xref: /openbmc/linux/drivers/firewire/ohci.c (revision 9c1f8594)
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 
46 #include <asm/byteorder.h>
47 #include <asm/page.h>
48 #include <asm/system.h>
49 
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
53 
54 #include "core.h"
55 #include "ohci.h"
56 
57 #define DESCRIPTOR_OUTPUT_MORE		0
58 #define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
59 #define DESCRIPTOR_INPUT_MORE		(2 << 12)
60 #define DESCRIPTOR_INPUT_LAST		(3 << 12)
61 #define DESCRIPTOR_STATUS		(1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
63 #define DESCRIPTOR_PING			(1 << 7)
64 #define DESCRIPTOR_YY			(1 << 6)
65 #define DESCRIPTOR_NO_IRQ		(0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR		(1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
69 #define DESCRIPTOR_WAIT			(3 << 0)
70 
71 struct descriptor {
72 	__le16 req_count;
73 	__le16 control;
74 	__le32 data_address;
75 	__le32 branch_address;
76 	__le16 res_count;
77 	__le16 transfer_status;
78 } __attribute__((aligned(16)));
79 
80 #define CONTROL_SET(regs)	(regs)
81 #define CONTROL_CLEAR(regs)	((regs) + 4)
82 #define COMMAND_PTR(regs)	((regs) + 12)
83 #define CONTEXT_MATCH(regs)	((regs) + 16)
84 
85 #define AR_BUFFER_SIZE	(32*1024)
86 #define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
89 
90 #define MAX_ASYNC_PAYLOAD	4096
91 #define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93 
94 struct ar_context {
95 	struct fw_ohci *ohci;
96 	struct page *pages[AR_BUFFERS];
97 	void *buffer;
98 	struct descriptor *descriptors;
99 	dma_addr_t descriptors_bus;
100 	void *pointer;
101 	unsigned int last_buffer_index;
102 	u32 regs;
103 	struct tasklet_struct tasklet;
104 };
105 
106 struct context;
107 
108 typedef int (*descriptor_callback_t)(struct context *ctx,
109 				     struct descriptor *d,
110 				     struct descriptor *last);
111 
112 /*
113  * A buffer that contains a block of DMA-able coherent memory used for
114  * storing a portion of a DMA descriptor program.
115  */
116 struct descriptor_buffer {
117 	struct list_head list;
118 	dma_addr_t buffer_bus;
119 	size_t buffer_size;
120 	size_t used;
121 	struct descriptor buffer[0];
122 };
123 
124 struct context {
125 	struct fw_ohci *ohci;
126 	u32 regs;
127 	int total_allocation;
128 	bool running;
129 	bool flushing;
130 
131 	/*
132 	 * List of page-sized buffers for storing DMA descriptors.
133 	 * Head of list contains buffers in use and tail of list contains
134 	 * free buffers.
135 	 */
136 	struct list_head buffer_list;
137 
138 	/*
139 	 * Pointer to a buffer inside buffer_list that contains the tail
140 	 * end of the current DMA program.
141 	 */
142 	struct descriptor_buffer *buffer_tail;
143 
144 	/*
145 	 * The descriptor containing the branch address of the first
146 	 * descriptor that has not yet been filled by the device.
147 	 */
148 	struct descriptor *last;
149 
150 	/*
151 	 * The last descriptor in the DMA program.  It contains the branch
152 	 * address that must be updated upon appending a new descriptor.
153 	 */
154 	struct descriptor *prev;
155 
156 	descriptor_callback_t callback;
157 
158 	struct tasklet_struct tasklet;
159 };
160 
161 #define IT_HEADER_SY(v)          ((v) <<  0)
162 #define IT_HEADER_TCODE(v)       ((v) <<  4)
163 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
164 #define IT_HEADER_TAG(v)         ((v) << 14)
165 #define IT_HEADER_SPEED(v)       ((v) << 16)
166 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
167 
168 struct iso_context {
169 	struct fw_iso_context base;
170 	struct context context;
171 	int excess_bytes;
172 	void *header;
173 	size_t header_length;
174 
175 	u8 sync;
176 	u8 tags;
177 };
178 
179 #define CONFIG_ROM_SIZE 1024
180 
181 struct fw_ohci {
182 	struct fw_card card;
183 
184 	__iomem char *registers;
185 	int node_id;
186 	int generation;
187 	int request_generation;	/* for timestamping incoming requests */
188 	unsigned quirks;
189 	unsigned int pri_req_max;
190 	u32 bus_time;
191 	bool is_root;
192 	bool csr_state_setclear_abdicate;
193 	int n_ir;
194 	int n_it;
195 	/*
196 	 * Spinlock for accessing fw_ohci data.  Never call out of
197 	 * this driver with this lock held.
198 	 */
199 	spinlock_t lock;
200 
201 	struct mutex phy_reg_mutex;
202 
203 	void *misc_buffer;
204 	dma_addr_t misc_buffer_bus;
205 
206 	struct ar_context ar_request_ctx;
207 	struct ar_context ar_response_ctx;
208 	struct context at_request_ctx;
209 	struct context at_response_ctx;
210 
211 	u32 it_context_support;
212 	u32 it_context_mask;     /* unoccupied IT contexts */
213 	struct iso_context *it_context_list;
214 	u64 ir_context_channels; /* unoccupied channels */
215 	u32 ir_context_support;
216 	u32 ir_context_mask;     /* unoccupied IR contexts */
217 	struct iso_context *ir_context_list;
218 	u64 mc_channels; /* channels in use by the multichannel IR context */
219 	bool mc_allocated;
220 
221 	__be32    *config_rom;
222 	dma_addr_t config_rom_bus;
223 	__be32    *next_config_rom;
224 	dma_addr_t next_config_rom_bus;
225 	__be32     next_header;
226 
227 	__le32    *self_id_cpu;
228 	dma_addr_t self_id_bus;
229 	struct tasklet_struct bus_reset_tasklet;
230 
231 	u32 self_id_buffer[512];
232 };
233 
234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 {
236 	return container_of(card, struct fw_ohci, card);
237 }
238 
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
240 #define IR_CONTEXT_BUFFER_FILL		0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER		0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
245 
246 #define CONTEXT_RUN	0x8000
247 #define CONTEXT_WAKE	0x1000
248 #define CONTEXT_DEAD	0x0800
249 #define CONTEXT_ACTIVE	0x0400
250 
251 #define OHCI1394_MAX_AT_REQ_RETRIES	0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES	0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
254 
255 #define OHCI1394_REGISTER_SIZE		0x800
256 #define OHCI1394_PCI_HCI_Control	0x40
257 #define SELF_ID_BUF_SIZE		0x800
258 #define OHCI_TCODE_PHY_PACKET		0x0e
259 #define OHCI_VERSION_1_1		0x010010
260 
261 static char ohci_driver_name[] = KBUILD_MODNAME;
262 
263 #define PCI_DEVICE_ID_AGERE_FW643	0x5901
264 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
265 #define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
266 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
267 
268 #define QUIRK_CYCLE_TIMER		1
269 #define QUIRK_RESET_PACKET		2
270 #define QUIRK_BE_HEADERS		4
271 #define QUIRK_NO_1394A			8
272 #define QUIRK_NO_MSI			16
273 
274 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
275 static const struct {
276 	unsigned short vendor, device, revision, flags;
277 } ohci_quirks[] = {
278 	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
279 		QUIRK_CYCLE_TIMER},
280 
281 	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
282 		QUIRK_BE_HEADERS},
283 
284 	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
285 		QUIRK_NO_MSI},
286 
287 	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
288 		QUIRK_NO_MSI},
289 
290 	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
291 		QUIRK_CYCLE_TIMER},
292 
293 	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
294 		QUIRK_NO_MSI},
295 
296 	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
297 		QUIRK_CYCLE_TIMER},
298 
299 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
300 		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
301 
302 	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
303 		QUIRK_RESET_PACKET},
304 
305 	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
306 		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
307 };
308 
309 /* This overrides anything that was found in ohci_quirks[]. */
310 static int param_quirks;
311 module_param_named(quirks, param_quirks, int, 0644);
312 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
313 	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
314 	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
315 	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
316 	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
317 	", disable MSI = "		__stringify(QUIRK_NO_MSI)
318 	")");
319 
320 #define OHCI_PARAM_DEBUG_AT_AR		1
321 #define OHCI_PARAM_DEBUG_SELFIDS	2
322 #define OHCI_PARAM_DEBUG_IRQS		4
323 #define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
324 
325 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
326 
327 static int param_debug;
328 module_param_named(debug, param_debug, int, 0644);
329 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
330 	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
331 	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
332 	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
333 	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
334 	", or a combination, or all = -1)");
335 
336 static void log_irqs(u32 evt)
337 {
338 	if (likely(!(param_debug &
339 			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
340 		return;
341 
342 	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
343 	    !(evt & OHCI1394_busReset))
344 		return;
345 
346 	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
347 	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
348 	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
349 	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
350 	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
351 	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
352 	    evt & OHCI1394_isochRx		? " IR"			: "",
353 	    evt & OHCI1394_isochTx		? " IT"			: "",
354 	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
355 	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
356 	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
357 	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
358 	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
359 	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
360 	    evt & OHCI1394_busReset		? " busReset"		: "",
361 	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
362 		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
363 		    OHCI1394_respTxComplete | OHCI1394_isochRx |
364 		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
365 		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
366 		    OHCI1394_cycleInconsistent |
367 		    OHCI1394_regAccessFail | OHCI1394_busReset)
368 						? " ?"			: "");
369 }
370 
371 static const char *speed[] = {
372 	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
373 };
374 static const char *power[] = {
375 	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
376 	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
377 };
378 static const char port[] = { '.', '-', 'p', 'c', };
379 
380 static char _p(u32 *s, int shift)
381 {
382 	return port[*s >> shift & 3];
383 }
384 
385 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
386 {
387 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
388 		return;
389 
390 	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
391 		  self_id_count, generation, node_id);
392 
393 	for (; self_id_count--; ++s)
394 		if ((*s & 1 << 23) == 0)
395 			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
396 			    "%s gc=%d %s %s%s%s\n",
397 			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
398 			    speed[*s >> 14 & 3], *s >> 16 & 63,
399 			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
400 			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
401 		else
402 			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
403 			    *s, *s >> 24 & 63,
404 			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
405 			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
406 }
407 
408 static const char *evts[] = {
409 	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
410 	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
411 	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
412 	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
413 	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
414 	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
415 	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
416 	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
417 	[0x10] = "-reserved-",		[0x11] = "ack_complete",
418 	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
419 	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
420 	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
421 	[0x18] = "-reserved-",		[0x19] = "-reserved-",
422 	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
423 	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
424 	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
425 	[0x20] = "pending/cancelled",
426 };
427 static const char *tcodes[] = {
428 	[0x0] = "QW req",		[0x1] = "BW req",
429 	[0x2] = "W resp",		[0x3] = "-reserved-",
430 	[0x4] = "QR req",		[0x5] = "BR req",
431 	[0x6] = "QR resp",		[0x7] = "BR resp",
432 	[0x8] = "cycle start",		[0x9] = "Lk req",
433 	[0xa] = "async stream packet",	[0xb] = "Lk resp",
434 	[0xc] = "-reserved-",		[0xd] = "-reserved-",
435 	[0xe] = "link internal",	[0xf] = "-reserved-",
436 };
437 
438 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
439 {
440 	int tcode = header[0] >> 4 & 0xf;
441 	char specific[12];
442 
443 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
444 		return;
445 
446 	if (unlikely(evt >= ARRAY_SIZE(evts)))
447 			evt = 0x1f;
448 
449 	if (evt == OHCI1394_evt_bus_reset) {
450 		fw_notify("A%c evt_bus_reset, generation %d\n",
451 		    dir, (header[2] >> 16) & 0xff);
452 		return;
453 	}
454 
455 	switch (tcode) {
456 	case 0x0: case 0x6: case 0x8:
457 		snprintf(specific, sizeof(specific), " = %08x",
458 			 be32_to_cpu((__force __be32)header[3]));
459 		break;
460 	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
461 		snprintf(specific, sizeof(specific), " %x,%x",
462 			 header[3] >> 16, header[3] & 0xffff);
463 		break;
464 	default:
465 		specific[0] = '\0';
466 	}
467 
468 	switch (tcode) {
469 	case 0xa:
470 		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
471 		break;
472 	case 0xe:
473 		fw_notify("A%c %s, PHY %08x %08x\n",
474 			  dir, evts[evt], header[1], header[2]);
475 		break;
476 	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
477 		fw_notify("A%c spd %x tl %02x, "
478 		    "%04x -> %04x, %s, "
479 		    "%s, %04x%08x%s\n",
480 		    dir, speed, header[0] >> 10 & 0x3f,
481 		    header[1] >> 16, header[0] >> 16, evts[evt],
482 		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
483 		break;
484 	default:
485 		fw_notify("A%c spd %x tl %02x, "
486 		    "%04x -> %04x, %s, "
487 		    "%s%s\n",
488 		    dir, speed, header[0] >> 10 & 0x3f,
489 		    header[1] >> 16, header[0] >> 16, evts[evt],
490 		    tcodes[tcode], specific);
491 	}
492 }
493 
494 #else
495 
496 #define param_debug 0
497 static inline void log_irqs(u32 evt) {}
498 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
499 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
500 
501 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
502 
503 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
504 {
505 	writel(data, ohci->registers + offset);
506 }
507 
508 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
509 {
510 	return readl(ohci->registers + offset);
511 }
512 
513 static inline void flush_writes(const struct fw_ohci *ohci)
514 {
515 	/* Do a dummy read to flush writes. */
516 	reg_read(ohci, OHCI1394_Version);
517 }
518 
519 /*
520  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
521  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
522  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
523  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
524  */
525 static int read_phy_reg(struct fw_ohci *ohci, int addr)
526 {
527 	u32 val;
528 	int i;
529 
530 	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
531 	for (i = 0; i < 3 + 100; i++) {
532 		val = reg_read(ohci, OHCI1394_PhyControl);
533 		if (!~val)
534 			return -ENODEV; /* Card was ejected. */
535 
536 		if (val & OHCI1394_PhyControl_ReadDone)
537 			return OHCI1394_PhyControl_ReadData(val);
538 
539 		/*
540 		 * Try a few times without waiting.  Sleeping is necessary
541 		 * only when the link/PHY interface is busy.
542 		 */
543 		if (i >= 3)
544 			msleep(1);
545 	}
546 	fw_error("failed to read phy reg\n");
547 
548 	return -EBUSY;
549 }
550 
551 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
552 {
553 	int i;
554 
555 	reg_write(ohci, OHCI1394_PhyControl,
556 		  OHCI1394_PhyControl_Write(addr, val));
557 	for (i = 0; i < 3 + 100; i++) {
558 		val = reg_read(ohci, OHCI1394_PhyControl);
559 		if (!~val)
560 			return -ENODEV; /* Card was ejected. */
561 
562 		if (!(val & OHCI1394_PhyControl_WritePending))
563 			return 0;
564 
565 		if (i >= 3)
566 			msleep(1);
567 	}
568 	fw_error("failed to write phy reg\n");
569 
570 	return -EBUSY;
571 }
572 
573 static int update_phy_reg(struct fw_ohci *ohci, int addr,
574 			  int clear_bits, int set_bits)
575 {
576 	int ret = read_phy_reg(ohci, addr);
577 	if (ret < 0)
578 		return ret;
579 
580 	/*
581 	 * The interrupt status bits are cleared by writing a one bit.
582 	 * Avoid clearing them unless explicitly requested in set_bits.
583 	 */
584 	if (addr == 5)
585 		clear_bits |= PHY_INT_STATUS_BITS;
586 
587 	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
588 }
589 
590 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
591 {
592 	int ret;
593 
594 	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
595 	if (ret < 0)
596 		return ret;
597 
598 	return read_phy_reg(ohci, addr);
599 }
600 
601 static int ohci_read_phy_reg(struct fw_card *card, int addr)
602 {
603 	struct fw_ohci *ohci = fw_ohci(card);
604 	int ret;
605 
606 	mutex_lock(&ohci->phy_reg_mutex);
607 	ret = read_phy_reg(ohci, addr);
608 	mutex_unlock(&ohci->phy_reg_mutex);
609 
610 	return ret;
611 }
612 
613 static int ohci_update_phy_reg(struct fw_card *card, int addr,
614 			       int clear_bits, int set_bits)
615 {
616 	struct fw_ohci *ohci = fw_ohci(card);
617 	int ret;
618 
619 	mutex_lock(&ohci->phy_reg_mutex);
620 	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
621 	mutex_unlock(&ohci->phy_reg_mutex);
622 
623 	return ret;
624 }
625 
626 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
627 {
628 	return page_private(ctx->pages[i]);
629 }
630 
631 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
632 {
633 	struct descriptor *d;
634 
635 	d = &ctx->descriptors[index];
636 	d->branch_address  &= cpu_to_le32(~0xf);
637 	d->res_count       =  cpu_to_le16(PAGE_SIZE);
638 	d->transfer_status =  0;
639 
640 	wmb(); /* finish init of new descriptors before branch_address update */
641 	d = &ctx->descriptors[ctx->last_buffer_index];
642 	d->branch_address  |= cpu_to_le32(1);
643 
644 	ctx->last_buffer_index = index;
645 
646 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
647 }
648 
649 static void ar_context_release(struct ar_context *ctx)
650 {
651 	unsigned int i;
652 
653 	if (ctx->buffer)
654 		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
655 
656 	for (i = 0; i < AR_BUFFERS; i++)
657 		if (ctx->pages[i]) {
658 			dma_unmap_page(ctx->ohci->card.device,
659 				       ar_buffer_bus(ctx, i),
660 				       PAGE_SIZE, DMA_FROM_DEVICE);
661 			__free_page(ctx->pages[i]);
662 		}
663 }
664 
665 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
666 {
667 	if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
668 		reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
669 		flush_writes(ctx->ohci);
670 
671 		fw_error("AR error: %s; DMA stopped\n", error_msg);
672 	}
673 	/* FIXME: restart? */
674 }
675 
676 static inline unsigned int ar_next_buffer_index(unsigned int index)
677 {
678 	return (index + 1) % AR_BUFFERS;
679 }
680 
681 static inline unsigned int ar_prev_buffer_index(unsigned int index)
682 {
683 	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
684 }
685 
686 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
687 {
688 	return ar_next_buffer_index(ctx->last_buffer_index);
689 }
690 
691 /*
692  * We search for the buffer that contains the last AR packet DMA data written
693  * by the controller.
694  */
695 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
696 						 unsigned int *buffer_offset)
697 {
698 	unsigned int i, next_i, last = ctx->last_buffer_index;
699 	__le16 res_count, next_res_count;
700 
701 	i = ar_first_buffer_index(ctx);
702 	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
703 
704 	/* A buffer that is not yet completely filled must be the last one. */
705 	while (i != last && res_count == 0) {
706 
707 		/* Peek at the next descriptor. */
708 		next_i = ar_next_buffer_index(i);
709 		rmb(); /* read descriptors in order */
710 		next_res_count = ACCESS_ONCE(
711 				ctx->descriptors[next_i].res_count);
712 		/*
713 		 * If the next descriptor is still empty, we must stop at this
714 		 * descriptor.
715 		 */
716 		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
717 			/*
718 			 * The exception is when the DMA data for one packet is
719 			 * split over three buffers; in this case, the middle
720 			 * buffer's descriptor might be never updated by the
721 			 * controller and look still empty, and we have to peek
722 			 * at the third one.
723 			 */
724 			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
725 				next_i = ar_next_buffer_index(next_i);
726 				rmb();
727 				next_res_count = ACCESS_ONCE(
728 					ctx->descriptors[next_i].res_count);
729 				if (next_res_count != cpu_to_le16(PAGE_SIZE))
730 					goto next_buffer_is_active;
731 			}
732 
733 			break;
734 		}
735 
736 next_buffer_is_active:
737 		i = next_i;
738 		res_count = next_res_count;
739 	}
740 
741 	rmb(); /* read res_count before the DMA data */
742 
743 	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
744 	if (*buffer_offset > PAGE_SIZE) {
745 		*buffer_offset = 0;
746 		ar_context_abort(ctx, "corrupted descriptor");
747 	}
748 
749 	return i;
750 }
751 
752 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
753 				    unsigned int end_buffer_index,
754 				    unsigned int end_buffer_offset)
755 {
756 	unsigned int i;
757 
758 	i = ar_first_buffer_index(ctx);
759 	while (i != end_buffer_index) {
760 		dma_sync_single_for_cpu(ctx->ohci->card.device,
761 					ar_buffer_bus(ctx, i),
762 					PAGE_SIZE, DMA_FROM_DEVICE);
763 		i = ar_next_buffer_index(i);
764 	}
765 	if (end_buffer_offset > 0)
766 		dma_sync_single_for_cpu(ctx->ohci->card.device,
767 					ar_buffer_bus(ctx, i),
768 					end_buffer_offset, DMA_FROM_DEVICE);
769 }
770 
771 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
772 #define cond_le32_to_cpu(v) \
773 	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
774 #else
775 #define cond_le32_to_cpu(v) le32_to_cpu(v)
776 #endif
777 
778 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
779 {
780 	struct fw_ohci *ohci = ctx->ohci;
781 	struct fw_packet p;
782 	u32 status, length, tcode;
783 	int evt;
784 
785 	p.header[0] = cond_le32_to_cpu(buffer[0]);
786 	p.header[1] = cond_le32_to_cpu(buffer[1]);
787 	p.header[2] = cond_le32_to_cpu(buffer[2]);
788 
789 	tcode = (p.header[0] >> 4) & 0x0f;
790 	switch (tcode) {
791 	case TCODE_WRITE_QUADLET_REQUEST:
792 	case TCODE_READ_QUADLET_RESPONSE:
793 		p.header[3] = (__force __u32) buffer[3];
794 		p.header_length = 16;
795 		p.payload_length = 0;
796 		break;
797 
798 	case TCODE_READ_BLOCK_REQUEST :
799 		p.header[3] = cond_le32_to_cpu(buffer[3]);
800 		p.header_length = 16;
801 		p.payload_length = 0;
802 		break;
803 
804 	case TCODE_WRITE_BLOCK_REQUEST:
805 	case TCODE_READ_BLOCK_RESPONSE:
806 	case TCODE_LOCK_REQUEST:
807 	case TCODE_LOCK_RESPONSE:
808 		p.header[3] = cond_le32_to_cpu(buffer[3]);
809 		p.header_length = 16;
810 		p.payload_length = p.header[3] >> 16;
811 		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
812 			ar_context_abort(ctx, "invalid packet length");
813 			return NULL;
814 		}
815 		break;
816 
817 	case TCODE_WRITE_RESPONSE:
818 	case TCODE_READ_QUADLET_REQUEST:
819 	case OHCI_TCODE_PHY_PACKET:
820 		p.header_length = 12;
821 		p.payload_length = 0;
822 		break;
823 
824 	default:
825 		ar_context_abort(ctx, "invalid tcode");
826 		return NULL;
827 	}
828 
829 	p.payload = (void *) buffer + p.header_length;
830 
831 	/* FIXME: What to do about evt_* errors? */
832 	length = (p.header_length + p.payload_length + 3) / 4;
833 	status = cond_le32_to_cpu(buffer[length]);
834 	evt    = (status >> 16) & 0x1f;
835 
836 	p.ack        = evt - 16;
837 	p.speed      = (status >> 21) & 0x7;
838 	p.timestamp  = status & 0xffff;
839 	p.generation = ohci->request_generation;
840 
841 	log_ar_at_event('R', p.speed, p.header, evt);
842 
843 	/*
844 	 * Several controllers, notably from NEC and VIA, forget to
845 	 * write ack_complete status at PHY packet reception.
846 	 */
847 	if (evt == OHCI1394_evt_no_status &&
848 	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
849 		p.ack = ACK_COMPLETE;
850 
851 	/*
852 	 * The OHCI bus reset handler synthesizes a PHY packet with
853 	 * the new generation number when a bus reset happens (see
854 	 * section 8.4.2.3).  This helps us determine when a request
855 	 * was received and make sure we send the response in the same
856 	 * generation.  We only need this for requests; for responses
857 	 * we use the unique tlabel for finding the matching
858 	 * request.
859 	 *
860 	 * Alas some chips sometimes emit bus reset packets with a
861 	 * wrong generation.  We set the correct generation for these
862 	 * at a slightly incorrect time (in bus_reset_tasklet).
863 	 */
864 	if (evt == OHCI1394_evt_bus_reset) {
865 		if (!(ohci->quirks & QUIRK_RESET_PACKET))
866 			ohci->request_generation = (p.header[2] >> 16) & 0xff;
867 	} else if (ctx == &ohci->ar_request_ctx) {
868 		fw_core_handle_request(&ohci->card, &p);
869 	} else {
870 		fw_core_handle_response(&ohci->card, &p);
871 	}
872 
873 	return buffer + length + 1;
874 }
875 
876 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
877 {
878 	void *next;
879 
880 	while (p < end) {
881 		next = handle_ar_packet(ctx, p);
882 		if (!next)
883 			return p;
884 		p = next;
885 	}
886 
887 	return p;
888 }
889 
890 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
891 {
892 	unsigned int i;
893 
894 	i = ar_first_buffer_index(ctx);
895 	while (i != end_buffer) {
896 		dma_sync_single_for_device(ctx->ohci->card.device,
897 					   ar_buffer_bus(ctx, i),
898 					   PAGE_SIZE, DMA_FROM_DEVICE);
899 		ar_context_link_page(ctx, i);
900 		i = ar_next_buffer_index(i);
901 	}
902 }
903 
904 static void ar_context_tasklet(unsigned long data)
905 {
906 	struct ar_context *ctx = (struct ar_context *)data;
907 	unsigned int end_buffer_index, end_buffer_offset;
908 	void *p, *end;
909 
910 	p = ctx->pointer;
911 	if (!p)
912 		return;
913 
914 	end_buffer_index = ar_search_last_active_buffer(ctx,
915 							&end_buffer_offset);
916 	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
917 	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
918 
919 	if (end_buffer_index < ar_first_buffer_index(ctx)) {
920 		/*
921 		 * The filled part of the overall buffer wraps around; handle
922 		 * all packets up to the buffer end here.  If the last packet
923 		 * wraps around, its tail will be visible after the buffer end
924 		 * because the buffer start pages are mapped there again.
925 		 */
926 		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
927 		p = handle_ar_packets(ctx, p, buffer_end);
928 		if (p < buffer_end)
929 			goto error;
930 		/* adjust p to point back into the actual buffer */
931 		p -= AR_BUFFERS * PAGE_SIZE;
932 	}
933 
934 	p = handle_ar_packets(ctx, p, end);
935 	if (p != end) {
936 		if (p > end)
937 			ar_context_abort(ctx, "inconsistent descriptor");
938 		goto error;
939 	}
940 
941 	ctx->pointer = p;
942 	ar_recycle_buffers(ctx, end_buffer_index);
943 
944 	return;
945 
946 error:
947 	ctx->pointer = NULL;
948 }
949 
950 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
951 			   unsigned int descriptors_offset, u32 regs)
952 {
953 	unsigned int i;
954 	dma_addr_t dma_addr;
955 	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
956 	struct descriptor *d;
957 
958 	ctx->regs        = regs;
959 	ctx->ohci        = ohci;
960 	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
961 
962 	for (i = 0; i < AR_BUFFERS; i++) {
963 		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
964 		if (!ctx->pages[i])
965 			goto out_of_memory;
966 		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
967 					0, PAGE_SIZE, DMA_FROM_DEVICE);
968 		if (dma_mapping_error(ohci->card.device, dma_addr)) {
969 			__free_page(ctx->pages[i]);
970 			ctx->pages[i] = NULL;
971 			goto out_of_memory;
972 		}
973 		set_page_private(ctx->pages[i], dma_addr);
974 	}
975 
976 	for (i = 0; i < AR_BUFFERS; i++)
977 		pages[i]              = ctx->pages[i];
978 	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
979 		pages[AR_BUFFERS + i] = ctx->pages[i];
980 	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
981 				 -1, PAGE_KERNEL);
982 	if (!ctx->buffer)
983 		goto out_of_memory;
984 
985 	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
986 	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
987 
988 	for (i = 0; i < AR_BUFFERS; i++) {
989 		d = &ctx->descriptors[i];
990 		d->req_count      = cpu_to_le16(PAGE_SIZE);
991 		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
992 						DESCRIPTOR_STATUS |
993 						DESCRIPTOR_BRANCH_ALWAYS);
994 		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
995 		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
996 			ar_next_buffer_index(i) * sizeof(struct descriptor));
997 	}
998 
999 	return 0;
1000 
1001 out_of_memory:
1002 	ar_context_release(ctx);
1003 
1004 	return -ENOMEM;
1005 }
1006 
1007 static void ar_context_run(struct ar_context *ctx)
1008 {
1009 	unsigned int i;
1010 
1011 	for (i = 0; i < AR_BUFFERS; i++)
1012 		ar_context_link_page(ctx, i);
1013 
1014 	ctx->pointer = ctx->buffer;
1015 
1016 	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1017 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1018 }
1019 
1020 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1021 {
1022 	__le16 branch;
1023 
1024 	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1025 
1026 	/* figure out which descriptor the branch address goes in */
1027 	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1028 		return d;
1029 	else
1030 		return d + z - 1;
1031 }
1032 
1033 static void context_tasklet(unsigned long data)
1034 {
1035 	struct context *ctx = (struct context *) data;
1036 	struct descriptor *d, *last;
1037 	u32 address;
1038 	int z;
1039 	struct descriptor_buffer *desc;
1040 
1041 	desc = list_entry(ctx->buffer_list.next,
1042 			struct descriptor_buffer, list);
1043 	last = ctx->last;
1044 	while (last->branch_address != 0) {
1045 		struct descriptor_buffer *old_desc = desc;
1046 		address = le32_to_cpu(last->branch_address);
1047 		z = address & 0xf;
1048 		address &= ~0xf;
1049 
1050 		/* If the branch address points to a buffer outside of the
1051 		 * current buffer, advance to the next buffer. */
1052 		if (address < desc->buffer_bus ||
1053 				address >= desc->buffer_bus + desc->used)
1054 			desc = list_entry(desc->list.next,
1055 					struct descriptor_buffer, list);
1056 		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1057 		last = find_branch_descriptor(d, z);
1058 
1059 		if (!ctx->callback(ctx, d, last))
1060 			break;
1061 
1062 		if (old_desc != desc) {
1063 			/* If we've advanced to the next buffer, move the
1064 			 * previous buffer to the free list. */
1065 			unsigned long flags;
1066 			old_desc->used = 0;
1067 			spin_lock_irqsave(&ctx->ohci->lock, flags);
1068 			list_move_tail(&old_desc->list, &ctx->buffer_list);
1069 			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1070 		}
1071 		ctx->last = last;
1072 	}
1073 }
1074 
1075 /*
1076  * Allocate a new buffer and add it to the list of free buffers for this
1077  * context.  Must be called with ohci->lock held.
1078  */
1079 static int context_add_buffer(struct context *ctx)
1080 {
1081 	struct descriptor_buffer *desc;
1082 	dma_addr_t uninitialized_var(bus_addr);
1083 	int offset;
1084 
1085 	/*
1086 	 * 16MB of descriptors should be far more than enough for any DMA
1087 	 * program.  This will catch run-away userspace or DoS attacks.
1088 	 */
1089 	if (ctx->total_allocation >= 16*1024*1024)
1090 		return -ENOMEM;
1091 
1092 	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1093 			&bus_addr, GFP_ATOMIC);
1094 	if (!desc)
1095 		return -ENOMEM;
1096 
1097 	offset = (void *)&desc->buffer - (void *)desc;
1098 	desc->buffer_size = PAGE_SIZE - offset;
1099 	desc->buffer_bus = bus_addr + offset;
1100 	desc->used = 0;
1101 
1102 	list_add_tail(&desc->list, &ctx->buffer_list);
1103 	ctx->total_allocation += PAGE_SIZE;
1104 
1105 	return 0;
1106 }
1107 
1108 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1109 			u32 regs, descriptor_callback_t callback)
1110 {
1111 	ctx->ohci = ohci;
1112 	ctx->regs = regs;
1113 	ctx->total_allocation = 0;
1114 
1115 	INIT_LIST_HEAD(&ctx->buffer_list);
1116 	if (context_add_buffer(ctx) < 0)
1117 		return -ENOMEM;
1118 
1119 	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1120 			struct descriptor_buffer, list);
1121 
1122 	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1123 	ctx->callback = callback;
1124 
1125 	/*
1126 	 * We put a dummy descriptor in the buffer that has a NULL
1127 	 * branch address and looks like it's been sent.  That way we
1128 	 * have a descriptor to append DMA programs to.
1129 	 */
1130 	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1131 	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1132 	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1133 	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1134 	ctx->last = ctx->buffer_tail->buffer;
1135 	ctx->prev = ctx->buffer_tail->buffer;
1136 
1137 	return 0;
1138 }
1139 
1140 static void context_release(struct context *ctx)
1141 {
1142 	struct fw_card *card = &ctx->ohci->card;
1143 	struct descriptor_buffer *desc, *tmp;
1144 
1145 	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1146 		dma_free_coherent(card->device, PAGE_SIZE, desc,
1147 			desc->buffer_bus -
1148 			((void *)&desc->buffer - (void *)desc));
1149 }
1150 
1151 /* Must be called with ohci->lock held */
1152 static struct descriptor *context_get_descriptors(struct context *ctx,
1153 						  int z, dma_addr_t *d_bus)
1154 {
1155 	struct descriptor *d = NULL;
1156 	struct descriptor_buffer *desc = ctx->buffer_tail;
1157 
1158 	if (z * sizeof(*d) > desc->buffer_size)
1159 		return NULL;
1160 
1161 	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1162 		/* No room for the descriptor in this buffer, so advance to the
1163 		 * next one. */
1164 
1165 		if (desc->list.next == &ctx->buffer_list) {
1166 			/* If there is no free buffer next in the list,
1167 			 * allocate one. */
1168 			if (context_add_buffer(ctx) < 0)
1169 				return NULL;
1170 		}
1171 		desc = list_entry(desc->list.next,
1172 				struct descriptor_buffer, list);
1173 		ctx->buffer_tail = desc;
1174 	}
1175 
1176 	d = desc->buffer + desc->used / sizeof(*d);
1177 	memset(d, 0, z * sizeof(*d));
1178 	*d_bus = desc->buffer_bus + desc->used;
1179 
1180 	return d;
1181 }
1182 
1183 static void context_run(struct context *ctx, u32 extra)
1184 {
1185 	struct fw_ohci *ohci = ctx->ohci;
1186 
1187 	reg_write(ohci, COMMAND_PTR(ctx->regs),
1188 		  le32_to_cpu(ctx->last->branch_address));
1189 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1190 	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1191 	ctx->running = true;
1192 	flush_writes(ohci);
1193 }
1194 
1195 static void context_append(struct context *ctx,
1196 			   struct descriptor *d, int z, int extra)
1197 {
1198 	dma_addr_t d_bus;
1199 	struct descriptor_buffer *desc = ctx->buffer_tail;
1200 
1201 	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1202 
1203 	desc->used += (z + extra) * sizeof(*d);
1204 
1205 	wmb(); /* finish init of new descriptors before branch_address update */
1206 	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1207 	ctx->prev = find_branch_descriptor(d, z);
1208 }
1209 
1210 static void context_stop(struct context *ctx)
1211 {
1212 	u32 reg;
1213 	int i;
1214 
1215 	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1216 	ctx->running = false;
1217 
1218 	for (i = 0; i < 1000; i++) {
1219 		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1220 		if ((reg & CONTEXT_ACTIVE) == 0)
1221 			return;
1222 
1223 		if (i)
1224 			udelay(10);
1225 	}
1226 	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1227 }
1228 
1229 struct driver_data {
1230 	u8 inline_data[8];
1231 	struct fw_packet *packet;
1232 };
1233 
1234 /*
1235  * This function apppends a packet to the DMA queue for transmission.
1236  * Must always be called with the ochi->lock held to ensure proper
1237  * generation handling and locking around packet queue manipulation.
1238  */
1239 static int at_context_queue_packet(struct context *ctx,
1240 				   struct fw_packet *packet)
1241 {
1242 	struct fw_ohci *ohci = ctx->ohci;
1243 	dma_addr_t d_bus, uninitialized_var(payload_bus);
1244 	struct driver_data *driver_data;
1245 	struct descriptor *d, *last;
1246 	__le32 *header;
1247 	int z, tcode;
1248 
1249 	d = context_get_descriptors(ctx, 4, &d_bus);
1250 	if (d == NULL) {
1251 		packet->ack = RCODE_SEND_ERROR;
1252 		return -1;
1253 	}
1254 
1255 	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1256 	d[0].res_count = cpu_to_le16(packet->timestamp);
1257 
1258 	/*
1259 	 * The DMA format for asyncronous link packets is different
1260 	 * from the IEEE1394 layout, so shift the fields around
1261 	 * accordingly.
1262 	 */
1263 
1264 	tcode = (packet->header[0] >> 4) & 0x0f;
1265 	header = (__le32 *) &d[1];
1266 	switch (tcode) {
1267 	case TCODE_WRITE_QUADLET_REQUEST:
1268 	case TCODE_WRITE_BLOCK_REQUEST:
1269 	case TCODE_WRITE_RESPONSE:
1270 	case TCODE_READ_QUADLET_REQUEST:
1271 	case TCODE_READ_BLOCK_REQUEST:
1272 	case TCODE_READ_QUADLET_RESPONSE:
1273 	case TCODE_READ_BLOCK_RESPONSE:
1274 	case TCODE_LOCK_REQUEST:
1275 	case TCODE_LOCK_RESPONSE:
1276 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1277 					(packet->speed << 16));
1278 		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1279 					(packet->header[0] & 0xffff0000));
1280 		header[2] = cpu_to_le32(packet->header[2]);
1281 
1282 		if (TCODE_IS_BLOCK_PACKET(tcode))
1283 			header[3] = cpu_to_le32(packet->header[3]);
1284 		else
1285 			header[3] = (__force __le32) packet->header[3];
1286 
1287 		d[0].req_count = cpu_to_le16(packet->header_length);
1288 		break;
1289 
1290 	case TCODE_LINK_INTERNAL:
1291 		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1292 					(packet->speed << 16));
1293 		header[1] = cpu_to_le32(packet->header[1]);
1294 		header[2] = cpu_to_le32(packet->header[2]);
1295 		d[0].req_count = cpu_to_le16(12);
1296 
1297 		if (is_ping_packet(&packet->header[1]))
1298 			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1299 		break;
1300 
1301 	case TCODE_STREAM_DATA:
1302 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1303 					(packet->speed << 16));
1304 		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1305 		d[0].req_count = cpu_to_le16(8);
1306 		break;
1307 
1308 	default:
1309 		/* BUG(); */
1310 		packet->ack = RCODE_SEND_ERROR;
1311 		return -1;
1312 	}
1313 
1314 	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1315 	driver_data = (struct driver_data *) &d[3];
1316 	driver_data->packet = packet;
1317 	packet->driver_data = driver_data;
1318 
1319 	if (packet->payload_length > 0) {
1320 		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1321 			payload_bus = dma_map_single(ohci->card.device,
1322 						     packet->payload,
1323 						     packet->payload_length,
1324 						     DMA_TO_DEVICE);
1325 			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1326 				packet->ack = RCODE_SEND_ERROR;
1327 				return -1;
1328 			}
1329 			packet->payload_bus	= payload_bus;
1330 			packet->payload_mapped	= true;
1331 		} else {
1332 			memcpy(driver_data->inline_data, packet->payload,
1333 			       packet->payload_length);
1334 			payload_bus = d_bus + 3 * sizeof(*d);
1335 		}
1336 
1337 		d[2].req_count    = cpu_to_le16(packet->payload_length);
1338 		d[2].data_address = cpu_to_le32(payload_bus);
1339 		last = &d[2];
1340 		z = 3;
1341 	} else {
1342 		last = &d[0];
1343 		z = 2;
1344 	}
1345 
1346 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1347 				     DESCRIPTOR_IRQ_ALWAYS |
1348 				     DESCRIPTOR_BRANCH_ALWAYS);
1349 
1350 	/* FIXME: Document how the locking works. */
1351 	if (ohci->generation != packet->generation) {
1352 		if (packet->payload_mapped)
1353 			dma_unmap_single(ohci->card.device, payload_bus,
1354 					 packet->payload_length, DMA_TO_DEVICE);
1355 		packet->ack = RCODE_GENERATION;
1356 		return -1;
1357 	}
1358 
1359 	context_append(ctx, d, z, 4 - z);
1360 
1361 	if (ctx->running)
1362 		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1363 	else
1364 		context_run(ctx, 0);
1365 
1366 	return 0;
1367 }
1368 
1369 static void at_context_flush(struct context *ctx)
1370 {
1371 	tasklet_disable(&ctx->tasklet);
1372 
1373 	ctx->flushing = true;
1374 	context_tasklet((unsigned long)ctx);
1375 	ctx->flushing = false;
1376 
1377 	tasklet_enable(&ctx->tasklet);
1378 }
1379 
1380 static int handle_at_packet(struct context *context,
1381 			    struct descriptor *d,
1382 			    struct descriptor *last)
1383 {
1384 	struct driver_data *driver_data;
1385 	struct fw_packet *packet;
1386 	struct fw_ohci *ohci = context->ohci;
1387 	int evt;
1388 
1389 	if (last->transfer_status == 0 && !context->flushing)
1390 		/* This descriptor isn't done yet, stop iteration. */
1391 		return 0;
1392 
1393 	driver_data = (struct driver_data *) &d[3];
1394 	packet = driver_data->packet;
1395 	if (packet == NULL)
1396 		/* This packet was cancelled, just continue. */
1397 		return 1;
1398 
1399 	if (packet->payload_mapped)
1400 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1401 				 packet->payload_length, DMA_TO_DEVICE);
1402 
1403 	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1404 	packet->timestamp = le16_to_cpu(last->res_count);
1405 
1406 	log_ar_at_event('T', packet->speed, packet->header, evt);
1407 
1408 	switch (evt) {
1409 	case OHCI1394_evt_timeout:
1410 		/* Async response transmit timed out. */
1411 		packet->ack = RCODE_CANCELLED;
1412 		break;
1413 
1414 	case OHCI1394_evt_flushed:
1415 		/*
1416 		 * The packet was flushed should give same error as
1417 		 * when we try to use a stale generation count.
1418 		 */
1419 		packet->ack = RCODE_GENERATION;
1420 		break;
1421 
1422 	case OHCI1394_evt_missing_ack:
1423 		if (context->flushing)
1424 			packet->ack = RCODE_GENERATION;
1425 		else {
1426 			/*
1427 			 * Using a valid (current) generation count, but the
1428 			 * node is not on the bus or not sending acks.
1429 			 */
1430 			packet->ack = RCODE_NO_ACK;
1431 		}
1432 		break;
1433 
1434 	case ACK_COMPLETE + 0x10:
1435 	case ACK_PENDING + 0x10:
1436 	case ACK_BUSY_X + 0x10:
1437 	case ACK_BUSY_A + 0x10:
1438 	case ACK_BUSY_B + 0x10:
1439 	case ACK_DATA_ERROR + 0x10:
1440 	case ACK_TYPE_ERROR + 0x10:
1441 		packet->ack = evt - 0x10;
1442 		break;
1443 
1444 	case OHCI1394_evt_no_status:
1445 		if (context->flushing) {
1446 			packet->ack = RCODE_GENERATION;
1447 			break;
1448 		}
1449 		/* fall through */
1450 
1451 	default:
1452 		packet->ack = RCODE_SEND_ERROR;
1453 		break;
1454 	}
1455 
1456 	packet->callback(packet, &ohci->card, packet->ack);
1457 
1458 	return 1;
1459 }
1460 
1461 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1462 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1463 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1464 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1465 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1466 
1467 static void handle_local_rom(struct fw_ohci *ohci,
1468 			     struct fw_packet *packet, u32 csr)
1469 {
1470 	struct fw_packet response;
1471 	int tcode, length, i;
1472 
1473 	tcode = HEADER_GET_TCODE(packet->header[0]);
1474 	if (TCODE_IS_BLOCK_PACKET(tcode))
1475 		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1476 	else
1477 		length = 4;
1478 
1479 	i = csr - CSR_CONFIG_ROM;
1480 	if (i + length > CONFIG_ROM_SIZE) {
1481 		fw_fill_response(&response, packet->header,
1482 				 RCODE_ADDRESS_ERROR, NULL, 0);
1483 	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1484 		fw_fill_response(&response, packet->header,
1485 				 RCODE_TYPE_ERROR, NULL, 0);
1486 	} else {
1487 		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1488 				 (void *) ohci->config_rom + i, length);
1489 	}
1490 
1491 	fw_core_handle_response(&ohci->card, &response);
1492 }
1493 
1494 static void handle_local_lock(struct fw_ohci *ohci,
1495 			      struct fw_packet *packet, u32 csr)
1496 {
1497 	struct fw_packet response;
1498 	int tcode, length, ext_tcode, sel, try;
1499 	__be32 *payload, lock_old;
1500 	u32 lock_arg, lock_data;
1501 
1502 	tcode = HEADER_GET_TCODE(packet->header[0]);
1503 	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1504 	payload = packet->payload;
1505 	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1506 
1507 	if (tcode == TCODE_LOCK_REQUEST &&
1508 	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1509 		lock_arg = be32_to_cpu(payload[0]);
1510 		lock_data = be32_to_cpu(payload[1]);
1511 	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1512 		lock_arg = 0;
1513 		lock_data = 0;
1514 	} else {
1515 		fw_fill_response(&response, packet->header,
1516 				 RCODE_TYPE_ERROR, NULL, 0);
1517 		goto out;
1518 	}
1519 
1520 	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1521 	reg_write(ohci, OHCI1394_CSRData, lock_data);
1522 	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1523 	reg_write(ohci, OHCI1394_CSRControl, sel);
1524 
1525 	for (try = 0; try < 20; try++)
1526 		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1527 			lock_old = cpu_to_be32(reg_read(ohci,
1528 							OHCI1394_CSRData));
1529 			fw_fill_response(&response, packet->header,
1530 					 RCODE_COMPLETE,
1531 					 &lock_old, sizeof(lock_old));
1532 			goto out;
1533 		}
1534 
1535 	fw_error("swap not done (CSR lock timeout)\n");
1536 	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1537 
1538  out:
1539 	fw_core_handle_response(&ohci->card, &response);
1540 }
1541 
1542 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1543 {
1544 	u64 offset, csr;
1545 
1546 	if (ctx == &ctx->ohci->at_request_ctx) {
1547 		packet->ack = ACK_PENDING;
1548 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1549 	}
1550 
1551 	offset =
1552 		((unsigned long long)
1553 		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1554 		packet->header[2];
1555 	csr = offset - CSR_REGISTER_BASE;
1556 
1557 	/* Handle config rom reads. */
1558 	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1559 		handle_local_rom(ctx->ohci, packet, csr);
1560 	else switch (csr) {
1561 	case CSR_BUS_MANAGER_ID:
1562 	case CSR_BANDWIDTH_AVAILABLE:
1563 	case CSR_CHANNELS_AVAILABLE_HI:
1564 	case CSR_CHANNELS_AVAILABLE_LO:
1565 		handle_local_lock(ctx->ohci, packet, csr);
1566 		break;
1567 	default:
1568 		if (ctx == &ctx->ohci->at_request_ctx)
1569 			fw_core_handle_request(&ctx->ohci->card, packet);
1570 		else
1571 			fw_core_handle_response(&ctx->ohci->card, packet);
1572 		break;
1573 	}
1574 
1575 	if (ctx == &ctx->ohci->at_response_ctx) {
1576 		packet->ack = ACK_COMPLETE;
1577 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1578 	}
1579 }
1580 
1581 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1582 {
1583 	unsigned long flags;
1584 	int ret;
1585 
1586 	spin_lock_irqsave(&ctx->ohci->lock, flags);
1587 
1588 	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1589 	    ctx->ohci->generation == packet->generation) {
1590 		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1591 		handle_local_request(ctx, packet);
1592 		return;
1593 	}
1594 
1595 	ret = at_context_queue_packet(ctx, packet);
1596 	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1597 
1598 	if (ret < 0)
1599 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1600 
1601 }
1602 
1603 static void detect_dead_context(struct fw_ohci *ohci,
1604 				const char *name, unsigned int regs)
1605 {
1606 	u32 ctl;
1607 
1608 	ctl = reg_read(ohci, CONTROL_SET(regs));
1609 	if (ctl & CONTEXT_DEAD) {
1610 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1611 		fw_error("DMA context %s has stopped, error code: %s\n",
1612 			 name, evts[ctl & 0x1f]);
1613 #else
1614 		fw_error("DMA context %s has stopped, error code: %#x\n",
1615 			 name, ctl & 0x1f);
1616 #endif
1617 	}
1618 }
1619 
1620 static void handle_dead_contexts(struct fw_ohci *ohci)
1621 {
1622 	unsigned int i;
1623 	char name[8];
1624 
1625 	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1626 	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1627 	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1628 	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1629 	for (i = 0; i < 32; ++i) {
1630 		if (!(ohci->it_context_support & (1 << i)))
1631 			continue;
1632 		sprintf(name, "IT%u", i);
1633 		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1634 	}
1635 	for (i = 0; i < 32; ++i) {
1636 		if (!(ohci->ir_context_support & (1 << i)))
1637 			continue;
1638 		sprintf(name, "IR%u", i);
1639 		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1640 	}
1641 	/* TODO: maybe try to flush and restart the dead contexts */
1642 }
1643 
1644 static u32 cycle_timer_ticks(u32 cycle_timer)
1645 {
1646 	u32 ticks;
1647 
1648 	ticks = cycle_timer & 0xfff;
1649 	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1650 	ticks += (3072 * 8000) * (cycle_timer >> 25);
1651 
1652 	return ticks;
1653 }
1654 
1655 /*
1656  * Some controllers exhibit one or more of the following bugs when updating the
1657  * iso cycle timer register:
1658  *  - When the lowest six bits are wrapping around to zero, a read that happens
1659  *    at the same time will return garbage in the lowest ten bits.
1660  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1661  *    not incremented for about 60 ns.
1662  *  - Occasionally, the entire register reads zero.
1663  *
1664  * To catch these, we read the register three times and ensure that the
1665  * difference between each two consecutive reads is approximately the same, i.e.
1666  * less than twice the other.  Furthermore, any negative difference indicates an
1667  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1668  * execute, so we have enough precision to compute the ratio of the differences.)
1669  */
1670 static u32 get_cycle_time(struct fw_ohci *ohci)
1671 {
1672 	u32 c0, c1, c2;
1673 	u32 t0, t1, t2;
1674 	s32 diff01, diff12;
1675 	int i;
1676 
1677 	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1678 
1679 	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1680 		i = 0;
1681 		c1 = c2;
1682 		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1683 		do {
1684 			c0 = c1;
1685 			c1 = c2;
1686 			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1687 			t0 = cycle_timer_ticks(c0);
1688 			t1 = cycle_timer_ticks(c1);
1689 			t2 = cycle_timer_ticks(c2);
1690 			diff01 = t1 - t0;
1691 			diff12 = t2 - t1;
1692 		} while ((diff01 <= 0 || diff12 <= 0 ||
1693 			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1694 			 && i++ < 20);
1695 	}
1696 
1697 	return c2;
1698 }
1699 
1700 /*
1701  * This function has to be called at least every 64 seconds.  The bus_time
1702  * field stores not only the upper 25 bits of the BUS_TIME register but also
1703  * the most significant bit of the cycle timer in bit 6 so that we can detect
1704  * changes in this bit.
1705  */
1706 static u32 update_bus_time(struct fw_ohci *ohci)
1707 {
1708 	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1709 
1710 	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1711 		ohci->bus_time += 0x40;
1712 
1713 	return ohci->bus_time | cycle_time_seconds;
1714 }
1715 
1716 static void bus_reset_tasklet(unsigned long data)
1717 {
1718 	struct fw_ohci *ohci = (struct fw_ohci *)data;
1719 	int self_id_count, i, j, reg;
1720 	int generation, new_generation;
1721 	unsigned long flags;
1722 	void *free_rom = NULL;
1723 	dma_addr_t free_rom_bus = 0;
1724 	bool is_new_root;
1725 
1726 	reg = reg_read(ohci, OHCI1394_NodeID);
1727 	if (!(reg & OHCI1394_NodeID_idValid)) {
1728 		fw_notify("node ID not valid, new bus reset in progress\n");
1729 		return;
1730 	}
1731 	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1732 		fw_notify("malconfigured bus\n");
1733 		return;
1734 	}
1735 	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1736 			       OHCI1394_NodeID_nodeNumber);
1737 
1738 	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1739 	if (!(ohci->is_root && is_new_root))
1740 		reg_write(ohci, OHCI1394_LinkControlSet,
1741 			  OHCI1394_LinkControl_cycleMaster);
1742 	ohci->is_root = is_new_root;
1743 
1744 	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1745 	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1746 		fw_notify("inconsistent self IDs\n");
1747 		return;
1748 	}
1749 	/*
1750 	 * The count in the SelfIDCount register is the number of
1751 	 * bytes in the self ID receive buffer.  Since we also receive
1752 	 * the inverted quadlets and a header quadlet, we shift one
1753 	 * bit extra to get the actual number of self IDs.
1754 	 */
1755 	self_id_count = (reg >> 3) & 0xff;
1756 	if (self_id_count == 0 || self_id_count > 252) {
1757 		fw_notify("inconsistent self IDs\n");
1758 		return;
1759 	}
1760 	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1761 	rmb();
1762 
1763 	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1764 		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1765 			fw_notify("inconsistent self IDs\n");
1766 			return;
1767 		}
1768 		ohci->self_id_buffer[j] =
1769 				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1770 	}
1771 	rmb();
1772 
1773 	/*
1774 	 * Check the consistency of the self IDs we just read.  The
1775 	 * problem we face is that a new bus reset can start while we
1776 	 * read out the self IDs from the DMA buffer. If this happens,
1777 	 * the DMA buffer will be overwritten with new self IDs and we
1778 	 * will read out inconsistent data.  The OHCI specification
1779 	 * (section 11.2) recommends a technique similar to
1780 	 * linux/seqlock.h, where we remember the generation of the
1781 	 * self IDs in the buffer before reading them out and compare
1782 	 * it to the current generation after reading them out.  If
1783 	 * the two generations match we know we have a consistent set
1784 	 * of self IDs.
1785 	 */
1786 
1787 	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1788 	if (new_generation != generation) {
1789 		fw_notify("recursive bus reset detected, "
1790 			  "discarding self ids\n");
1791 		return;
1792 	}
1793 
1794 	/* FIXME: Document how the locking works. */
1795 	spin_lock_irqsave(&ohci->lock, flags);
1796 
1797 	ohci->generation = -1; /* prevent AT packet queueing */
1798 	context_stop(&ohci->at_request_ctx);
1799 	context_stop(&ohci->at_response_ctx);
1800 
1801 	spin_unlock_irqrestore(&ohci->lock, flags);
1802 
1803 	/*
1804 	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1805 	 * packets in the AT queues and software needs to drain them.
1806 	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1807 	 */
1808 	at_context_flush(&ohci->at_request_ctx);
1809 	at_context_flush(&ohci->at_response_ctx);
1810 
1811 	spin_lock_irqsave(&ohci->lock, flags);
1812 
1813 	ohci->generation = generation;
1814 	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1815 
1816 	if (ohci->quirks & QUIRK_RESET_PACKET)
1817 		ohci->request_generation = generation;
1818 
1819 	/*
1820 	 * This next bit is unrelated to the AT context stuff but we
1821 	 * have to do it under the spinlock also.  If a new config rom
1822 	 * was set up before this reset, the old one is now no longer
1823 	 * in use and we can free it. Update the config rom pointers
1824 	 * to point to the current config rom and clear the
1825 	 * next_config_rom pointer so a new update can take place.
1826 	 */
1827 
1828 	if (ohci->next_config_rom != NULL) {
1829 		if (ohci->next_config_rom != ohci->config_rom) {
1830 			free_rom      = ohci->config_rom;
1831 			free_rom_bus  = ohci->config_rom_bus;
1832 		}
1833 		ohci->config_rom      = ohci->next_config_rom;
1834 		ohci->config_rom_bus  = ohci->next_config_rom_bus;
1835 		ohci->next_config_rom = NULL;
1836 
1837 		/*
1838 		 * Restore config_rom image and manually update
1839 		 * config_rom registers.  Writing the header quadlet
1840 		 * will indicate that the config rom is ready, so we
1841 		 * do that last.
1842 		 */
1843 		reg_write(ohci, OHCI1394_BusOptions,
1844 			  be32_to_cpu(ohci->config_rom[2]));
1845 		ohci->config_rom[0] = ohci->next_header;
1846 		reg_write(ohci, OHCI1394_ConfigROMhdr,
1847 			  be32_to_cpu(ohci->next_header));
1848 	}
1849 
1850 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1851 	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1852 	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1853 #endif
1854 
1855 	spin_unlock_irqrestore(&ohci->lock, flags);
1856 
1857 	if (free_rom)
1858 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1859 				  free_rom, free_rom_bus);
1860 
1861 	log_selfids(ohci->node_id, generation,
1862 		    self_id_count, ohci->self_id_buffer);
1863 
1864 	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1865 				 self_id_count, ohci->self_id_buffer,
1866 				 ohci->csr_state_setclear_abdicate);
1867 	ohci->csr_state_setclear_abdicate = false;
1868 }
1869 
1870 static irqreturn_t irq_handler(int irq, void *data)
1871 {
1872 	struct fw_ohci *ohci = data;
1873 	u32 event, iso_event;
1874 	int i;
1875 
1876 	event = reg_read(ohci, OHCI1394_IntEventClear);
1877 
1878 	if (!event || !~event)
1879 		return IRQ_NONE;
1880 
1881 	/*
1882 	 * busReset and postedWriteErr must not be cleared yet
1883 	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1884 	 */
1885 	reg_write(ohci, OHCI1394_IntEventClear,
1886 		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1887 	log_irqs(event);
1888 
1889 	if (event & OHCI1394_selfIDComplete)
1890 		tasklet_schedule(&ohci->bus_reset_tasklet);
1891 
1892 	if (event & OHCI1394_RQPkt)
1893 		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1894 
1895 	if (event & OHCI1394_RSPkt)
1896 		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1897 
1898 	if (event & OHCI1394_reqTxComplete)
1899 		tasklet_schedule(&ohci->at_request_ctx.tasklet);
1900 
1901 	if (event & OHCI1394_respTxComplete)
1902 		tasklet_schedule(&ohci->at_response_ctx.tasklet);
1903 
1904 	if (event & OHCI1394_isochRx) {
1905 		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1906 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1907 
1908 		while (iso_event) {
1909 			i = ffs(iso_event) - 1;
1910 			tasklet_schedule(
1911 				&ohci->ir_context_list[i].context.tasklet);
1912 			iso_event &= ~(1 << i);
1913 		}
1914 	}
1915 
1916 	if (event & OHCI1394_isochTx) {
1917 		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1918 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1919 
1920 		while (iso_event) {
1921 			i = ffs(iso_event) - 1;
1922 			tasklet_schedule(
1923 				&ohci->it_context_list[i].context.tasklet);
1924 			iso_event &= ~(1 << i);
1925 		}
1926 	}
1927 
1928 	if (unlikely(event & OHCI1394_regAccessFail))
1929 		fw_error("Register access failure - "
1930 			 "please notify linux1394-devel@lists.sf.net\n");
1931 
1932 	if (unlikely(event & OHCI1394_postedWriteErr)) {
1933 		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
1934 		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
1935 		reg_write(ohci, OHCI1394_IntEventClear,
1936 			  OHCI1394_postedWriteErr);
1937 		fw_error("PCI posted write error\n");
1938 	}
1939 
1940 	if (unlikely(event & OHCI1394_cycleTooLong)) {
1941 		if (printk_ratelimit())
1942 			fw_notify("isochronous cycle too long\n");
1943 		reg_write(ohci, OHCI1394_LinkControlSet,
1944 			  OHCI1394_LinkControl_cycleMaster);
1945 	}
1946 
1947 	if (unlikely(event & OHCI1394_cycleInconsistent)) {
1948 		/*
1949 		 * We need to clear this event bit in order to make
1950 		 * cycleMatch isochronous I/O work.  In theory we should
1951 		 * stop active cycleMatch iso contexts now and restart
1952 		 * them at least two cycles later.  (FIXME?)
1953 		 */
1954 		if (printk_ratelimit())
1955 			fw_notify("isochronous cycle inconsistent\n");
1956 	}
1957 
1958 	if (unlikely(event & OHCI1394_unrecoverableError))
1959 		handle_dead_contexts(ohci);
1960 
1961 	if (event & OHCI1394_cycle64Seconds) {
1962 		spin_lock(&ohci->lock);
1963 		update_bus_time(ohci);
1964 		spin_unlock(&ohci->lock);
1965 	} else
1966 		flush_writes(ohci);
1967 
1968 	return IRQ_HANDLED;
1969 }
1970 
1971 static int software_reset(struct fw_ohci *ohci)
1972 {
1973 	u32 val;
1974 	int i;
1975 
1976 	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1977 	for (i = 0; i < 500; i++) {
1978 		val = reg_read(ohci, OHCI1394_HCControlSet);
1979 		if (!~val)
1980 			return -ENODEV; /* Card was ejected. */
1981 
1982 		if (!(val & OHCI1394_HCControl_softReset))
1983 			return 0;
1984 
1985 		msleep(1);
1986 	}
1987 
1988 	return -EBUSY;
1989 }
1990 
1991 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1992 {
1993 	size_t size = length * 4;
1994 
1995 	memcpy(dest, src, size);
1996 	if (size < CONFIG_ROM_SIZE)
1997 		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1998 }
1999 
2000 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2001 {
2002 	bool enable_1394a;
2003 	int ret, clear, set, offset;
2004 
2005 	/* Check if the driver should configure link and PHY. */
2006 	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2007 	      OHCI1394_HCControl_programPhyEnable))
2008 		return 0;
2009 
2010 	/* Paranoia: check whether the PHY supports 1394a, too. */
2011 	enable_1394a = false;
2012 	ret = read_phy_reg(ohci, 2);
2013 	if (ret < 0)
2014 		return ret;
2015 	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2016 		ret = read_paged_phy_reg(ohci, 1, 8);
2017 		if (ret < 0)
2018 			return ret;
2019 		if (ret >= 1)
2020 			enable_1394a = true;
2021 	}
2022 
2023 	if (ohci->quirks & QUIRK_NO_1394A)
2024 		enable_1394a = false;
2025 
2026 	/* Configure PHY and link consistently. */
2027 	if (enable_1394a) {
2028 		clear = 0;
2029 		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2030 	} else {
2031 		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2032 		set = 0;
2033 	}
2034 	ret = update_phy_reg(ohci, 5, clear, set);
2035 	if (ret < 0)
2036 		return ret;
2037 
2038 	if (enable_1394a)
2039 		offset = OHCI1394_HCControlSet;
2040 	else
2041 		offset = OHCI1394_HCControlClear;
2042 	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2043 
2044 	/* Clean up: configuration has been taken care of. */
2045 	reg_write(ohci, OHCI1394_HCControlClear,
2046 		  OHCI1394_HCControl_programPhyEnable);
2047 
2048 	return 0;
2049 }
2050 
2051 static int ohci_enable(struct fw_card *card,
2052 		       const __be32 *config_rom, size_t length)
2053 {
2054 	struct fw_ohci *ohci = fw_ohci(card);
2055 	struct pci_dev *dev = to_pci_dev(card->device);
2056 	u32 lps, seconds, version, irqs;
2057 	int i, ret;
2058 
2059 	if (software_reset(ohci)) {
2060 		fw_error("Failed to reset ohci card.\n");
2061 		return -EBUSY;
2062 	}
2063 
2064 	/*
2065 	 * Now enable LPS, which we need in order to start accessing
2066 	 * most of the registers.  In fact, on some cards (ALI M5251),
2067 	 * accessing registers in the SClk domain without LPS enabled
2068 	 * will lock up the machine.  Wait 50msec to make sure we have
2069 	 * full link enabled.  However, with some cards (well, at least
2070 	 * a JMicron PCIe card), we have to try again sometimes.
2071 	 */
2072 	reg_write(ohci, OHCI1394_HCControlSet,
2073 		  OHCI1394_HCControl_LPS |
2074 		  OHCI1394_HCControl_postedWriteEnable);
2075 	flush_writes(ohci);
2076 
2077 	for (lps = 0, i = 0; !lps && i < 3; i++) {
2078 		msleep(50);
2079 		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2080 		      OHCI1394_HCControl_LPS;
2081 	}
2082 
2083 	if (!lps) {
2084 		fw_error("Failed to set Link Power Status\n");
2085 		return -EIO;
2086 	}
2087 
2088 	reg_write(ohci, OHCI1394_HCControlClear,
2089 		  OHCI1394_HCControl_noByteSwapData);
2090 
2091 	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2092 	reg_write(ohci, OHCI1394_LinkControlSet,
2093 		  OHCI1394_LinkControl_cycleTimerEnable |
2094 		  OHCI1394_LinkControl_cycleMaster);
2095 
2096 	reg_write(ohci, OHCI1394_ATRetries,
2097 		  OHCI1394_MAX_AT_REQ_RETRIES |
2098 		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2099 		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2100 		  (200 << 16));
2101 
2102 	seconds = lower_32_bits(get_seconds());
2103 	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2104 	ohci->bus_time = seconds & ~0x3f;
2105 
2106 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2107 	if (version >= OHCI_VERSION_1_1) {
2108 		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2109 			  0xfffffffe);
2110 		card->broadcast_channel_auto_allocated = true;
2111 	}
2112 
2113 	/* Get implemented bits of the priority arbitration request counter. */
2114 	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2115 	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2116 	reg_write(ohci, OHCI1394_FairnessControl, 0);
2117 	card->priority_budget_implemented = ohci->pri_req_max != 0;
2118 
2119 	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2120 	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2121 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2122 
2123 	ret = configure_1394a_enhancements(ohci);
2124 	if (ret < 0)
2125 		return ret;
2126 
2127 	/* Activate link_on bit and contender bit in our self ID packets.*/
2128 	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2129 	if (ret < 0)
2130 		return ret;
2131 
2132 	/*
2133 	 * When the link is not yet enabled, the atomic config rom
2134 	 * update mechanism described below in ohci_set_config_rom()
2135 	 * is not active.  We have to update ConfigRomHeader and
2136 	 * BusOptions manually, and the write to ConfigROMmap takes
2137 	 * effect immediately.  We tie this to the enabling of the
2138 	 * link, so we have a valid config rom before enabling - the
2139 	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2140 	 * values before enabling.
2141 	 *
2142 	 * However, when the ConfigROMmap is written, some controllers
2143 	 * always read back quadlets 0 and 2 from the config rom to
2144 	 * the ConfigRomHeader and BusOptions registers on bus reset.
2145 	 * They shouldn't do that in this initial case where the link
2146 	 * isn't enabled.  This means we have to use the same
2147 	 * workaround here, setting the bus header to 0 and then write
2148 	 * the right values in the bus reset tasklet.
2149 	 */
2150 
2151 	if (config_rom) {
2152 		ohci->next_config_rom =
2153 			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2154 					   &ohci->next_config_rom_bus,
2155 					   GFP_KERNEL);
2156 		if (ohci->next_config_rom == NULL)
2157 			return -ENOMEM;
2158 
2159 		copy_config_rom(ohci->next_config_rom, config_rom, length);
2160 	} else {
2161 		/*
2162 		 * In the suspend case, config_rom is NULL, which
2163 		 * means that we just reuse the old config rom.
2164 		 */
2165 		ohci->next_config_rom = ohci->config_rom;
2166 		ohci->next_config_rom_bus = ohci->config_rom_bus;
2167 	}
2168 
2169 	ohci->next_header = ohci->next_config_rom[0];
2170 	ohci->next_config_rom[0] = 0;
2171 	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2172 	reg_write(ohci, OHCI1394_BusOptions,
2173 		  be32_to_cpu(ohci->next_config_rom[2]));
2174 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2175 
2176 	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2177 
2178 	if (!(ohci->quirks & QUIRK_NO_MSI))
2179 		pci_enable_msi(dev);
2180 	if (request_irq(dev->irq, irq_handler,
2181 			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2182 			ohci_driver_name, ohci)) {
2183 		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2184 		pci_disable_msi(dev);
2185 
2186 		if (config_rom) {
2187 			dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2188 					  ohci->next_config_rom,
2189 					  ohci->next_config_rom_bus);
2190 			ohci->next_config_rom = NULL;
2191 		}
2192 		return -EIO;
2193 	}
2194 
2195 	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2196 		OHCI1394_RQPkt | OHCI1394_RSPkt |
2197 		OHCI1394_isochTx | OHCI1394_isochRx |
2198 		OHCI1394_postedWriteErr |
2199 		OHCI1394_selfIDComplete |
2200 		OHCI1394_regAccessFail |
2201 		OHCI1394_cycle64Seconds |
2202 		OHCI1394_cycleInconsistent |
2203 		OHCI1394_unrecoverableError |
2204 		OHCI1394_cycleTooLong |
2205 		OHCI1394_masterIntEnable;
2206 	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2207 		irqs |= OHCI1394_busReset;
2208 	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2209 
2210 	reg_write(ohci, OHCI1394_HCControlSet,
2211 		  OHCI1394_HCControl_linkEnable |
2212 		  OHCI1394_HCControl_BIBimageValid);
2213 
2214 	reg_write(ohci, OHCI1394_LinkControlSet,
2215 		  OHCI1394_LinkControl_rcvSelfID |
2216 		  OHCI1394_LinkControl_rcvPhyPkt);
2217 
2218 	ar_context_run(&ohci->ar_request_ctx);
2219 	ar_context_run(&ohci->ar_response_ctx);
2220 
2221 	flush_writes(ohci);
2222 
2223 	/* We are ready to go, reset bus to finish initialization. */
2224 	fw_schedule_bus_reset(&ohci->card, false, true);
2225 
2226 	return 0;
2227 }
2228 
2229 static int ohci_set_config_rom(struct fw_card *card,
2230 			       const __be32 *config_rom, size_t length)
2231 {
2232 	struct fw_ohci *ohci;
2233 	unsigned long flags;
2234 	__be32 *next_config_rom;
2235 	dma_addr_t uninitialized_var(next_config_rom_bus);
2236 
2237 	ohci = fw_ohci(card);
2238 
2239 	/*
2240 	 * When the OHCI controller is enabled, the config rom update
2241 	 * mechanism is a bit tricky, but easy enough to use.  See
2242 	 * section 5.5.6 in the OHCI specification.
2243 	 *
2244 	 * The OHCI controller caches the new config rom address in a
2245 	 * shadow register (ConfigROMmapNext) and needs a bus reset
2246 	 * for the changes to take place.  When the bus reset is
2247 	 * detected, the controller loads the new values for the
2248 	 * ConfigRomHeader and BusOptions registers from the specified
2249 	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2250 	 * shadow register. All automatically and atomically.
2251 	 *
2252 	 * Now, there's a twist to this story.  The automatic load of
2253 	 * ConfigRomHeader and BusOptions doesn't honor the
2254 	 * noByteSwapData bit, so with a be32 config rom, the
2255 	 * controller will load be32 values in to these registers
2256 	 * during the atomic update, even on litte endian
2257 	 * architectures.  The workaround we use is to put a 0 in the
2258 	 * header quadlet; 0 is endian agnostic and means that the
2259 	 * config rom isn't ready yet.  In the bus reset tasklet we
2260 	 * then set up the real values for the two registers.
2261 	 *
2262 	 * We use ohci->lock to avoid racing with the code that sets
2263 	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2264 	 */
2265 
2266 	next_config_rom =
2267 		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2268 				   &next_config_rom_bus, GFP_KERNEL);
2269 	if (next_config_rom == NULL)
2270 		return -ENOMEM;
2271 
2272 	spin_lock_irqsave(&ohci->lock, flags);
2273 
2274 	/*
2275 	 * If there is not an already pending config_rom update,
2276 	 * push our new allocation into the ohci->next_config_rom
2277 	 * and then mark the local variable as null so that we
2278 	 * won't deallocate the new buffer.
2279 	 *
2280 	 * OTOH, if there is a pending config_rom update, just
2281 	 * use that buffer with the new config_rom data, and
2282 	 * let this routine free the unused DMA allocation.
2283 	 */
2284 
2285 	if (ohci->next_config_rom == NULL) {
2286 		ohci->next_config_rom = next_config_rom;
2287 		ohci->next_config_rom_bus = next_config_rom_bus;
2288 		next_config_rom = NULL;
2289 	}
2290 
2291 	copy_config_rom(ohci->next_config_rom, config_rom, length);
2292 
2293 	ohci->next_header = config_rom[0];
2294 	ohci->next_config_rom[0] = 0;
2295 
2296 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2297 
2298 	spin_unlock_irqrestore(&ohci->lock, flags);
2299 
2300 	/* If we didn't use the DMA allocation, delete it. */
2301 	if (next_config_rom != NULL)
2302 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2303 				  next_config_rom, next_config_rom_bus);
2304 
2305 	/*
2306 	 * Now initiate a bus reset to have the changes take
2307 	 * effect. We clean up the old config rom memory and DMA
2308 	 * mappings in the bus reset tasklet, since the OHCI
2309 	 * controller could need to access it before the bus reset
2310 	 * takes effect.
2311 	 */
2312 
2313 	fw_schedule_bus_reset(&ohci->card, true, true);
2314 
2315 	return 0;
2316 }
2317 
2318 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2319 {
2320 	struct fw_ohci *ohci = fw_ohci(card);
2321 
2322 	at_context_transmit(&ohci->at_request_ctx, packet);
2323 }
2324 
2325 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2326 {
2327 	struct fw_ohci *ohci = fw_ohci(card);
2328 
2329 	at_context_transmit(&ohci->at_response_ctx, packet);
2330 }
2331 
2332 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2333 {
2334 	struct fw_ohci *ohci = fw_ohci(card);
2335 	struct context *ctx = &ohci->at_request_ctx;
2336 	struct driver_data *driver_data = packet->driver_data;
2337 	int ret = -ENOENT;
2338 
2339 	tasklet_disable(&ctx->tasklet);
2340 
2341 	if (packet->ack != 0)
2342 		goto out;
2343 
2344 	if (packet->payload_mapped)
2345 		dma_unmap_single(ohci->card.device, packet->payload_bus,
2346 				 packet->payload_length, DMA_TO_DEVICE);
2347 
2348 	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2349 	driver_data->packet = NULL;
2350 	packet->ack = RCODE_CANCELLED;
2351 	packet->callback(packet, &ohci->card, packet->ack);
2352 	ret = 0;
2353  out:
2354 	tasklet_enable(&ctx->tasklet);
2355 
2356 	return ret;
2357 }
2358 
2359 static int ohci_enable_phys_dma(struct fw_card *card,
2360 				int node_id, int generation)
2361 {
2362 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2363 	return 0;
2364 #else
2365 	struct fw_ohci *ohci = fw_ohci(card);
2366 	unsigned long flags;
2367 	int n, ret = 0;
2368 
2369 	/*
2370 	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2371 	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2372 	 */
2373 
2374 	spin_lock_irqsave(&ohci->lock, flags);
2375 
2376 	if (ohci->generation != generation) {
2377 		ret = -ESTALE;
2378 		goto out;
2379 	}
2380 
2381 	/*
2382 	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2383 	 * enabled for _all_ nodes on remote buses.
2384 	 */
2385 
2386 	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2387 	if (n < 32)
2388 		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2389 	else
2390 		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2391 
2392 	flush_writes(ohci);
2393  out:
2394 	spin_unlock_irqrestore(&ohci->lock, flags);
2395 
2396 	return ret;
2397 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2398 }
2399 
2400 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2401 {
2402 	struct fw_ohci *ohci = fw_ohci(card);
2403 	unsigned long flags;
2404 	u32 value;
2405 
2406 	switch (csr_offset) {
2407 	case CSR_STATE_CLEAR:
2408 	case CSR_STATE_SET:
2409 		if (ohci->is_root &&
2410 		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2411 		     OHCI1394_LinkControl_cycleMaster))
2412 			value = CSR_STATE_BIT_CMSTR;
2413 		else
2414 			value = 0;
2415 		if (ohci->csr_state_setclear_abdicate)
2416 			value |= CSR_STATE_BIT_ABDICATE;
2417 
2418 		return value;
2419 
2420 	case CSR_NODE_IDS:
2421 		return reg_read(ohci, OHCI1394_NodeID) << 16;
2422 
2423 	case CSR_CYCLE_TIME:
2424 		return get_cycle_time(ohci);
2425 
2426 	case CSR_BUS_TIME:
2427 		/*
2428 		 * We might be called just after the cycle timer has wrapped
2429 		 * around but just before the cycle64Seconds handler, so we
2430 		 * better check here, too, if the bus time needs to be updated.
2431 		 */
2432 		spin_lock_irqsave(&ohci->lock, flags);
2433 		value = update_bus_time(ohci);
2434 		spin_unlock_irqrestore(&ohci->lock, flags);
2435 		return value;
2436 
2437 	case CSR_BUSY_TIMEOUT:
2438 		value = reg_read(ohci, OHCI1394_ATRetries);
2439 		return (value >> 4) & 0x0ffff00f;
2440 
2441 	case CSR_PRIORITY_BUDGET:
2442 		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2443 			(ohci->pri_req_max << 8);
2444 
2445 	default:
2446 		WARN_ON(1);
2447 		return 0;
2448 	}
2449 }
2450 
2451 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2452 {
2453 	struct fw_ohci *ohci = fw_ohci(card);
2454 	unsigned long flags;
2455 
2456 	switch (csr_offset) {
2457 	case CSR_STATE_CLEAR:
2458 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2459 			reg_write(ohci, OHCI1394_LinkControlClear,
2460 				  OHCI1394_LinkControl_cycleMaster);
2461 			flush_writes(ohci);
2462 		}
2463 		if (value & CSR_STATE_BIT_ABDICATE)
2464 			ohci->csr_state_setclear_abdicate = false;
2465 		break;
2466 
2467 	case CSR_STATE_SET:
2468 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2469 			reg_write(ohci, OHCI1394_LinkControlSet,
2470 				  OHCI1394_LinkControl_cycleMaster);
2471 			flush_writes(ohci);
2472 		}
2473 		if (value & CSR_STATE_BIT_ABDICATE)
2474 			ohci->csr_state_setclear_abdicate = true;
2475 		break;
2476 
2477 	case CSR_NODE_IDS:
2478 		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2479 		flush_writes(ohci);
2480 		break;
2481 
2482 	case CSR_CYCLE_TIME:
2483 		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2484 		reg_write(ohci, OHCI1394_IntEventSet,
2485 			  OHCI1394_cycleInconsistent);
2486 		flush_writes(ohci);
2487 		break;
2488 
2489 	case CSR_BUS_TIME:
2490 		spin_lock_irqsave(&ohci->lock, flags);
2491 		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2492 		spin_unlock_irqrestore(&ohci->lock, flags);
2493 		break;
2494 
2495 	case CSR_BUSY_TIMEOUT:
2496 		value = (value & 0xf) | ((value & 0xf) << 4) |
2497 			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2498 		reg_write(ohci, OHCI1394_ATRetries, value);
2499 		flush_writes(ohci);
2500 		break;
2501 
2502 	case CSR_PRIORITY_BUDGET:
2503 		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2504 		flush_writes(ohci);
2505 		break;
2506 
2507 	default:
2508 		WARN_ON(1);
2509 		break;
2510 	}
2511 }
2512 
2513 static void copy_iso_headers(struct iso_context *ctx, void *p)
2514 {
2515 	int i = ctx->header_length;
2516 
2517 	if (i + ctx->base.header_size > PAGE_SIZE)
2518 		return;
2519 
2520 	/*
2521 	 * The iso header is byteswapped to little endian by
2522 	 * the controller, but the remaining header quadlets
2523 	 * are big endian.  We want to present all the headers
2524 	 * as big endian, so we have to swap the first quadlet.
2525 	 */
2526 	if (ctx->base.header_size > 0)
2527 		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2528 	if (ctx->base.header_size > 4)
2529 		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2530 	if (ctx->base.header_size > 8)
2531 		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2532 	ctx->header_length += ctx->base.header_size;
2533 }
2534 
2535 static int handle_ir_packet_per_buffer(struct context *context,
2536 				       struct descriptor *d,
2537 				       struct descriptor *last)
2538 {
2539 	struct iso_context *ctx =
2540 		container_of(context, struct iso_context, context);
2541 	struct descriptor *pd;
2542 	__le32 *ir_header;
2543 	void *p;
2544 
2545 	for (pd = d; pd <= last; pd++)
2546 		if (pd->transfer_status)
2547 			break;
2548 	if (pd > last)
2549 		/* Descriptor(s) not done yet, stop iteration */
2550 		return 0;
2551 
2552 	p = last + 1;
2553 	copy_iso_headers(ctx, p);
2554 
2555 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2556 		ir_header = (__le32 *) p;
2557 		ctx->base.callback.sc(&ctx->base,
2558 				      le32_to_cpu(ir_header[0]) & 0xffff,
2559 				      ctx->header_length, ctx->header,
2560 				      ctx->base.callback_data);
2561 		ctx->header_length = 0;
2562 	}
2563 
2564 	return 1;
2565 }
2566 
2567 /* d == last because each descriptor block is only a single descriptor. */
2568 static int handle_ir_buffer_fill(struct context *context,
2569 				 struct descriptor *d,
2570 				 struct descriptor *last)
2571 {
2572 	struct iso_context *ctx =
2573 		container_of(context, struct iso_context, context);
2574 
2575 	if (!last->transfer_status)
2576 		/* Descriptor(s) not done yet, stop iteration */
2577 		return 0;
2578 
2579 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2580 		ctx->base.callback.mc(&ctx->base,
2581 				      le32_to_cpu(last->data_address) +
2582 				      le16_to_cpu(last->req_count) -
2583 				      le16_to_cpu(last->res_count),
2584 				      ctx->base.callback_data);
2585 
2586 	return 1;
2587 }
2588 
2589 static int handle_it_packet(struct context *context,
2590 			    struct descriptor *d,
2591 			    struct descriptor *last)
2592 {
2593 	struct iso_context *ctx =
2594 		container_of(context, struct iso_context, context);
2595 	int i;
2596 	struct descriptor *pd;
2597 
2598 	for (pd = d; pd <= last; pd++)
2599 		if (pd->transfer_status)
2600 			break;
2601 	if (pd > last)
2602 		/* Descriptor(s) not done yet, stop iteration */
2603 		return 0;
2604 
2605 	i = ctx->header_length;
2606 	if (i + 4 < PAGE_SIZE) {
2607 		/* Present this value as big-endian to match the receive code */
2608 		*(__be32 *)(ctx->header + i) = cpu_to_be32(
2609 				((u32)le16_to_cpu(pd->transfer_status) << 16) |
2610 				le16_to_cpu(pd->res_count));
2611 		ctx->header_length += 4;
2612 	}
2613 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2614 		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2615 				      ctx->header_length, ctx->header,
2616 				      ctx->base.callback_data);
2617 		ctx->header_length = 0;
2618 	}
2619 	return 1;
2620 }
2621 
2622 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2623 {
2624 	u32 hi = channels >> 32, lo = channels;
2625 
2626 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2627 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2628 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2629 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2630 	mmiowb();
2631 	ohci->mc_channels = channels;
2632 }
2633 
2634 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2635 				int type, int channel, size_t header_size)
2636 {
2637 	struct fw_ohci *ohci = fw_ohci(card);
2638 	struct iso_context *uninitialized_var(ctx);
2639 	descriptor_callback_t uninitialized_var(callback);
2640 	u64 *uninitialized_var(channels);
2641 	u32 *uninitialized_var(mask), uninitialized_var(regs);
2642 	unsigned long flags;
2643 	int index, ret = -EBUSY;
2644 
2645 	spin_lock_irqsave(&ohci->lock, flags);
2646 
2647 	switch (type) {
2648 	case FW_ISO_CONTEXT_TRANSMIT:
2649 		mask     = &ohci->it_context_mask;
2650 		callback = handle_it_packet;
2651 		index    = ffs(*mask) - 1;
2652 		if (index >= 0) {
2653 			*mask &= ~(1 << index);
2654 			regs = OHCI1394_IsoXmitContextBase(index);
2655 			ctx  = &ohci->it_context_list[index];
2656 		}
2657 		break;
2658 
2659 	case FW_ISO_CONTEXT_RECEIVE:
2660 		channels = &ohci->ir_context_channels;
2661 		mask     = &ohci->ir_context_mask;
2662 		callback = handle_ir_packet_per_buffer;
2663 		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2664 		if (index >= 0) {
2665 			*channels &= ~(1ULL << channel);
2666 			*mask     &= ~(1 << index);
2667 			regs = OHCI1394_IsoRcvContextBase(index);
2668 			ctx  = &ohci->ir_context_list[index];
2669 		}
2670 		break;
2671 
2672 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2673 		mask     = &ohci->ir_context_mask;
2674 		callback = handle_ir_buffer_fill;
2675 		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2676 		if (index >= 0) {
2677 			ohci->mc_allocated = true;
2678 			*mask &= ~(1 << index);
2679 			regs = OHCI1394_IsoRcvContextBase(index);
2680 			ctx  = &ohci->ir_context_list[index];
2681 		}
2682 		break;
2683 
2684 	default:
2685 		index = -1;
2686 		ret = -ENOSYS;
2687 	}
2688 
2689 	spin_unlock_irqrestore(&ohci->lock, flags);
2690 
2691 	if (index < 0)
2692 		return ERR_PTR(ret);
2693 
2694 	memset(ctx, 0, sizeof(*ctx));
2695 	ctx->header_length = 0;
2696 	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2697 	if (ctx->header == NULL) {
2698 		ret = -ENOMEM;
2699 		goto out;
2700 	}
2701 	ret = context_init(&ctx->context, ohci, regs, callback);
2702 	if (ret < 0)
2703 		goto out_with_header;
2704 
2705 	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2706 		set_multichannel_mask(ohci, 0);
2707 
2708 	return &ctx->base;
2709 
2710  out_with_header:
2711 	free_page((unsigned long)ctx->header);
2712  out:
2713 	spin_lock_irqsave(&ohci->lock, flags);
2714 
2715 	switch (type) {
2716 	case FW_ISO_CONTEXT_RECEIVE:
2717 		*channels |= 1ULL << channel;
2718 		break;
2719 
2720 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2721 		ohci->mc_allocated = false;
2722 		break;
2723 	}
2724 	*mask |= 1 << index;
2725 
2726 	spin_unlock_irqrestore(&ohci->lock, flags);
2727 
2728 	return ERR_PTR(ret);
2729 }
2730 
2731 static int ohci_start_iso(struct fw_iso_context *base,
2732 			  s32 cycle, u32 sync, u32 tags)
2733 {
2734 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2735 	struct fw_ohci *ohci = ctx->context.ohci;
2736 	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2737 	int index;
2738 
2739 	/* the controller cannot start without any queued packets */
2740 	if (ctx->context.last->branch_address == 0)
2741 		return -ENODATA;
2742 
2743 	switch (ctx->base.type) {
2744 	case FW_ISO_CONTEXT_TRANSMIT:
2745 		index = ctx - ohci->it_context_list;
2746 		match = 0;
2747 		if (cycle >= 0)
2748 			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2749 				(cycle & 0x7fff) << 16;
2750 
2751 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2752 		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2753 		context_run(&ctx->context, match);
2754 		break;
2755 
2756 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2757 		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2758 		/* fall through */
2759 	case FW_ISO_CONTEXT_RECEIVE:
2760 		index = ctx - ohci->ir_context_list;
2761 		match = (tags << 28) | (sync << 8) | ctx->base.channel;
2762 		if (cycle >= 0) {
2763 			match |= (cycle & 0x07fff) << 12;
2764 			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2765 		}
2766 
2767 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2768 		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2769 		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2770 		context_run(&ctx->context, control);
2771 
2772 		ctx->sync = sync;
2773 		ctx->tags = tags;
2774 
2775 		break;
2776 	}
2777 
2778 	return 0;
2779 }
2780 
2781 static int ohci_stop_iso(struct fw_iso_context *base)
2782 {
2783 	struct fw_ohci *ohci = fw_ohci(base->card);
2784 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2785 	int index;
2786 
2787 	switch (ctx->base.type) {
2788 	case FW_ISO_CONTEXT_TRANSMIT:
2789 		index = ctx - ohci->it_context_list;
2790 		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2791 		break;
2792 
2793 	case FW_ISO_CONTEXT_RECEIVE:
2794 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2795 		index = ctx - ohci->ir_context_list;
2796 		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2797 		break;
2798 	}
2799 	flush_writes(ohci);
2800 	context_stop(&ctx->context);
2801 	tasklet_kill(&ctx->context.tasklet);
2802 
2803 	return 0;
2804 }
2805 
2806 static void ohci_free_iso_context(struct fw_iso_context *base)
2807 {
2808 	struct fw_ohci *ohci = fw_ohci(base->card);
2809 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2810 	unsigned long flags;
2811 	int index;
2812 
2813 	ohci_stop_iso(base);
2814 	context_release(&ctx->context);
2815 	free_page((unsigned long)ctx->header);
2816 
2817 	spin_lock_irqsave(&ohci->lock, flags);
2818 
2819 	switch (base->type) {
2820 	case FW_ISO_CONTEXT_TRANSMIT:
2821 		index = ctx - ohci->it_context_list;
2822 		ohci->it_context_mask |= 1 << index;
2823 		break;
2824 
2825 	case FW_ISO_CONTEXT_RECEIVE:
2826 		index = ctx - ohci->ir_context_list;
2827 		ohci->ir_context_mask |= 1 << index;
2828 		ohci->ir_context_channels |= 1ULL << base->channel;
2829 		break;
2830 
2831 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2832 		index = ctx - ohci->ir_context_list;
2833 		ohci->ir_context_mask |= 1 << index;
2834 		ohci->ir_context_channels |= ohci->mc_channels;
2835 		ohci->mc_channels = 0;
2836 		ohci->mc_allocated = false;
2837 		break;
2838 	}
2839 
2840 	spin_unlock_irqrestore(&ohci->lock, flags);
2841 }
2842 
2843 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2844 {
2845 	struct fw_ohci *ohci = fw_ohci(base->card);
2846 	unsigned long flags;
2847 	int ret;
2848 
2849 	switch (base->type) {
2850 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2851 
2852 		spin_lock_irqsave(&ohci->lock, flags);
2853 
2854 		/* Don't allow multichannel to grab other contexts' channels. */
2855 		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2856 			*channels = ohci->ir_context_channels;
2857 			ret = -EBUSY;
2858 		} else {
2859 			set_multichannel_mask(ohci, *channels);
2860 			ret = 0;
2861 		}
2862 
2863 		spin_unlock_irqrestore(&ohci->lock, flags);
2864 
2865 		break;
2866 	default:
2867 		ret = -EINVAL;
2868 	}
2869 
2870 	return ret;
2871 }
2872 
2873 #ifdef CONFIG_PM
2874 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
2875 {
2876 	int i;
2877 	struct iso_context *ctx;
2878 
2879 	for (i = 0 ; i < ohci->n_ir ; i++) {
2880 		ctx = &ohci->ir_context_list[i];
2881 		if (ctx->context.running)
2882 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2883 	}
2884 
2885 	for (i = 0 ; i < ohci->n_it ; i++) {
2886 		ctx = &ohci->it_context_list[i];
2887 		if (ctx->context.running)
2888 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2889 	}
2890 }
2891 #endif
2892 
2893 static int queue_iso_transmit(struct iso_context *ctx,
2894 			      struct fw_iso_packet *packet,
2895 			      struct fw_iso_buffer *buffer,
2896 			      unsigned long payload)
2897 {
2898 	struct descriptor *d, *last, *pd;
2899 	struct fw_iso_packet *p;
2900 	__le32 *header;
2901 	dma_addr_t d_bus, page_bus;
2902 	u32 z, header_z, payload_z, irq;
2903 	u32 payload_index, payload_end_index, next_page_index;
2904 	int page, end_page, i, length, offset;
2905 
2906 	p = packet;
2907 	payload_index = payload;
2908 
2909 	if (p->skip)
2910 		z = 1;
2911 	else
2912 		z = 2;
2913 	if (p->header_length > 0)
2914 		z++;
2915 
2916 	/* Determine the first page the payload isn't contained in. */
2917 	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2918 	if (p->payload_length > 0)
2919 		payload_z = end_page - (payload_index >> PAGE_SHIFT);
2920 	else
2921 		payload_z = 0;
2922 
2923 	z += payload_z;
2924 
2925 	/* Get header size in number of descriptors. */
2926 	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2927 
2928 	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2929 	if (d == NULL)
2930 		return -ENOMEM;
2931 
2932 	if (!p->skip) {
2933 		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2934 		d[0].req_count = cpu_to_le16(8);
2935 		/*
2936 		 * Link the skip address to this descriptor itself.  This causes
2937 		 * a context to skip a cycle whenever lost cycles or FIFO
2938 		 * overruns occur, without dropping the data.  The application
2939 		 * should then decide whether this is an error condition or not.
2940 		 * FIXME:  Make the context's cycle-lost behaviour configurable?
2941 		 */
2942 		d[0].branch_address = cpu_to_le32(d_bus | z);
2943 
2944 		header = (__le32 *) &d[1];
2945 		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2946 					IT_HEADER_TAG(p->tag) |
2947 					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2948 					IT_HEADER_CHANNEL(ctx->base.channel) |
2949 					IT_HEADER_SPEED(ctx->base.speed));
2950 		header[1] =
2951 			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2952 							  p->payload_length));
2953 	}
2954 
2955 	if (p->header_length > 0) {
2956 		d[2].req_count    = cpu_to_le16(p->header_length);
2957 		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2958 		memcpy(&d[z], p->header, p->header_length);
2959 	}
2960 
2961 	pd = d + z - payload_z;
2962 	payload_end_index = payload_index + p->payload_length;
2963 	for (i = 0; i < payload_z; i++) {
2964 		page               = payload_index >> PAGE_SHIFT;
2965 		offset             = payload_index & ~PAGE_MASK;
2966 		next_page_index    = (page + 1) << PAGE_SHIFT;
2967 		length             =
2968 			min(next_page_index, payload_end_index) - payload_index;
2969 		pd[i].req_count    = cpu_to_le16(length);
2970 
2971 		page_bus = page_private(buffer->pages[page]);
2972 		pd[i].data_address = cpu_to_le32(page_bus + offset);
2973 
2974 		payload_index += length;
2975 	}
2976 
2977 	if (p->interrupt)
2978 		irq = DESCRIPTOR_IRQ_ALWAYS;
2979 	else
2980 		irq = DESCRIPTOR_NO_IRQ;
2981 
2982 	last = z == 2 ? d : d + z - 1;
2983 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2984 				     DESCRIPTOR_STATUS |
2985 				     DESCRIPTOR_BRANCH_ALWAYS |
2986 				     irq);
2987 
2988 	context_append(&ctx->context, d, z, header_z);
2989 
2990 	return 0;
2991 }
2992 
2993 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2994 				       struct fw_iso_packet *packet,
2995 				       struct fw_iso_buffer *buffer,
2996 				       unsigned long payload)
2997 {
2998 	struct descriptor *d, *pd;
2999 	dma_addr_t d_bus, page_bus;
3000 	u32 z, header_z, rest;
3001 	int i, j, length;
3002 	int page, offset, packet_count, header_size, payload_per_buffer;
3003 
3004 	/*
3005 	 * The OHCI controller puts the isochronous header and trailer in the
3006 	 * buffer, so we need at least 8 bytes.
3007 	 */
3008 	packet_count = packet->header_length / ctx->base.header_size;
3009 	header_size  = max(ctx->base.header_size, (size_t)8);
3010 
3011 	/* Get header size in number of descriptors. */
3012 	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3013 	page     = payload >> PAGE_SHIFT;
3014 	offset   = payload & ~PAGE_MASK;
3015 	payload_per_buffer = packet->payload_length / packet_count;
3016 
3017 	for (i = 0; i < packet_count; i++) {
3018 		/* d points to the header descriptor */
3019 		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3020 		d = context_get_descriptors(&ctx->context,
3021 				z + header_z, &d_bus);
3022 		if (d == NULL)
3023 			return -ENOMEM;
3024 
3025 		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3026 					      DESCRIPTOR_INPUT_MORE);
3027 		if (packet->skip && i == 0)
3028 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3029 		d->req_count    = cpu_to_le16(header_size);
3030 		d->res_count    = d->req_count;
3031 		d->transfer_status = 0;
3032 		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3033 
3034 		rest = payload_per_buffer;
3035 		pd = d;
3036 		for (j = 1; j < z; j++) {
3037 			pd++;
3038 			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3039 						  DESCRIPTOR_INPUT_MORE);
3040 
3041 			if (offset + rest < PAGE_SIZE)
3042 				length = rest;
3043 			else
3044 				length = PAGE_SIZE - offset;
3045 			pd->req_count = cpu_to_le16(length);
3046 			pd->res_count = pd->req_count;
3047 			pd->transfer_status = 0;
3048 
3049 			page_bus = page_private(buffer->pages[page]);
3050 			pd->data_address = cpu_to_le32(page_bus + offset);
3051 
3052 			offset = (offset + length) & ~PAGE_MASK;
3053 			rest -= length;
3054 			if (offset == 0)
3055 				page++;
3056 		}
3057 		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3058 					  DESCRIPTOR_INPUT_LAST |
3059 					  DESCRIPTOR_BRANCH_ALWAYS);
3060 		if (packet->interrupt && i == packet_count - 1)
3061 			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3062 
3063 		context_append(&ctx->context, d, z, header_z);
3064 	}
3065 
3066 	return 0;
3067 }
3068 
3069 static int queue_iso_buffer_fill(struct iso_context *ctx,
3070 				 struct fw_iso_packet *packet,
3071 				 struct fw_iso_buffer *buffer,
3072 				 unsigned long payload)
3073 {
3074 	struct descriptor *d;
3075 	dma_addr_t d_bus, page_bus;
3076 	int page, offset, rest, z, i, length;
3077 
3078 	page   = payload >> PAGE_SHIFT;
3079 	offset = payload & ~PAGE_MASK;
3080 	rest   = packet->payload_length;
3081 
3082 	/* We need one descriptor for each page in the buffer. */
3083 	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3084 
3085 	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3086 		return -EFAULT;
3087 
3088 	for (i = 0; i < z; i++) {
3089 		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3090 		if (d == NULL)
3091 			return -ENOMEM;
3092 
3093 		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3094 					 DESCRIPTOR_BRANCH_ALWAYS);
3095 		if (packet->skip && i == 0)
3096 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3097 		if (packet->interrupt && i == z - 1)
3098 			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3099 
3100 		if (offset + rest < PAGE_SIZE)
3101 			length = rest;
3102 		else
3103 			length = PAGE_SIZE - offset;
3104 		d->req_count = cpu_to_le16(length);
3105 		d->res_count = d->req_count;
3106 		d->transfer_status = 0;
3107 
3108 		page_bus = page_private(buffer->pages[page]);
3109 		d->data_address = cpu_to_le32(page_bus + offset);
3110 
3111 		rest -= length;
3112 		offset = 0;
3113 		page++;
3114 
3115 		context_append(&ctx->context, d, 1, 0);
3116 	}
3117 
3118 	return 0;
3119 }
3120 
3121 static int ohci_queue_iso(struct fw_iso_context *base,
3122 			  struct fw_iso_packet *packet,
3123 			  struct fw_iso_buffer *buffer,
3124 			  unsigned long payload)
3125 {
3126 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3127 	unsigned long flags;
3128 	int ret = -ENOSYS;
3129 
3130 	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3131 	switch (base->type) {
3132 	case FW_ISO_CONTEXT_TRANSMIT:
3133 		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3134 		break;
3135 	case FW_ISO_CONTEXT_RECEIVE:
3136 		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3137 		break;
3138 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3139 		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3140 		break;
3141 	}
3142 	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3143 
3144 	return ret;
3145 }
3146 
3147 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3148 {
3149 	struct context *ctx =
3150 			&container_of(base, struct iso_context, base)->context;
3151 
3152 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3153 }
3154 
3155 static const struct fw_card_driver ohci_driver = {
3156 	.enable			= ohci_enable,
3157 	.read_phy_reg		= ohci_read_phy_reg,
3158 	.update_phy_reg		= ohci_update_phy_reg,
3159 	.set_config_rom		= ohci_set_config_rom,
3160 	.send_request		= ohci_send_request,
3161 	.send_response		= ohci_send_response,
3162 	.cancel_packet		= ohci_cancel_packet,
3163 	.enable_phys_dma	= ohci_enable_phys_dma,
3164 	.read_csr		= ohci_read_csr,
3165 	.write_csr		= ohci_write_csr,
3166 
3167 	.allocate_iso_context	= ohci_allocate_iso_context,
3168 	.free_iso_context	= ohci_free_iso_context,
3169 	.set_iso_channels	= ohci_set_iso_channels,
3170 	.queue_iso		= ohci_queue_iso,
3171 	.flush_queue_iso	= ohci_flush_queue_iso,
3172 	.start_iso		= ohci_start_iso,
3173 	.stop_iso		= ohci_stop_iso,
3174 };
3175 
3176 #ifdef CONFIG_PPC_PMAC
3177 static void pmac_ohci_on(struct pci_dev *dev)
3178 {
3179 	if (machine_is(powermac)) {
3180 		struct device_node *ofn = pci_device_to_OF_node(dev);
3181 
3182 		if (ofn) {
3183 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3184 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3185 		}
3186 	}
3187 }
3188 
3189 static void pmac_ohci_off(struct pci_dev *dev)
3190 {
3191 	if (machine_is(powermac)) {
3192 		struct device_node *ofn = pci_device_to_OF_node(dev);
3193 
3194 		if (ofn) {
3195 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3196 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3197 		}
3198 	}
3199 }
3200 #else
3201 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3202 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3203 #endif /* CONFIG_PPC_PMAC */
3204 
3205 static int __devinit pci_probe(struct pci_dev *dev,
3206 			       const struct pci_device_id *ent)
3207 {
3208 	struct fw_ohci *ohci;
3209 	u32 bus_options, max_receive, link_speed, version;
3210 	u64 guid;
3211 	int i, err;
3212 	size_t size;
3213 
3214 	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3215 		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3216 		return -ENOSYS;
3217 	}
3218 
3219 	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3220 	if (ohci == NULL) {
3221 		err = -ENOMEM;
3222 		goto fail;
3223 	}
3224 
3225 	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3226 
3227 	pmac_ohci_on(dev);
3228 
3229 	err = pci_enable_device(dev);
3230 	if (err) {
3231 		fw_error("Failed to enable OHCI hardware\n");
3232 		goto fail_free;
3233 	}
3234 
3235 	pci_set_master(dev);
3236 	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3237 	pci_set_drvdata(dev, ohci);
3238 
3239 	spin_lock_init(&ohci->lock);
3240 	mutex_init(&ohci->phy_reg_mutex);
3241 
3242 	tasklet_init(&ohci->bus_reset_tasklet,
3243 		     bus_reset_tasklet, (unsigned long)ohci);
3244 
3245 	err = pci_request_region(dev, 0, ohci_driver_name);
3246 	if (err) {
3247 		fw_error("MMIO resource unavailable\n");
3248 		goto fail_disable;
3249 	}
3250 
3251 	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3252 	if (ohci->registers == NULL) {
3253 		fw_error("Failed to remap registers\n");
3254 		err = -ENXIO;
3255 		goto fail_iomem;
3256 	}
3257 
3258 	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3259 		if ((ohci_quirks[i].vendor == dev->vendor) &&
3260 		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3261 		     ohci_quirks[i].device == dev->device) &&
3262 		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3263 		     ohci_quirks[i].revision >= dev->revision)) {
3264 			ohci->quirks = ohci_quirks[i].flags;
3265 			break;
3266 		}
3267 	if (param_quirks)
3268 		ohci->quirks = param_quirks;
3269 
3270 	/*
3271 	 * Because dma_alloc_coherent() allocates at least one page,
3272 	 * we save space by using a common buffer for the AR request/
3273 	 * response descriptors and the self IDs buffer.
3274 	 */
3275 	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3276 	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3277 	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3278 					       PAGE_SIZE,
3279 					       &ohci->misc_buffer_bus,
3280 					       GFP_KERNEL);
3281 	if (!ohci->misc_buffer) {
3282 		err = -ENOMEM;
3283 		goto fail_iounmap;
3284 	}
3285 
3286 	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3287 			      OHCI1394_AsReqRcvContextControlSet);
3288 	if (err < 0)
3289 		goto fail_misc_buf;
3290 
3291 	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3292 			      OHCI1394_AsRspRcvContextControlSet);
3293 	if (err < 0)
3294 		goto fail_arreq_ctx;
3295 
3296 	err = context_init(&ohci->at_request_ctx, ohci,
3297 			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3298 	if (err < 0)
3299 		goto fail_arrsp_ctx;
3300 
3301 	err = context_init(&ohci->at_response_ctx, ohci,
3302 			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3303 	if (err < 0)
3304 		goto fail_atreq_ctx;
3305 
3306 	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3307 	ohci->ir_context_channels = ~0ULL;
3308 	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3309 	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3310 	ohci->ir_context_mask = ohci->ir_context_support;
3311 	ohci->n_ir = hweight32(ohci->ir_context_mask);
3312 	size = sizeof(struct iso_context) * ohci->n_ir;
3313 	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3314 
3315 	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3316 	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3317 	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3318 	ohci->it_context_mask = ohci->it_context_support;
3319 	ohci->n_it = hweight32(ohci->it_context_mask);
3320 	size = sizeof(struct iso_context) * ohci->n_it;
3321 	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3322 
3323 	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3324 		err = -ENOMEM;
3325 		goto fail_contexts;
3326 	}
3327 
3328 	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
3329 	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3330 
3331 	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3332 	max_receive = (bus_options >> 12) & 0xf;
3333 	link_speed = bus_options & 0x7;
3334 	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3335 		reg_read(ohci, OHCI1394_GUIDLo);
3336 
3337 	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3338 	if (err)
3339 		goto fail_contexts;
3340 
3341 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3342 	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3343 		  "%d IR + %d IT contexts, quirks 0x%x\n",
3344 		  dev_name(&dev->dev), version >> 16, version & 0xff,
3345 		  ohci->n_ir, ohci->n_it, ohci->quirks);
3346 
3347 	return 0;
3348 
3349  fail_contexts:
3350 	kfree(ohci->ir_context_list);
3351 	kfree(ohci->it_context_list);
3352 	context_release(&ohci->at_response_ctx);
3353  fail_atreq_ctx:
3354 	context_release(&ohci->at_request_ctx);
3355  fail_arrsp_ctx:
3356 	ar_context_release(&ohci->ar_response_ctx);
3357  fail_arreq_ctx:
3358 	ar_context_release(&ohci->ar_request_ctx);
3359  fail_misc_buf:
3360 	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3361 			  ohci->misc_buffer, ohci->misc_buffer_bus);
3362  fail_iounmap:
3363 	pci_iounmap(dev, ohci->registers);
3364  fail_iomem:
3365 	pci_release_region(dev, 0);
3366  fail_disable:
3367 	pci_disable_device(dev);
3368  fail_free:
3369 	kfree(ohci);
3370 	pmac_ohci_off(dev);
3371  fail:
3372 	if (err == -ENOMEM)
3373 		fw_error("Out of memory\n");
3374 
3375 	return err;
3376 }
3377 
3378 static void pci_remove(struct pci_dev *dev)
3379 {
3380 	struct fw_ohci *ohci;
3381 
3382 	ohci = pci_get_drvdata(dev);
3383 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3384 	flush_writes(ohci);
3385 	fw_core_remove_card(&ohci->card);
3386 
3387 	/*
3388 	 * FIXME: Fail all pending packets here, now that the upper
3389 	 * layers can't queue any more.
3390 	 */
3391 
3392 	software_reset(ohci);
3393 	free_irq(dev->irq, ohci);
3394 
3395 	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3396 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3397 				  ohci->next_config_rom, ohci->next_config_rom_bus);
3398 	if (ohci->config_rom)
3399 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3400 				  ohci->config_rom, ohci->config_rom_bus);
3401 	ar_context_release(&ohci->ar_request_ctx);
3402 	ar_context_release(&ohci->ar_response_ctx);
3403 	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3404 			  ohci->misc_buffer, ohci->misc_buffer_bus);
3405 	context_release(&ohci->at_request_ctx);
3406 	context_release(&ohci->at_response_ctx);
3407 	kfree(ohci->it_context_list);
3408 	kfree(ohci->ir_context_list);
3409 	pci_disable_msi(dev);
3410 	pci_iounmap(dev, ohci->registers);
3411 	pci_release_region(dev, 0);
3412 	pci_disable_device(dev);
3413 	kfree(ohci);
3414 	pmac_ohci_off(dev);
3415 
3416 	fw_notify("Removed fw-ohci device.\n");
3417 }
3418 
3419 #ifdef CONFIG_PM
3420 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3421 {
3422 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3423 	int err;
3424 
3425 	software_reset(ohci);
3426 	free_irq(dev->irq, ohci);
3427 	pci_disable_msi(dev);
3428 	err = pci_save_state(dev);
3429 	if (err) {
3430 		fw_error("pci_save_state failed\n");
3431 		return err;
3432 	}
3433 	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3434 	if (err)
3435 		fw_error("pci_set_power_state failed with %d\n", err);
3436 	pmac_ohci_off(dev);
3437 
3438 	return 0;
3439 }
3440 
3441 static int pci_resume(struct pci_dev *dev)
3442 {
3443 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3444 	int err;
3445 
3446 	pmac_ohci_on(dev);
3447 	pci_set_power_state(dev, PCI_D0);
3448 	pci_restore_state(dev);
3449 	err = pci_enable_device(dev);
3450 	if (err) {
3451 		fw_error("pci_enable_device failed\n");
3452 		return err;
3453 	}
3454 
3455 	/* Some systems don't setup GUID register on resume from ram  */
3456 	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3457 					!reg_read(ohci, OHCI1394_GUIDHi)) {
3458 		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3459 		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3460 	}
3461 
3462 	err = ohci_enable(&ohci->card, NULL, 0);
3463 	if (err)
3464 		return err;
3465 
3466 	ohci_resume_iso_dma(ohci);
3467 
3468 	return 0;
3469 }
3470 #endif
3471 
3472 static const struct pci_device_id pci_table[] = {
3473 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3474 	{ }
3475 };
3476 
3477 MODULE_DEVICE_TABLE(pci, pci_table);
3478 
3479 static struct pci_driver fw_ohci_pci_driver = {
3480 	.name		= ohci_driver_name,
3481 	.id_table	= pci_table,
3482 	.probe		= pci_probe,
3483 	.remove		= pci_remove,
3484 #ifdef CONFIG_PM
3485 	.resume		= pci_resume,
3486 	.suspend	= pci_suspend,
3487 #endif
3488 };
3489 
3490 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3491 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3492 MODULE_LICENSE("GPL");
3493 
3494 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3495 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3496 MODULE_ALIAS("ohci1394");
3497 #endif
3498 
3499 static int __init fw_ohci_init(void)
3500 {
3501 	return pci_register_driver(&fw_ohci_pci_driver);
3502 }
3503 
3504 static void __exit fw_ohci_cleanup(void)
3505 {
3506 	pci_unregister_driver(&fw_ohci_pci_driver);
3507 }
3508 
3509 module_init(fw_ohci_init);
3510 module_exit(fw_ohci_cleanup);
3511