xref: /openbmc/linux/drivers/firewire/ohci.c (revision 81d67439)
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 
46 #include <asm/byteorder.h>
47 #include <asm/page.h>
48 #include <asm/system.h>
49 
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
53 
54 #include "core.h"
55 #include "ohci.h"
56 
57 #define DESCRIPTOR_OUTPUT_MORE		0
58 #define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
59 #define DESCRIPTOR_INPUT_MORE		(2 << 12)
60 #define DESCRIPTOR_INPUT_LAST		(3 << 12)
61 #define DESCRIPTOR_STATUS		(1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
63 #define DESCRIPTOR_PING			(1 << 7)
64 #define DESCRIPTOR_YY			(1 << 6)
65 #define DESCRIPTOR_NO_IRQ		(0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR		(1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
69 #define DESCRIPTOR_WAIT			(3 << 0)
70 
71 struct descriptor {
72 	__le16 req_count;
73 	__le16 control;
74 	__le32 data_address;
75 	__le32 branch_address;
76 	__le16 res_count;
77 	__le16 transfer_status;
78 } __attribute__((aligned(16)));
79 
80 #define CONTROL_SET(regs)	(regs)
81 #define CONTROL_CLEAR(regs)	((regs) + 4)
82 #define COMMAND_PTR(regs)	((regs) + 12)
83 #define CONTEXT_MATCH(regs)	((regs) + 16)
84 
85 #define AR_BUFFER_SIZE	(32*1024)
86 #define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
89 
90 #define MAX_ASYNC_PAYLOAD	4096
91 #define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93 
94 struct ar_context {
95 	struct fw_ohci *ohci;
96 	struct page *pages[AR_BUFFERS];
97 	void *buffer;
98 	struct descriptor *descriptors;
99 	dma_addr_t descriptors_bus;
100 	void *pointer;
101 	unsigned int last_buffer_index;
102 	u32 regs;
103 	struct tasklet_struct tasklet;
104 };
105 
106 struct context;
107 
108 typedef int (*descriptor_callback_t)(struct context *ctx,
109 				     struct descriptor *d,
110 				     struct descriptor *last);
111 
112 /*
113  * A buffer that contains a block of DMA-able coherent memory used for
114  * storing a portion of a DMA descriptor program.
115  */
116 struct descriptor_buffer {
117 	struct list_head list;
118 	dma_addr_t buffer_bus;
119 	size_t buffer_size;
120 	size_t used;
121 	struct descriptor buffer[0];
122 };
123 
124 struct context {
125 	struct fw_ohci *ohci;
126 	u32 regs;
127 	int total_allocation;
128 	bool running;
129 	bool flushing;
130 
131 	/*
132 	 * List of page-sized buffers for storing DMA descriptors.
133 	 * Head of list contains buffers in use and tail of list contains
134 	 * free buffers.
135 	 */
136 	struct list_head buffer_list;
137 
138 	/*
139 	 * Pointer to a buffer inside buffer_list that contains the tail
140 	 * end of the current DMA program.
141 	 */
142 	struct descriptor_buffer *buffer_tail;
143 
144 	/*
145 	 * The descriptor containing the branch address of the first
146 	 * descriptor that has not yet been filled by the device.
147 	 */
148 	struct descriptor *last;
149 
150 	/*
151 	 * The last descriptor in the DMA program.  It contains the branch
152 	 * address that must be updated upon appending a new descriptor.
153 	 */
154 	struct descriptor *prev;
155 
156 	descriptor_callback_t callback;
157 
158 	struct tasklet_struct tasklet;
159 };
160 
161 #define IT_HEADER_SY(v)          ((v) <<  0)
162 #define IT_HEADER_TCODE(v)       ((v) <<  4)
163 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
164 #define IT_HEADER_TAG(v)         ((v) << 14)
165 #define IT_HEADER_SPEED(v)       ((v) << 16)
166 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
167 
168 struct iso_context {
169 	struct fw_iso_context base;
170 	struct context context;
171 	int excess_bytes;
172 	void *header;
173 	size_t header_length;
174 
175 	u8 sync;
176 	u8 tags;
177 };
178 
179 #define CONFIG_ROM_SIZE 1024
180 
181 struct fw_ohci {
182 	struct fw_card card;
183 
184 	__iomem char *registers;
185 	int node_id;
186 	int generation;
187 	int request_generation;	/* for timestamping incoming requests */
188 	unsigned quirks;
189 	unsigned int pri_req_max;
190 	u32 bus_time;
191 	bool is_root;
192 	bool csr_state_setclear_abdicate;
193 	int n_ir;
194 	int n_it;
195 	/*
196 	 * Spinlock for accessing fw_ohci data.  Never call out of
197 	 * this driver with this lock held.
198 	 */
199 	spinlock_t lock;
200 
201 	struct mutex phy_reg_mutex;
202 
203 	void *misc_buffer;
204 	dma_addr_t misc_buffer_bus;
205 
206 	struct ar_context ar_request_ctx;
207 	struct ar_context ar_response_ctx;
208 	struct context at_request_ctx;
209 	struct context at_response_ctx;
210 
211 	u32 it_context_support;
212 	u32 it_context_mask;     /* unoccupied IT contexts */
213 	struct iso_context *it_context_list;
214 	u64 ir_context_channels; /* unoccupied channels */
215 	u32 ir_context_support;
216 	u32 ir_context_mask;     /* unoccupied IR contexts */
217 	struct iso_context *ir_context_list;
218 	u64 mc_channels; /* channels in use by the multichannel IR context */
219 	bool mc_allocated;
220 
221 	__be32    *config_rom;
222 	dma_addr_t config_rom_bus;
223 	__be32    *next_config_rom;
224 	dma_addr_t next_config_rom_bus;
225 	__be32     next_header;
226 
227 	__le32    *self_id_cpu;
228 	dma_addr_t self_id_bus;
229 	struct tasklet_struct bus_reset_tasklet;
230 
231 	u32 self_id_buffer[512];
232 };
233 
234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 {
236 	return container_of(card, struct fw_ohci, card);
237 }
238 
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
240 #define IR_CONTEXT_BUFFER_FILL		0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER		0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
245 
246 #define CONTEXT_RUN	0x8000
247 #define CONTEXT_WAKE	0x1000
248 #define CONTEXT_DEAD	0x0800
249 #define CONTEXT_ACTIVE	0x0400
250 
251 #define OHCI1394_MAX_AT_REQ_RETRIES	0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES	0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
254 
255 #define OHCI1394_REGISTER_SIZE		0x800
256 #define OHCI1394_PCI_HCI_Control	0x40
257 #define SELF_ID_BUF_SIZE		0x800
258 #define OHCI_TCODE_PHY_PACKET		0x0e
259 #define OHCI_VERSION_1_1		0x010010
260 
261 static char ohci_driver_name[] = KBUILD_MODNAME;
262 
263 #define PCI_DEVICE_ID_AGERE_FW643	0x5901
264 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
265 #define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
266 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
267 
268 #define QUIRK_CYCLE_TIMER		1
269 #define QUIRK_RESET_PACKET		2
270 #define QUIRK_BE_HEADERS		4
271 #define QUIRK_NO_1394A			8
272 #define QUIRK_NO_MSI			16
273 
274 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
275 static const struct {
276 	unsigned short vendor, device, revision, flags;
277 } ohci_quirks[] = {
278 	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
279 		QUIRK_CYCLE_TIMER},
280 
281 	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
282 		QUIRK_BE_HEADERS},
283 
284 	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
285 		QUIRK_NO_MSI},
286 
287 	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
288 		QUIRK_NO_MSI},
289 
290 	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
291 		QUIRK_CYCLE_TIMER},
292 
293 	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
294 		QUIRK_CYCLE_TIMER},
295 
296 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
297 		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
298 
299 	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
300 		QUIRK_RESET_PACKET},
301 
302 	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
303 		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
304 };
305 
306 /* This overrides anything that was found in ohci_quirks[]. */
307 static int param_quirks;
308 module_param_named(quirks, param_quirks, int, 0644);
309 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
310 	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
311 	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
312 	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
313 	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
314 	", disable MSI = "		__stringify(QUIRK_NO_MSI)
315 	")");
316 
317 #define OHCI_PARAM_DEBUG_AT_AR		1
318 #define OHCI_PARAM_DEBUG_SELFIDS	2
319 #define OHCI_PARAM_DEBUG_IRQS		4
320 #define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
321 
322 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
323 
324 static int param_debug;
325 module_param_named(debug, param_debug, int, 0644);
326 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
327 	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
328 	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
329 	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
330 	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
331 	", or a combination, or all = -1)");
332 
333 static void log_irqs(u32 evt)
334 {
335 	if (likely(!(param_debug &
336 			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
337 		return;
338 
339 	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
340 	    !(evt & OHCI1394_busReset))
341 		return;
342 
343 	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
344 	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
345 	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
346 	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
347 	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
348 	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
349 	    evt & OHCI1394_isochRx		? " IR"			: "",
350 	    evt & OHCI1394_isochTx		? " IT"			: "",
351 	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
352 	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
353 	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
354 	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
355 	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
356 	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
357 	    evt & OHCI1394_busReset		? " busReset"		: "",
358 	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
359 		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
360 		    OHCI1394_respTxComplete | OHCI1394_isochRx |
361 		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
362 		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
363 		    OHCI1394_cycleInconsistent |
364 		    OHCI1394_regAccessFail | OHCI1394_busReset)
365 						? " ?"			: "");
366 }
367 
368 static const char *speed[] = {
369 	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
370 };
371 static const char *power[] = {
372 	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
373 	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
374 };
375 static const char port[] = { '.', '-', 'p', 'c', };
376 
377 static char _p(u32 *s, int shift)
378 {
379 	return port[*s >> shift & 3];
380 }
381 
382 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
383 {
384 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
385 		return;
386 
387 	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
388 		  self_id_count, generation, node_id);
389 
390 	for (; self_id_count--; ++s)
391 		if ((*s & 1 << 23) == 0)
392 			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
393 			    "%s gc=%d %s %s%s%s\n",
394 			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
395 			    speed[*s >> 14 & 3], *s >> 16 & 63,
396 			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
397 			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
398 		else
399 			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
400 			    *s, *s >> 24 & 63,
401 			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
402 			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
403 }
404 
405 static const char *evts[] = {
406 	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
407 	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
408 	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
409 	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
410 	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
411 	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
412 	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
413 	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
414 	[0x10] = "-reserved-",		[0x11] = "ack_complete",
415 	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
416 	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
417 	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
418 	[0x18] = "-reserved-",		[0x19] = "-reserved-",
419 	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
420 	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
421 	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
422 	[0x20] = "pending/cancelled",
423 };
424 static const char *tcodes[] = {
425 	[0x0] = "QW req",		[0x1] = "BW req",
426 	[0x2] = "W resp",		[0x3] = "-reserved-",
427 	[0x4] = "QR req",		[0x5] = "BR req",
428 	[0x6] = "QR resp",		[0x7] = "BR resp",
429 	[0x8] = "cycle start",		[0x9] = "Lk req",
430 	[0xa] = "async stream packet",	[0xb] = "Lk resp",
431 	[0xc] = "-reserved-",		[0xd] = "-reserved-",
432 	[0xe] = "link internal",	[0xf] = "-reserved-",
433 };
434 
435 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
436 {
437 	int tcode = header[0] >> 4 & 0xf;
438 	char specific[12];
439 
440 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
441 		return;
442 
443 	if (unlikely(evt >= ARRAY_SIZE(evts)))
444 			evt = 0x1f;
445 
446 	if (evt == OHCI1394_evt_bus_reset) {
447 		fw_notify("A%c evt_bus_reset, generation %d\n",
448 		    dir, (header[2] >> 16) & 0xff);
449 		return;
450 	}
451 
452 	switch (tcode) {
453 	case 0x0: case 0x6: case 0x8:
454 		snprintf(specific, sizeof(specific), " = %08x",
455 			 be32_to_cpu((__force __be32)header[3]));
456 		break;
457 	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
458 		snprintf(specific, sizeof(specific), " %x,%x",
459 			 header[3] >> 16, header[3] & 0xffff);
460 		break;
461 	default:
462 		specific[0] = '\0';
463 	}
464 
465 	switch (tcode) {
466 	case 0xa:
467 		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
468 		break;
469 	case 0xe:
470 		fw_notify("A%c %s, PHY %08x %08x\n",
471 			  dir, evts[evt], header[1], header[2]);
472 		break;
473 	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
474 		fw_notify("A%c spd %x tl %02x, "
475 		    "%04x -> %04x, %s, "
476 		    "%s, %04x%08x%s\n",
477 		    dir, speed, header[0] >> 10 & 0x3f,
478 		    header[1] >> 16, header[0] >> 16, evts[evt],
479 		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
480 		break;
481 	default:
482 		fw_notify("A%c spd %x tl %02x, "
483 		    "%04x -> %04x, %s, "
484 		    "%s%s\n",
485 		    dir, speed, header[0] >> 10 & 0x3f,
486 		    header[1] >> 16, header[0] >> 16, evts[evt],
487 		    tcodes[tcode], specific);
488 	}
489 }
490 
491 #else
492 
493 #define param_debug 0
494 static inline void log_irqs(u32 evt) {}
495 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
496 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
497 
498 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
499 
500 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
501 {
502 	writel(data, ohci->registers + offset);
503 }
504 
505 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
506 {
507 	return readl(ohci->registers + offset);
508 }
509 
510 static inline void flush_writes(const struct fw_ohci *ohci)
511 {
512 	/* Do a dummy read to flush writes. */
513 	reg_read(ohci, OHCI1394_Version);
514 }
515 
516 /*
517  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
518  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
519  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
520  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
521  */
522 static int read_phy_reg(struct fw_ohci *ohci, int addr)
523 {
524 	u32 val;
525 	int i;
526 
527 	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
528 	for (i = 0; i < 3 + 100; i++) {
529 		val = reg_read(ohci, OHCI1394_PhyControl);
530 		if (!~val)
531 			return -ENODEV; /* Card was ejected. */
532 
533 		if (val & OHCI1394_PhyControl_ReadDone)
534 			return OHCI1394_PhyControl_ReadData(val);
535 
536 		/*
537 		 * Try a few times without waiting.  Sleeping is necessary
538 		 * only when the link/PHY interface is busy.
539 		 */
540 		if (i >= 3)
541 			msleep(1);
542 	}
543 	fw_error("failed to read phy reg\n");
544 
545 	return -EBUSY;
546 }
547 
548 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
549 {
550 	int i;
551 
552 	reg_write(ohci, OHCI1394_PhyControl,
553 		  OHCI1394_PhyControl_Write(addr, val));
554 	for (i = 0; i < 3 + 100; i++) {
555 		val = reg_read(ohci, OHCI1394_PhyControl);
556 		if (!~val)
557 			return -ENODEV; /* Card was ejected. */
558 
559 		if (!(val & OHCI1394_PhyControl_WritePending))
560 			return 0;
561 
562 		if (i >= 3)
563 			msleep(1);
564 	}
565 	fw_error("failed to write phy reg\n");
566 
567 	return -EBUSY;
568 }
569 
570 static int update_phy_reg(struct fw_ohci *ohci, int addr,
571 			  int clear_bits, int set_bits)
572 {
573 	int ret = read_phy_reg(ohci, addr);
574 	if (ret < 0)
575 		return ret;
576 
577 	/*
578 	 * The interrupt status bits are cleared by writing a one bit.
579 	 * Avoid clearing them unless explicitly requested in set_bits.
580 	 */
581 	if (addr == 5)
582 		clear_bits |= PHY_INT_STATUS_BITS;
583 
584 	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
585 }
586 
587 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
588 {
589 	int ret;
590 
591 	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
592 	if (ret < 0)
593 		return ret;
594 
595 	return read_phy_reg(ohci, addr);
596 }
597 
598 static int ohci_read_phy_reg(struct fw_card *card, int addr)
599 {
600 	struct fw_ohci *ohci = fw_ohci(card);
601 	int ret;
602 
603 	mutex_lock(&ohci->phy_reg_mutex);
604 	ret = read_phy_reg(ohci, addr);
605 	mutex_unlock(&ohci->phy_reg_mutex);
606 
607 	return ret;
608 }
609 
610 static int ohci_update_phy_reg(struct fw_card *card, int addr,
611 			       int clear_bits, int set_bits)
612 {
613 	struct fw_ohci *ohci = fw_ohci(card);
614 	int ret;
615 
616 	mutex_lock(&ohci->phy_reg_mutex);
617 	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
618 	mutex_unlock(&ohci->phy_reg_mutex);
619 
620 	return ret;
621 }
622 
623 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
624 {
625 	return page_private(ctx->pages[i]);
626 }
627 
628 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
629 {
630 	struct descriptor *d;
631 
632 	d = &ctx->descriptors[index];
633 	d->branch_address  &= cpu_to_le32(~0xf);
634 	d->res_count       =  cpu_to_le16(PAGE_SIZE);
635 	d->transfer_status =  0;
636 
637 	wmb(); /* finish init of new descriptors before branch_address update */
638 	d = &ctx->descriptors[ctx->last_buffer_index];
639 	d->branch_address  |= cpu_to_le32(1);
640 
641 	ctx->last_buffer_index = index;
642 
643 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
644 }
645 
646 static void ar_context_release(struct ar_context *ctx)
647 {
648 	unsigned int i;
649 
650 	if (ctx->buffer)
651 		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
652 
653 	for (i = 0; i < AR_BUFFERS; i++)
654 		if (ctx->pages[i]) {
655 			dma_unmap_page(ctx->ohci->card.device,
656 				       ar_buffer_bus(ctx, i),
657 				       PAGE_SIZE, DMA_FROM_DEVICE);
658 			__free_page(ctx->pages[i]);
659 		}
660 }
661 
662 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
663 {
664 	if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
665 		reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
666 		flush_writes(ctx->ohci);
667 
668 		fw_error("AR error: %s; DMA stopped\n", error_msg);
669 	}
670 	/* FIXME: restart? */
671 }
672 
673 static inline unsigned int ar_next_buffer_index(unsigned int index)
674 {
675 	return (index + 1) % AR_BUFFERS;
676 }
677 
678 static inline unsigned int ar_prev_buffer_index(unsigned int index)
679 {
680 	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
681 }
682 
683 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
684 {
685 	return ar_next_buffer_index(ctx->last_buffer_index);
686 }
687 
688 /*
689  * We search for the buffer that contains the last AR packet DMA data written
690  * by the controller.
691  */
692 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
693 						 unsigned int *buffer_offset)
694 {
695 	unsigned int i, next_i, last = ctx->last_buffer_index;
696 	__le16 res_count, next_res_count;
697 
698 	i = ar_first_buffer_index(ctx);
699 	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
700 
701 	/* A buffer that is not yet completely filled must be the last one. */
702 	while (i != last && res_count == 0) {
703 
704 		/* Peek at the next descriptor. */
705 		next_i = ar_next_buffer_index(i);
706 		rmb(); /* read descriptors in order */
707 		next_res_count = ACCESS_ONCE(
708 				ctx->descriptors[next_i].res_count);
709 		/*
710 		 * If the next descriptor is still empty, we must stop at this
711 		 * descriptor.
712 		 */
713 		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
714 			/*
715 			 * The exception is when the DMA data for one packet is
716 			 * split over three buffers; in this case, the middle
717 			 * buffer's descriptor might be never updated by the
718 			 * controller and look still empty, and we have to peek
719 			 * at the third one.
720 			 */
721 			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
722 				next_i = ar_next_buffer_index(next_i);
723 				rmb();
724 				next_res_count = ACCESS_ONCE(
725 					ctx->descriptors[next_i].res_count);
726 				if (next_res_count != cpu_to_le16(PAGE_SIZE))
727 					goto next_buffer_is_active;
728 			}
729 
730 			break;
731 		}
732 
733 next_buffer_is_active:
734 		i = next_i;
735 		res_count = next_res_count;
736 	}
737 
738 	rmb(); /* read res_count before the DMA data */
739 
740 	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
741 	if (*buffer_offset > PAGE_SIZE) {
742 		*buffer_offset = 0;
743 		ar_context_abort(ctx, "corrupted descriptor");
744 	}
745 
746 	return i;
747 }
748 
749 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
750 				    unsigned int end_buffer_index,
751 				    unsigned int end_buffer_offset)
752 {
753 	unsigned int i;
754 
755 	i = ar_first_buffer_index(ctx);
756 	while (i != end_buffer_index) {
757 		dma_sync_single_for_cpu(ctx->ohci->card.device,
758 					ar_buffer_bus(ctx, i),
759 					PAGE_SIZE, DMA_FROM_DEVICE);
760 		i = ar_next_buffer_index(i);
761 	}
762 	if (end_buffer_offset > 0)
763 		dma_sync_single_for_cpu(ctx->ohci->card.device,
764 					ar_buffer_bus(ctx, i),
765 					end_buffer_offset, DMA_FROM_DEVICE);
766 }
767 
768 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
769 #define cond_le32_to_cpu(v) \
770 	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
771 #else
772 #define cond_le32_to_cpu(v) le32_to_cpu(v)
773 #endif
774 
775 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
776 {
777 	struct fw_ohci *ohci = ctx->ohci;
778 	struct fw_packet p;
779 	u32 status, length, tcode;
780 	int evt;
781 
782 	p.header[0] = cond_le32_to_cpu(buffer[0]);
783 	p.header[1] = cond_le32_to_cpu(buffer[1]);
784 	p.header[2] = cond_le32_to_cpu(buffer[2]);
785 
786 	tcode = (p.header[0] >> 4) & 0x0f;
787 	switch (tcode) {
788 	case TCODE_WRITE_QUADLET_REQUEST:
789 	case TCODE_READ_QUADLET_RESPONSE:
790 		p.header[3] = (__force __u32) buffer[3];
791 		p.header_length = 16;
792 		p.payload_length = 0;
793 		break;
794 
795 	case TCODE_READ_BLOCK_REQUEST :
796 		p.header[3] = cond_le32_to_cpu(buffer[3]);
797 		p.header_length = 16;
798 		p.payload_length = 0;
799 		break;
800 
801 	case TCODE_WRITE_BLOCK_REQUEST:
802 	case TCODE_READ_BLOCK_RESPONSE:
803 	case TCODE_LOCK_REQUEST:
804 	case TCODE_LOCK_RESPONSE:
805 		p.header[3] = cond_le32_to_cpu(buffer[3]);
806 		p.header_length = 16;
807 		p.payload_length = p.header[3] >> 16;
808 		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
809 			ar_context_abort(ctx, "invalid packet length");
810 			return NULL;
811 		}
812 		break;
813 
814 	case TCODE_WRITE_RESPONSE:
815 	case TCODE_READ_QUADLET_REQUEST:
816 	case OHCI_TCODE_PHY_PACKET:
817 		p.header_length = 12;
818 		p.payload_length = 0;
819 		break;
820 
821 	default:
822 		ar_context_abort(ctx, "invalid tcode");
823 		return NULL;
824 	}
825 
826 	p.payload = (void *) buffer + p.header_length;
827 
828 	/* FIXME: What to do about evt_* errors? */
829 	length = (p.header_length + p.payload_length + 3) / 4;
830 	status = cond_le32_to_cpu(buffer[length]);
831 	evt    = (status >> 16) & 0x1f;
832 
833 	p.ack        = evt - 16;
834 	p.speed      = (status >> 21) & 0x7;
835 	p.timestamp  = status & 0xffff;
836 	p.generation = ohci->request_generation;
837 
838 	log_ar_at_event('R', p.speed, p.header, evt);
839 
840 	/*
841 	 * Several controllers, notably from NEC and VIA, forget to
842 	 * write ack_complete status at PHY packet reception.
843 	 */
844 	if (evt == OHCI1394_evt_no_status &&
845 	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
846 		p.ack = ACK_COMPLETE;
847 
848 	/*
849 	 * The OHCI bus reset handler synthesizes a PHY packet with
850 	 * the new generation number when a bus reset happens (see
851 	 * section 8.4.2.3).  This helps us determine when a request
852 	 * was received and make sure we send the response in the same
853 	 * generation.  We only need this for requests; for responses
854 	 * we use the unique tlabel for finding the matching
855 	 * request.
856 	 *
857 	 * Alas some chips sometimes emit bus reset packets with a
858 	 * wrong generation.  We set the correct generation for these
859 	 * at a slightly incorrect time (in bus_reset_tasklet).
860 	 */
861 	if (evt == OHCI1394_evt_bus_reset) {
862 		if (!(ohci->quirks & QUIRK_RESET_PACKET))
863 			ohci->request_generation = (p.header[2] >> 16) & 0xff;
864 	} else if (ctx == &ohci->ar_request_ctx) {
865 		fw_core_handle_request(&ohci->card, &p);
866 	} else {
867 		fw_core_handle_response(&ohci->card, &p);
868 	}
869 
870 	return buffer + length + 1;
871 }
872 
873 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
874 {
875 	void *next;
876 
877 	while (p < end) {
878 		next = handle_ar_packet(ctx, p);
879 		if (!next)
880 			return p;
881 		p = next;
882 	}
883 
884 	return p;
885 }
886 
887 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
888 {
889 	unsigned int i;
890 
891 	i = ar_first_buffer_index(ctx);
892 	while (i != end_buffer) {
893 		dma_sync_single_for_device(ctx->ohci->card.device,
894 					   ar_buffer_bus(ctx, i),
895 					   PAGE_SIZE, DMA_FROM_DEVICE);
896 		ar_context_link_page(ctx, i);
897 		i = ar_next_buffer_index(i);
898 	}
899 }
900 
901 static void ar_context_tasklet(unsigned long data)
902 {
903 	struct ar_context *ctx = (struct ar_context *)data;
904 	unsigned int end_buffer_index, end_buffer_offset;
905 	void *p, *end;
906 
907 	p = ctx->pointer;
908 	if (!p)
909 		return;
910 
911 	end_buffer_index = ar_search_last_active_buffer(ctx,
912 							&end_buffer_offset);
913 	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
914 	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
915 
916 	if (end_buffer_index < ar_first_buffer_index(ctx)) {
917 		/*
918 		 * The filled part of the overall buffer wraps around; handle
919 		 * all packets up to the buffer end here.  If the last packet
920 		 * wraps around, its tail will be visible after the buffer end
921 		 * because the buffer start pages are mapped there again.
922 		 */
923 		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
924 		p = handle_ar_packets(ctx, p, buffer_end);
925 		if (p < buffer_end)
926 			goto error;
927 		/* adjust p to point back into the actual buffer */
928 		p -= AR_BUFFERS * PAGE_SIZE;
929 	}
930 
931 	p = handle_ar_packets(ctx, p, end);
932 	if (p != end) {
933 		if (p > end)
934 			ar_context_abort(ctx, "inconsistent descriptor");
935 		goto error;
936 	}
937 
938 	ctx->pointer = p;
939 	ar_recycle_buffers(ctx, end_buffer_index);
940 
941 	return;
942 
943 error:
944 	ctx->pointer = NULL;
945 }
946 
947 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
948 			   unsigned int descriptors_offset, u32 regs)
949 {
950 	unsigned int i;
951 	dma_addr_t dma_addr;
952 	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
953 	struct descriptor *d;
954 
955 	ctx->regs        = regs;
956 	ctx->ohci        = ohci;
957 	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
958 
959 	for (i = 0; i < AR_BUFFERS; i++) {
960 		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
961 		if (!ctx->pages[i])
962 			goto out_of_memory;
963 		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
964 					0, PAGE_SIZE, DMA_FROM_DEVICE);
965 		if (dma_mapping_error(ohci->card.device, dma_addr)) {
966 			__free_page(ctx->pages[i]);
967 			ctx->pages[i] = NULL;
968 			goto out_of_memory;
969 		}
970 		set_page_private(ctx->pages[i], dma_addr);
971 	}
972 
973 	for (i = 0; i < AR_BUFFERS; i++)
974 		pages[i]              = ctx->pages[i];
975 	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
976 		pages[AR_BUFFERS + i] = ctx->pages[i];
977 	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
978 				 -1, PAGE_KERNEL);
979 	if (!ctx->buffer)
980 		goto out_of_memory;
981 
982 	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
983 	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
984 
985 	for (i = 0; i < AR_BUFFERS; i++) {
986 		d = &ctx->descriptors[i];
987 		d->req_count      = cpu_to_le16(PAGE_SIZE);
988 		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
989 						DESCRIPTOR_STATUS |
990 						DESCRIPTOR_BRANCH_ALWAYS);
991 		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
992 		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
993 			ar_next_buffer_index(i) * sizeof(struct descriptor));
994 	}
995 
996 	return 0;
997 
998 out_of_memory:
999 	ar_context_release(ctx);
1000 
1001 	return -ENOMEM;
1002 }
1003 
1004 static void ar_context_run(struct ar_context *ctx)
1005 {
1006 	unsigned int i;
1007 
1008 	for (i = 0; i < AR_BUFFERS; i++)
1009 		ar_context_link_page(ctx, i);
1010 
1011 	ctx->pointer = ctx->buffer;
1012 
1013 	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1014 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1015 }
1016 
1017 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1018 {
1019 	__le16 branch;
1020 
1021 	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1022 
1023 	/* figure out which descriptor the branch address goes in */
1024 	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1025 		return d;
1026 	else
1027 		return d + z - 1;
1028 }
1029 
1030 static void context_tasklet(unsigned long data)
1031 {
1032 	struct context *ctx = (struct context *) data;
1033 	struct descriptor *d, *last;
1034 	u32 address;
1035 	int z;
1036 	struct descriptor_buffer *desc;
1037 
1038 	desc = list_entry(ctx->buffer_list.next,
1039 			struct descriptor_buffer, list);
1040 	last = ctx->last;
1041 	while (last->branch_address != 0) {
1042 		struct descriptor_buffer *old_desc = desc;
1043 		address = le32_to_cpu(last->branch_address);
1044 		z = address & 0xf;
1045 		address &= ~0xf;
1046 
1047 		/* If the branch address points to a buffer outside of the
1048 		 * current buffer, advance to the next buffer. */
1049 		if (address < desc->buffer_bus ||
1050 				address >= desc->buffer_bus + desc->used)
1051 			desc = list_entry(desc->list.next,
1052 					struct descriptor_buffer, list);
1053 		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1054 		last = find_branch_descriptor(d, z);
1055 
1056 		if (!ctx->callback(ctx, d, last))
1057 			break;
1058 
1059 		if (old_desc != desc) {
1060 			/* If we've advanced to the next buffer, move the
1061 			 * previous buffer to the free list. */
1062 			unsigned long flags;
1063 			old_desc->used = 0;
1064 			spin_lock_irqsave(&ctx->ohci->lock, flags);
1065 			list_move_tail(&old_desc->list, &ctx->buffer_list);
1066 			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1067 		}
1068 		ctx->last = last;
1069 	}
1070 }
1071 
1072 /*
1073  * Allocate a new buffer and add it to the list of free buffers for this
1074  * context.  Must be called with ohci->lock held.
1075  */
1076 static int context_add_buffer(struct context *ctx)
1077 {
1078 	struct descriptor_buffer *desc;
1079 	dma_addr_t uninitialized_var(bus_addr);
1080 	int offset;
1081 
1082 	/*
1083 	 * 16MB of descriptors should be far more than enough for any DMA
1084 	 * program.  This will catch run-away userspace or DoS attacks.
1085 	 */
1086 	if (ctx->total_allocation >= 16*1024*1024)
1087 		return -ENOMEM;
1088 
1089 	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1090 			&bus_addr, GFP_ATOMIC);
1091 	if (!desc)
1092 		return -ENOMEM;
1093 
1094 	offset = (void *)&desc->buffer - (void *)desc;
1095 	desc->buffer_size = PAGE_SIZE - offset;
1096 	desc->buffer_bus = bus_addr + offset;
1097 	desc->used = 0;
1098 
1099 	list_add_tail(&desc->list, &ctx->buffer_list);
1100 	ctx->total_allocation += PAGE_SIZE;
1101 
1102 	return 0;
1103 }
1104 
1105 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1106 			u32 regs, descriptor_callback_t callback)
1107 {
1108 	ctx->ohci = ohci;
1109 	ctx->regs = regs;
1110 	ctx->total_allocation = 0;
1111 
1112 	INIT_LIST_HEAD(&ctx->buffer_list);
1113 	if (context_add_buffer(ctx) < 0)
1114 		return -ENOMEM;
1115 
1116 	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1117 			struct descriptor_buffer, list);
1118 
1119 	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1120 	ctx->callback = callback;
1121 
1122 	/*
1123 	 * We put a dummy descriptor in the buffer that has a NULL
1124 	 * branch address and looks like it's been sent.  That way we
1125 	 * have a descriptor to append DMA programs to.
1126 	 */
1127 	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1128 	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1129 	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1130 	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1131 	ctx->last = ctx->buffer_tail->buffer;
1132 	ctx->prev = ctx->buffer_tail->buffer;
1133 
1134 	return 0;
1135 }
1136 
1137 static void context_release(struct context *ctx)
1138 {
1139 	struct fw_card *card = &ctx->ohci->card;
1140 	struct descriptor_buffer *desc, *tmp;
1141 
1142 	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1143 		dma_free_coherent(card->device, PAGE_SIZE, desc,
1144 			desc->buffer_bus -
1145 			((void *)&desc->buffer - (void *)desc));
1146 }
1147 
1148 /* Must be called with ohci->lock held */
1149 static struct descriptor *context_get_descriptors(struct context *ctx,
1150 						  int z, dma_addr_t *d_bus)
1151 {
1152 	struct descriptor *d = NULL;
1153 	struct descriptor_buffer *desc = ctx->buffer_tail;
1154 
1155 	if (z * sizeof(*d) > desc->buffer_size)
1156 		return NULL;
1157 
1158 	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1159 		/* No room for the descriptor in this buffer, so advance to the
1160 		 * next one. */
1161 
1162 		if (desc->list.next == &ctx->buffer_list) {
1163 			/* If there is no free buffer next in the list,
1164 			 * allocate one. */
1165 			if (context_add_buffer(ctx) < 0)
1166 				return NULL;
1167 		}
1168 		desc = list_entry(desc->list.next,
1169 				struct descriptor_buffer, list);
1170 		ctx->buffer_tail = desc;
1171 	}
1172 
1173 	d = desc->buffer + desc->used / sizeof(*d);
1174 	memset(d, 0, z * sizeof(*d));
1175 	*d_bus = desc->buffer_bus + desc->used;
1176 
1177 	return d;
1178 }
1179 
1180 static void context_run(struct context *ctx, u32 extra)
1181 {
1182 	struct fw_ohci *ohci = ctx->ohci;
1183 
1184 	reg_write(ohci, COMMAND_PTR(ctx->regs),
1185 		  le32_to_cpu(ctx->last->branch_address));
1186 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1187 	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1188 	ctx->running = true;
1189 	flush_writes(ohci);
1190 }
1191 
1192 static void context_append(struct context *ctx,
1193 			   struct descriptor *d, int z, int extra)
1194 {
1195 	dma_addr_t d_bus;
1196 	struct descriptor_buffer *desc = ctx->buffer_tail;
1197 
1198 	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1199 
1200 	desc->used += (z + extra) * sizeof(*d);
1201 
1202 	wmb(); /* finish init of new descriptors before branch_address update */
1203 	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1204 	ctx->prev = find_branch_descriptor(d, z);
1205 }
1206 
1207 static void context_stop(struct context *ctx)
1208 {
1209 	u32 reg;
1210 	int i;
1211 
1212 	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1213 	ctx->running = false;
1214 
1215 	for (i = 0; i < 1000; i++) {
1216 		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1217 		if ((reg & CONTEXT_ACTIVE) == 0)
1218 			return;
1219 
1220 		if (i)
1221 			udelay(10);
1222 	}
1223 	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1224 }
1225 
1226 struct driver_data {
1227 	u8 inline_data[8];
1228 	struct fw_packet *packet;
1229 };
1230 
1231 /*
1232  * This function apppends a packet to the DMA queue for transmission.
1233  * Must always be called with the ochi->lock held to ensure proper
1234  * generation handling and locking around packet queue manipulation.
1235  */
1236 static int at_context_queue_packet(struct context *ctx,
1237 				   struct fw_packet *packet)
1238 {
1239 	struct fw_ohci *ohci = ctx->ohci;
1240 	dma_addr_t d_bus, uninitialized_var(payload_bus);
1241 	struct driver_data *driver_data;
1242 	struct descriptor *d, *last;
1243 	__le32 *header;
1244 	int z, tcode;
1245 
1246 	d = context_get_descriptors(ctx, 4, &d_bus);
1247 	if (d == NULL) {
1248 		packet->ack = RCODE_SEND_ERROR;
1249 		return -1;
1250 	}
1251 
1252 	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1253 	d[0].res_count = cpu_to_le16(packet->timestamp);
1254 
1255 	/*
1256 	 * The DMA format for asyncronous link packets is different
1257 	 * from the IEEE1394 layout, so shift the fields around
1258 	 * accordingly.
1259 	 */
1260 
1261 	tcode = (packet->header[0] >> 4) & 0x0f;
1262 	header = (__le32 *) &d[1];
1263 	switch (tcode) {
1264 	case TCODE_WRITE_QUADLET_REQUEST:
1265 	case TCODE_WRITE_BLOCK_REQUEST:
1266 	case TCODE_WRITE_RESPONSE:
1267 	case TCODE_READ_QUADLET_REQUEST:
1268 	case TCODE_READ_BLOCK_REQUEST:
1269 	case TCODE_READ_QUADLET_RESPONSE:
1270 	case TCODE_READ_BLOCK_RESPONSE:
1271 	case TCODE_LOCK_REQUEST:
1272 	case TCODE_LOCK_RESPONSE:
1273 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1274 					(packet->speed << 16));
1275 		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1276 					(packet->header[0] & 0xffff0000));
1277 		header[2] = cpu_to_le32(packet->header[2]);
1278 
1279 		if (TCODE_IS_BLOCK_PACKET(tcode))
1280 			header[3] = cpu_to_le32(packet->header[3]);
1281 		else
1282 			header[3] = (__force __le32) packet->header[3];
1283 
1284 		d[0].req_count = cpu_to_le16(packet->header_length);
1285 		break;
1286 
1287 	case TCODE_LINK_INTERNAL:
1288 		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1289 					(packet->speed << 16));
1290 		header[1] = cpu_to_le32(packet->header[1]);
1291 		header[2] = cpu_to_le32(packet->header[2]);
1292 		d[0].req_count = cpu_to_le16(12);
1293 
1294 		if (is_ping_packet(&packet->header[1]))
1295 			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1296 		break;
1297 
1298 	case TCODE_STREAM_DATA:
1299 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1300 					(packet->speed << 16));
1301 		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1302 		d[0].req_count = cpu_to_le16(8);
1303 		break;
1304 
1305 	default:
1306 		/* BUG(); */
1307 		packet->ack = RCODE_SEND_ERROR;
1308 		return -1;
1309 	}
1310 
1311 	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1312 	driver_data = (struct driver_data *) &d[3];
1313 	driver_data->packet = packet;
1314 	packet->driver_data = driver_data;
1315 
1316 	if (packet->payload_length > 0) {
1317 		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1318 			payload_bus = dma_map_single(ohci->card.device,
1319 						     packet->payload,
1320 						     packet->payload_length,
1321 						     DMA_TO_DEVICE);
1322 			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1323 				packet->ack = RCODE_SEND_ERROR;
1324 				return -1;
1325 			}
1326 			packet->payload_bus	= payload_bus;
1327 			packet->payload_mapped	= true;
1328 		} else {
1329 			memcpy(driver_data->inline_data, packet->payload,
1330 			       packet->payload_length);
1331 			payload_bus = d_bus + 3 * sizeof(*d);
1332 		}
1333 
1334 		d[2].req_count    = cpu_to_le16(packet->payload_length);
1335 		d[2].data_address = cpu_to_le32(payload_bus);
1336 		last = &d[2];
1337 		z = 3;
1338 	} else {
1339 		last = &d[0];
1340 		z = 2;
1341 	}
1342 
1343 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1344 				     DESCRIPTOR_IRQ_ALWAYS |
1345 				     DESCRIPTOR_BRANCH_ALWAYS);
1346 
1347 	/* FIXME: Document how the locking works. */
1348 	if (ohci->generation != packet->generation) {
1349 		if (packet->payload_mapped)
1350 			dma_unmap_single(ohci->card.device, payload_bus,
1351 					 packet->payload_length, DMA_TO_DEVICE);
1352 		packet->ack = RCODE_GENERATION;
1353 		return -1;
1354 	}
1355 
1356 	context_append(ctx, d, z, 4 - z);
1357 
1358 	if (ctx->running)
1359 		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1360 	else
1361 		context_run(ctx, 0);
1362 
1363 	return 0;
1364 }
1365 
1366 static void at_context_flush(struct context *ctx)
1367 {
1368 	tasklet_disable(&ctx->tasklet);
1369 
1370 	ctx->flushing = true;
1371 	context_tasklet((unsigned long)ctx);
1372 	ctx->flushing = false;
1373 
1374 	tasklet_enable(&ctx->tasklet);
1375 }
1376 
1377 static int handle_at_packet(struct context *context,
1378 			    struct descriptor *d,
1379 			    struct descriptor *last)
1380 {
1381 	struct driver_data *driver_data;
1382 	struct fw_packet *packet;
1383 	struct fw_ohci *ohci = context->ohci;
1384 	int evt;
1385 
1386 	if (last->transfer_status == 0 && !context->flushing)
1387 		/* This descriptor isn't done yet, stop iteration. */
1388 		return 0;
1389 
1390 	driver_data = (struct driver_data *) &d[3];
1391 	packet = driver_data->packet;
1392 	if (packet == NULL)
1393 		/* This packet was cancelled, just continue. */
1394 		return 1;
1395 
1396 	if (packet->payload_mapped)
1397 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1398 				 packet->payload_length, DMA_TO_DEVICE);
1399 
1400 	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1401 	packet->timestamp = le16_to_cpu(last->res_count);
1402 
1403 	log_ar_at_event('T', packet->speed, packet->header, evt);
1404 
1405 	switch (evt) {
1406 	case OHCI1394_evt_timeout:
1407 		/* Async response transmit timed out. */
1408 		packet->ack = RCODE_CANCELLED;
1409 		break;
1410 
1411 	case OHCI1394_evt_flushed:
1412 		/*
1413 		 * The packet was flushed should give same error as
1414 		 * when we try to use a stale generation count.
1415 		 */
1416 		packet->ack = RCODE_GENERATION;
1417 		break;
1418 
1419 	case OHCI1394_evt_missing_ack:
1420 		if (context->flushing)
1421 			packet->ack = RCODE_GENERATION;
1422 		else {
1423 			/*
1424 			 * Using a valid (current) generation count, but the
1425 			 * node is not on the bus or not sending acks.
1426 			 */
1427 			packet->ack = RCODE_NO_ACK;
1428 		}
1429 		break;
1430 
1431 	case ACK_COMPLETE + 0x10:
1432 	case ACK_PENDING + 0x10:
1433 	case ACK_BUSY_X + 0x10:
1434 	case ACK_BUSY_A + 0x10:
1435 	case ACK_BUSY_B + 0x10:
1436 	case ACK_DATA_ERROR + 0x10:
1437 	case ACK_TYPE_ERROR + 0x10:
1438 		packet->ack = evt - 0x10;
1439 		break;
1440 
1441 	case OHCI1394_evt_no_status:
1442 		if (context->flushing) {
1443 			packet->ack = RCODE_GENERATION;
1444 			break;
1445 		}
1446 		/* fall through */
1447 
1448 	default:
1449 		packet->ack = RCODE_SEND_ERROR;
1450 		break;
1451 	}
1452 
1453 	packet->callback(packet, &ohci->card, packet->ack);
1454 
1455 	return 1;
1456 }
1457 
1458 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1459 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1460 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1461 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1462 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1463 
1464 static void handle_local_rom(struct fw_ohci *ohci,
1465 			     struct fw_packet *packet, u32 csr)
1466 {
1467 	struct fw_packet response;
1468 	int tcode, length, i;
1469 
1470 	tcode = HEADER_GET_TCODE(packet->header[0]);
1471 	if (TCODE_IS_BLOCK_PACKET(tcode))
1472 		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1473 	else
1474 		length = 4;
1475 
1476 	i = csr - CSR_CONFIG_ROM;
1477 	if (i + length > CONFIG_ROM_SIZE) {
1478 		fw_fill_response(&response, packet->header,
1479 				 RCODE_ADDRESS_ERROR, NULL, 0);
1480 	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1481 		fw_fill_response(&response, packet->header,
1482 				 RCODE_TYPE_ERROR, NULL, 0);
1483 	} else {
1484 		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1485 				 (void *) ohci->config_rom + i, length);
1486 	}
1487 
1488 	fw_core_handle_response(&ohci->card, &response);
1489 }
1490 
1491 static void handle_local_lock(struct fw_ohci *ohci,
1492 			      struct fw_packet *packet, u32 csr)
1493 {
1494 	struct fw_packet response;
1495 	int tcode, length, ext_tcode, sel, try;
1496 	__be32 *payload, lock_old;
1497 	u32 lock_arg, lock_data;
1498 
1499 	tcode = HEADER_GET_TCODE(packet->header[0]);
1500 	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1501 	payload = packet->payload;
1502 	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1503 
1504 	if (tcode == TCODE_LOCK_REQUEST &&
1505 	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1506 		lock_arg = be32_to_cpu(payload[0]);
1507 		lock_data = be32_to_cpu(payload[1]);
1508 	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1509 		lock_arg = 0;
1510 		lock_data = 0;
1511 	} else {
1512 		fw_fill_response(&response, packet->header,
1513 				 RCODE_TYPE_ERROR, NULL, 0);
1514 		goto out;
1515 	}
1516 
1517 	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1518 	reg_write(ohci, OHCI1394_CSRData, lock_data);
1519 	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1520 	reg_write(ohci, OHCI1394_CSRControl, sel);
1521 
1522 	for (try = 0; try < 20; try++)
1523 		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1524 			lock_old = cpu_to_be32(reg_read(ohci,
1525 							OHCI1394_CSRData));
1526 			fw_fill_response(&response, packet->header,
1527 					 RCODE_COMPLETE,
1528 					 &lock_old, sizeof(lock_old));
1529 			goto out;
1530 		}
1531 
1532 	fw_error("swap not done (CSR lock timeout)\n");
1533 	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1534 
1535  out:
1536 	fw_core_handle_response(&ohci->card, &response);
1537 }
1538 
1539 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1540 {
1541 	u64 offset, csr;
1542 
1543 	if (ctx == &ctx->ohci->at_request_ctx) {
1544 		packet->ack = ACK_PENDING;
1545 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1546 	}
1547 
1548 	offset =
1549 		((unsigned long long)
1550 		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1551 		packet->header[2];
1552 	csr = offset - CSR_REGISTER_BASE;
1553 
1554 	/* Handle config rom reads. */
1555 	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1556 		handle_local_rom(ctx->ohci, packet, csr);
1557 	else switch (csr) {
1558 	case CSR_BUS_MANAGER_ID:
1559 	case CSR_BANDWIDTH_AVAILABLE:
1560 	case CSR_CHANNELS_AVAILABLE_HI:
1561 	case CSR_CHANNELS_AVAILABLE_LO:
1562 		handle_local_lock(ctx->ohci, packet, csr);
1563 		break;
1564 	default:
1565 		if (ctx == &ctx->ohci->at_request_ctx)
1566 			fw_core_handle_request(&ctx->ohci->card, packet);
1567 		else
1568 			fw_core_handle_response(&ctx->ohci->card, packet);
1569 		break;
1570 	}
1571 
1572 	if (ctx == &ctx->ohci->at_response_ctx) {
1573 		packet->ack = ACK_COMPLETE;
1574 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1575 	}
1576 }
1577 
1578 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1579 {
1580 	unsigned long flags;
1581 	int ret;
1582 
1583 	spin_lock_irqsave(&ctx->ohci->lock, flags);
1584 
1585 	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1586 	    ctx->ohci->generation == packet->generation) {
1587 		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1588 		handle_local_request(ctx, packet);
1589 		return;
1590 	}
1591 
1592 	ret = at_context_queue_packet(ctx, packet);
1593 	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1594 
1595 	if (ret < 0)
1596 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1597 
1598 }
1599 
1600 static void detect_dead_context(struct fw_ohci *ohci,
1601 				const char *name, unsigned int regs)
1602 {
1603 	u32 ctl;
1604 
1605 	ctl = reg_read(ohci, CONTROL_SET(regs));
1606 	if (ctl & CONTEXT_DEAD) {
1607 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1608 		fw_error("DMA context %s has stopped, error code: %s\n",
1609 			 name, evts[ctl & 0x1f]);
1610 #else
1611 		fw_error("DMA context %s has stopped, error code: %#x\n",
1612 			 name, ctl & 0x1f);
1613 #endif
1614 	}
1615 }
1616 
1617 static void handle_dead_contexts(struct fw_ohci *ohci)
1618 {
1619 	unsigned int i;
1620 	char name[8];
1621 
1622 	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1623 	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1624 	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1625 	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1626 	for (i = 0; i < 32; ++i) {
1627 		if (!(ohci->it_context_support & (1 << i)))
1628 			continue;
1629 		sprintf(name, "IT%u", i);
1630 		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1631 	}
1632 	for (i = 0; i < 32; ++i) {
1633 		if (!(ohci->ir_context_support & (1 << i)))
1634 			continue;
1635 		sprintf(name, "IR%u", i);
1636 		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1637 	}
1638 	/* TODO: maybe try to flush and restart the dead contexts */
1639 }
1640 
1641 static u32 cycle_timer_ticks(u32 cycle_timer)
1642 {
1643 	u32 ticks;
1644 
1645 	ticks = cycle_timer & 0xfff;
1646 	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1647 	ticks += (3072 * 8000) * (cycle_timer >> 25);
1648 
1649 	return ticks;
1650 }
1651 
1652 /*
1653  * Some controllers exhibit one or more of the following bugs when updating the
1654  * iso cycle timer register:
1655  *  - When the lowest six bits are wrapping around to zero, a read that happens
1656  *    at the same time will return garbage in the lowest ten bits.
1657  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1658  *    not incremented for about 60 ns.
1659  *  - Occasionally, the entire register reads zero.
1660  *
1661  * To catch these, we read the register three times and ensure that the
1662  * difference between each two consecutive reads is approximately the same, i.e.
1663  * less than twice the other.  Furthermore, any negative difference indicates an
1664  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1665  * execute, so we have enough precision to compute the ratio of the differences.)
1666  */
1667 static u32 get_cycle_time(struct fw_ohci *ohci)
1668 {
1669 	u32 c0, c1, c2;
1670 	u32 t0, t1, t2;
1671 	s32 diff01, diff12;
1672 	int i;
1673 
1674 	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1675 
1676 	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1677 		i = 0;
1678 		c1 = c2;
1679 		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1680 		do {
1681 			c0 = c1;
1682 			c1 = c2;
1683 			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1684 			t0 = cycle_timer_ticks(c0);
1685 			t1 = cycle_timer_ticks(c1);
1686 			t2 = cycle_timer_ticks(c2);
1687 			diff01 = t1 - t0;
1688 			diff12 = t2 - t1;
1689 		} while ((diff01 <= 0 || diff12 <= 0 ||
1690 			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1691 			 && i++ < 20);
1692 	}
1693 
1694 	return c2;
1695 }
1696 
1697 /*
1698  * This function has to be called at least every 64 seconds.  The bus_time
1699  * field stores not only the upper 25 bits of the BUS_TIME register but also
1700  * the most significant bit of the cycle timer in bit 6 so that we can detect
1701  * changes in this bit.
1702  */
1703 static u32 update_bus_time(struct fw_ohci *ohci)
1704 {
1705 	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1706 
1707 	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1708 		ohci->bus_time += 0x40;
1709 
1710 	return ohci->bus_time | cycle_time_seconds;
1711 }
1712 
1713 static void bus_reset_tasklet(unsigned long data)
1714 {
1715 	struct fw_ohci *ohci = (struct fw_ohci *)data;
1716 	int self_id_count, i, j, reg;
1717 	int generation, new_generation;
1718 	unsigned long flags;
1719 	void *free_rom = NULL;
1720 	dma_addr_t free_rom_bus = 0;
1721 	bool is_new_root;
1722 
1723 	reg = reg_read(ohci, OHCI1394_NodeID);
1724 	if (!(reg & OHCI1394_NodeID_idValid)) {
1725 		fw_notify("node ID not valid, new bus reset in progress\n");
1726 		return;
1727 	}
1728 	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1729 		fw_notify("malconfigured bus\n");
1730 		return;
1731 	}
1732 	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1733 			       OHCI1394_NodeID_nodeNumber);
1734 
1735 	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1736 	if (!(ohci->is_root && is_new_root))
1737 		reg_write(ohci, OHCI1394_LinkControlSet,
1738 			  OHCI1394_LinkControl_cycleMaster);
1739 	ohci->is_root = is_new_root;
1740 
1741 	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1742 	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1743 		fw_notify("inconsistent self IDs\n");
1744 		return;
1745 	}
1746 	/*
1747 	 * The count in the SelfIDCount register is the number of
1748 	 * bytes in the self ID receive buffer.  Since we also receive
1749 	 * the inverted quadlets and a header quadlet, we shift one
1750 	 * bit extra to get the actual number of self IDs.
1751 	 */
1752 	self_id_count = (reg >> 3) & 0xff;
1753 	if (self_id_count == 0 || self_id_count > 252) {
1754 		fw_notify("inconsistent self IDs\n");
1755 		return;
1756 	}
1757 	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1758 	rmb();
1759 
1760 	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1761 		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1762 			fw_notify("inconsistent self IDs\n");
1763 			return;
1764 		}
1765 		ohci->self_id_buffer[j] =
1766 				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1767 	}
1768 	rmb();
1769 
1770 	/*
1771 	 * Check the consistency of the self IDs we just read.  The
1772 	 * problem we face is that a new bus reset can start while we
1773 	 * read out the self IDs from the DMA buffer. If this happens,
1774 	 * the DMA buffer will be overwritten with new self IDs and we
1775 	 * will read out inconsistent data.  The OHCI specification
1776 	 * (section 11.2) recommends a technique similar to
1777 	 * linux/seqlock.h, where we remember the generation of the
1778 	 * self IDs in the buffer before reading them out and compare
1779 	 * it to the current generation after reading them out.  If
1780 	 * the two generations match we know we have a consistent set
1781 	 * of self IDs.
1782 	 */
1783 
1784 	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1785 	if (new_generation != generation) {
1786 		fw_notify("recursive bus reset detected, "
1787 			  "discarding self ids\n");
1788 		return;
1789 	}
1790 
1791 	/* FIXME: Document how the locking works. */
1792 	spin_lock_irqsave(&ohci->lock, flags);
1793 
1794 	ohci->generation = -1; /* prevent AT packet queueing */
1795 	context_stop(&ohci->at_request_ctx);
1796 	context_stop(&ohci->at_response_ctx);
1797 
1798 	spin_unlock_irqrestore(&ohci->lock, flags);
1799 
1800 	/*
1801 	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1802 	 * packets in the AT queues and software needs to drain them.
1803 	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1804 	 */
1805 	at_context_flush(&ohci->at_request_ctx);
1806 	at_context_flush(&ohci->at_response_ctx);
1807 
1808 	spin_lock_irqsave(&ohci->lock, flags);
1809 
1810 	ohci->generation = generation;
1811 	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1812 
1813 	if (ohci->quirks & QUIRK_RESET_PACKET)
1814 		ohci->request_generation = generation;
1815 
1816 	/*
1817 	 * This next bit is unrelated to the AT context stuff but we
1818 	 * have to do it under the spinlock also.  If a new config rom
1819 	 * was set up before this reset, the old one is now no longer
1820 	 * in use and we can free it. Update the config rom pointers
1821 	 * to point to the current config rom and clear the
1822 	 * next_config_rom pointer so a new update can take place.
1823 	 */
1824 
1825 	if (ohci->next_config_rom != NULL) {
1826 		if (ohci->next_config_rom != ohci->config_rom) {
1827 			free_rom      = ohci->config_rom;
1828 			free_rom_bus  = ohci->config_rom_bus;
1829 		}
1830 		ohci->config_rom      = ohci->next_config_rom;
1831 		ohci->config_rom_bus  = ohci->next_config_rom_bus;
1832 		ohci->next_config_rom = NULL;
1833 
1834 		/*
1835 		 * Restore config_rom image and manually update
1836 		 * config_rom registers.  Writing the header quadlet
1837 		 * will indicate that the config rom is ready, so we
1838 		 * do that last.
1839 		 */
1840 		reg_write(ohci, OHCI1394_BusOptions,
1841 			  be32_to_cpu(ohci->config_rom[2]));
1842 		ohci->config_rom[0] = ohci->next_header;
1843 		reg_write(ohci, OHCI1394_ConfigROMhdr,
1844 			  be32_to_cpu(ohci->next_header));
1845 	}
1846 
1847 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1848 	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1849 	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1850 #endif
1851 
1852 	spin_unlock_irqrestore(&ohci->lock, flags);
1853 
1854 	if (free_rom)
1855 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1856 				  free_rom, free_rom_bus);
1857 
1858 	log_selfids(ohci->node_id, generation,
1859 		    self_id_count, ohci->self_id_buffer);
1860 
1861 	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1862 				 self_id_count, ohci->self_id_buffer,
1863 				 ohci->csr_state_setclear_abdicate);
1864 	ohci->csr_state_setclear_abdicate = false;
1865 }
1866 
1867 static irqreturn_t irq_handler(int irq, void *data)
1868 {
1869 	struct fw_ohci *ohci = data;
1870 	u32 event, iso_event;
1871 	int i;
1872 
1873 	event = reg_read(ohci, OHCI1394_IntEventClear);
1874 
1875 	if (!event || !~event)
1876 		return IRQ_NONE;
1877 
1878 	/*
1879 	 * busReset and postedWriteErr must not be cleared yet
1880 	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1881 	 */
1882 	reg_write(ohci, OHCI1394_IntEventClear,
1883 		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1884 	log_irqs(event);
1885 
1886 	if (event & OHCI1394_selfIDComplete)
1887 		tasklet_schedule(&ohci->bus_reset_tasklet);
1888 
1889 	if (event & OHCI1394_RQPkt)
1890 		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1891 
1892 	if (event & OHCI1394_RSPkt)
1893 		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1894 
1895 	if (event & OHCI1394_reqTxComplete)
1896 		tasklet_schedule(&ohci->at_request_ctx.tasklet);
1897 
1898 	if (event & OHCI1394_respTxComplete)
1899 		tasklet_schedule(&ohci->at_response_ctx.tasklet);
1900 
1901 	if (event & OHCI1394_isochRx) {
1902 		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1903 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1904 
1905 		while (iso_event) {
1906 			i = ffs(iso_event) - 1;
1907 			tasklet_schedule(
1908 				&ohci->ir_context_list[i].context.tasklet);
1909 			iso_event &= ~(1 << i);
1910 		}
1911 	}
1912 
1913 	if (event & OHCI1394_isochTx) {
1914 		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1915 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1916 
1917 		while (iso_event) {
1918 			i = ffs(iso_event) - 1;
1919 			tasklet_schedule(
1920 				&ohci->it_context_list[i].context.tasklet);
1921 			iso_event &= ~(1 << i);
1922 		}
1923 	}
1924 
1925 	if (unlikely(event & OHCI1394_regAccessFail))
1926 		fw_error("Register access failure - "
1927 			 "please notify linux1394-devel@lists.sf.net\n");
1928 
1929 	if (unlikely(event & OHCI1394_postedWriteErr)) {
1930 		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
1931 		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
1932 		reg_write(ohci, OHCI1394_IntEventClear,
1933 			  OHCI1394_postedWriteErr);
1934 		fw_error("PCI posted write error\n");
1935 	}
1936 
1937 	if (unlikely(event & OHCI1394_cycleTooLong)) {
1938 		if (printk_ratelimit())
1939 			fw_notify("isochronous cycle too long\n");
1940 		reg_write(ohci, OHCI1394_LinkControlSet,
1941 			  OHCI1394_LinkControl_cycleMaster);
1942 	}
1943 
1944 	if (unlikely(event & OHCI1394_cycleInconsistent)) {
1945 		/*
1946 		 * We need to clear this event bit in order to make
1947 		 * cycleMatch isochronous I/O work.  In theory we should
1948 		 * stop active cycleMatch iso contexts now and restart
1949 		 * them at least two cycles later.  (FIXME?)
1950 		 */
1951 		if (printk_ratelimit())
1952 			fw_notify("isochronous cycle inconsistent\n");
1953 	}
1954 
1955 	if (unlikely(event & OHCI1394_unrecoverableError))
1956 		handle_dead_contexts(ohci);
1957 
1958 	if (event & OHCI1394_cycle64Seconds) {
1959 		spin_lock(&ohci->lock);
1960 		update_bus_time(ohci);
1961 		spin_unlock(&ohci->lock);
1962 	} else
1963 		flush_writes(ohci);
1964 
1965 	return IRQ_HANDLED;
1966 }
1967 
1968 static int software_reset(struct fw_ohci *ohci)
1969 {
1970 	u32 val;
1971 	int i;
1972 
1973 	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1974 	for (i = 0; i < 500; i++) {
1975 		val = reg_read(ohci, OHCI1394_HCControlSet);
1976 		if (!~val)
1977 			return -ENODEV; /* Card was ejected. */
1978 
1979 		if (!(val & OHCI1394_HCControl_softReset))
1980 			return 0;
1981 
1982 		msleep(1);
1983 	}
1984 
1985 	return -EBUSY;
1986 }
1987 
1988 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1989 {
1990 	size_t size = length * 4;
1991 
1992 	memcpy(dest, src, size);
1993 	if (size < CONFIG_ROM_SIZE)
1994 		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1995 }
1996 
1997 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1998 {
1999 	bool enable_1394a;
2000 	int ret, clear, set, offset;
2001 
2002 	/* Check if the driver should configure link and PHY. */
2003 	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2004 	      OHCI1394_HCControl_programPhyEnable))
2005 		return 0;
2006 
2007 	/* Paranoia: check whether the PHY supports 1394a, too. */
2008 	enable_1394a = false;
2009 	ret = read_phy_reg(ohci, 2);
2010 	if (ret < 0)
2011 		return ret;
2012 	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2013 		ret = read_paged_phy_reg(ohci, 1, 8);
2014 		if (ret < 0)
2015 			return ret;
2016 		if (ret >= 1)
2017 			enable_1394a = true;
2018 	}
2019 
2020 	if (ohci->quirks & QUIRK_NO_1394A)
2021 		enable_1394a = false;
2022 
2023 	/* Configure PHY and link consistently. */
2024 	if (enable_1394a) {
2025 		clear = 0;
2026 		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2027 	} else {
2028 		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2029 		set = 0;
2030 	}
2031 	ret = update_phy_reg(ohci, 5, clear, set);
2032 	if (ret < 0)
2033 		return ret;
2034 
2035 	if (enable_1394a)
2036 		offset = OHCI1394_HCControlSet;
2037 	else
2038 		offset = OHCI1394_HCControlClear;
2039 	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2040 
2041 	/* Clean up: configuration has been taken care of. */
2042 	reg_write(ohci, OHCI1394_HCControlClear,
2043 		  OHCI1394_HCControl_programPhyEnable);
2044 
2045 	return 0;
2046 }
2047 
2048 static int ohci_enable(struct fw_card *card,
2049 		       const __be32 *config_rom, size_t length)
2050 {
2051 	struct fw_ohci *ohci = fw_ohci(card);
2052 	struct pci_dev *dev = to_pci_dev(card->device);
2053 	u32 lps, seconds, version, irqs;
2054 	int i, ret;
2055 
2056 	if (software_reset(ohci)) {
2057 		fw_error("Failed to reset ohci card.\n");
2058 		return -EBUSY;
2059 	}
2060 
2061 	/*
2062 	 * Now enable LPS, which we need in order to start accessing
2063 	 * most of the registers.  In fact, on some cards (ALI M5251),
2064 	 * accessing registers in the SClk domain without LPS enabled
2065 	 * will lock up the machine.  Wait 50msec to make sure we have
2066 	 * full link enabled.  However, with some cards (well, at least
2067 	 * a JMicron PCIe card), we have to try again sometimes.
2068 	 */
2069 	reg_write(ohci, OHCI1394_HCControlSet,
2070 		  OHCI1394_HCControl_LPS |
2071 		  OHCI1394_HCControl_postedWriteEnable);
2072 	flush_writes(ohci);
2073 
2074 	for (lps = 0, i = 0; !lps && i < 3; i++) {
2075 		msleep(50);
2076 		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2077 		      OHCI1394_HCControl_LPS;
2078 	}
2079 
2080 	if (!lps) {
2081 		fw_error("Failed to set Link Power Status\n");
2082 		return -EIO;
2083 	}
2084 
2085 	reg_write(ohci, OHCI1394_HCControlClear,
2086 		  OHCI1394_HCControl_noByteSwapData);
2087 
2088 	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2089 	reg_write(ohci, OHCI1394_LinkControlSet,
2090 		  OHCI1394_LinkControl_cycleTimerEnable |
2091 		  OHCI1394_LinkControl_cycleMaster);
2092 
2093 	reg_write(ohci, OHCI1394_ATRetries,
2094 		  OHCI1394_MAX_AT_REQ_RETRIES |
2095 		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2096 		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2097 		  (200 << 16));
2098 
2099 	seconds = lower_32_bits(get_seconds());
2100 	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2101 	ohci->bus_time = seconds & ~0x3f;
2102 
2103 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2104 	if (version >= OHCI_VERSION_1_1) {
2105 		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2106 			  0xfffffffe);
2107 		card->broadcast_channel_auto_allocated = true;
2108 	}
2109 
2110 	/* Get implemented bits of the priority arbitration request counter. */
2111 	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2112 	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2113 	reg_write(ohci, OHCI1394_FairnessControl, 0);
2114 	card->priority_budget_implemented = ohci->pri_req_max != 0;
2115 
2116 	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2117 	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2118 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2119 
2120 	ret = configure_1394a_enhancements(ohci);
2121 	if (ret < 0)
2122 		return ret;
2123 
2124 	/* Activate link_on bit and contender bit in our self ID packets.*/
2125 	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2126 	if (ret < 0)
2127 		return ret;
2128 
2129 	/*
2130 	 * When the link is not yet enabled, the atomic config rom
2131 	 * update mechanism described below in ohci_set_config_rom()
2132 	 * is not active.  We have to update ConfigRomHeader and
2133 	 * BusOptions manually, and the write to ConfigROMmap takes
2134 	 * effect immediately.  We tie this to the enabling of the
2135 	 * link, so we have a valid config rom before enabling - the
2136 	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2137 	 * values before enabling.
2138 	 *
2139 	 * However, when the ConfigROMmap is written, some controllers
2140 	 * always read back quadlets 0 and 2 from the config rom to
2141 	 * the ConfigRomHeader and BusOptions registers on bus reset.
2142 	 * They shouldn't do that in this initial case where the link
2143 	 * isn't enabled.  This means we have to use the same
2144 	 * workaround here, setting the bus header to 0 and then write
2145 	 * the right values in the bus reset tasklet.
2146 	 */
2147 
2148 	if (config_rom) {
2149 		ohci->next_config_rom =
2150 			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2151 					   &ohci->next_config_rom_bus,
2152 					   GFP_KERNEL);
2153 		if (ohci->next_config_rom == NULL)
2154 			return -ENOMEM;
2155 
2156 		copy_config_rom(ohci->next_config_rom, config_rom, length);
2157 	} else {
2158 		/*
2159 		 * In the suspend case, config_rom is NULL, which
2160 		 * means that we just reuse the old config rom.
2161 		 */
2162 		ohci->next_config_rom = ohci->config_rom;
2163 		ohci->next_config_rom_bus = ohci->config_rom_bus;
2164 	}
2165 
2166 	ohci->next_header = ohci->next_config_rom[0];
2167 	ohci->next_config_rom[0] = 0;
2168 	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2169 	reg_write(ohci, OHCI1394_BusOptions,
2170 		  be32_to_cpu(ohci->next_config_rom[2]));
2171 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2172 
2173 	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2174 
2175 	if (!(ohci->quirks & QUIRK_NO_MSI))
2176 		pci_enable_msi(dev);
2177 	if (request_irq(dev->irq, irq_handler,
2178 			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2179 			ohci_driver_name, ohci)) {
2180 		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2181 		pci_disable_msi(dev);
2182 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2183 				  ohci->config_rom, ohci->config_rom_bus);
2184 		return -EIO;
2185 	}
2186 
2187 	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2188 		OHCI1394_RQPkt | OHCI1394_RSPkt |
2189 		OHCI1394_isochTx | OHCI1394_isochRx |
2190 		OHCI1394_postedWriteErr |
2191 		OHCI1394_selfIDComplete |
2192 		OHCI1394_regAccessFail |
2193 		OHCI1394_cycle64Seconds |
2194 		OHCI1394_cycleInconsistent |
2195 		OHCI1394_unrecoverableError |
2196 		OHCI1394_cycleTooLong |
2197 		OHCI1394_masterIntEnable;
2198 	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2199 		irqs |= OHCI1394_busReset;
2200 	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2201 
2202 	reg_write(ohci, OHCI1394_HCControlSet,
2203 		  OHCI1394_HCControl_linkEnable |
2204 		  OHCI1394_HCControl_BIBimageValid);
2205 
2206 	reg_write(ohci, OHCI1394_LinkControlSet,
2207 		  OHCI1394_LinkControl_rcvSelfID |
2208 		  OHCI1394_LinkControl_rcvPhyPkt);
2209 
2210 	ar_context_run(&ohci->ar_request_ctx);
2211 	ar_context_run(&ohci->ar_response_ctx);
2212 
2213 	flush_writes(ohci);
2214 
2215 	/* We are ready to go, reset bus to finish initialization. */
2216 	fw_schedule_bus_reset(&ohci->card, false, true);
2217 
2218 	return 0;
2219 }
2220 
2221 static int ohci_set_config_rom(struct fw_card *card,
2222 			       const __be32 *config_rom, size_t length)
2223 {
2224 	struct fw_ohci *ohci;
2225 	unsigned long flags;
2226 	__be32 *next_config_rom;
2227 	dma_addr_t uninitialized_var(next_config_rom_bus);
2228 
2229 	ohci = fw_ohci(card);
2230 
2231 	/*
2232 	 * When the OHCI controller is enabled, the config rom update
2233 	 * mechanism is a bit tricky, but easy enough to use.  See
2234 	 * section 5.5.6 in the OHCI specification.
2235 	 *
2236 	 * The OHCI controller caches the new config rom address in a
2237 	 * shadow register (ConfigROMmapNext) and needs a bus reset
2238 	 * for the changes to take place.  When the bus reset is
2239 	 * detected, the controller loads the new values for the
2240 	 * ConfigRomHeader and BusOptions registers from the specified
2241 	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2242 	 * shadow register. All automatically and atomically.
2243 	 *
2244 	 * Now, there's a twist to this story.  The automatic load of
2245 	 * ConfigRomHeader and BusOptions doesn't honor the
2246 	 * noByteSwapData bit, so with a be32 config rom, the
2247 	 * controller will load be32 values in to these registers
2248 	 * during the atomic update, even on litte endian
2249 	 * architectures.  The workaround we use is to put a 0 in the
2250 	 * header quadlet; 0 is endian agnostic and means that the
2251 	 * config rom isn't ready yet.  In the bus reset tasklet we
2252 	 * then set up the real values for the two registers.
2253 	 *
2254 	 * We use ohci->lock to avoid racing with the code that sets
2255 	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2256 	 */
2257 
2258 	next_config_rom =
2259 		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2260 				   &next_config_rom_bus, GFP_KERNEL);
2261 	if (next_config_rom == NULL)
2262 		return -ENOMEM;
2263 
2264 	spin_lock_irqsave(&ohci->lock, flags);
2265 
2266 	/*
2267 	 * If there is not an already pending config_rom update,
2268 	 * push our new allocation into the ohci->next_config_rom
2269 	 * and then mark the local variable as null so that we
2270 	 * won't deallocate the new buffer.
2271 	 *
2272 	 * OTOH, if there is a pending config_rom update, just
2273 	 * use that buffer with the new config_rom data, and
2274 	 * let this routine free the unused DMA allocation.
2275 	 */
2276 
2277 	if (ohci->next_config_rom == NULL) {
2278 		ohci->next_config_rom = next_config_rom;
2279 		ohci->next_config_rom_bus = next_config_rom_bus;
2280 		next_config_rom = NULL;
2281 	}
2282 
2283 	copy_config_rom(ohci->next_config_rom, config_rom, length);
2284 
2285 	ohci->next_header = config_rom[0];
2286 	ohci->next_config_rom[0] = 0;
2287 
2288 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2289 
2290 	spin_unlock_irqrestore(&ohci->lock, flags);
2291 
2292 	/* If we didn't use the DMA allocation, delete it. */
2293 	if (next_config_rom != NULL)
2294 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2295 				  next_config_rom, next_config_rom_bus);
2296 
2297 	/*
2298 	 * Now initiate a bus reset to have the changes take
2299 	 * effect. We clean up the old config rom memory and DMA
2300 	 * mappings in the bus reset tasklet, since the OHCI
2301 	 * controller could need to access it before the bus reset
2302 	 * takes effect.
2303 	 */
2304 
2305 	fw_schedule_bus_reset(&ohci->card, true, true);
2306 
2307 	return 0;
2308 }
2309 
2310 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2311 {
2312 	struct fw_ohci *ohci = fw_ohci(card);
2313 
2314 	at_context_transmit(&ohci->at_request_ctx, packet);
2315 }
2316 
2317 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2318 {
2319 	struct fw_ohci *ohci = fw_ohci(card);
2320 
2321 	at_context_transmit(&ohci->at_response_ctx, packet);
2322 }
2323 
2324 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2325 {
2326 	struct fw_ohci *ohci = fw_ohci(card);
2327 	struct context *ctx = &ohci->at_request_ctx;
2328 	struct driver_data *driver_data = packet->driver_data;
2329 	int ret = -ENOENT;
2330 
2331 	tasklet_disable(&ctx->tasklet);
2332 
2333 	if (packet->ack != 0)
2334 		goto out;
2335 
2336 	if (packet->payload_mapped)
2337 		dma_unmap_single(ohci->card.device, packet->payload_bus,
2338 				 packet->payload_length, DMA_TO_DEVICE);
2339 
2340 	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2341 	driver_data->packet = NULL;
2342 	packet->ack = RCODE_CANCELLED;
2343 	packet->callback(packet, &ohci->card, packet->ack);
2344 	ret = 0;
2345  out:
2346 	tasklet_enable(&ctx->tasklet);
2347 
2348 	return ret;
2349 }
2350 
2351 static int ohci_enable_phys_dma(struct fw_card *card,
2352 				int node_id, int generation)
2353 {
2354 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2355 	return 0;
2356 #else
2357 	struct fw_ohci *ohci = fw_ohci(card);
2358 	unsigned long flags;
2359 	int n, ret = 0;
2360 
2361 	/*
2362 	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2363 	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2364 	 */
2365 
2366 	spin_lock_irqsave(&ohci->lock, flags);
2367 
2368 	if (ohci->generation != generation) {
2369 		ret = -ESTALE;
2370 		goto out;
2371 	}
2372 
2373 	/*
2374 	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2375 	 * enabled for _all_ nodes on remote buses.
2376 	 */
2377 
2378 	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2379 	if (n < 32)
2380 		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2381 	else
2382 		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2383 
2384 	flush_writes(ohci);
2385  out:
2386 	spin_unlock_irqrestore(&ohci->lock, flags);
2387 
2388 	return ret;
2389 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2390 }
2391 
2392 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2393 {
2394 	struct fw_ohci *ohci = fw_ohci(card);
2395 	unsigned long flags;
2396 	u32 value;
2397 
2398 	switch (csr_offset) {
2399 	case CSR_STATE_CLEAR:
2400 	case CSR_STATE_SET:
2401 		if (ohci->is_root &&
2402 		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2403 		     OHCI1394_LinkControl_cycleMaster))
2404 			value = CSR_STATE_BIT_CMSTR;
2405 		else
2406 			value = 0;
2407 		if (ohci->csr_state_setclear_abdicate)
2408 			value |= CSR_STATE_BIT_ABDICATE;
2409 
2410 		return value;
2411 
2412 	case CSR_NODE_IDS:
2413 		return reg_read(ohci, OHCI1394_NodeID) << 16;
2414 
2415 	case CSR_CYCLE_TIME:
2416 		return get_cycle_time(ohci);
2417 
2418 	case CSR_BUS_TIME:
2419 		/*
2420 		 * We might be called just after the cycle timer has wrapped
2421 		 * around but just before the cycle64Seconds handler, so we
2422 		 * better check here, too, if the bus time needs to be updated.
2423 		 */
2424 		spin_lock_irqsave(&ohci->lock, flags);
2425 		value = update_bus_time(ohci);
2426 		spin_unlock_irqrestore(&ohci->lock, flags);
2427 		return value;
2428 
2429 	case CSR_BUSY_TIMEOUT:
2430 		value = reg_read(ohci, OHCI1394_ATRetries);
2431 		return (value >> 4) & 0x0ffff00f;
2432 
2433 	case CSR_PRIORITY_BUDGET:
2434 		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2435 			(ohci->pri_req_max << 8);
2436 
2437 	default:
2438 		WARN_ON(1);
2439 		return 0;
2440 	}
2441 }
2442 
2443 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2444 {
2445 	struct fw_ohci *ohci = fw_ohci(card);
2446 	unsigned long flags;
2447 
2448 	switch (csr_offset) {
2449 	case CSR_STATE_CLEAR:
2450 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2451 			reg_write(ohci, OHCI1394_LinkControlClear,
2452 				  OHCI1394_LinkControl_cycleMaster);
2453 			flush_writes(ohci);
2454 		}
2455 		if (value & CSR_STATE_BIT_ABDICATE)
2456 			ohci->csr_state_setclear_abdicate = false;
2457 		break;
2458 
2459 	case CSR_STATE_SET:
2460 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2461 			reg_write(ohci, OHCI1394_LinkControlSet,
2462 				  OHCI1394_LinkControl_cycleMaster);
2463 			flush_writes(ohci);
2464 		}
2465 		if (value & CSR_STATE_BIT_ABDICATE)
2466 			ohci->csr_state_setclear_abdicate = true;
2467 		break;
2468 
2469 	case CSR_NODE_IDS:
2470 		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2471 		flush_writes(ohci);
2472 		break;
2473 
2474 	case CSR_CYCLE_TIME:
2475 		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2476 		reg_write(ohci, OHCI1394_IntEventSet,
2477 			  OHCI1394_cycleInconsistent);
2478 		flush_writes(ohci);
2479 		break;
2480 
2481 	case CSR_BUS_TIME:
2482 		spin_lock_irqsave(&ohci->lock, flags);
2483 		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2484 		spin_unlock_irqrestore(&ohci->lock, flags);
2485 		break;
2486 
2487 	case CSR_BUSY_TIMEOUT:
2488 		value = (value & 0xf) | ((value & 0xf) << 4) |
2489 			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2490 		reg_write(ohci, OHCI1394_ATRetries, value);
2491 		flush_writes(ohci);
2492 		break;
2493 
2494 	case CSR_PRIORITY_BUDGET:
2495 		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2496 		flush_writes(ohci);
2497 		break;
2498 
2499 	default:
2500 		WARN_ON(1);
2501 		break;
2502 	}
2503 }
2504 
2505 static void copy_iso_headers(struct iso_context *ctx, void *p)
2506 {
2507 	int i = ctx->header_length;
2508 
2509 	if (i + ctx->base.header_size > PAGE_SIZE)
2510 		return;
2511 
2512 	/*
2513 	 * The iso header is byteswapped to little endian by
2514 	 * the controller, but the remaining header quadlets
2515 	 * are big endian.  We want to present all the headers
2516 	 * as big endian, so we have to swap the first quadlet.
2517 	 */
2518 	if (ctx->base.header_size > 0)
2519 		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2520 	if (ctx->base.header_size > 4)
2521 		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2522 	if (ctx->base.header_size > 8)
2523 		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2524 	ctx->header_length += ctx->base.header_size;
2525 }
2526 
2527 static int handle_ir_packet_per_buffer(struct context *context,
2528 				       struct descriptor *d,
2529 				       struct descriptor *last)
2530 {
2531 	struct iso_context *ctx =
2532 		container_of(context, struct iso_context, context);
2533 	struct descriptor *pd;
2534 	__le32 *ir_header;
2535 	void *p;
2536 
2537 	for (pd = d; pd <= last; pd++)
2538 		if (pd->transfer_status)
2539 			break;
2540 	if (pd > last)
2541 		/* Descriptor(s) not done yet, stop iteration */
2542 		return 0;
2543 
2544 	p = last + 1;
2545 	copy_iso_headers(ctx, p);
2546 
2547 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2548 		ir_header = (__le32 *) p;
2549 		ctx->base.callback.sc(&ctx->base,
2550 				      le32_to_cpu(ir_header[0]) & 0xffff,
2551 				      ctx->header_length, ctx->header,
2552 				      ctx->base.callback_data);
2553 		ctx->header_length = 0;
2554 	}
2555 
2556 	return 1;
2557 }
2558 
2559 /* d == last because each descriptor block is only a single descriptor. */
2560 static int handle_ir_buffer_fill(struct context *context,
2561 				 struct descriptor *d,
2562 				 struct descriptor *last)
2563 {
2564 	struct iso_context *ctx =
2565 		container_of(context, struct iso_context, context);
2566 
2567 	if (!last->transfer_status)
2568 		/* Descriptor(s) not done yet, stop iteration */
2569 		return 0;
2570 
2571 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2572 		ctx->base.callback.mc(&ctx->base,
2573 				      le32_to_cpu(last->data_address) +
2574 				      le16_to_cpu(last->req_count) -
2575 				      le16_to_cpu(last->res_count),
2576 				      ctx->base.callback_data);
2577 
2578 	return 1;
2579 }
2580 
2581 static int handle_it_packet(struct context *context,
2582 			    struct descriptor *d,
2583 			    struct descriptor *last)
2584 {
2585 	struct iso_context *ctx =
2586 		container_of(context, struct iso_context, context);
2587 	int i;
2588 	struct descriptor *pd;
2589 
2590 	for (pd = d; pd <= last; pd++)
2591 		if (pd->transfer_status)
2592 			break;
2593 	if (pd > last)
2594 		/* Descriptor(s) not done yet, stop iteration */
2595 		return 0;
2596 
2597 	i = ctx->header_length;
2598 	if (i + 4 < PAGE_SIZE) {
2599 		/* Present this value as big-endian to match the receive code */
2600 		*(__be32 *)(ctx->header + i) = cpu_to_be32(
2601 				((u32)le16_to_cpu(pd->transfer_status) << 16) |
2602 				le16_to_cpu(pd->res_count));
2603 		ctx->header_length += 4;
2604 	}
2605 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2606 		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2607 				      ctx->header_length, ctx->header,
2608 				      ctx->base.callback_data);
2609 		ctx->header_length = 0;
2610 	}
2611 	return 1;
2612 }
2613 
2614 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2615 {
2616 	u32 hi = channels >> 32, lo = channels;
2617 
2618 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2619 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2620 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2621 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2622 	mmiowb();
2623 	ohci->mc_channels = channels;
2624 }
2625 
2626 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2627 				int type, int channel, size_t header_size)
2628 {
2629 	struct fw_ohci *ohci = fw_ohci(card);
2630 	struct iso_context *uninitialized_var(ctx);
2631 	descriptor_callback_t uninitialized_var(callback);
2632 	u64 *uninitialized_var(channels);
2633 	u32 *uninitialized_var(mask), uninitialized_var(regs);
2634 	unsigned long flags;
2635 	int index, ret = -EBUSY;
2636 
2637 	spin_lock_irqsave(&ohci->lock, flags);
2638 
2639 	switch (type) {
2640 	case FW_ISO_CONTEXT_TRANSMIT:
2641 		mask     = &ohci->it_context_mask;
2642 		callback = handle_it_packet;
2643 		index    = ffs(*mask) - 1;
2644 		if (index >= 0) {
2645 			*mask &= ~(1 << index);
2646 			regs = OHCI1394_IsoXmitContextBase(index);
2647 			ctx  = &ohci->it_context_list[index];
2648 		}
2649 		break;
2650 
2651 	case FW_ISO_CONTEXT_RECEIVE:
2652 		channels = &ohci->ir_context_channels;
2653 		mask     = &ohci->ir_context_mask;
2654 		callback = handle_ir_packet_per_buffer;
2655 		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2656 		if (index >= 0) {
2657 			*channels &= ~(1ULL << channel);
2658 			*mask     &= ~(1 << index);
2659 			regs = OHCI1394_IsoRcvContextBase(index);
2660 			ctx  = &ohci->ir_context_list[index];
2661 		}
2662 		break;
2663 
2664 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2665 		mask     = &ohci->ir_context_mask;
2666 		callback = handle_ir_buffer_fill;
2667 		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2668 		if (index >= 0) {
2669 			ohci->mc_allocated = true;
2670 			*mask &= ~(1 << index);
2671 			regs = OHCI1394_IsoRcvContextBase(index);
2672 			ctx  = &ohci->ir_context_list[index];
2673 		}
2674 		break;
2675 
2676 	default:
2677 		index = -1;
2678 		ret = -ENOSYS;
2679 	}
2680 
2681 	spin_unlock_irqrestore(&ohci->lock, flags);
2682 
2683 	if (index < 0)
2684 		return ERR_PTR(ret);
2685 
2686 	memset(ctx, 0, sizeof(*ctx));
2687 	ctx->header_length = 0;
2688 	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2689 	if (ctx->header == NULL) {
2690 		ret = -ENOMEM;
2691 		goto out;
2692 	}
2693 	ret = context_init(&ctx->context, ohci, regs, callback);
2694 	if (ret < 0)
2695 		goto out_with_header;
2696 
2697 	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2698 		set_multichannel_mask(ohci, 0);
2699 
2700 	return &ctx->base;
2701 
2702  out_with_header:
2703 	free_page((unsigned long)ctx->header);
2704  out:
2705 	spin_lock_irqsave(&ohci->lock, flags);
2706 
2707 	switch (type) {
2708 	case FW_ISO_CONTEXT_RECEIVE:
2709 		*channels |= 1ULL << channel;
2710 		break;
2711 
2712 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2713 		ohci->mc_allocated = false;
2714 		break;
2715 	}
2716 	*mask |= 1 << index;
2717 
2718 	spin_unlock_irqrestore(&ohci->lock, flags);
2719 
2720 	return ERR_PTR(ret);
2721 }
2722 
2723 static int ohci_start_iso(struct fw_iso_context *base,
2724 			  s32 cycle, u32 sync, u32 tags)
2725 {
2726 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2727 	struct fw_ohci *ohci = ctx->context.ohci;
2728 	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2729 	int index;
2730 
2731 	/* the controller cannot start without any queued packets */
2732 	if (ctx->context.last->branch_address == 0)
2733 		return -ENODATA;
2734 
2735 	switch (ctx->base.type) {
2736 	case FW_ISO_CONTEXT_TRANSMIT:
2737 		index = ctx - ohci->it_context_list;
2738 		match = 0;
2739 		if (cycle >= 0)
2740 			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2741 				(cycle & 0x7fff) << 16;
2742 
2743 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2744 		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2745 		context_run(&ctx->context, match);
2746 		break;
2747 
2748 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2749 		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2750 		/* fall through */
2751 	case FW_ISO_CONTEXT_RECEIVE:
2752 		index = ctx - ohci->ir_context_list;
2753 		match = (tags << 28) | (sync << 8) | ctx->base.channel;
2754 		if (cycle >= 0) {
2755 			match |= (cycle & 0x07fff) << 12;
2756 			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2757 		}
2758 
2759 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2760 		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2761 		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2762 		context_run(&ctx->context, control);
2763 
2764 		ctx->sync = sync;
2765 		ctx->tags = tags;
2766 
2767 		break;
2768 	}
2769 
2770 	return 0;
2771 }
2772 
2773 static int ohci_stop_iso(struct fw_iso_context *base)
2774 {
2775 	struct fw_ohci *ohci = fw_ohci(base->card);
2776 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2777 	int index;
2778 
2779 	switch (ctx->base.type) {
2780 	case FW_ISO_CONTEXT_TRANSMIT:
2781 		index = ctx - ohci->it_context_list;
2782 		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2783 		break;
2784 
2785 	case FW_ISO_CONTEXT_RECEIVE:
2786 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2787 		index = ctx - ohci->ir_context_list;
2788 		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2789 		break;
2790 	}
2791 	flush_writes(ohci);
2792 	context_stop(&ctx->context);
2793 	tasklet_kill(&ctx->context.tasklet);
2794 
2795 	return 0;
2796 }
2797 
2798 static void ohci_free_iso_context(struct fw_iso_context *base)
2799 {
2800 	struct fw_ohci *ohci = fw_ohci(base->card);
2801 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2802 	unsigned long flags;
2803 	int index;
2804 
2805 	ohci_stop_iso(base);
2806 	context_release(&ctx->context);
2807 	free_page((unsigned long)ctx->header);
2808 
2809 	spin_lock_irqsave(&ohci->lock, flags);
2810 
2811 	switch (base->type) {
2812 	case FW_ISO_CONTEXT_TRANSMIT:
2813 		index = ctx - ohci->it_context_list;
2814 		ohci->it_context_mask |= 1 << index;
2815 		break;
2816 
2817 	case FW_ISO_CONTEXT_RECEIVE:
2818 		index = ctx - ohci->ir_context_list;
2819 		ohci->ir_context_mask |= 1 << index;
2820 		ohci->ir_context_channels |= 1ULL << base->channel;
2821 		break;
2822 
2823 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2824 		index = ctx - ohci->ir_context_list;
2825 		ohci->ir_context_mask |= 1 << index;
2826 		ohci->ir_context_channels |= ohci->mc_channels;
2827 		ohci->mc_channels = 0;
2828 		ohci->mc_allocated = false;
2829 		break;
2830 	}
2831 
2832 	spin_unlock_irqrestore(&ohci->lock, flags);
2833 }
2834 
2835 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2836 {
2837 	struct fw_ohci *ohci = fw_ohci(base->card);
2838 	unsigned long flags;
2839 	int ret;
2840 
2841 	switch (base->type) {
2842 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2843 
2844 		spin_lock_irqsave(&ohci->lock, flags);
2845 
2846 		/* Don't allow multichannel to grab other contexts' channels. */
2847 		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2848 			*channels = ohci->ir_context_channels;
2849 			ret = -EBUSY;
2850 		} else {
2851 			set_multichannel_mask(ohci, *channels);
2852 			ret = 0;
2853 		}
2854 
2855 		spin_unlock_irqrestore(&ohci->lock, flags);
2856 
2857 		break;
2858 	default:
2859 		ret = -EINVAL;
2860 	}
2861 
2862 	return ret;
2863 }
2864 
2865 #ifdef CONFIG_PM
2866 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
2867 {
2868 	int i;
2869 	struct iso_context *ctx;
2870 
2871 	for (i = 0 ; i < ohci->n_ir ; i++) {
2872 		ctx = &ohci->ir_context_list[i];
2873 		if (ctx->context.running)
2874 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2875 	}
2876 
2877 	for (i = 0 ; i < ohci->n_it ; i++) {
2878 		ctx = &ohci->it_context_list[i];
2879 		if (ctx->context.running)
2880 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2881 	}
2882 }
2883 #endif
2884 
2885 static int queue_iso_transmit(struct iso_context *ctx,
2886 			      struct fw_iso_packet *packet,
2887 			      struct fw_iso_buffer *buffer,
2888 			      unsigned long payload)
2889 {
2890 	struct descriptor *d, *last, *pd;
2891 	struct fw_iso_packet *p;
2892 	__le32 *header;
2893 	dma_addr_t d_bus, page_bus;
2894 	u32 z, header_z, payload_z, irq;
2895 	u32 payload_index, payload_end_index, next_page_index;
2896 	int page, end_page, i, length, offset;
2897 
2898 	p = packet;
2899 	payload_index = payload;
2900 
2901 	if (p->skip)
2902 		z = 1;
2903 	else
2904 		z = 2;
2905 	if (p->header_length > 0)
2906 		z++;
2907 
2908 	/* Determine the first page the payload isn't contained in. */
2909 	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2910 	if (p->payload_length > 0)
2911 		payload_z = end_page - (payload_index >> PAGE_SHIFT);
2912 	else
2913 		payload_z = 0;
2914 
2915 	z += payload_z;
2916 
2917 	/* Get header size in number of descriptors. */
2918 	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2919 
2920 	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2921 	if (d == NULL)
2922 		return -ENOMEM;
2923 
2924 	if (!p->skip) {
2925 		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2926 		d[0].req_count = cpu_to_le16(8);
2927 		/*
2928 		 * Link the skip address to this descriptor itself.  This causes
2929 		 * a context to skip a cycle whenever lost cycles or FIFO
2930 		 * overruns occur, without dropping the data.  The application
2931 		 * should then decide whether this is an error condition or not.
2932 		 * FIXME:  Make the context's cycle-lost behaviour configurable?
2933 		 */
2934 		d[0].branch_address = cpu_to_le32(d_bus | z);
2935 
2936 		header = (__le32 *) &d[1];
2937 		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2938 					IT_HEADER_TAG(p->tag) |
2939 					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2940 					IT_HEADER_CHANNEL(ctx->base.channel) |
2941 					IT_HEADER_SPEED(ctx->base.speed));
2942 		header[1] =
2943 			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2944 							  p->payload_length));
2945 	}
2946 
2947 	if (p->header_length > 0) {
2948 		d[2].req_count    = cpu_to_le16(p->header_length);
2949 		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2950 		memcpy(&d[z], p->header, p->header_length);
2951 	}
2952 
2953 	pd = d + z - payload_z;
2954 	payload_end_index = payload_index + p->payload_length;
2955 	for (i = 0; i < payload_z; i++) {
2956 		page               = payload_index >> PAGE_SHIFT;
2957 		offset             = payload_index & ~PAGE_MASK;
2958 		next_page_index    = (page + 1) << PAGE_SHIFT;
2959 		length             =
2960 			min(next_page_index, payload_end_index) - payload_index;
2961 		pd[i].req_count    = cpu_to_le16(length);
2962 
2963 		page_bus = page_private(buffer->pages[page]);
2964 		pd[i].data_address = cpu_to_le32(page_bus + offset);
2965 
2966 		payload_index += length;
2967 	}
2968 
2969 	if (p->interrupt)
2970 		irq = DESCRIPTOR_IRQ_ALWAYS;
2971 	else
2972 		irq = DESCRIPTOR_NO_IRQ;
2973 
2974 	last = z == 2 ? d : d + z - 1;
2975 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2976 				     DESCRIPTOR_STATUS |
2977 				     DESCRIPTOR_BRANCH_ALWAYS |
2978 				     irq);
2979 
2980 	context_append(&ctx->context, d, z, header_z);
2981 
2982 	return 0;
2983 }
2984 
2985 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2986 				       struct fw_iso_packet *packet,
2987 				       struct fw_iso_buffer *buffer,
2988 				       unsigned long payload)
2989 {
2990 	struct descriptor *d, *pd;
2991 	dma_addr_t d_bus, page_bus;
2992 	u32 z, header_z, rest;
2993 	int i, j, length;
2994 	int page, offset, packet_count, header_size, payload_per_buffer;
2995 
2996 	/*
2997 	 * The OHCI controller puts the isochronous header and trailer in the
2998 	 * buffer, so we need at least 8 bytes.
2999 	 */
3000 	packet_count = packet->header_length / ctx->base.header_size;
3001 	header_size  = max(ctx->base.header_size, (size_t)8);
3002 
3003 	/* Get header size in number of descriptors. */
3004 	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3005 	page     = payload >> PAGE_SHIFT;
3006 	offset   = payload & ~PAGE_MASK;
3007 	payload_per_buffer = packet->payload_length / packet_count;
3008 
3009 	for (i = 0; i < packet_count; i++) {
3010 		/* d points to the header descriptor */
3011 		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3012 		d = context_get_descriptors(&ctx->context,
3013 				z + header_z, &d_bus);
3014 		if (d == NULL)
3015 			return -ENOMEM;
3016 
3017 		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3018 					      DESCRIPTOR_INPUT_MORE);
3019 		if (packet->skip && i == 0)
3020 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3021 		d->req_count    = cpu_to_le16(header_size);
3022 		d->res_count    = d->req_count;
3023 		d->transfer_status = 0;
3024 		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3025 
3026 		rest = payload_per_buffer;
3027 		pd = d;
3028 		for (j = 1; j < z; j++) {
3029 			pd++;
3030 			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3031 						  DESCRIPTOR_INPUT_MORE);
3032 
3033 			if (offset + rest < PAGE_SIZE)
3034 				length = rest;
3035 			else
3036 				length = PAGE_SIZE - offset;
3037 			pd->req_count = cpu_to_le16(length);
3038 			pd->res_count = pd->req_count;
3039 			pd->transfer_status = 0;
3040 
3041 			page_bus = page_private(buffer->pages[page]);
3042 			pd->data_address = cpu_to_le32(page_bus + offset);
3043 
3044 			offset = (offset + length) & ~PAGE_MASK;
3045 			rest -= length;
3046 			if (offset == 0)
3047 				page++;
3048 		}
3049 		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3050 					  DESCRIPTOR_INPUT_LAST |
3051 					  DESCRIPTOR_BRANCH_ALWAYS);
3052 		if (packet->interrupt && i == packet_count - 1)
3053 			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3054 
3055 		context_append(&ctx->context, d, z, header_z);
3056 	}
3057 
3058 	return 0;
3059 }
3060 
3061 static int queue_iso_buffer_fill(struct iso_context *ctx,
3062 				 struct fw_iso_packet *packet,
3063 				 struct fw_iso_buffer *buffer,
3064 				 unsigned long payload)
3065 {
3066 	struct descriptor *d;
3067 	dma_addr_t d_bus, page_bus;
3068 	int page, offset, rest, z, i, length;
3069 
3070 	page   = payload >> PAGE_SHIFT;
3071 	offset = payload & ~PAGE_MASK;
3072 	rest   = packet->payload_length;
3073 
3074 	/* We need one descriptor for each page in the buffer. */
3075 	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3076 
3077 	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3078 		return -EFAULT;
3079 
3080 	for (i = 0; i < z; i++) {
3081 		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3082 		if (d == NULL)
3083 			return -ENOMEM;
3084 
3085 		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3086 					 DESCRIPTOR_BRANCH_ALWAYS);
3087 		if (packet->skip && i == 0)
3088 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3089 		if (packet->interrupt && i == z - 1)
3090 			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3091 
3092 		if (offset + rest < PAGE_SIZE)
3093 			length = rest;
3094 		else
3095 			length = PAGE_SIZE - offset;
3096 		d->req_count = cpu_to_le16(length);
3097 		d->res_count = d->req_count;
3098 		d->transfer_status = 0;
3099 
3100 		page_bus = page_private(buffer->pages[page]);
3101 		d->data_address = cpu_to_le32(page_bus + offset);
3102 
3103 		rest -= length;
3104 		offset = 0;
3105 		page++;
3106 
3107 		context_append(&ctx->context, d, 1, 0);
3108 	}
3109 
3110 	return 0;
3111 }
3112 
3113 static int ohci_queue_iso(struct fw_iso_context *base,
3114 			  struct fw_iso_packet *packet,
3115 			  struct fw_iso_buffer *buffer,
3116 			  unsigned long payload)
3117 {
3118 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3119 	unsigned long flags;
3120 	int ret = -ENOSYS;
3121 
3122 	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3123 	switch (base->type) {
3124 	case FW_ISO_CONTEXT_TRANSMIT:
3125 		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3126 		break;
3127 	case FW_ISO_CONTEXT_RECEIVE:
3128 		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3129 		break;
3130 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3131 		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3132 		break;
3133 	}
3134 	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3135 
3136 	return ret;
3137 }
3138 
3139 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3140 {
3141 	struct context *ctx =
3142 			&container_of(base, struct iso_context, base)->context;
3143 
3144 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3145 }
3146 
3147 static const struct fw_card_driver ohci_driver = {
3148 	.enable			= ohci_enable,
3149 	.read_phy_reg		= ohci_read_phy_reg,
3150 	.update_phy_reg		= ohci_update_phy_reg,
3151 	.set_config_rom		= ohci_set_config_rom,
3152 	.send_request		= ohci_send_request,
3153 	.send_response		= ohci_send_response,
3154 	.cancel_packet		= ohci_cancel_packet,
3155 	.enable_phys_dma	= ohci_enable_phys_dma,
3156 	.read_csr		= ohci_read_csr,
3157 	.write_csr		= ohci_write_csr,
3158 
3159 	.allocate_iso_context	= ohci_allocate_iso_context,
3160 	.free_iso_context	= ohci_free_iso_context,
3161 	.set_iso_channels	= ohci_set_iso_channels,
3162 	.queue_iso		= ohci_queue_iso,
3163 	.flush_queue_iso	= ohci_flush_queue_iso,
3164 	.start_iso		= ohci_start_iso,
3165 	.stop_iso		= ohci_stop_iso,
3166 };
3167 
3168 #ifdef CONFIG_PPC_PMAC
3169 static void pmac_ohci_on(struct pci_dev *dev)
3170 {
3171 	if (machine_is(powermac)) {
3172 		struct device_node *ofn = pci_device_to_OF_node(dev);
3173 
3174 		if (ofn) {
3175 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3176 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3177 		}
3178 	}
3179 }
3180 
3181 static void pmac_ohci_off(struct pci_dev *dev)
3182 {
3183 	if (machine_is(powermac)) {
3184 		struct device_node *ofn = pci_device_to_OF_node(dev);
3185 
3186 		if (ofn) {
3187 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3188 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3189 		}
3190 	}
3191 }
3192 #else
3193 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3194 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3195 #endif /* CONFIG_PPC_PMAC */
3196 
3197 static int __devinit pci_probe(struct pci_dev *dev,
3198 			       const struct pci_device_id *ent)
3199 {
3200 	struct fw_ohci *ohci;
3201 	u32 bus_options, max_receive, link_speed, version;
3202 	u64 guid;
3203 	int i, err;
3204 	size_t size;
3205 
3206 	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3207 		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3208 		return -ENOSYS;
3209 	}
3210 
3211 	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3212 	if (ohci == NULL) {
3213 		err = -ENOMEM;
3214 		goto fail;
3215 	}
3216 
3217 	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3218 
3219 	pmac_ohci_on(dev);
3220 
3221 	err = pci_enable_device(dev);
3222 	if (err) {
3223 		fw_error("Failed to enable OHCI hardware\n");
3224 		goto fail_free;
3225 	}
3226 
3227 	pci_set_master(dev);
3228 	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3229 	pci_set_drvdata(dev, ohci);
3230 
3231 	spin_lock_init(&ohci->lock);
3232 	mutex_init(&ohci->phy_reg_mutex);
3233 
3234 	tasklet_init(&ohci->bus_reset_tasklet,
3235 		     bus_reset_tasklet, (unsigned long)ohci);
3236 
3237 	err = pci_request_region(dev, 0, ohci_driver_name);
3238 	if (err) {
3239 		fw_error("MMIO resource unavailable\n");
3240 		goto fail_disable;
3241 	}
3242 
3243 	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3244 	if (ohci->registers == NULL) {
3245 		fw_error("Failed to remap registers\n");
3246 		err = -ENXIO;
3247 		goto fail_iomem;
3248 	}
3249 
3250 	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3251 		if ((ohci_quirks[i].vendor == dev->vendor) &&
3252 		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3253 		     ohci_quirks[i].device == dev->device) &&
3254 		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3255 		     ohci_quirks[i].revision >= dev->revision)) {
3256 			ohci->quirks = ohci_quirks[i].flags;
3257 			break;
3258 		}
3259 	if (param_quirks)
3260 		ohci->quirks = param_quirks;
3261 
3262 	/*
3263 	 * Because dma_alloc_coherent() allocates at least one page,
3264 	 * we save space by using a common buffer for the AR request/
3265 	 * response descriptors and the self IDs buffer.
3266 	 */
3267 	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3268 	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3269 	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3270 					       PAGE_SIZE,
3271 					       &ohci->misc_buffer_bus,
3272 					       GFP_KERNEL);
3273 	if (!ohci->misc_buffer) {
3274 		err = -ENOMEM;
3275 		goto fail_iounmap;
3276 	}
3277 
3278 	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3279 			      OHCI1394_AsReqRcvContextControlSet);
3280 	if (err < 0)
3281 		goto fail_misc_buf;
3282 
3283 	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3284 			      OHCI1394_AsRspRcvContextControlSet);
3285 	if (err < 0)
3286 		goto fail_arreq_ctx;
3287 
3288 	err = context_init(&ohci->at_request_ctx, ohci,
3289 			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3290 	if (err < 0)
3291 		goto fail_arrsp_ctx;
3292 
3293 	err = context_init(&ohci->at_response_ctx, ohci,
3294 			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3295 	if (err < 0)
3296 		goto fail_atreq_ctx;
3297 
3298 	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3299 	ohci->ir_context_channels = ~0ULL;
3300 	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3301 	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3302 	ohci->ir_context_mask = ohci->ir_context_support;
3303 	ohci->n_ir = hweight32(ohci->ir_context_mask);
3304 	size = sizeof(struct iso_context) * ohci->n_ir;
3305 	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3306 
3307 	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3308 	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3309 	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3310 	ohci->it_context_mask = ohci->it_context_support;
3311 	ohci->n_it = hweight32(ohci->it_context_mask);
3312 	size = sizeof(struct iso_context) * ohci->n_it;
3313 	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3314 
3315 	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3316 		err = -ENOMEM;
3317 		goto fail_contexts;
3318 	}
3319 
3320 	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
3321 	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3322 
3323 	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3324 	max_receive = (bus_options >> 12) & 0xf;
3325 	link_speed = bus_options & 0x7;
3326 	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3327 		reg_read(ohci, OHCI1394_GUIDLo);
3328 
3329 	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3330 	if (err)
3331 		goto fail_contexts;
3332 
3333 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3334 	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3335 		  "%d IR + %d IT contexts, quirks 0x%x\n",
3336 		  dev_name(&dev->dev), version >> 16, version & 0xff,
3337 		  ohci->n_ir, ohci->n_it, ohci->quirks);
3338 
3339 	return 0;
3340 
3341  fail_contexts:
3342 	kfree(ohci->ir_context_list);
3343 	kfree(ohci->it_context_list);
3344 	context_release(&ohci->at_response_ctx);
3345  fail_atreq_ctx:
3346 	context_release(&ohci->at_request_ctx);
3347  fail_arrsp_ctx:
3348 	ar_context_release(&ohci->ar_response_ctx);
3349  fail_arreq_ctx:
3350 	ar_context_release(&ohci->ar_request_ctx);
3351  fail_misc_buf:
3352 	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3353 			  ohci->misc_buffer, ohci->misc_buffer_bus);
3354  fail_iounmap:
3355 	pci_iounmap(dev, ohci->registers);
3356  fail_iomem:
3357 	pci_release_region(dev, 0);
3358  fail_disable:
3359 	pci_disable_device(dev);
3360  fail_free:
3361 	kfree(ohci);
3362 	pmac_ohci_off(dev);
3363  fail:
3364 	if (err == -ENOMEM)
3365 		fw_error("Out of memory\n");
3366 
3367 	return err;
3368 }
3369 
3370 static void pci_remove(struct pci_dev *dev)
3371 {
3372 	struct fw_ohci *ohci;
3373 
3374 	ohci = pci_get_drvdata(dev);
3375 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3376 	flush_writes(ohci);
3377 	fw_core_remove_card(&ohci->card);
3378 
3379 	/*
3380 	 * FIXME: Fail all pending packets here, now that the upper
3381 	 * layers can't queue any more.
3382 	 */
3383 
3384 	software_reset(ohci);
3385 	free_irq(dev->irq, ohci);
3386 
3387 	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3388 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3389 				  ohci->next_config_rom, ohci->next_config_rom_bus);
3390 	if (ohci->config_rom)
3391 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3392 				  ohci->config_rom, ohci->config_rom_bus);
3393 	ar_context_release(&ohci->ar_request_ctx);
3394 	ar_context_release(&ohci->ar_response_ctx);
3395 	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3396 			  ohci->misc_buffer, ohci->misc_buffer_bus);
3397 	context_release(&ohci->at_request_ctx);
3398 	context_release(&ohci->at_response_ctx);
3399 	kfree(ohci->it_context_list);
3400 	kfree(ohci->ir_context_list);
3401 	pci_disable_msi(dev);
3402 	pci_iounmap(dev, ohci->registers);
3403 	pci_release_region(dev, 0);
3404 	pci_disable_device(dev);
3405 	kfree(ohci);
3406 	pmac_ohci_off(dev);
3407 
3408 	fw_notify("Removed fw-ohci device.\n");
3409 }
3410 
3411 #ifdef CONFIG_PM
3412 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3413 {
3414 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3415 	int err;
3416 
3417 	software_reset(ohci);
3418 	free_irq(dev->irq, ohci);
3419 	pci_disable_msi(dev);
3420 	err = pci_save_state(dev);
3421 	if (err) {
3422 		fw_error("pci_save_state failed\n");
3423 		return err;
3424 	}
3425 	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3426 	if (err)
3427 		fw_error("pci_set_power_state failed with %d\n", err);
3428 	pmac_ohci_off(dev);
3429 
3430 	return 0;
3431 }
3432 
3433 static int pci_resume(struct pci_dev *dev)
3434 {
3435 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3436 	int err;
3437 
3438 	pmac_ohci_on(dev);
3439 	pci_set_power_state(dev, PCI_D0);
3440 	pci_restore_state(dev);
3441 	err = pci_enable_device(dev);
3442 	if (err) {
3443 		fw_error("pci_enable_device failed\n");
3444 		return err;
3445 	}
3446 
3447 	/* Some systems don't setup GUID register on resume from ram  */
3448 	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3449 					!reg_read(ohci, OHCI1394_GUIDHi)) {
3450 		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3451 		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3452 	}
3453 
3454 	err = ohci_enable(&ohci->card, NULL, 0);
3455 	if (err)
3456 		return err;
3457 
3458 	ohci_resume_iso_dma(ohci);
3459 
3460 	return 0;
3461 }
3462 #endif
3463 
3464 static const struct pci_device_id pci_table[] = {
3465 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3466 	{ }
3467 };
3468 
3469 MODULE_DEVICE_TABLE(pci, pci_table);
3470 
3471 static struct pci_driver fw_ohci_pci_driver = {
3472 	.name		= ohci_driver_name,
3473 	.id_table	= pci_table,
3474 	.probe		= pci_probe,
3475 	.remove		= pci_remove,
3476 #ifdef CONFIG_PM
3477 	.resume		= pci_resume,
3478 	.suspend	= pci_suspend,
3479 #endif
3480 };
3481 
3482 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3483 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3484 MODULE_LICENSE("GPL");
3485 
3486 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3487 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3488 MODULE_ALIAS("ohci1394");
3489 #endif
3490 
3491 static int __init fw_ohci_init(void)
3492 {
3493 	return pci_register_driver(&fw_ohci_pci_driver);
3494 }
3495 
3496 static void __exit fw_ohci_cleanup(void)
3497 {
3498 	pci_unregister_driver(&fw_ohci_pci_driver);
3499 }
3500 
3501 module_init(fw_ohci_init);
3502 module_exit(fw_ohci_cleanup);
3503