 		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1481 		iso_event &= ~(1 << i);
1482 	}
1483 
1484 	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1485 	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1486 
1487 	while (iso_event) {
1488 		i = ffs(iso_event) - 1;
1489 		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1490 		iso_event &= ~(1 << i);
1491 	}
1492 
1493 	if (unlikely(event & OHCI1394_regAccessFail))
1494 		fw_error("Register access failure - "
1495 			 "please notify linux1394-devel@lists.sf.net\n");
1496 
1497 	if (unlikely(event & OHCI1394_postedWriteErr))
1498 		fw_error("PCI posted write error\n");
1499 
1500 	if (unlikely(event & OHCI1394_cycleTooLong)) {
1501 		if (printk_ratelimit())
1502 			fw_notify("isochronous cycle too long\n");
1503 		reg_write(ohci, OHCI1394_LinkControlSet,
1504 			  OHCI1394_LinkControl_cycleMaster);
1505 	}
1506 
1507 	if (unlikely(event & OHCI1394_cycleInconsistent)) {
1508 		/*
1509 		 * We need to clear this event bit in order to make
1510 		 * cycleMatch isochronous I/O work.  In theory we should
1511 		 * stop active cycleMatch iso contexts now and restart
1512 		 * them at least two cycles later.  (FIXME?)
1513 		 */
1514 		if (printk_ratelimit())
1515 			fw_notify("isochronous cycle inconsistent\n");
1516 	}
1517 
1518 	return IRQ_HANDLED;
1519 }
1520 
1521 static int software_reset(struct fw_ohci *ohci)
1522 {
1523 	int i;
1524 
1525 	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1526 
1527 	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1528 		if ((reg_read(ohci, OHCI1394_HCControlSet) &
1529 		     OHCI1394_HCControl_softReset) == 0)
1530 			return 0;
1531 		msleep(1);
1532 	}
1533 
1534 	return -EBUSY;
1535 }
1536 
1537 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1538 {
1539 	size_t size = length * 4;
1540 
1541 	memcpy(dest, src, size);
1542 	if (size < CONFIG_ROM_SIZE)
1543 		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1544 }
1545 
1546 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1547 {
1548 	bool enable_1394a;
1549 	int ret, clear, set, offset;
1550 
1551 	/* Check if the driver should configure link and PHY. */
1552 	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1553 	      OHCI1394_HCControl_programPhyEnable))
1554 		return 0;
1555 
1556 	/* Paranoia: check whether the PHY supports 1394a, too. */
1557 	enable_1394a = false;
1558 	ret = read_phy_reg(ohci, 2);
1559 	if (ret < 0)
1560 		return ret;
1561 	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1562 		ret = read_paged_phy_reg(ohci, 1, 8);
1563 		if (ret < 0)
1564 			return ret;
1565 		if (ret >= 1)
1566 			enable_1394a = true;
1567 	}
1568 
1569 	if (ohci->quirks & QUIRK_NO_1394A)
1570 		enable_1394a = false;
1571 
1572 	/* Configure PHY and link consistently. */
1573 	if (enable_1394a) {
1574 		clear = 0;
1575 		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1576 	} else {
1577 		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1578 		set = 0;
1579 	}
1580 	ret = ohci_update_phy_reg(&ohci->card, 5, clear, set);
1581 	if (ret < 0)
1582 		return ret;
1583 
1584 	if (enable_1394a)
1585 		offset = OHCI1394_HCControlSet;
1586 	else
1587 		offset = OHCI1394_HCControlClear;
1588 	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1589 
1590 	/* Clean up: configuration has been taken care of. */
1591 	reg_write(ohci, OHCI1394_HCControlClear,
1592 		  OHCI1394_HCControl_programPhyEnable);
1593 
1594 	return 0;
1595 }
1596 
1597 static int ohci_enable(struct fw_card *card,
1598 		       const __be32 *config_rom, size_t length)
1599 {
1600 	struct fw_ohci *ohci = fw_ohci(card);
1601 	struct pci_dev *dev = to_pci_dev(card->device);
1602 	u32 lps;
1603 	int i, ret;
1604 
1605 	if (software_reset(ohci)) {
1606 		fw_error("Failed to reset ohci card.\n");
1607 		return -EBUSY;
1608 	}
1609 
1610 	/*
1611 	 * Now enable LPS, which we need in order to start accessing
1612 	 * most of the registers.  In fact, on some cards (ALI M5251),
1613 	 * accessing registers in the SClk domain without LPS enabled
1614 	 * will lock up the machine.  Wait 50msec to make sure we have
1615 	 * full link enabled.  However, with some cards (well, at least
1616 	 * a JMicron PCIe card), we have to try again sometimes.
1617 	 */
1618 	reg_write(ohci, OHCI1394_HCControlSet,
1619 		  OHCI1394_HCControl_LPS |
1620 		  OHCI1394_HCControl_postedWriteEnable);
1621 	flush_writes(ohci);
1622 
1623 	for (lps = 0, i = 0; !lps && i < 3; i++) {
1624 		msleep(50);
1625 		lps = reg_read(ohci, OHCI1394_HCControlSet) &
1626 		      OHCI1394_HCControl_LPS;
1627 	}
1628 
1629 	if (!lps) {
1630 		fw_error("Failed to set Link Power Status\n");
1631 		return -EIO;
1632 	}
1633 
1634 	reg_write(ohci, OHCI1394_HCControlClear,
1635 		  OHCI1394_HCControl_noByteSwapData);
1636 
1637 	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1638 	reg_write(ohci, OHCI1394_LinkControlClear,
1639 		  OHCI1394_LinkControl_rcvPhyPkt);
1640 	reg_write(ohci, OHCI1394_LinkControlSet,
1641 		  OHCI1394_LinkControl_rcvSelfID |
1642 		  OHCI1394_LinkControl_cycleTimerEnable |
1643 		  OHCI1394_LinkControl_cycleMaster);
1644 
1645 	reg_write(ohci, OHCI1394_ATRetries,
1646 		  OHCI1394_MAX_AT_REQ_RETRIES |
1647 		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1648 		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1649 
1650 	ar_context_run(&ohci->ar_request_ctx);
1651 	ar_context_run(&ohci->ar_response_ctx);
1652 
1653 	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1654 	reg_write(ohci, OHCI1394_IntEventClear, ~0);
1655 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1656 	reg_write(ohci, OHCI1394_IntMaskSet,
1657 		  OHCI1394_selfIDComplete |
1658 		  OHCI1394_RQPkt | OHCI1394_RSPkt |
1659 		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1660 		  OHCI1394_isochRx | OHCI1394_isochTx |
1661 		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1662 		  OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1663 		  OHCI1394_masterIntEnable);
1664 	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1665 		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1666 
1667 	ret = configure_1394a_enhancements(ohci);
1668 	if (ret < 0)
1669 		return ret;
1670 
1671 	/* Activate link_on bit and contender bit in our self ID packets.*/
1672 	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1673 	if (ret < 0)
1674 		return ret;
1675 
1676 	/*
1677 	 * When the link is not yet enabled, the atomic config rom
1678 	 * update mechanism described below in ohci_set_config_rom()
1679 	 * is not active.  We have to update ConfigRomHeader and
1680 	 * BusOptions manually, and the write to ConfigROMmap takes
1681 	 * effect immediately.  We tie this to the enabling of the
1682 	 * link, so we have a valid config rom before enabling - the
1683 	 * OHCI requires that ConfigROMhdr and BusOptions have valid
1684 	 * values before enabling.
1685 	 *
1686 	 * However, when the ConfigROMmap is written, some controllers
1687 	 * always read back quadlets 0 and 2 from the config rom to
1688 	 * the ConfigRomHeader and BusOptions registers on bus reset.
1689 	 * They shouldn't do that in this initial case where the link
1690 	 * isn't enabled.  This means we have to use the same
1691 	 * workaround here, setting the bus header to 0 and then write
1692 	 * the right values in the bus reset tasklet.
1693 	 */
1694 
1695 	if (config_rom) {
1696 		ohci->next_config_rom =
1697 			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1698 					   &ohci->next_config_rom_bus,
1699 					   GFP_KERNEL);
1700 		if (ohci->next_config_rom == NULL)
1701 			return -ENOMEM;
1702 
1703 		copy_config_rom(ohci->next_config_rom, config_rom, length);
1704 	} else {
1705 		/*
1706 		 * In the suspend case, config_rom is NULL, which
1707 		 * means that we just reuse the old config rom.
1708 		 */
1709 		ohci->next_config_rom = ohci->config_rom;
1710 		ohci->next_config_rom_bus = ohci->config_rom_bus;
1711 	}
1712 
1713 	ohci->next_header = ohci->next_config_rom[0];
1714 	ohci->next_config_rom[0] = 0;
1715 	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1716 	reg_write(ohci, OHCI1394_BusOptions,
1717 		  be32_to_cpu(ohci->next_config_rom[2]));
1718 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1719 
1720 	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1721 
1722 	if (request_irq(dev->irq, irq_handler,
1723 			IRQF_SHARED, ohci_driver_name, ohci)) {
1724 		fw_error("Failed to allocate shared interrupt %d.\n",
1725 			 dev->irq);
1726 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1727 				  ohci->config_rom, ohci->config_rom_bus);
1728 		return -EIO;
1729 	}
1730 
1731 	reg_write(ohci, OHCI1394_HCControlSet,
1732 		  OHCI1394_HCControl_linkEnable |
1733 		  OHCI1394_HCControl_BIBimageValid);
1734 	flush_writes(ohci);
1735 
1736 	/*
1737 	 * We are ready to go, initiate bus reset to finish the
1738 	 * initialization.
1739 	 */
1740 
1741 	fw_core_initiate_bus_reset(&ohci->card, 1);
1742 
1743 	return 0;
1744 }
1745 
1746 static int ohci_set_config_rom(struct fw_card *card,
1747 			       const __be32 *config_rom, size_t length)
1748 {
1749 	struct fw_ohci *ohci;
1750 	unsigned long flags;
1751 	int ret = -EBUSY;
1752 	__be32 *next_config_rom;
1753 	dma_addr_t uninitialized_var(next_config_rom_bus);
1754 
1755 	ohci = fw_ohci(card);
1756 
1757 	/*
1758 	 * When the OHCI controller is enabled, the config rom update
1759 	 * mechanism is a bit tricky, but easy enough to use.  See
1760 	 * section 5.5.6 in the OHCI specification.
1761 	 *
1762 	 * The OHCI controller caches the new config rom address in a
1763 	 * shadow register (ConfigROMmapNext) and needs a bus reset
1764 	 * for the changes to take place.  When the bus reset is
1765 	 * detected, the controller loads the new values for the
1766 	 * ConfigRomHeader and BusOptions registers from the specified
1767 	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1768 	 * shadow register. All automatically and atomically.
1769 	 *
1770 	 * Now, there's a twist to this story.  The automatic load of
1771 	 * ConfigRomHeader and BusOptions doesn't honor the
1772 	 * noByteSwapData bit, so with a be32 config rom, the
1773 	 * controller will load be32 values in to these registers
1774 	 * during the atomic update, even on litte endian
1775 	 * architectures.  The workaround we use is to put a 0 in the
1776 	 * header quadlet; 0 is endian agnostic and means that the
1777 	 * config rom isn't ready yet.  In the bus reset tasklet we
1778 	 * then set up the real values for the two registers.
1779 	 *
1780 	 * We use ohci->lock to avoid racing with the code that sets
1781 	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1782 	 */
1783 
1784 	next_config_rom =
1785 		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1786 				   &next_config_rom_bus, GFP_KERNEL);
1787 	if (next_config_rom == NULL)
1788 		return -ENOMEM;
1789 
1790 	spin_lock_irqsave(&ohci->lock, flags);
1791 
1792 	if (ohci->next_config_rom == NULL) {
1793 		ohci->next_config_rom = next_config_rom;
1794 		ohci->next_config_rom_bus = next_config_rom_bus;
1795 
1796 		copy_config_rom(ohci->next_config_rom, config_rom, length);
1797 
1798 		ohci->next_header = config_rom[0];
1799 		ohci->next_config_rom[0] = 0;
1800 
1801 		reg_write(ohci, OHCI1394_ConfigROMmap,
1802 			  ohci->next_config_rom_bus);
1803 		ret = 0;
1804 	}
1805 
1806 	spin_unlock_irqrestore(&ohci->lock, flags);
1807 
1808 	/*
1809 	 * Now initiate a bus reset to have the changes take
1810 	 * effect. We clean up the old config rom memory and DMA
1811 	 * mappings in the bus reset tasklet, since the OHCI
1812 	 * controller could need to access it before the bus reset
1813 	 * takes effect.
1814 	 */
1815 	if (ret == 0)
1816 		fw_core_initiate_bus_reset(&ohci->card, 1);
1817 	else
1818 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1819 				  next_config_rom, next_config_rom_bus);
1820 
1821 	return ret;
1822 }
1823 
1824 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1825 {
1826 	struct fw_ohci *ohci = fw_ohci(card);
1827 
1828 	at_context_transmit(&ohci->at_request_ctx, packet);
1829 }
1830 
1831 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1832 {
1833 	struct fw_ohci *ohci = fw_ohci(card);
1834 
1835 	at_context_transmit(&ohci->at_response_ctx, packet);
1836 }
1837 
1838 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1839 {
1840 	struct fw_ohci *ohci = fw_ohci(card);
1841 	struct context *ctx = &ohci->at_request_ctx;
1842 	struct driver_data *driver_data = packet->driver_data;
1843 	int ret = -ENOENT;
1844 
1845 	tasklet_disable(&ctx->tasklet);
1846 
1847 	if (packet->ack != 0)
1848 		goto out;
1849 
1850 	if (packet->payload_mapped)
1851 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1852 				 packet->payload_length, DMA_TO_DEVICE);
1853 
1854 	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1855 	driver_data->packet = NULL;
1856 	packet->ack = RCODE_CANCELLED;
1857 	packet->callback(packet, &ohci->card, packet->ack);
1858 	ret = 0;
1859  out:
1860 	tasklet_enable(&ctx->tasklet);
1861 
1862 	return ret;
1863 }
1864 
1865 static int ohci_enable_phys_dma(struct fw_card *card,
1866 				int node_id, int generation)
1867 {
1868 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1869 	return 0;
1870 #else
1871 	struct fw_ohci *ohci = fw_ohci(card);
1872 	unsigned long flags;
1873 	int n, ret = 0;
1874 
1875 	/*
1876 	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1877 	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1878 	 */
1879 
1880 	spin_lock_irqsave(&ohci->lock, flags);
1881 
1882 	if (ohci->generation != generation) {
1883 		ret = -ESTALE;
1884 		goto out;
1885 	}
1886 
1887 	/*
1888 	 * Note, if the node ID contains a non-local bus ID, physical DMA is
1889 	 * enabled for _all_ nodes on remote buses.
1890 	 */
1891 
1892 	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1893 	if (n < 32)
1894 		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1895 	else
1896 		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1897 
1898 	flush_writes(ohci);
1899  out:
1900 	spin_unlock_irqrestore(&ohci->lock, flags);
1901 
1902 	return ret;
1903 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1904 }
1905 
1906 static u32 cycle_timer_ticks(u32 cycle_timer)
1907 {
1908 	u32 ticks;
1909 
1910 	ticks = cycle_timer & 0xfff;
1911 	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1912 	ticks += (3072 * 8000) * (cycle_timer >> 25);
1913 
1914 	return ticks;
1915 }
1916 
1917 /*
1918  * Some controllers exhibit one or more of the following bugs when updating the
1919  * iso cycle timer register:
1920  *  - When the lowest six bits are wrapping around to zero, a read that happens
1921  *    at the same time will return garbage in the lowest ten bits.
1922  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1923  *    not incremented for about 60 ns.
1924  *  - Occasionally, the entire register reads zero.
1925  *
1926  * To catch these, we read the register three times and ensure that the
1927  * difference between each two consecutive reads is approximately the same, i.e.
1928  * less than twice the other.  Furthermore, any negative difference indicates an
1929  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1930  * execute, so we have enough precision to compute the ratio of the differences.)
1931  */
1932 static u32 ohci_get_cycle_time(struct fw_card *card)
1933 {
1934 	struct fw_ohci *ohci = fw_ohci(card);
1935 	u32 c0, c1, c2;
1936 	u32 t0, t1, t2;
1937 	s32 diff01, diff12;
1938 	int i;
1939 
1940 	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1941 
1942 	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1943 		i = 0;
1944 		c1 = c2;
1945 		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1946 		do {
1947 			c0 = c1;
1948 			c1 = c2;
1949 			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1950 			t0 = cycle_timer_ticks(c0);
1951 			t1 = cycle_timer_ticks(c1);
1952 			t2 = cycle_timer_ticks(c2);
1953 			diff01 = t1 - t0;
1954 			diff12 = t2 - t1;
1955 		} while ((diff01 <= 0 || diff12 <= 0 ||
1956 			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1957 			 && i++ < 20);
1958 	}
1959 
1960 	return c2;
1961 }
1962 
1963 static void copy_iso_headers(struct iso_context *ctx, void *p)
1964 {
1965 	int i = ctx->header_length;
1966 
1967 	if (i + ctx->base.header_size > PAGE_SIZE)
1968 		return;
1969 
1970 	/*
1971 	 * The iso header is byteswapped to little endian by
1972 	 * the controller, but the remaining header quadlets
1973 	 * are big endian.  We want to present all the headers
1974 	 * as big endian, so we have to swap the first quadlet.
1975 	 */
1976 	if (ctx->base.header_size > 0)
1977 		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1978 	if (ctx->base.header_size > 4)
1979 		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1980 	if (ctx->base.header_size > 8)
1981 		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1982 	ctx->header_length += ctx->base.header_size;
1983 }
1984 
1985 static int handle_ir_packet_per_buffer(struct context *context,
1986 				       struct descriptor *d,
1987 				       struct descriptor *last)
1988 {
1989 	struct iso_context *ctx =
1990 		container_of(context, struct iso_context, context);
1991 	struct descriptor *pd;
1992 	__le32 *ir_header;
1993 	void *p;
1994 
1995 	for (pd = d; pd <= last; pd++) {
1996 		if (pd->transfer_status)
1997 			break;
1998 	}
1999 	if (pd > last)
2000 		/* Descriptor(s) not done yet, stop iteration */
2001 		return 0;
2002 
2003 	p = last + 1;
2004 	copy_iso_headers(ctx, p);
2005 
2006 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2007 		ir_header = (__le32 *) p;
2008 		ctx->base.callback(&ctx->base,
2009 				   le32_to_cpu(ir_header[0]) & 0xffff,
2010 				   ctx->header_length, ctx->header,
2011 				   ctx->base.callback_data);
2012 		ctx->header_length = 0;
2013 	}
2014 
2015 	return 1;
2016 }
2017 
2018 static int handle_it_packet(struct context *context,
2019 			    struct descriptor *d,
2020 			    struct descriptor *last)
2021 {
2022 	struct iso_context *ctx =
2023 		container_of(context, struct iso_context, context);
2024 	int i;
2025 	struct descriptor *pd;
2026 
2027 	for (pd = d; pd <= last; pd++)
2028 		if (pd->transfer_status)
2029 			break;
2030 	if (pd > last)
2031 		/* Descriptor(s) not done yet, stop iteration */
2032 		return 0;
2033 
2034 	i = ctx->header_length;
2035 	if (i + 4 < PAGE_SIZE) {
2036 		/* Present this value as big-endian to match the receive code */
2037 		*(__be32 *)(ctx->header + i) = cpu_to_be32(
2038 				((u32)le16_to_cpu(pd->transfer_status) << 16) |
2039 				le16_to_cpu(pd->res_count));
2040 		ctx->header_length += 4;
2041 	}
2042 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2043 		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2044 				   ctx->header_length, ctx->header,
2045 				   ctx->base.callback_data);
2046 		ctx->header_length = 0;
2047 	}
2048 	return 1;
2049 }
2050 
2051 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2052 				int type, int channel, size_t header_size)
2053 {
2054 	struct fw_ohci *ohci = fw_ohci(card);
2055 	struct iso_context *ctx, *list;
2056 	descriptor_callback_t callback;
2057 	u64 *channels, dont_care = ~0ULL;
2058 	u32 *mask, regs;
2059 	unsigned long flags;
2060 	int index, ret = -ENOMEM;
2061 
2062 	if (type == FW_ISO_CONTEXT_TRANSMIT) {
2063 		channels = &dont_care;
2064 		mask = &ohci->it_context_mask;
2065 		list = ohci->it_context_list;
2066 		callback = handle_it_packet;
2067 	} else {
2068 		channels = &ohci->ir_context_channels;
2069 		mask = &ohci->ir_context_mask;
2070 		list = ohci->ir_context_list;
2071 		callback = handle_ir_packet_per_buffer;
2072 	}
2073 
2074 	spin_lock_irqsave(&ohci->lock, flags);
2075 	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2076 	if (index >= 0) {
2077 		*channels &= ~(1ULL << channel);
2078 		*mask &= ~(1 << index);
2079 	}
2080 	spin_unlock_irqrestore(&ohci->lock, flags);
2081 
2082 	if (index < 0)
2083 		return ERR_PTR(-EBUSY);
2084 
2085 	if (type == FW_ISO_CONTEXT_TRANSMIT)
2086 		regs = OHCI1394_IsoXmitContextBase(index);
2087 	else
2088 		regs = OHCI1394_IsoRcvContextBase(index);
2089 
2090 	ctx = &list[index];
2091 	memset(ctx, 0, sizeof(*ctx));
2092 	ctx->header_length = 0;
2093 	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2094 	if (ctx->header == NULL)
2095 		goto out;
2096 
2097 	ret = context_init(&ctx->context, ohci, regs, callback);
2098 	if (ret < 0)
2099 		goto out_with_header;
2100 
2101 	return &ctx->base;
2102 
2103  out_with_header:
2104 	free_page((unsigned long)ctx->header);
2105  out:
2106 	spin_lock_irqsave(&ohci->lock, flags);
2107 	*mask |= 1 << index;
2108 	spin_unlock_irqrestore(&ohci->lock, flags);
2109 
2110 	return ERR_PTR(ret);
2111 }
2112 
2113 static int ohci_start_iso(struct fw_iso_context *base,
2114 			  s32 cycle, u32 sync, u32 tags)
2115 {
2116 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2117 	struct fw_ohci *ohci = ctx->context.ohci;
2118 	u32 control, match;
2119 	int index;
2120 
2121 	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2122 		index = ctx - ohci->it_context_list;
2123 		match = 0;
2124 		if (cycle >= 0)
2125 			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2126 				(cycle & 0x7fff) << 16;
2127 
2128 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2129 		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2130 		context_run(&ctx->context, match);
2131 	} else {
2132 		index = ctx - ohci->ir_context_list;
2133 		control = IR_CONTEXT_ISOCH_HEADER;
2134 		match = (tags << 28) | (sync << 8) | ctx->base.channel;
2135 		if (cycle >= 0) {
2136 			match |= (cycle & 0x07fff) << 12;
2137 			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2138 		}
2139 
2140 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2141 		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2142 		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2143 		context_run(&ctx->context, control);
2144 	}
2145 
2146 	return 0;
2147 }
2148 
2149 static int ohci_stop_iso(struct fw_iso_context *base)
2150 {
2151 	struct fw_ohci *ohci = fw_ohci(base->card);
2152 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2153 	int index;
2154 
2155 	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2156 		index = ctx - ohci->it_context_list;
2157 		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2158 	} else {
2159 		index = ctx - ohci->ir_context_list;
2160 		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2161 	}
2162 	flush_writes(ohci);
2163 	context_stop(&ctx->context);
2164 
2165 	return 0;
2166 }
2167 
2168 static void ohci_free_iso_context(struct fw_iso_context *base)
2169 {
2170 	struct fw_ohci *ohci = fw_ohci(base->card);
2171 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2172 	unsigned long flags;
2173 	int index;
2174 
2175 	ohci_stop_iso(base);
2176 	context_release(&ctx->context);
2177 	free_page((unsigned long)ctx->header);
2178 
2179 	spin_lock_irqsave(&ohci->lock, flags);
2180 
2181 	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2182 		index = ctx - ohci->it_context_list;
2183 		ohci->it_context_mask |= 1 << index;
2184 	} else {
2185 		index = ctx - ohci->ir_context_list;
2186 		ohci->ir_context_mask |= 1 << index;
2187 		ohci->ir_context_channels |= 1ULL << base->channel;
2188 	}
2189 
2190 	spin_unlock_irqrestore(&ohci->lock, flags);
2191 }
2192 
2193 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2194 				   struct fw_iso_packet *packet,
2195 				   struct fw_iso_buffer *buffer,
2196 				   unsigned long payload)
2197 {
2198 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2199 	struct descriptor *d, *last, *pd;
2200 	struct fw_iso_packet *p;
2201 	__le32 *header;
2202 	dma_addr_t d_bus, page_bus;
2203 	u32 z, header_z, payload_z, irq;
2204 	u32 payload_index, payload_end_index, next_page_index;
2205 	int page, end_page, i, length, offset;
2206 
2207 	p = packet;
2208 	payload_index = payload;
2209 
2210 	if (p->skip)
2211 		z = 1;
2212 	else
2213 		z = 2;
2214 	if (p->header_length > 0)
2215 		z++;
2216 
2217 	/* Determine the first page the payload isn't contained in. */
2218 	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2219 	if (p->payload_length > 0)
2220 		payload_z = end_page - (payload_index >> PAGE_SHIFT);
2221 	else
2222 		payload_z = 0;
2223 
2224 	z += payload_z;
2225 
2226 	/* Get header size in number of descriptors. */
2227 	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2228 
2229 	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2230 	if (d == NULL)
2231 		return -ENOMEM;
2232 
2233 	if (!p->skip) {
2234 		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2235 		d[0].req_count = cpu_to_le16(8);
2236 		/*
2237 		 * Link the skip address to this descriptor itself.  This causes
2238 		 * a context to skip a cycle whenever lost cycles or FIFO
2239 		 * overruns occur, without dropping the data.  The application
2240 		 * should then decide whether this is an error condition or not.
2241 		 * FIXME:  Make the context's cycle-lost behaviour configurable?
2242 		 */
2243 		d[0].branch_address = cpu_to_le32(d_bus | z);
2244 
2245 		header = (__le32 *) &d[1];
2246 		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2247 					IT_HEADER_TAG(p->tag) |
2248 					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2249 					IT_HEADER_CHANNEL(ctx->base.channel) |
2250 					IT_HEADER_SPEED(ctx->base.speed));
2251 		header[1] =
2252 			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2253 							  p->payload_length));
2254 	}
2255 
2256 	if (p->header_length > 0) {
2257 		d[2].req_count    = cpu_to_le16(p->header_length);
2258 		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2259 		memcpy(&d[z], p->header, p->header_length);
2260 	}
2261 
2262 	pd = d + z - payload_z;
2263 	payload_end_index = payload_index + p->payload_length;
2264 	for (i = 0; i < payload_z; i++) {
2265 		page               = payload_index >> PAGE_SHIFT;
2266 		offset             = payload_index & ~PAGE_MASK;
2267 		next_page_index    = (page + 1) << PAGE_SHIFT;
2268 		length             =
2269 			min(next_page_index, payload_end_index) - payload_index;
2270 		pd[i].req_count    = cpu_to_le16(length);
2271 
2272 		page_bus = page_private(buffer->pages[page]);
2273 		pd[i].data_address = cpu_to_le32(page_bus + offset);
2274 
2275 		payload_index += length;
2276 	}
2277 
2278 	if (p->interrupt)
2279 		irq = DESCRIPTOR_IRQ_ALWAYS;
2280 	else
2281 		irq = DESCRIPTOR_NO_IRQ;
2282 
2283 	last = z == 2 ? d : d + z - 1;
2284 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2285 				     DESCRIPTOR_STATUS |
2286 				     DESCRIPTOR_BRANCH_ALWAYS |
2287 				     irq);
2288 
2289 	context_append(&ctx->context, d, z, header_z);
2290 
2291 	return 0;
2292 }
2293 
2294 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2295 					struct fw_iso_packet *packet,
2296 					struct fw_iso_buffer *buffer,
2297 					unsigned long payload)
2298 {
2299 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2300 	struct descriptor *d, *pd;
2301 	struct fw_iso_packet *p = packet;
2302 	dma_addr_t d_bus, page_bus;
2303 	u32 z, header_z, rest;
2304 	int i, j, length;
2305 	int page, offset, packet_count, header_size, payload_per_buffer;
2306 
2307 	/*
2308 	 * The OHCI controller puts the isochronous header and trailer in the
2309 	 * buffer, so we need at least 8 bytes.
2310 	 */
2311 	packet_count = p->header_length / ctx->base.header_size;
2312 	header_size  = max(ctx->base.header_size, (size_t)8);
2313 
2314 	/* Get header size in number of descriptors. */
2315 	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2316 	page     = payload >> PAGE_SHIFT;
2317 	offset   = payload & ~PAGE_MASK;
2318 	payload_per_buffer = p->payload_length / packet_count;
2319 
2320 	for (i = 0; i < packet_count; i++) {
2321 		/* d points to the header descriptor */
2322 		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2323 		d = context_get_descriptors(&ctx->context,
2324 				z + header_z, &d_bus);
2325 		if (d == NULL)
2326 			return -ENOMEM;
2327 
2328 		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2329 					      DESCRIPTOR_INPUT_MORE);
2330 		if (p->skip && i == 0)
2331 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2332 		d->req_count    = cpu_to_le16(header_size);
2333 		d->res_count    = d->req_count;
2334 		d->transfer_status = 0;
2335 		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2336 
2337 		rest = payload_per_buffer;
2338 		pd = d;
2339 		for (j = 1; j < z; j++) {
2340 			pd++;
2341 			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2342 						  DESCRIPTOR_INPUT_MORE);
2343 
2344 			if (offset + rest < PAGE_SIZE)
2345 				length = rest;
2346 			else
2347 				length = PAGE_SIZE - offset;
2348 			pd->req_count = cpu_to_le16(length);
2349 			pd->res_count = pd->req_count;
2350 			pd->transfer_status = 0;
2351 
2352 			page_bus = page_private(buffer->pages[page]);
2353 			pd->data_address = cpu_to_le32(page_bus + offset);
2354 
2355 			offset = (offset + length) & ~PAGE_MASK;
2356 			rest -= length;
2357 			if (offset == 0)
2358 				page++;
2359 		}
2360 		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2361 					  DESCRIPTOR_INPUT_LAST |
2362 					  DESCRIPTOR_BRANCH_ALWAYS);
2363 		if (p->interrupt && i == packet_count - 1)
2364 			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2365 
2366 		context_append(&ctx->context, d, z, header_z);
2367 	}
2368 
2369 	return 0;
2370 }
2371 
2372 static int ohci_queue_iso(struct fw_iso_context *base,
2373 			  struct fw_iso_packet *packet,
2374 			  struct fw_iso_buffer *buffer,
2375 			  unsigned long payload)
2376 {
2377 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2378 	unsigned long flags;
2379 	int ret;
2380 
2381 	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2382 	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2383 		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2384 	else
2385 		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2386 							buffer, payload);
2387 	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2388 
2389 	return ret;
2390 }
2391 
2392 static const struct fw_card_driver ohci_driver = {
2393 	.enable			= ohci_enable,
2394 	.update_phy_reg		= ohci_update_phy_reg,
2395 	.set_config_rom		= ohci_set_config_rom,
2396 	.send_request		= ohci_send_request,
2397 	.send_response		= ohci_send_response,
2398 	.cancel_packet		= ohci_cancel_packet,
2399 	.enable_phys_dma	= ohci_enable_phys_dma,
2400 	.get_cycle_time		= ohci_get_cycle_time,
2401 
2402 	.allocate_iso_context	= ohci_allocate_iso_context,
2403 	.free_iso_context	= ohci_free_iso_context,
2404 	.queue_iso		= ohci_queue_iso,
2405 	.start_iso		= ohci_start_iso,
2406 	.stop_iso		= ohci_stop_iso,
2407 };
2408 
2409 #ifdef CONFIG_PPC_PMAC
2410 static void pmac_ohci_on(struct pci_dev *dev)
2411 {
2412 	if (machine_is(powermac)) {
2413 		struct device_node *ofn = pci_device_to_OF_node(dev);
2414 
2415 		if (ofn) {
2416 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2417 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2418 		}
2419 	}
2420 }
2421 
2422 static void pmac_ohci_off(struct pci_dev *dev)
2423 {
2424 	if (machine_is(powermac)) {
2425 		struct device_node *ofn = pci_device_to_OF_node(dev);
2426 
2427 		if (ofn) {
2428 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2429 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2430 		}
2431 	}
2432 }
2433 #else
2434 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2435 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2436 #endif /* CONFIG_PPC_PMAC */
2437 
2438 static int __devinit pci_probe(struct pci_dev *dev,
2439 			       const struct pci_device_id *ent)
2440 {
2441 	struct fw_ohci *ohci;
2442 	u32 bus_options, max_receive, link_speed, version, link_enh;
2443 	u64 guid;
2444 	int i, err, n_ir, n_it;
2445 	size_t size;
2446 
2447 	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2448 	if (ohci == NULL) {
2449 		err = -ENOMEM;
2450 		goto fail;
2451 	}
2452 
2453 	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2454 
2455 	pmac_ohci_on(dev);
2456 
2457 	err = pci_enable_device(dev);
2458 	if (err) {
2459 		fw_error("Failed to enable OHCI hardware\n");
2460 		goto fail_free;
2461 	}
2462 
2463 	pci_set_master(dev);
2464 	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2465 	pci_set_drvdata(dev, ohci);
2466 
2467 	spin_lock_init(&ohci->lock);
2468 
2469 	tasklet_init(&ohci->bus_reset_tasklet,
2470 		     bus_reset_tasklet, (unsigned long)ohci);
2471 
2472 	err = pci_request_region(dev, 0, ohci_driver_name);
2473 	if (err) {
2474 		fw_error("MMIO resource unavailable\n");
2475 		goto fail_disable;
2476 	}
2477 
2478 	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2479 	if (ohci->registers == NULL) {
2480 		fw_error("Failed to remap registers\n");
2481 		err = -ENXIO;
2482 		goto fail_iomem;
2483 	}
2484 
2485 	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2486 		if (ohci_quirks[i].vendor == dev->vendor &&
2487 		    (ohci_quirks[i].device == dev->device ||
2488 		     ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2489 			ohci->quirks = ohci_quirks[i].flags;
2490 			break;
2491 		}
2492 	if (param_quirks)
2493 		ohci->quirks = param_quirks;
2494 
2495 	/* TI OHCI-Lynx and compatible: set recommended configuration bits. */
2496 	if (dev->vendor == PCI_VENDOR_ID_TI) {
2497 		pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);
2498 
2499 		/* adjust latency of ATx FIFO: use 1.7 KB threshold */
2500 		link_enh &= ~TI_LinkEnh_atx_thresh_mask;
2501 		link_enh |= TI_LinkEnh_atx_thresh_1_7K;
2502 
2503 		/* use priority arbitration for asynchronous responses */
2504 		link_enh |= TI_LinkEnh_enab_unfair;
2505 
2506 		/* required for aPhyEnhanceEnable to work */
2507 		link_enh |= TI_LinkEnh_enab_accel;
2508 
2509 		pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
2510 	}
2511 
2512 	ar_context_init(&ohci->ar_request_ctx, ohci,
2513 			OHCI1394_AsReqRcvContextControlSet);
2514 
2515 	ar_context_init(&ohci->ar_response_ctx, ohci,
2516 			OHCI1394_AsRspRcvContextControlSet);
2517 
2518 	context_init(&ohci->at_request_ctx, ohci,
2519 		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2520 
2521 	context_init(&ohci->at_response_ctx, ohci,
2522 		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2523 
2524 	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2525 	ohci->ir_context_channels = ~0ULL;
2526 	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2527 	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2528 	n_ir = hweight32(ohci->ir_context_mask);
2529 	size = sizeof(struct iso_context) * n_ir;
2530 	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2531 
2532 	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2533 	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2534 	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2535 	n_it = hweight32(ohci->it_context_mask);
2536 	size = sizeof(struct iso_context) * n_it;
2537 	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2538 
2539 	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2540 		err = -ENOMEM;
2541 		goto fail_contexts;
2542 	}
2543 
2544 	/* self-id dma buffer allocation */
2545 	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2546 					       SELF_ID_BUF_SIZE,
2547 					       &ohci->self_id_bus,
2548 					       GFP_KERNEL);
2549 	if (ohci->self_id_cpu == NULL) {
2550 		err = -ENOMEM;
2551 		goto fail_contexts;
2552 	}
2553 
2554 	bus_options = reg_read(ohci, OHCI1394_BusOptions);
2555 	max_receive = (bus_options >> 12) & 0xf;
2556 	link_speed = bus_options & 0x7;
2557 	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2558 		reg_read(ohci, OHCI1394_GUIDLo);
2559 
2560 	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2561 	if (err)
2562 		goto fail_self_id;
2563 
2564 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2565 	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2566 		  "%d IR + %d IT contexts, quirks 0x%x\n",
2567 		  dev_name(&dev->dev), version >> 16, version & 0xff,
2568 		  n_ir, n_it, ohci->quirks);
2569 
2570 	return 0;
2571 
2572  fail_self_id:
2573 	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2574 			  ohci->self_id_cpu, ohci->self_id_bus);
2575  fail_contexts:
2576 	kfree(ohci->ir_context_list);
2577 	kfree(ohci->it_context_list);
2578 	context_release(&ohci->at_response_ctx);
2579 	context_release(&ohci->at_request_ctx);
2580 	ar_context_release(&ohci->ar_response_ctx);
2581 	ar_context_release(&ohci->ar_request_ctx);
2582 	pci_iounmap(dev, ohci->registers);
2583  fail_iomem:
2584 	pci_release_region(dev, 0);
2585  fail_disable:
2586 	pci_disable_device(dev);
2587  fail_free:
2588 	kfree(&ohci->card);
2589 	pmac_ohci_off(dev);
2590  fail:
2591 	if (err == -ENOMEM)
2592 		fw_error("Out of memory\n");
2593 
2594 	return err;
2595 }
2596 
2597 static void pci_remove(struct pci_dev *dev)
2598 {
2599 	struct fw_ohci *ohci;
2600 
2601 	ohci = pci_get_drvdata(dev);
2602 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2603 	flush_writes(ohci);
2604 	fw_core_remove_card(&ohci->card);
2605 
2606 	/*
2607 	 * FIXME: Fail all pending packets here, now that the upper
2608 	 * layers can't queue any more.
2609 	 */
2610 
2611 	software_reset(ohci);
2612 	free_irq(dev->irq, ohci);
2613 
2614 	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2615 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2616 				  ohci->next_config_rom, ohci->next_config_rom_bus);
2617 	if (ohci->config_rom)
2618 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2619 				  ohci->config_rom, ohci->config_rom_bus);
2620 	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2621 			  ohci->self_id_cpu, ohci->self_id_bus);
2622 	ar_context_release(&ohci->ar_request_ctx);
2623 	ar_context_release(&ohci->ar_response_ctx);
2624 	context_release(&ohci->at_request_ctx);
2625 	context_release(&ohci->at_response_ctx);
2626 	kfree(ohci->it_context_list);
2627 	kfree(ohci->ir_context_list);
2628 	pci_iounmap(dev, ohci->registers);
2629 	pci_release_region(dev, 0);
2630 	pci_disable_device(dev);
2631 	kfree(&ohci->card);
2632 	pmac_ohci_off(dev);
2633 
2634 	fw_notify("Removed fw-ohci device.\n");
2635 }
2636 
2637 #ifdef CONFIG_PM
2638 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2639 {
2640 	struct fw_ohci *ohci = pci_get_drvdata(dev);
2641 	int err;
2642 
2643 	software_reset(ohci);
2644 	free_irq(dev->irq, ohci);
2645 	err = pci_save_state(dev);
2646 	if (err) {
2647 		fw_error("pci_save_state failed\n");
2648 		return err;
2649 	}
2650 	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2651 	if (err)
2652 		fw_error("pci_set_power_state failed with %d\n", err);
2653 	pmac_ohci_off(dev);
2654 
2655 	return 0;
2656 }
2657 
2658 static int pci_resume(struct pci_dev *dev)
2659 {
2660 	struct fw_ohci *ohci = pci_get_drvdata(dev);
2661 	int err;
2662 
2663 	pmac_ohci_on(dev);
2664 	pci_set_power_state(dev, PCI_D0);
2665 	pci_restore_state(dev);
2666 	err = pci_enable_device(dev);
2667 	if (err) {
2668 		fw_error("pci_enable_device failed\n");
2669 		return err;
2670 	}
2671 
2672 	return ohci_enable(&ohci->card, NULL, 0);
2673 }
2674 #endif
2675 
2676 static const struct pci_device_id pci_table[] = {
2677 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2678 	{ }
2679 };
2680 
2681 MODULE_DEVICE_TABLE(pci, pci_table);
2682 
2683 static struct pci_driver fw_ohci_pci_driver = {
2684 	.name		= ohci_driver_name,
2685 	.id_table	= pci_table,
2686 	.probe		= pci_probe,
2687 	.remove		= pci_remove,
2688 #ifdef CONFIG_PM
2689 	.resume		= pci_resume,
2690 	.suspend	= pci_suspend,
2691 #endif
2692 };
2693 
2694 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2695 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2696 MODULE_LICENSE("GPL");
2697 
2698 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2699 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2700 MODULE_ALIAS("ohci1394");
2701 #endif
2702 
2703 static int __init fw_ohci_init(void)
2704 {
2705 	return pci_register_driver(&fw_ohci_pci_driver);
2706 }
2707 
2708 static void __exit fw_ohci_cleanup(void)
2709 {
2710 	pci_unregister_driver(&fw_ohci_pci_driver);
2711 }
2712 
2713 module_init(fw_ohci_init);
2714 module_exit(fw_ohci_cleanup);
2715