1 /* 2 * Driver for OHCI 1394 controllers 3 * 4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 #include <linux/bitops.h> 22 #include <linux/bug.h> 23 #include <linux/compiler.h> 24 #include <linux/delay.h> 25 #include <linux/device.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/firewire.h> 28 #include <linux/firewire-constants.h> 29 #include <linux/init.h> 30 #include <linux/interrupt.h> 31 #include <linux/io.h> 32 #include <linux/kernel.h> 33 #include <linux/list.h> 34 #include <linux/mm.h> 35 #include <linux/module.h> 36 #include <linux/moduleparam.h> 37 #include <linux/mutex.h> 38 #include <linux/pci.h> 39 #include <linux/pci_ids.h> 40 #include <linux/slab.h> 41 #include <linux/spinlock.h> 42 #include <linux/string.h> 43 #include <linux/time.h> 44 #include <linux/vmalloc.h> 45 #include <linux/workqueue.h> 46 47 #include <asm/byteorder.h> 48 #include <asm/page.h> 49 50 #ifdef CONFIG_PPC_PMAC 51 #include <asm/pmac_feature.h> 52 #endif 53 54 #include "core.h" 55 #include "ohci.h" 56 57 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args) 58 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args) 59 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args) 60 61 #define DESCRIPTOR_OUTPUT_MORE 0 62 #define DESCRIPTOR_OUTPUT_LAST (1 << 12) 63 #define DESCRIPTOR_INPUT_MORE (2 << 12) 64 #define DESCRIPTOR_INPUT_LAST (3 << 12) 65 #define DESCRIPTOR_STATUS (1 << 11) 66 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8) 67 #define DESCRIPTOR_PING (1 << 7) 68 #define DESCRIPTOR_YY (1 << 6) 69 #define DESCRIPTOR_NO_IRQ (0 << 4) 70 #define DESCRIPTOR_IRQ_ERROR (1 << 4) 71 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4) 72 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2) 73 #define DESCRIPTOR_WAIT (3 << 0) 74 75 #define DESCRIPTOR_CMD (0xf << 12) 76 77 struct descriptor { 78 __le16 req_count; 79 __le16 control; 80 __le32 data_address; 81 __le32 branch_address; 82 __le16 res_count; 83 __le16 transfer_status; 84 } __attribute__((aligned(16))); 85 86 #define CONTROL_SET(regs) (regs) 87 #define CONTROL_CLEAR(regs) ((regs) + 4) 88 #define COMMAND_PTR(regs) ((regs) + 12) 89 #define CONTEXT_MATCH(regs) ((regs) + 16) 90 91 #define AR_BUFFER_SIZE (32*1024) 92 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE) 93 /* we need at least two pages for proper list management */ 94 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2) 95 96 #define MAX_ASYNC_PAYLOAD 4096 97 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4) 98 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE) 99 100 struct ar_context { 101 struct fw_ohci *ohci; 102 struct page *pages[AR_BUFFERS]; 103 void *buffer; 104 struct descriptor *descriptors; 105 dma_addr_t descriptors_bus; 106 void *pointer; 107 unsigned int last_buffer_index; 108 u32 regs; 109 struct tasklet_struct tasklet; 110 }; 111 112 struct context; 113 114 typedef int (*descriptor_callback_t)(struct context *ctx, 115 struct descriptor *d, 116 struct descriptor *last); 117 118 /* 119 * A buffer that contains a block of DMA-able coherent memory used for 120 * storing a portion of a DMA descriptor program. 121 */ 122 struct descriptor_buffer { 123 struct list_head list; 124 dma_addr_t buffer_bus; 125 size_t buffer_size; 126 size_t used; 127 struct descriptor buffer[0]; 128 }; 129 130 struct context { 131 struct fw_ohci *ohci; 132 u32 regs; 133 int total_allocation; 134 u32 current_bus; 135 bool running; 136 bool flushing; 137 138 /* 139 * List of page-sized buffers for storing DMA descriptors. 140 * Head of list contains buffers in use and tail of list contains 141 * free buffers. 142 */ 143 struct list_head buffer_list; 144 145 /* 146 * Pointer to a buffer inside buffer_list that contains the tail 147 * end of the current DMA program. 148 */ 149 struct descriptor_buffer *buffer_tail; 150 151 /* 152 * The descriptor containing the branch address of the first 153 * descriptor that has not yet been filled by the device. 154 */ 155 struct descriptor *last; 156 157 /* 158 * The last descriptor block in the DMA program. It contains the branch 159 * address that must be updated upon appending a new descriptor. 160 */ 161 struct descriptor *prev; 162 int prev_z; 163 164 descriptor_callback_t callback; 165 166 struct tasklet_struct tasklet; 167 }; 168 169 #define IT_HEADER_SY(v) ((v) << 0) 170 #define IT_HEADER_TCODE(v) ((v) << 4) 171 #define IT_HEADER_CHANNEL(v) ((v) << 8) 172 #define IT_HEADER_TAG(v) ((v) << 14) 173 #define IT_HEADER_SPEED(v) ((v) << 16) 174 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16) 175 176 struct iso_context { 177 struct fw_iso_context base; 178 struct context context; 179 void *header; 180 size_t header_length; 181 unsigned long flushing_completions; 182 u32 mc_buffer_bus; 183 u16 mc_completed; 184 u16 last_timestamp; 185 u8 sync; 186 u8 tags; 187 }; 188 189 #define CONFIG_ROM_SIZE 1024 190 191 struct fw_ohci { 192 struct fw_card card; 193 194 __iomem char *registers; 195 int node_id; 196 int generation; 197 int request_generation; /* for timestamping incoming requests */ 198 unsigned quirks; 199 unsigned int pri_req_max; 200 u32 bus_time; 201 bool bus_time_running; 202 bool is_root; 203 bool csr_state_setclear_abdicate; 204 int n_ir; 205 int n_it; 206 /* 207 * Spinlock for accessing fw_ohci data. Never call out of 208 * this driver with this lock held. 209 */ 210 spinlock_t lock; 211 212 struct mutex phy_reg_mutex; 213 214 void *misc_buffer; 215 dma_addr_t misc_buffer_bus; 216 217 struct ar_context ar_request_ctx; 218 struct ar_context ar_response_ctx; 219 struct context at_request_ctx; 220 struct context at_response_ctx; 221 222 u32 it_context_support; 223 u32 it_context_mask; /* unoccupied IT contexts */ 224 struct iso_context *it_context_list; 225 u64 ir_context_channels; /* unoccupied channels */ 226 u32 ir_context_support; 227 u32 ir_context_mask; /* unoccupied IR contexts */ 228 struct iso_context *ir_context_list; 229 u64 mc_channels; /* channels in use by the multichannel IR context */ 230 bool mc_allocated; 231 232 __be32 *config_rom; 233 dma_addr_t config_rom_bus; 234 __be32 *next_config_rom; 235 dma_addr_t next_config_rom_bus; 236 __be32 next_header; 237 238 __le32 *self_id_cpu; 239 dma_addr_t self_id_bus; 240 struct work_struct bus_reset_work; 241 242 u32 self_id_buffer[512]; 243 }; 244 245 static inline struct fw_ohci *fw_ohci(struct fw_card *card) 246 { 247 return container_of(card, struct fw_ohci, card); 248 } 249 250 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000 251 #define IR_CONTEXT_BUFFER_FILL 0x80000000 252 #define IR_CONTEXT_ISOCH_HEADER 0x40000000 253 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000 254 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000 255 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000 256 257 #define CONTEXT_RUN 0x8000 258 #define CONTEXT_WAKE 0x1000 259 #define CONTEXT_DEAD 0x0800 260 #define CONTEXT_ACTIVE 0x0400 261 262 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf 263 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2 264 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8 265 266 #define OHCI1394_REGISTER_SIZE 0x800 267 #define OHCI1394_PCI_HCI_Control 0x40 268 #define SELF_ID_BUF_SIZE 0x800 269 #define OHCI_TCODE_PHY_PACKET 0x0e 270 #define OHCI_VERSION_1_1 0x010010 271 272 static char ohci_driver_name[] = KBUILD_MODNAME; 273 274 #define PCI_DEVICE_ID_AGERE_FW643 0x5901 275 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001 276 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380 277 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009 278 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020 279 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025 280 #define PCI_DEVICE_ID_VIA_VT630X 0x3044 281 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd 282 #define PCI_REV_ID_VIA_VT6306 0x46 283 284 #define QUIRK_CYCLE_TIMER 1 285 #define QUIRK_RESET_PACKET 2 286 #define QUIRK_BE_HEADERS 4 287 #define QUIRK_NO_1394A 8 288 #define QUIRK_NO_MSI 16 289 #define QUIRK_TI_SLLZ059 32 290 #define QUIRK_IR_WAKE 64 291 #define QUIRK_PHY_LCTRL_TIMEOUT 128 292 293 /* In case of multiple matches in ohci_quirks[], only the first one is used. */ 294 static const struct { 295 unsigned short vendor, device, revision, flags; 296 } ohci_quirks[] = { 297 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID, 298 QUIRK_CYCLE_TIMER}, 299 300 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID, 301 QUIRK_BE_HEADERS}, 302 303 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6, 304 QUIRK_PHY_LCTRL_TIMEOUT | QUIRK_NO_MSI}, 305 306 {PCI_VENDOR_ID_ATT, PCI_ANY_ID, PCI_ANY_ID, 307 QUIRK_PHY_LCTRL_TIMEOUT}, 308 309 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID, 310 QUIRK_RESET_PACKET}, 311 312 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID, 313 QUIRK_NO_MSI}, 314 315 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID, 316 QUIRK_CYCLE_TIMER}, 317 318 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID, 319 QUIRK_NO_MSI}, 320 321 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID, 322 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI}, 323 324 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID, 325 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A}, 326 327 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID, 328 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059}, 329 330 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID, 331 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059}, 332 333 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID, 334 QUIRK_RESET_PACKET}, 335 336 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306, 337 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE}, 338 339 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID, 340 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI}, 341 }; 342 343 /* This overrides anything that was found in ohci_quirks[]. */ 344 static int param_quirks; 345 module_param_named(quirks, param_quirks, int, 0644); 346 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0" 347 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER) 348 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET) 349 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS) 350 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A) 351 ", disable MSI = " __stringify(QUIRK_NO_MSI) 352 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059) 353 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE) 354 ", phy LCtrl timeout = " __stringify(QUIRK_PHY_LCTRL_TIMEOUT) 355 ")"); 356 357 #define OHCI_PARAM_DEBUG_AT_AR 1 358 #define OHCI_PARAM_DEBUG_SELFIDS 2 359 #define OHCI_PARAM_DEBUG_IRQS 4 360 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */ 361 362 static int param_debug; 363 module_param_named(debug, param_debug, int, 0644); 364 MODULE_PARM_DESC(debug, "Verbose logging (default = 0" 365 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR) 366 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS) 367 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS) 368 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS) 369 ", or a combination, or all = -1)"); 370 371 static void log_irqs(struct fw_ohci *ohci, u32 evt) 372 { 373 if (likely(!(param_debug & 374 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS)))) 375 return; 376 377 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) && 378 !(evt & OHCI1394_busReset)) 379 return; 380 381 ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt, 382 evt & OHCI1394_selfIDComplete ? " selfID" : "", 383 evt & OHCI1394_RQPkt ? " AR_req" : "", 384 evt & OHCI1394_RSPkt ? " AR_resp" : "", 385 evt & OHCI1394_reqTxComplete ? " AT_req" : "", 386 evt & OHCI1394_respTxComplete ? " AT_resp" : "", 387 evt & OHCI1394_isochRx ? " IR" : "", 388 evt & OHCI1394_isochTx ? " IT" : "", 389 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "", 390 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "", 391 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "", 392 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "", 393 evt & OHCI1394_regAccessFail ? " regAccessFail" : "", 394 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "", 395 evt & OHCI1394_busReset ? " busReset" : "", 396 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt | 397 OHCI1394_RSPkt | OHCI1394_reqTxComplete | 398 OHCI1394_respTxComplete | OHCI1394_isochRx | 399 OHCI1394_isochTx | OHCI1394_postedWriteErr | 400 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds | 401 OHCI1394_cycleInconsistent | 402 OHCI1394_regAccessFail | OHCI1394_busReset) 403 ? " ?" : ""); 404 } 405 406 static const char *speed[] = { 407 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta", 408 }; 409 static const char *power[] = { 410 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W", 411 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W", 412 }; 413 static const char port[] = { '.', '-', 'p', 'c', }; 414 415 static char _p(u32 *s, int shift) 416 { 417 return port[*s >> shift & 3]; 418 } 419 420 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count) 421 { 422 u32 *s; 423 424 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS))) 425 return; 426 427 ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n", 428 self_id_count, generation, ohci->node_id); 429 430 for (s = ohci->self_id_buffer; self_id_count--; ++s) 431 if ((*s & 1 << 23) == 0) 432 ohci_notice(ohci, 433 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n", 434 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2), 435 speed[*s >> 14 & 3], *s >> 16 & 63, 436 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "", 437 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : ""); 438 else 439 ohci_notice(ohci, 440 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n", 441 *s, *s >> 24 & 63, 442 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10), 443 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2)); 444 } 445 446 static const char *evts[] = { 447 [0x00] = "evt_no_status", [0x01] = "-reserved-", 448 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack", 449 [0x04] = "evt_underrun", [0x05] = "evt_overrun", 450 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read", 451 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset", 452 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err", 453 [0x0c] = "-reserved-", [0x0d] = "-reserved-", 454 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed", 455 [0x10] = "-reserved-", [0x11] = "ack_complete", 456 [0x12] = "ack_pending ", [0x13] = "-reserved-", 457 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A", 458 [0x16] = "ack_busy_B", [0x17] = "-reserved-", 459 [0x18] = "-reserved-", [0x19] = "-reserved-", 460 [0x1a] = "-reserved-", [0x1b] = "ack_tardy", 461 [0x1c] = "-reserved-", [0x1d] = "ack_data_error", 462 [0x1e] = "ack_type_error", [0x1f] = "-reserved-", 463 [0x20] = "pending/cancelled", 464 }; 465 static const char *tcodes[] = { 466 [0x0] = "QW req", [0x1] = "BW req", 467 [0x2] = "W resp", [0x3] = "-reserved-", 468 [0x4] = "QR req", [0x5] = "BR req", 469 [0x6] = "QR resp", [0x7] = "BR resp", 470 [0x8] = "cycle start", [0x9] = "Lk req", 471 [0xa] = "async stream packet", [0xb] = "Lk resp", 472 [0xc] = "-reserved-", [0xd] = "-reserved-", 473 [0xe] = "link internal", [0xf] = "-reserved-", 474 }; 475 476 static void log_ar_at_event(struct fw_ohci *ohci, 477 char dir, int speed, u32 *header, int evt) 478 { 479 int tcode = header[0] >> 4 & 0xf; 480 char specific[12]; 481 482 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR))) 483 return; 484 485 if (unlikely(evt >= ARRAY_SIZE(evts))) 486 evt = 0x1f; 487 488 if (evt == OHCI1394_evt_bus_reset) { 489 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n", 490 dir, (header[2] >> 16) & 0xff); 491 return; 492 } 493 494 switch (tcode) { 495 case 0x0: case 0x6: case 0x8: 496 snprintf(specific, sizeof(specific), " = %08x", 497 be32_to_cpu((__force __be32)header[3])); 498 break; 499 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb: 500 snprintf(specific, sizeof(specific), " %x,%x", 501 header[3] >> 16, header[3] & 0xffff); 502 break; 503 default: 504 specific[0] = '\0'; 505 } 506 507 switch (tcode) { 508 case 0xa: 509 ohci_notice(ohci, "A%c %s, %s\n", 510 dir, evts[evt], tcodes[tcode]); 511 break; 512 case 0xe: 513 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n", 514 dir, evts[evt], header[1], header[2]); 515 break; 516 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9: 517 ohci_notice(ohci, 518 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n", 519 dir, speed, header[0] >> 10 & 0x3f, 520 header[1] >> 16, header[0] >> 16, evts[evt], 521 tcodes[tcode], header[1] & 0xffff, header[2], specific); 522 break; 523 default: 524 ohci_notice(ohci, 525 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n", 526 dir, speed, header[0] >> 10 & 0x3f, 527 header[1] >> 16, header[0] >> 16, evts[evt], 528 tcodes[tcode], specific); 529 } 530 } 531 532 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data) 533 { 534 writel(data, ohci->registers + offset); 535 } 536 537 static inline u32 reg_read(const struct fw_ohci *ohci, int offset) 538 { 539 return readl(ohci->registers + offset); 540 } 541 542 static inline void flush_writes(const struct fw_ohci *ohci) 543 { 544 /* Do a dummy read to flush writes. */ 545 reg_read(ohci, OHCI1394_Version); 546 } 547 548 /* 549 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and 550 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex. 551 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg() 552 * directly. Exceptions are intrinsically serialized contexts like pci_probe. 553 */ 554 static int read_phy_reg(struct fw_ohci *ohci, int addr) 555 { 556 u32 val; 557 int i; 558 559 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr)); 560 for (i = 0; i < 3 + 100; i++) { 561 val = reg_read(ohci, OHCI1394_PhyControl); 562 if (!~val) 563 return -ENODEV; /* Card was ejected. */ 564 565 if (val & OHCI1394_PhyControl_ReadDone) 566 return OHCI1394_PhyControl_ReadData(val); 567 568 /* 569 * Try a few times without waiting. Sleeping is necessary 570 * only when the link/PHY interface is busy. 571 */ 572 if (i >= 3) 573 msleep(1); 574 } 575 ohci_err(ohci, "failed to read phy reg %d\n", addr); 576 dump_stack(); 577 578 return -EBUSY; 579 } 580 581 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val) 582 { 583 int i; 584 585 reg_write(ohci, OHCI1394_PhyControl, 586 OHCI1394_PhyControl_Write(addr, val)); 587 for (i = 0; i < 3 + 100; i++) { 588 val = reg_read(ohci, OHCI1394_PhyControl); 589 if (!~val) 590 return -ENODEV; /* Card was ejected. */ 591 592 if (!(val & OHCI1394_PhyControl_WritePending)) 593 return 0; 594 595 if (i >= 3) 596 msleep(1); 597 } 598 ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val); 599 dump_stack(); 600 601 return -EBUSY; 602 } 603 604 static int update_phy_reg(struct fw_ohci *ohci, int addr, 605 int clear_bits, int set_bits) 606 { 607 int ret = read_phy_reg(ohci, addr); 608 if (ret < 0) 609 return ret; 610 611 /* 612 * The interrupt status bits are cleared by writing a one bit. 613 * Avoid clearing them unless explicitly requested in set_bits. 614 */ 615 if (addr == 5) 616 clear_bits |= PHY_INT_STATUS_BITS; 617 618 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits); 619 } 620 621 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr) 622 { 623 int ret; 624 625 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5); 626 if (ret < 0) 627 return ret; 628 629 return read_phy_reg(ohci, addr); 630 } 631 632 static int ohci_read_phy_reg(struct fw_card *card, int addr) 633 { 634 struct fw_ohci *ohci = fw_ohci(card); 635 int ret; 636 637 mutex_lock(&ohci->phy_reg_mutex); 638 ret = read_phy_reg(ohci, addr); 639 mutex_unlock(&ohci->phy_reg_mutex); 640 641 return ret; 642 } 643 644 static int ohci_update_phy_reg(struct fw_card *card, int addr, 645 int clear_bits, int set_bits) 646 { 647 struct fw_ohci *ohci = fw_ohci(card); 648 int ret; 649 650 mutex_lock(&ohci->phy_reg_mutex); 651 ret = update_phy_reg(ohci, addr, clear_bits, set_bits); 652 mutex_unlock(&ohci->phy_reg_mutex); 653 654 return ret; 655 } 656 657 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i) 658 { 659 return page_private(ctx->pages[i]); 660 } 661 662 static void ar_context_link_page(struct ar_context *ctx, unsigned int index) 663 { 664 struct descriptor *d; 665 666 d = &ctx->descriptors[index]; 667 d->branch_address &= cpu_to_le32(~0xf); 668 d->res_count = cpu_to_le16(PAGE_SIZE); 669 d->transfer_status = 0; 670 671 wmb(); /* finish init of new descriptors before branch_address update */ 672 d = &ctx->descriptors[ctx->last_buffer_index]; 673 d->branch_address |= cpu_to_le32(1); 674 675 ctx->last_buffer_index = index; 676 677 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); 678 } 679 680 static void ar_context_release(struct ar_context *ctx) 681 { 682 unsigned int i; 683 684 if (ctx->buffer) 685 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES); 686 687 for (i = 0; i < AR_BUFFERS; i++) 688 if (ctx->pages[i]) { 689 dma_unmap_page(ctx->ohci->card.device, 690 ar_buffer_bus(ctx, i), 691 PAGE_SIZE, DMA_FROM_DEVICE); 692 __free_page(ctx->pages[i]); 693 } 694 } 695 696 static void ar_context_abort(struct ar_context *ctx, const char *error_msg) 697 { 698 struct fw_ohci *ohci = ctx->ohci; 699 700 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) { 701 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN); 702 flush_writes(ohci); 703 704 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg); 705 } 706 /* FIXME: restart? */ 707 } 708 709 static inline unsigned int ar_next_buffer_index(unsigned int index) 710 { 711 return (index + 1) % AR_BUFFERS; 712 } 713 714 static inline unsigned int ar_prev_buffer_index(unsigned int index) 715 { 716 return (index - 1 + AR_BUFFERS) % AR_BUFFERS; 717 } 718 719 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx) 720 { 721 return ar_next_buffer_index(ctx->last_buffer_index); 722 } 723 724 /* 725 * We search for the buffer that contains the last AR packet DMA data written 726 * by the controller. 727 */ 728 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx, 729 unsigned int *buffer_offset) 730 { 731 unsigned int i, next_i, last = ctx->last_buffer_index; 732 __le16 res_count, next_res_count; 733 734 i = ar_first_buffer_index(ctx); 735 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count); 736 737 /* A buffer that is not yet completely filled must be the last one. */ 738 while (i != last && res_count == 0) { 739 740 /* Peek at the next descriptor. */ 741 next_i = ar_next_buffer_index(i); 742 rmb(); /* read descriptors in order */ 743 next_res_count = ACCESS_ONCE( 744 ctx->descriptors[next_i].res_count); 745 /* 746 * If the next descriptor is still empty, we must stop at this 747 * descriptor. 748 */ 749 if (next_res_count == cpu_to_le16(PAGE_SIZE)) { 750 /* 751 * The exception is when the DMA data for one packet is 752 * split over three buffers; in this case, the middle 753 * buffer's descriptor might be never updated by the 754 * controller and look still empty, and we have to peek 755 * at the third one. 756 */ 757 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) { 758 next_i = ar_next_buffer_index(next_i); 759 rmb(); 760 next_res_count = ACCESS_ONCE( 761 ctx->descriptors[next_i].res_count); 762 if (next_res_count != cpu_to_le16(PAGE_SIZE)) 763 goto next_buffer_is_active; 764 } 765 766 break; 767 } 768 769 next_buffer_is_active: 770 i = next_i; 771 res_count = next_res_count; 772 } 773 774 rmb(); /* read res_count before the DMA data */ 775 776 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count); 777 if (*buffer_offset > PAGE_SIZE) { 778 *buffer_offset = 0; 779 ar_context_abort(ctx, "corrupted descriptor"); 780 } 781 782 return i; 783 } 784 785 static void ar_sync_buffers_for_cpu(struct ar_context *ctx, 786 unsigned int end_buffer_index, 787 unsigned int end_buffer_offset) 788 { 789 unsigned int i; 790 791 i = ar_first_buffer_index(ctx); 792 while (i != end_buffer_index) { 793 dma_sync_single_for_cpu(ctx->ohci->card.device, 794 ar_buffer_bus(ctx, i), 795 PAGE_SIZE, DMA_FROM_DEVICE); 796 i = ar_next_buffer_index(i); 797 } 798 if (end_buffer_offset > 0) 799 dma_sync_single_for_cpu(ctx->ohci->card.device, 800 ar_buffer_bus(ctx, i), 801 end_buffer_offset, DMA_FROM_DEVICE); 802 } 803 804 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32) 805 #define cond_le32_to_cpu(v) \ 806 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v)) 807 #else 808 #define cond_le32_to_cpu(v) le32_to_cpu(v) 809 #endif 810 811 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer) 812 { 813 struct fw_ohci *ohci = ctx->ohci; 814 struct fw_packet p; 815 u32 status, length, tcode; 816 int evt; 817 818 p.header[0] = cond_le32_to_cpu(buffer[0]); 819 p.header[1] = cond_le32_to_cpu(buffer[1]); 820 p.header[2] = cond_le32_to_cpu(buffer[2]); 821 822 tcode = (p.header[0] >> 4) & 0x0f; 823 switch (tcode) { 824 case TCODE_WRITE_QUADLET_REQUEST: 825 case TCODE_READ_QUADLET_RESPONSE: 826 p.header[3] = (__force __u32) buffer[3]; 827 p.header_length = 16; 828 p.payload_length = 0; 829 break; 830 831 case TCODE_READ_BLOCK_REQUEST : 832 p.header[3] = cond_le32_to_cpu(buffer[3]); 833 p.header_length = 16; 834 p.payload_length = 0; 835 break; 836 837 case TCODE_WRITE_BLOCK_REQUEST: 838 case TCODE_READ_BLOCK_RESPONSE: 839 case TCODE_LOCK_REQUEST: 840 case TCODE_LOCK_RESPONSE: 841 p.header[3] = cond_le32_to_cpu(buffer[3]); 842 p.header_length = 16; 843 p.payload_length = p.header[3] >> 16; 844 if (p.payload_length > MAX_ASYNC_PAYLOAD) { 845 ar_context_abort(ctx, "invalid packet length"); 846 return NULL; 847 } 848 break; 849 850 case TCODE_WRITE_RESPONSE: 851 case TCODE_READ_QUADLET_REQUEST: 852 case OHCI_TCODE_PHY_PACKET: 853 p.header_length = 12; 854 p.payload_length = 0; 855 break; 856 857 default: 858 ar_context_abort(ctx, "invalid tcode"); 859 return NULL; 860 } 861 862 p.payload = (void *) buffer + p.header_length; 863 864 /* FIXME: What to do about evt_* errors? */ 865 length = (p.header_length + p.payload_length + 3) / 4; 866 status = cond_le32_to_cpu(buffer[length]); 867 evt = (status >> 16) & 0x1f; 868 869 p.ack = evt - 16; 870 p.speed = (status >> 21) & 0x7; 871 p.timestamp = status & 0xffff; 872 p.generation = ohci->request_generation; 873 874 log_ar_at_event(ohci, 'R', p.speed, p.header, evt); 875 876 /* 877 * Several controllers, notably from NEC and VIA, forget to 878 * write ack_complete status at PHY packet reception. 879 */ 880 if (evt == OHCI1394_evt_no_status && 881 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4)) 882 p.ack = ACK_COMPLETE; 883 884 /* 885 * The OHCI bus reset handler synthesizes a PHY packet with 886 * the new generation number when a bus reset happens (see 887 * section 8.4.2.3). This helps us determine when a request 888 * was received and make sure we send the response in the same 889 * generation. We only need this for requests; for responses 890 * we use the unique tlabel for finding the matching 891 * request. 892 * 893 * Alas some chips sometimes emit bus reset packets with a 894 * wrong generation. We set the correct generation for these 895 * at a slightly incorrect time (in bus_reset_work). 896 */ 897 if (evt == OHCI1394_evt_bus_reset) { 898 if (!(ohci->quirks & QUIRK_RESET_PACKET)) 899 ohci->request_generation = (p.header[2] >> 16) & 0xff; 900 } else if (ctx == &ohci->ar_request_ctx) { 901 fw_core_handle_request(&ohci->card, &p); 902 } else { 903 fw_core_handle_response(&ohci->card, &p); 904 } 905 906 return buffer + length + 1; 907 } 908 909 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end) 910 { 911 void *next; 912 913 while (p < end) { 914 next = handle_ar_packet(ctx, p); 915 if (!next) 916 return p; 917 p = next; 918 } 919 920 return p; 921 } 922 923 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer) 924 { 925 unsigned int i; 926 927 i = ar_first_buffer_index(ctx); 928 while (i != end_buffer) { 929 dma_sync_single_for_device(ctx->ohci->card.device, 930 ar_buffer_bus(ctx, i), 931 PAGE_SIZE, DMA_FROM_DEVICE); 932 ar_context_link_page(ctx, i); 933 i = ar_next_buffer_index(i); 934 } 935 } 936 937 static void ar_context_tasklet(unsigned long data) 938 { 939 struct ar_context *ctx = (struct ar_context *)data; 940 unsigned int end_buffer_index, end_buffer_offset; 941 void *p, *end; 942 943 p = ctx->pointer; 944 if (!p) 945 return; 946 947 end_buffer_index = ar_search_last_active_buffer(ctx, 948 &end_buffer_offset); 949 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset); 950 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset; 951 952 if (end_buffer_index < ar_first_buffer_index(ctx)) { 953 /* 954 * The filled part of the overall buffer wraps around; handle 955 * all packets up to the buffer end here. If the last packet 956 * wraps around, its tail will be visible after the buffer end 957 * because the buffer start pages are mapped there again. 958 */ 959 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE; 960 p = handle_ar_packets(ctx, p, buffer_end); 961 if (p < buffer_end) 962 goto error; 963 /* adjust p to point back into the actual buffer */ 964 p -= AR_BUFFERS * PAGE_SIZE; 965 } 966 967 p = handle_ar_packets(ctx, p, end); 968 if (p != end) { 969 if (p > end) 970 ar_context_abort(ctx, "inconsistent descriptor"); 971 goto error; 972 } 973 974 ctx->pointer = p; 975 ar_recycle_buffers(ctx, end_buffer_index); 976 977 return; 978 979 error: 980 ctx->pointer = NULL; 981 } 982 983 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, 984 unsigned int descriptors_offset, u32 regs) 985 { 986 unsigned int i; 987 dma_addr_t dma_addr; 988 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES]; 989 struct descriptor *d; 990 991 ctx->regs = regs; 992 ctx->ohci = ohci; 993 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx); 994 995 for (i = 0; i < AR_BUFFERS; i++) { 996 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32); 997 if (!ctx->pages[i]) 998 goto out_of_memory; 999 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i], 1000 0, PAGE_SIZE, DMA_FROM_DEVICE); 1001 if (dma_mapping_error(ohci->card.device, dma_addr)) { 1002 __free_page(ctx->pages[i]); 1003 ctx->pages[i] = NULL; 1004 goto out_of_memory; 1005 } 1006 set_page_private(ctx->pages[i], dma_addr); 1007 } 1008 1009 for (i = 0; i < AR_BUFFERS; i++) 1010 pages[i] = ctx->pages[i]; 1011 for (i = 0; i < AR_WRAPAROUND_PAGES; i++) 1012 pages[AR_BUFFERS + i] = ctx->pages[i]; 1013 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES, 1014 -1, PAGE_KERNEL); 1015 if (!ctx->buffer) 1016 goto out_of_memory; 1017 1018 ctx->descriptors = ohci->misc_buffer + descriptors_offset; 1019 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset; 1020 1021 for (i = 0; i < AR_BUFFERS; i++) { 1022 d = &ctx->descriptors[i]; 1023 d->req_count = cpu_to_le16(PAGE_SIZE); 1024 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE | 1025 DESCRIPTOR_STATUS | 1026 DESCRIPTOR_BRANCH_ALWAYS); 1027 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i)); 1028 d->branch_address = cpu_to_le32(ctx->descriptors_bus + 1029 ar_next_buffer_index(i) * sizeof(struct descriptor)); 1030 } 1031 1032 return 0; 1033 1034 out_of_memory: 1035 ar_context_release(ctx); 1036 1037 return -ENOMEM; 1038 } 1039 1040 static void ar_context_run(struct ar_context *ctx) 1041 { 1042 unsigned int i; 1043 1044 for (i = 0; i < AR_BUFFERS; i++) 1045 ar_context_link_page(ctx, i); 1046 1047 ctx->pointer = ctx->buffer; 1048 1049 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1); 1050 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN); 1051 } 1052 1053 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z) 1054 { 1055 __le16 branch; 1056 1057 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS); 1058 1059 /* figure out which descriptor the branch address goes in */ 1060 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) 1061 return d; 1062 else 1063 return d + z - 1; 1064 } 1065 1066 static void context_tasklet(unsigned long data) 1067 { 1068 struct context *ctx = (struct context *) data; 1069 struct descriptor *d, *last; 1070 u32 address; 1071 int z; 1072 struct descriptor_buffer *desc; 1073 1074 desc = list_entry(ctx->buffer_list.next, 1075 struct descriptor_buffer, list); 1076 last = ctx->last; 1077 while (last->branch_address != 0) { 1078 struct descriptor_buffer *old_desc = desc; 1079 address = le32_to_cpu(last->branch_address); 1080 z = address & 0xf; 1081 address &= ~0xf; 1082 ctx->current_bus = address; 1083 1084 /* If the branch address points to a buffer outside of the 1085 * current buffer, advance to the next buffer. */ 1086 if (address < desc->buffer_bus || 1087 address >= desc->buffer_bus + desc->used) 1088 desc = list_entry(desc->list.next, 1089 struct descriptor_buffer, list); 1090 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d); 1091 last = find_branch_descriptor(d, z); 1092 1093 if (!ctx->callback(ctx, d, last)) 1094 break; 1095 1096 if (old_desc != desc) { 1097 /* If we've advanced to the next buffer, move the 1098 * previous buffer to the free list. */ 1099 unsigned long flags; 1100 old_desc->used = 0; 1101 spin_lock_irqsave(&ctx->ohci->lock, flags); 1102 list_move_tail(&old_desc->list, &ctx->buffer_list); 1103 spin_unlock_irqrestore(&ctx->ohci->lock, flags); 1104 } 1105 ctx->last = last; 1106 } 1107 } 1108 1109 /* 1110 * Allocate a new buffer and add it to the list of free buffers for this 1111 * context. Must be called with ohci->lock held. 1112 */ 1113 static int context_add_buffer(struct context *ctx) 1114 { 1115 struct descriptor_buffer *desc; 1116 dma_addr_t uninitialized_var(bus_addr); 1117 int offset; 1118 1119 /* 1120 * 16MB of descriptors should be far more than enough for any DMA 1121 * program. This will catch run-away userspace or DoS attacks. 1122 */ 1123 if (ctx->total_allocation >= 16*1024*1024) 1124 return -ENOMEM; 1125 1126 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, 1127 &bus_addr, GFP_ATOMIC); 1128 if (!desc) 1129 return -ENOMEM; 1130 1131 offset = (void *)&desc->buffer - (void *)desc; 1132 desc->buffer_size = PAGE_SIZE - offset; 1133 desc->buffer_bus = bus_addr + offset; 1134 desc->used = 0; 1135 1136 list_add_tail(&desc->list, &ctx->buffer_list); 1137 ctx->total_allocation += PAGE_SIZE; 1138 1139 return 0; 1140 } 1141 1142 static int context_init(struct context *ctx, struct fw_ohci *ohci, 1143 u32 regs, descriptor_callback_t callback) 1144 { 1145 ctx->ohci = ohci; 1146 ctx->regs = regs; 1147 ctx->total_allocation = 0; 1148 1149 INIT_LIST_HEAD(&ctx->buffer_list); 1150 if (context_add_buffer(ctx) < 0) 1151 return -ENOMEM; 1152 1153 ctx->buffer_tail = list_entry(ctx->buffer_list.next, 1154 struct descriptor_buffer, list); 1155 1156 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx); 1157 ctx->callback = callback; 1158 1159 /* 1160 * We put a dummy descriptor in the buffer that has a NULL 1161 * branch address and looks like it's been sent. That way we 1162 * have a descriptor to append DMA programs to. 1163 */ 1164 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer)); 1165 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST); 1166 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011); 1167 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer); 1168 ctx->last = ctx->buffer_tail->buffer; 1169 ctx->prev = ctx->buffer_tail->buffer; 1170 ctx->prev_z = 1; 1171 1172 return 0; 1173 } 1174 1175 static void context_release(struct context *ctx) 1176 { 1177 struct fw_card *card = &ctx->ohci->card; 1178 struct descriptor_buffer *desc, *tmp; 1179 1180 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) 1181 dma_free_coherent(card->device, PAGE_SIZE, desc, 1182 desc->buffer_bus - 1183 ((void *)&desc->buffer - (void *)desc)); 1184 } 1185 1186 /* Must be called with ohci->lock held */ 1187 static struct descriptor *context_get_descriptors(struct context *ctx, 1188 int z, dma_addr_t *d_bus) 1189 { 1190 struct descriptor *d = NULL; 1191 struct descriptor_buffer *desc = ctx->buffer_tail; 1192 1193 if (z * sizeof(*d) > desc->buffer_size) 1194 return NULL; 1195 1196 if (z * sizeof(*d) > desc->buffer_size - desc->used) { 1197 /* No room for the descriptor in this buffer, so advance to the 1198 * next one. */ 1199 1200 if (desc->list.next == &ctx->buffer_list) { 1201 /* If there is no free buffer next in the list, 1202 * allocate one. */ 1203 if (context_add_buffer(ctx) < 0) 1204 return NULL; 1205 } 1206 desc = list_entry(desc->list.next, 1207 struct descriptor_buffer, list); 1208 ctx->buffer_tail = desc; 1209 } 1210 1211 d = desc->buffer + desc->used / sizeof(*d); 1212 memset(d, 0, z * sizeof(*d)); 1213 *d_bus = desc->buffer_bus + desc->used; 1214 1215 return d; 1216 } 1217 1218 static void context_run(struct context *ctx, u32 extra) 1219 { 1220 struct fw_ohci *ohci = ctx->ohci; 1221 1222 reg_write(ohci, COMMAND_PTR(ctx->regs), 1223 le32_to_cpu(ctx->last->branch_address)); 1224 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0); 1225 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra); 1226 ctx->running = true; 1227 flush_writes(ohci); 1228 } 1229 1230 static void context_append(struct context *ctx, 1231 struct descriptor *d, int z, int extra) 1232 { 1233 dma_addr_t d_bus; 1234 struct descriptor_buffer *desc = ctx->buffer_tail; 1235 struct descriptor *d_branch; 1236 1237 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d); 1238 1239 desc->used += (z + extra) * sizeof(*d); 1240 1241 wmb(); /* finish init of new descriptors before branch_address update */ 1242 1243 d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z); 1244 d_branch->branch_address = cpu_to_le32(d_bus | z); 1245 1246 /* 1247 * VT6306 incorrectly checks only the single descriptor at the 1248 * CommandPtr when the wake bit is written, so if it's a 1249 * multi-descriptor block starting with an INPUT_MORE, put a copy of 1250 * the branch address in the first descriptor. 1251 * 1252 * Not doing this for transmit contexts since not sure how it interacts 1253 * with skip addresses. 1254 */ 1255 if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) && 1256 d_branch != ctx->prev && 1257 (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) == 1258 cpu_to_le16(DESCRIPTOR_INPUT_MORE)) { 1259 ctx->prev->branch_address = cpu_to_le32(d_bus | z); 1260 } 1261 1262 ctx->prev = d; 1263 ctx->prev_z = z; 1264 } 1265 1266 static void context_stop(struct context *ctx) 1267 { 1268 struct fw_ohci *ohci = ctx->ohci; 1269 u32 reg; 1270 int i; 1271 1272 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN); 1273 ctx->running = false; 1274 1275 for (i = 0; i < 1000; i++) { 1276 reg = reg_read(ohci, CONTROL_SET(ctx->regs)); 1277 if ((reg & CONTEXT_ACTIVE) == 0) 1278 return; 1279 1280 if (i) 1281 udelay(10); 1282 } 1283 ohci_err(ohci, "DMA context still active (0x%08x)\n", reg); 1284 } 1285 1286 struct driver_data { 1287 u8 inline_data[8]; 1288 struct fw_packet *packet; 1289 }; 1290 1291 /* 1292 * This function apppends a packet to the DMA queue for transmission. 1293 * Must always be called with the ochi->lock held to ensure proper 1294 * generation handling and locking around packet queue manipulation. 1295 */ 1296 static int at_context_queue_packet(struct context *ctx, 1297 struct fw_packet *packet) 1298 { 1299 struct fw_ohci *ohci = ctx->ohci; 1300 dma_addr_t d_bus, uninitialized_var(payload_bus); 1301 struct driver_data *driver_data; 1302 struct descriptor *d, *last; 1303 __le32 *header; 1304 int z, tcode; 1305 1306 d = context_get_descriptors(ctx, 4, &d_bus); 1307 if (d == NULL) { 1308 packet->ack = RCODE_SEND_ERROR; 1309 return -1; 1310 } 1311 1312 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE); 1313 d[0].res_count = cpu_to_le16(packet->timestamp); 1314 1315 /* 1316 * The DMA format for asynchronous link packets is different 1317 * from the IEEE1394 layout, so shift the fields around 1318 * accordingly. 1319 */ 1320 1321 tcode = (packet->header[0] >> 4) & 0x0f; 1322 header = (__le32 *) &d[1]; 1323 switch (tcode) { 1324 case TCODE_WRITE_QUADLET_REQUEST: 1325 case TCODE_WRITE_BLOCK_REQUEST: 1326 case TCODE_WRITE_RESPONSE: 1327 case TCODE_READ_QUADLET_REQUEST: 1328 case TCODE_READ_BLOCK_REQUEST: 1329 case TCODE_READ_QUADLET_RESPONSE: 1330 case TCODE_READ_BLOCK_RESPONSE: 1331 case TCODE_LOCK_REQUEST: 1332 case TCODE_LOCK_RESPONSE: 1333 header[0] = cpu_to_le32((packet->header[0] & 0xffff) | 1334 (packet->speed << 16)); 1335 header[1] = cpu_to_le32((packet->header[1] & 0xffff) | 1336 (packet->header[0] & 0xffff0000)); 1337 header[2] = cpu_to_le32(packet->header[2]); 1338 1339 if (TCODE_IS_BLOCK_PACKET(tcode)) 1340 header[3] = cpu_to_le32(packet->header[3]); 1341 else 1342 header[3] = (__force __le32) packet->header[3]; 1343 1344 d[0].req_count = cpu_to_le16(packet->header_length); 1345 break; 1346 1347 case TCODE_LINK_INTERNAL: 1348 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) | 1349 (packet->speed << 16)); 1350 header[1] = cpu_to_le32(packet->header[1]); 1351 header[2] = cpu_to_le32(packet->header[2]); 1352 d[0].req_count = cpu_to_le16(12); 1353 1354 if (is_ping_packet(&packet->header[1])) 1355 d[0].control |= cpu_to_le16(DESCRIPTOR_PING); 1356 break; 1357 1358 case TCODE_STREAM_DATA: 1359 header[0] = cpu_to_le32((packet->header[0] & 0xffff) | 1360 (packet->speed << 16)); 1361 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000); 1362 d[0].req_count = cpu_to_le16(8); 1363 break; 1364 1365 default: 1366 /* BUG(); */ 1367 packet->ack = RCODE_SEND_ERROR; 1368 return -1; 1369 } 1370 1371 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor)); 1372 driver_data = (struct driver_data *) &d[3]; 1373 driver_data->packet = packet; 1374 packet->driver_data = driver_data; 1375 1376 if (packet->payload_length > 0) { 1377 if (packet->payload_length > sizeof(driver_data->inline_data)) { 1378 payload_bus = dma_map_single(ohci->card.device, 1379 packet->payload, 1380 packet->payload_length, 1381 DMA_TO_DEVICE); 1382 if (dma_mapping_error(ohci->card.device, payload_bus)) { 1383 packet->ack = RCODE_SEND_ERROR; 1384 return -1; 1385 } 1386 packet->payload_bus = payload_bus; 1387 packet->payload_mapped = true; 1388 } else { 1389 memcpy(driver_data->inline_data, packet->payload, 1390 packet->payload_length); 1391 payload_bus = d_bus + 3 * sizeof(*d); 1392 } 1393 1394 d[2].req_count = cpu_to_le16(packet->payload_length); 1395 d[2].data_address = cpu_to_le32(payload_bus); 1396 last = &d[2]; 1397 z = 3; 1398 } else { 1399 last = &d[0]; 1400 z = 2; 1401 } 1402 1403 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST | 1404 DESCRIPTOR_IRQ_ALWAYS | 1405 DESCRIPTOR_BRANCH_ALWAYS); 1406 1407 /* FIXME: Document how the locking works. */ 1408 if (ohci->generation != packet->generation) { 1409 if (packet->payload_mapped) 1410 dma_unmap_single(ohci->card.device, payload_bus, 1411 packet->payload_length, DMA_TO_DEVICE); 1412 packet->ack = RCODE_GENERATION; 1413 return -1; 1414 } 1415 1416 context_append(ctx, d, z, 4 - z); 1417 1418 if (ctx->running) 1419 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); 1420 else 1421 context_run(ctx, 0); 1422 1423 return 0; 1424 } 1425 1426 static void at_context_flush(struct context *ctx) 1427 { 1428 tasklet_disable(&ctx->tasklet); 1429 1430 ctx->flushing = true; 1431 context_tasklet((unsigned long)ctx); 1432 ctx->flushing = false; 1433 1434 tasklet_enable(&ctx->tasklet); 1435 } 1436 1437 static int handle_at_packet(struct context *context, 1438 struct descriptor *d, 1439 struct descriptor *last) 1440 { 1441 struct driver_data *driver_data; 1442 struct fw_packet *packet; 1443 struct fw_ohci *ohci = context->ohci; 1444 int evt; 1445 1446 if (last->transfer_status == 0 && !context->flushing) 1447 /* This descriptor isn't done yet, stop iteration. */ 1448 return 0; 1449 1450 driver_data = (struct driver_data *) &d[3]; 1451 packet = driver_data->packet; 1452 if (packet == NULL) 1453 /* This packet was cancelled, just continue. */ 1454 return 1; 1455 1456 if (packet->payload_mapped) 1457 dma_unmap_single(ohci->card.device, packet->payload_bus, 1458 packet->payload_length, DMA_TO_DEVICE); 1459 1460 evt = le16_to_cpu(last->transfer_status) & 0x1f; 1461 packet->timestamp = le16_to_cpu(last->res_count); 1462 1463 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt); 1464 1465 switch (evt) { 1466 case OHCI1394_evt_timeout: 1467 /* Async response transmit timed out. */ 1468 packet->ack = RCODE_CANCELLED; 1469 break; 1470 1471 case OHCI1394_evt_flushed: 1472 /* 1473 * The packet was flushed should give same error as 1474 * when we try to use a stale generation count. 1475 */ 1476 packet->ack = RCODE_GENERATION; 1477 break; 1478 1479 case OHCI1394_evt_missing_ack: 1480 if (context->flushing) 1481 packet->ack = RCODE_GENERATION; 1482 else { 1483 /* 1484 * Using a valid (current) generation count, but the 1485 * node is not on the bus or not sending acks. 1486 */ 1487 packet->ack = RCODE_NO_ACK; 1488 } 1489 break; 1490 1491 case ACK_COMPLETE + 0x10: 1492 case ACK_PENDING + 0x10: 1493 case ACK_BUSY_X + 0x10: 1494 case ACK_BUSY_A + 0x10: 1495 case ACK_BUSY_B + 0x10: 1496 case ACK_DATA_ERROR + 0x10: 1497 case ACK_TYPE_ERROR + 0x10: 1498 packet->ack = evt - 0x10; 1499 break; 1500 1501 case OHCI1394_evt_no_status: 1502 if (context->flushing) { 1503 packet->ack = RCODE_GENERATION; 1504 break; 1505 } 1506 /* fall through */ 1507 1508 default: 1509 packet->ack = RCODE_SEND_ERROR; 1510 break; 1511 } 1512 1513 packet->callback(packet, &ohci->card, packet->ack); 1514 1515 return 1; 1516 } 1517 1518 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff) 1519 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f) 1520 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff) 1521 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff) 1522 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff) 1523 1524 static void handle_local_rom(struct fw_ohci *ohci, 1525 struct fw_packet *packet, u32 csr) 1526 { 1527 struct fw_packet response; 1528 int tcode, length, i; 1529 1530 tcode = HEADER_GET_TCODE(packet->header[0]); 1531 if (TCODE_IS_BLOCK_PACKET(tcode)) 1532 length = HEADER_GET_DATA_LENGTH(packet->header[3]); 1533 else 1534 length = 4; 1535 1536 i = csr - CSR_CONFIG_ROM; 1537 if (i + length > CONFIG_ROM_SIZE) { 1538 fw_fill_response(&response, packet->header, 1539 RCODE_ADDRESS_ERROR, NULL, 0); 1540 } else if (!TCODE_IS_READ_REQUEST(tcode)) { 1541 fw_fill_response(&response, packet->header, 1542 RCODE_TYPE_ERROR, NULL, 0); 1543 } else { 1544 fw_fill_response(&response, packet->header, RCODE_COMPLETE, 1545 (void *) ohci->config_rom + i, length); 1546 } 1547 1548 fw_core_handle_response(&ohci->card, &response); 1549 } 1550 1551 static void handle_local_lock(struct fw_ohci *ohci, 1552 struct fw_packet *packet, u32 csr) 1553 { 1554 struct fw_packet response; 1555 int tcode, length, ext_tcode, sel, try; 1556 __be32 *payload, lock_old; 1557 u32 lock_arg, lock_data; 1558 1559 tcode = HEADER_GET_TCODE(packet->header[0]); 1560 length = HEADER_GET_DATA_LENGTH(packet->header[3]); 1561 payload = packet->payload; 1562 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]); 1563 1564 if (tcode == TCODE_LOCK_REQUEST && 1565 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) { 1566 lock_arg = be32_to_cpu(payload[0]); 1567 lock_data = be32_to_cpu(payload[1]); 1568 } else if (tcode == TCODE_READ_QUADLET_REQUEST) { 1569 lock_arg = 0; 1570 lock_data = 0; 1571 } else { 1572 fw_fill_response(&response, packet->header, 1573 RCODE_TYPE_ERROR, NULL, 0); 1574 goto out; 1575 } 1576 1577 sel = (csr - CSR_BUS_MANAGER_ID) / 4; 1578 reg_write(ohci, OHCI1394_CSRData, lock_data); 1579 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg); 1580 reg_write(ohci, OHCI1394_CSRControl, sel); 1581 1582 for (try = 0; try < 20; try++) 1583 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) { 1584 lock_old = cpu_to_be32(reg_read(ohci, 1585 OHCI1394_CSRData)); 1586 fw_fill_response(&response, packet->header, 1587 RCODE_COMPLETE, 1588 &lock_old, sizeof(lock_old)); 1589 goto out; 1590 } 1591 1592 ohci_err(ohci, "swap not done (CSR lock timeout)\n"); 1593 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0); 1594 1595 out: 1596 fw_core_handle_response(&ohci->card, &response); 1597 } 1598 1599 static void handle_local_request(struct context *ctx, struct fw_packet *packet) 1600 { 1601 u64 offset, csr; 1602 1603 if (ctx == &ctx->ohci->at_request_ctx) { 1604 packet->ack = ACK_PENDING; 1605 packet->callback(packet, &ctx->ohci->card, packet->ack); 1606 } 1607 1608 offset = 1609 ((unsigned long long) 1610 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) | 1611 packet->header[2]; 1612 csr = offset - CSR_REGISTER_BASE; 1613 1614 /* Handle config rom reads. */ 1615 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END) 1616 handle_local_rom(ctx->ohci, packet, csr); 1617 else switch (csr) { 1618 case CSR_BUS_MANAGER_ID: 1619 case CSR_BANDWIDTH_AVAILABLE: 1620 case CSR_CHANNELS_AVAILABLE_HI: 1621 case CSR_CHANNELS_AVAILABLE_LO: 1622 handle_local_lock(ctx->ohci, packet, csr); 1623 break; 1624 default: 1625 if (ctx == &ctx->ohci->at_request_ctx) 1626 fw_core_handle_request(&ctx->ohci->card, packet); 1627 else 1628 fw_core_handle_response(&ctx->ohci->card, packet); 1629 break; 1630 } 1631 1632 if (ctx == &ctx->ohci->at_response_ctx) { 1633 packet->ack = ACK_COMPLETE; 1634 packet->callback(packet, &ctx->ohci->card, packet->ack); 1635 } 1636 } 1637 1638 static void at_context_transmit(struct context *ctx, struct fw_packet *packet) 1639 { 1640 unsigned long flags; 1641 int ret; 1642 1643 spin_lock_irqsave(&ctx->ohci->lock, flags); 1644 1645 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id && 1646 ctx->ohci->generation == packet->generation) { 1647 spin_unlock_irqrestore(&ctx->ohci->lock, flags); 1648 handle_local_request(ctx, packet); 1649 return; 1650 } 1651 1652 ret = at_context_queue_packet(ctx, packet); 1653 spin_unlock_irqrestore(&ctx->ohci->lock, flags); 1654 1655 if (ret < 0) 1656 packet->callback(packet, &ctx->ohci->card, packet->ack); 1657 1658 } 1659 1660 static void detect_dead_context(struct fw_ohci *ohci, 1661 const char *name, unsigned int regs) 1662 { 1663 u32 ctl; 1664 1665 ctl = reg_read(ohci, CONTROL_SET(regs)); 1666 if (ctl & CONTEXT_DEAD) 1667 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n", 1668 name, evts[ctl & 0x1f]); 1669 } 1670 1671 static void handle_dead_contexts(struct fw_ohci *ohci) 1672 { 1673 unsigned int i; 1674 char name[8]; 1675 1676 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase); 1677 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase); 1678 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase); 1679 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase); 1680 for (i = 0; i < 32; ++i) { 1681 if (!(ohci->it_context_support & (1 << i))) 1682 continue; 1683 sprintf(name, "IT%u", i); 1684 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i)); 1685 } 1686 for (i = 0; i < 32; ++i) { 1687 if (!(ohci->ir_context_support & (1 << i))) 1688 continue; 1689 sprintf(name, "IR%u", i); 1690 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i)); 1691 } 1692 /* TODO: maybe try to flush and restart the dead contexts */ 1693 } 1694 1695 static u32 cycle_timer_ticks(u32 cycle_timer) 1696 { 1697 u32 ticks; 1698 1699 ticks = cycle_timer & 0xfff; 1700 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff); 1701 ticks += (3072 * 8000) * (cycle_timer >> 25); 1702 1703 return ticks; 1704 } 1705 1706 /* 1707 * Some controllers exhibit one or more of the following bugs when updating the 1708 * iso cycle timer register: 1709 * - When the lowest six bits are wrapping around to zero, a read that happens 1710 * at the same time will return garbage in the lowest ten bits. 1711 * - When the cycleOffset field wraps around to zero, the cycleCount field is 1712 * not incremented for about 60 ns. 1713 * - Occasionally, the entire register reads zero. 1714 * 1715 * To catch these, we read the register three times and ensure that the 1716 * difference between each two consecutive reads is approximately the same, i.e. 1717 * less than twice the other. Furthermore, any negative difference indicates an 1718 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to 1719 * execute, so we have enough precision to compute the ratio of the differences.) 1720 */ 1721 static u32 get_cycle_time(struct fw_ohci *ohci) 1722 { 1723 u32 c0, c1, c2; 1724 u32 t0, t1, t2; 1725 s32 diff01, diff12; 1726 int i; 1727 1728 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); 1729 1730 if (ohci->quirks & QUIRK_CYCLE_TIMER) { 1731 i = 0; 1732 c1 = c2; 1733 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); 1734 do { 1735 c0 = c1; 1736 c1 = c2; 1737 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer); 1738 t0 = cycle_timer_ticks(c0); 1739 t1 = cycle_timer_ticks(c1); 1740 t2 = cycle_timer_ticks(c2); 1741 diff01 = t1 - t0; 1742 diff12 = t2 - t1; 1743 } while ((diff01 <= 0 || diff12 <= 0 || 1744 diff01 / diff12 >= 2 || diff12 / diff01 >= 2) 1745 && i++ < 20); 1746 } 1747 1748 return c2; 1749 } 1750 1751 /* 1752 * This function has to be called at least every 64 seconds. The bus_time 1753 * field stores not only the upper 25 bits of the BUS_TIME register but also 1754 * the most significant bit of the cycle timer in bit 6 so that we can detect 1755 * changes in this bit. 1756 */ 1757 static u32 update_bus_time(struct fw_ohci *ohci) 1758 { 1759 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25; 1760 1761 if (unlikely(!ohci->bus_time_running)) { 1762 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds); 1763 ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) | 1764 (cycle_time_seconds & 0x40); 1765 ohci->bus_time_running = true; 1766 } 1767 1768 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40)) 1769 ohci->bus_time += 0x40; 1770 1771 return ohci->bus_time | cycle_time_seconds; 1772 } 1773 1774 static int get_status_for_port(struct fw_ohci *ohci, int port_index) 1775 { 1776 int reg; 1777 1778 mutex_lock(&ohci->phy_reg_mutex); 1779 reg = write_phy_reg(ohci, 7, port_index); 1780 if (reg >= 0) 1781 reg = read_phy_reg(ohci, 8); 1782 mutex_unlock(&ohci->phy_reg_mutex); 1783 if (reg < 0) 1784 return reg; 1785 1786 switch (reg & 0x0f) { 1787 case 0x06: 1788 return 2; /* is child node (connected to parent node) */ 1789 case 0x0e: 1790 return 3; /* is parent node (connected to child node) */ 1791 } 1792 return 1; /* not connected */ 1793 } 1794 1795 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id, 1796 int self_id_count) 1797 { 1798 int i; 1799 u32 entry; 1800 1801 for (i = 0; i < self_id_count; i++) { 1802 entry = ohci->self_id_buffer[i]; 1803 if ((self_id & 0xff000000) == (entry & 0xff000000)) 1804 return -1; 1805 if ((self_id & 0xff000000) < (entry & 0xff000000)) 1806 return i; 1807 } 1808 return i; 1809 } 1810 1811 static int initiated_reset(struct fw_ohci *ohci) 1812 { 1813 int reg; 1814 int ret = 0; 1815 1816 mutex_lock(&ohci->phy_reg_mutex); 1817 reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */ 1818 if (reg >= 0) { 1819 reg = read_phy_reg(ohci, 8); 1820 reg |= 0x40; 1821 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */ 1822 if (reg >= 0) { 1823 reg = read_phy_reg(ohci, 12); /* read register 12 */ 1824 if (reg >= 0) { 1825 if ((reg & 0x08) == 0x08) { 1826 /* bit 3 indicates "initiated reset" */ 1827 ret = 0x2; 1828 } 1829 } 1830 } 1831 } 1832 mutex_unlock(&ohci->phy_reg_mutex); 1833 return ret; 1834 } 1835 1836 /* 1837 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally 1838 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059. 1839 * Construct the selfID from phy register contents. 1840 */ 1841 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count) 1842 { 1843 int reg, i, pos, status; 1844 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */ 1845 u32 self_id = 0x8040c800; 1846 1847 reg = reg_read(ohci, OHCI1394_NodeID); 1848 if (!(reg & OHCI1394_NodeID_idValid)) { 1849 ohci_notice(ohci, 1850 "node ID not valid, new bus reset in progress\n"); 1851 return -EBUSY; 1852 } 1853 self_id |= ((reg & 0x3f) << 24); /* phy ID */ 1854 1855 reg = ohci_read_phy_reg(&ohci->card, 4); 1856 if (reg < 0) 1857 return reg; 1858 self_id |= ((reg & 0x07) << 8); /* power class */ 1859 1860 reg = ohci_read_phy_reg(&ohci->card, 1); 1861 if (reg < 0) 1862 return reg; 1863 self_id |= ((reg & 0x3f) << 16); /* gap count */ 1864 1865 for (i = 0; i < 3; i++) { 1866 status = get_status_for_port(ohci, i); 1867 if (status < 0) 1868 return status; 1869 self_id |= ((status & 0x3) << (6 - (i * 2))); 1870 } 1871 1872 self_id |= initiated_reset(ohci); 1873 1874 pos = get_self_id_pos(ohci, self_id, self_id_count); 1875 if (pos >= 0) { 1876 memmove(&(ohci->self_id_buffer[pos+1]), 1877 &(ohci->self_id_buffer[pos]), 1878 (self_id_count - pos) * sizeof(*ohci->self_id_buffer)); 1879 ohci->self_id_buffer[pos] = self_id; 1880 self_id_count++; 1881 } 1882 return self_id_count; 1883 } 1884 1885 static void bus_reset_work(struct work_struct *work) 1886 { 1887 struct fw_ohci *ohci = 1888 container_of(work, struct fw_ohci, bus_reset_work); 1889 int self_id_count, generation, new_generation, i, j; 1890 u32 reg; 1891 void *free_rom = NULL; 1892 dma_addr_t free_rom_bus = 0; 1893 bool is_new_root; 1894 1895 reg = reg_read(ohci, OHCI1394_NodeID); 1896 if (!(reg & OHCI1394_NodeID_idValid)) { 1897 ohci_notice(ohci, 1898 "node ID not valid, new bus reset in progress\n"); 1899 return; 1900 } 1901 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) { 1902 ohci_notice(ohci, "malconfigured bus\n"); 1903 return; 1904 } 1905 ohci->node_id = reg & (OHCI1394_NodeID_busNumber | 1906 OHCI1394_NodeID_nodeNumber); 1907 1908 is_new_root = (reg & OHCI1394_NodeID_root) != 0; 1909 if (!(ohci->is_root && is_new_root)) 1910 reg_write(ohci, OHCI1394_LinkControlSet, 1911 OHCI1394_LinkControl_cycleMaster); 1912 ohci->is_root = is_new_root; 1913 1914 reg = reg_read(ohci, OHCI1394_SelfIDCount); 1915 if (reg & OHCI1394_SelfIDCount_selfIDError) { 1916 ohci_notice(ohci, "self ID receive error\n"); 1917 return; 1918 } 1919 /* 1920 * The count in the SelfIDCount register is the number of 1921 * bytes in the self ID receive buffer. Since we also receive 1922 * the inverted quadlets and a header quadlet, we shift one 1923 * bit extra to get the actual number of self IDs. 1924 */ 1925 self_id_count = (reg >> 3) & 0xff; 1926 1927 if (self_id_count > 252) { 1928 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg); 1929 return; 1930 } 1931 1932 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff; 1933 rmb(); 1934 1935 for (i = 1, j = 0; j < self_id_count; i += 2, j++) { 1936 u32 id = cond_le32_to_cpu(ohci->self_id_cpu[i]); 1937 u32 id2 = cond_le32_to_cpu(ohci->self_id_cpu[i + 1]); 1938 1939 if (id != ~id2) { 1940 /* 1941 * If the invalid data looks like a cycle start packet, 1942 * it's likely to be the result of the cycle master 1943 * having a wrong gap count. In this case, the self IDs 1944 * so far are valid and should be processed so that the 1945 * bus manager can then correct the gap count. 1946 */ 1947 if (id == 0xffff008f) { 1948 ohci_notice(ohci, "ignoring spurious self IDs\n"); 1949 self_id_count = j; 1950 break; 1951 } 1952 1953 ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n", 1954 j, self_id_count, id, id2); 1955 return; 1956 } 1957 ohci->self_id_buffer[j] = id; 1958 } 1959 1960 if (ohci->quirks & QUIRK_TI_SLLZ059) { 1961 self_id_count = find_and_insert_self_id(ohci, self_id_count); 1962 if (self_id_count < 0) { 1963 ohci_notice(ohci, 1964 "could not construct local self ID\n"); 1965 return; 1966 } 1967 } 1968 1969 if (self_id_count == 0) { 1970 ohci_notice(ohci, "no self IDs\n"); 1971 return; 1972 } 1973 rmb(); 1974 1975 /* 1976 * Check the consistency of the self IDs we just read. The 1977 * problem we face is that a new bus reset can start while we 1978 * read out the self IDs from the DMA buffer. If this happens, 1979 * the DMA buffer will be overwritten with new self IDs and we 1980 * will read out inconsistent data. The OHCI specification 1981 * (section 11.2) recommends a technique similar to 1982 * linux/seqlock.h, where we remember the generation of the 1983 * self IDs in the buffer before reading them out and compare 1984 * it to the current generation after reading them out. If 1985 * the two generations match we know we have a consistent set 1986 * of self IDs. 1987 */ 1988 1989 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff; 1990 if (new_generation != generation) { 1991 ohci_notice(ohci, "new bus reset, discarding self ids\n"); 1992 return; 1993 } 1994 1995 /* FIXME: Document how the locking works. */ 1996 spin_lock_irq(&ohci->lock); 1997 1998 ohci->generation = -1; /* prevent AT packet queueing */ 1999 context_stop(&ohci->at_request_ctx); 2000 context_stop(&ohci->at_response_ctx); 2001 2002 spin_unlock_irq(&ohci->lock); 2003 2004 /* 2005 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent 2006 * packets in the AT queues and software needs to drain them. 2007 * Some OHCI 1.1 controllers (JMicron) apparently require this too. 2008 */ 2009 at_context_flush(&ohci->at_request_ctx); 2010 at_context_flush(&ohci->at_response_ctx); 2011 2012 spin_lock_irq(&ohci->lock); 2013 2014 ohci->generation = generation; 2015 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset); 2016 2017 if (ohci->quirks & QUIRK_RESET_PACKET) 2018 ohci->request_generation = generation; 2019 2020 /* 2021 * This next bit is unrelated to the AT context stuff but we 2022 * have to do it under the spinlock also. If a new config rom 2023 * was set up before this reset, the old one is now no longer 2024 * in use and we can free it. Update the config rom pointers 2025 * to point to the current config rom and clear the 2026 * next_config_rom pointer so a new update can take place. 2027 */ 2028 2029 if (ohci->next_config_rom != NULL) { 2030 if (ohci->next_config_rom != ohci->config_rom) { 2031 free_rom = ohci->config_rom; 2032 free_rom_bus = ohci->config_rom_bus; 2033 } 2034 ohci->config_rom = ohci->next_config_rom; 2035 ohci->config_rom_bus = ohci->next_config_rom_bus; 2036 ohci->next_config_rom = NULL; 2037 2038 /* 2039 * Restore config_rom image and manually update 2040 * config_rom registers. Writing the header quadlet 2041 * will indicate that the config rom is ready, so we 2042 * do that last. 2043 */ 2044 reg_write(ohci, OHCI1394_BusOptions, 2045 be32_to_cpu(ohci->config_rom[2])); 2046 ohci->config_rom[0] = ohci->next_header; 2047 reg_write(ohci, OHCI1394_ConfigROMhdr, 2048 be32_to_cpu(ohci->next_header)); 2049 } 2050 2051 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA 2052 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0); 2053 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0); 2054 #endif 2055 2056 spin_unlock_irq(&ohci->lock); 2057 2058 if (free_rom) 2059 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, 2060 free_rom, free_rom_bus); 2061 2062 log_selfids(ohci, generation, self_id_count); 2063 2064 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation, 2065 self_id_count, ohci->self_id_buffer, 2066 ohci->csr_state_setclear_abdicate); 2067 ohci->csr_state_setclear_abdicate = false; 2068 } 2069 2070 static irqreturn_t irq_handler(int irq, void *data) 2071 { 2072 struct fw_ohci *ohci = data; 2073 u32 event, iso_event; 2074 int i; 2075 2076 event = reg_read(ohci, OHCI1394_IntEventClear); 2077 2078 if (!event || !~event) 2079 return IRQ_NONE; 2080 2081 /* 2082 * busReset and postedWriteErr must not be cleared yet 2083 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1) 2084 */ 2085 reg_write(ohci, OHCI1394_IntEventClear, 2086 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr)); 2087 log_irqs(ohci, event); 2088 2089 if (event & OHCI1394_selfIDComplete) 2090 queue_work(fw_workqueue, &ohci->bus_reset_work); 2091 2092 if (event & OHCI1394_RQPkt) 2093 tasklet_schedule(&ohci->ar_request_ctx.tasklet); 2094 2095 if (event & OHCI1394_RSPkt) 2096 tasklet_schedule(&ohci->ar_response_ctx.tasklet); 2097 2098 if (event & OHCI1394_reqTxComplete) 2099 tasklet_schedule(&ohci->at_request_ctx.tasklet); 2100 2101 if (event & OHCI1394_respTxComplete) 2102 tasklet_schedule(&ohci->at_response_ctx.tasklet); 2103 2104 if (event & OHCI1394_isochRx) { 2105 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear); 2106 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event); 2107 2108 while (iso_event) { 2109 i = ffs(iso_event) - 1; 2110 tasklet_schedule( 2111 &ohci->ir_context_list[i].context.tasklet); 2112 iso_event &= ~(1 << i); 2113 } 2114 } 2115 2116 if (event & OHCI1394_isochTx) { 2117 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear); 2118 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event); 2119 2120 while (iso_event) { 2121 i = ffs(iso_event) - 1; 2122 tasklet_schedule( 2123 &ohci->it_context_list[i].context.tasklet); 2124 iso_event &= ~(1 << i); 2125 } 2126 } 2127 2128 if (unlikely(event & OHCI1394_regAccessFail)) 2129 ohci_err(ohci, "register access failure\n"); 2130 2131 if (unlikely(event & OHCI1394_postedWriteErr)) { 2132 reg_read(ohci, OHCI1394_PostedWriteAddressHi); 2133 reg_read(ohci, OHCI1394_PostedWriteAddressLo); 2134 reg_write(ohci, OHCI1394_IntEventClear, 2135 OHCI1394_postedWriteErr); 2136 if (printk_ratelimit()) 2137 ohci_err(ohci, "PCI posted write error\n"); 2138 } 2139 2140 if (unlikely(event & OHCI1394_cycleTooLong)) { 2141 if (printk_ratelimit()) 2142 ohci_notice(ohci, "isochronous cycle too long\n"); 2143 reg_write(ohci, OHCI1394_LinkControlSet, 2144 OHCI1394_LinkControl_cycleMaster); 2145 } 2146 2147 if (unlikely(event & OHCI1394_cycleInconsistent)) { 2148 /* 2149 * We need to clear this event bit in order to make 2150 * cycleMatch isochronous I/O work. In theory we should 2151 * stop active cycleMatch iso contexts now and restart 2152 * them at least two cycles later. (FIXME?) 2153 */ 2154 if (printk_ratelimit()) 2155 ohci_notice(ohci, "isochronous cycle inconsistent\n"); 2156 } 2157 2158 if (unlikely(event & OHCI1394_unrecoverableError)) 2159 handle_dead_contexts(ohci); 2160 2161 if (event & OHCI1394_cycle64Seconds) { 2162 spin_lock(&ohci->lock); 2163 update_bus_time(ohci); 2164 spin_unlock(&ohci->lock); 2165 } else 2166 flush_writes(ohci); 2167 2168 return IRQ_HANDLED; 2169 } 2170 2171 static int software_reset(struct fw_ohci *ohci) 2172 { 2173 u32 val; 2174 int i; 2175 2176 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset); 2177 for (i = 0; i < 500; i++) { 2178 val = reg_read(ohci, OHCI1394_HCControlSet); 2179 if (!~val) 2180 return -ENODEV; /* Card was ejected. */ 2181 2182 if (!(val & OHCI1394_HCControl_softReset)) 2183 return 0; 2184 2185 msleep(1); 2186 } 2187 2188 return -EBUSY; 2189 } 2190 2191 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length) 2192 { 2193 size_t size = length * 4; 2194 2195 memcpy(dest, src, size); 2196 if (size < CONFIG_ROM_SIZE) 2197 memset(&dest[length], 0, CONFIG_ROM_SIZE - size); 2198 } 2199 2200 static int configure_1394a_enhancements(struct fw_ohci *ohci) 2201 { 2202 bool enable_1394a; 2203 int ret, clear, set, offset; 2204 2205 /* Check if the driver should configure link and PHY. */ 2206 if (!(reg_read(ohci, OHCI1394_HCControlSet) & 2207 OHCI1394_HCControl_programPhyEnable)) 2208 return 0; 2209 2210 /* Paranoia: check whether the PHY supports 1394a, too. */ 2211 enable_1394a = false; 2212 ret = read_phy_reg(ohci, 2); 2213 if (ret < 0) 2214 return ret; 2215 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) { 2216 ret = read_paged_phy_reg(ohci, 1, 8); 2217 if (ret < 0) 2218 return ret; 2219 if (ret >= 1) 2220 enable_1394a = true; 2221 } 2222 2223 if (ohci->quirks & QUIRK_NO_1394A) 2224 enable_1394a = false; 2225 2226 /* Configure PHY and link consistently. */ 2227 if (enable_1394a) { 2228 clear = 0; 2229 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI; 2230 } else { 2231 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI; 2232 set = 0; 2233 } 2234 ret = update_phy_reg(ohci, 5, clear, set); 2235 if (ret < 0) 2236 return ret; 2237 2238 if (enable_1394a) 2239 offset = OHCI1394_HCControlSet; 2240 else 2241 offset = OHCI1394_HCControlClear; 2242 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable); 2243 2244 /* Clean up: configuration has been taken care of. */ 2245 reg_write(ohci, OHCI1394_HCControlClear, 2246 OHCI1394_HCControl_programPhyEnable); 2247 2248 return 0; 2249 } 2250 2251 static int probe_tsb41ba3d(struct fw_ohci *ohci) 2252 { 2253 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */ 2254 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, }; 2255 int reg, i; 2256 2257 reg = read_phy_reg(ohci, 2); 2258 if (reg < 0) 2259 return reg; 2260 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS) 2261 return 0; 2262 2263 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) { 2264 reg = read_paged_phy_reg(ohci, 1, i + 10); 2265 if (reg < 0) 2266 return reg; 2267 if (reg != id[i]) 2268 return 0; 2269 } 2270 return 1; 2271 } 2272 2273 static int ohci_enable(struct fw_card *card, 2274 const __be32 *config_rom, size_t length) 2275 { 2276 struct fw_ohci *ohci = fw_ohci(card); 2277 u32 lps, version, irqs; 2278 int i, ret; 2279 2280 if (software_reset(ohci)) { 2281 ohci_err(ohci, "failed to reset ohci card\n"); 2282 return -EBUSY; 2283 } 2284 2285 /* 2286 * Now enable LPS, which we need in order to start accessing 2287 * most of the registers. In fact, on some cards (ALI M5251), 2288 * accessing registers in the SClk domain without LPS enabled 2289 * will lock up the machine. Wait 50msec to make sure we have 2290 * full link enabled. However, with some cards (well, at least 2291 * a JMicron PCIe card), we have to try again sometimes. 2292 * 2293 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but 2294 * cannot actually use the phy at that time. These need tens of 2295 * millisecods pause between LPS write and first phy access too. 2296 * 2297 * But do not wait for 50msec on Agere/LSI cards. Their phy 2298 * arbitration state machine may time out during such a long wait. 2299 */ 2300 2301 reg_write(ohci, OHCI1394_HCControlSet, 2302 OHCI1394_HCControl_LPS | 2303 OHCI1394_HCControl_postedWriteEnable); 2304 flush_writes(ohci); 2305 2306 if (!(ohci->quirks & QUIRK_PHY_LCTRL_TIMEOUT)) 2307 msleep(50); 2308 2309 for (lps = 0, i = 0; !lps && i < 150; i++) { 2310 msleep(1); 2311 lps = reg_read(ohci, OHCI1394_HCControlSet) & 2312 OHCI1394_HCControl_LPS; 2313 } 2314 2315 if (!lps) { 2316 ohci_err(ohci, "failed to set Link Power Status\n"); 2317 return -EIO; 2318 } 2319 2320 if (ohci->quirks & QUIRK_TI_SLLZ059) { 2321 ret = probe_tsb41ba3d(ohci); 2322 if (ret < 0) 2323 return ret; 2324 if (ret) 2325 ohci_notice(ohci, "local TSB41BA3D phy\n"); 2326 else 2327 ohci->quirks &= ~QUIRK_TI_SLLZ059; 2328 } 2329 2330 reg_write(ohci, OHCI1394_HCControlClear, 2331 OHCI1394_HCControl_noByteSwapData); 2332 2333 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus); 2334 reg_write(ohci, OHCI1394_LinkControlSet, 2335 OHCI1394_LinkControl_cycleTimerEnable | 2336 OHCI1394_LinkControl_cycleMaster); 2337 2338 reg_write(ohci, OHCI1394_ATRetries, 2339 OHCI1394_MAX_AT_REQ_RETRIES | 2340 (OHCI1394_MAX_AT_RESP_RETRIES << 4) | 2341 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) | 2342 (200 << 16)); 2343 2344 ohci->bus_time_running = false; 2345 2346 for (i = 0; i < 32; i++) 2347 if (ohci->ir_context_support & (1 << i)) 2348 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i), 2349 IR_CONTEXT_MULTI_CHANNEL_MODE); 2350 2351 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff; 2352 if (version >= OHCI_VERSION_1_1) { 2353 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi, 2354 0xfffffffe); 2355 card->broadcast_channel_auto_allocated = true; 2356 } 2357 2358 /* Get implemented bits of the priority arbitration request counter. */ 2359 reg_write(ohci, OHCI1394_FairnessControl, 0x3f); 2360 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f; 2361 reg_write(ohci, OHCI1394_FairnessControl, 0); 2362 card->priority_budget_implemented = ohci->pri_req_max != 0; 2363 2364 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000); 2365 reg_write(ohci, OHCI1394_IntEventClear, ~0); 2366 reg_write(ohci, OHCI1394_IntMaskClear, ~0); 2367 2368 ret = configure_1394a_enhancements(ohci); 2369 if (ret < 0) 2370 return ret; 2371 2372 /* Activate link_on bit and contender bit in our self ID packets.*/ 2373 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER); 2374 if (ret < 0) 2375 return ret; 2376 2377 /* 2378 * When the link is not yet enabled, the atomic config rom 2379 * update mechanism described below in ohci_set_config_rom() 2380 * is not active. We have to update ConfigRomHeader and 2381 * BusOptions manually, and the write to ConfigROMmap takes 2382 * effect immediately. We tie this to the enabling of the 2383 * link, so we have a valid config rom before enabling - the 2384 * OHCI requires that ConfigROMhdr and BusOptions have valid 2385 * values before enabling. 2386 * 2387 * However, when the ConfigROMmap is written, some controllers 2388 * always read back quadlets 0 and 2 from the config rom to 2389 * the ConfigRomHeader and BusOptions registers on bus reset. 2390 * They shouldn't do that in this initial case where the link 2391 * isn't enabled. This means we have to use the same 2392 * workaround here, setting the bus header to 0 and then write 2393 * the right values in the bus reset tasklet. 2394 */ 2395 2396 if (config_rom) { 2397 ohci->next_config_rom = 2398 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, 2399 &ohci->next_config_rom_bus, 2400 GFP_KERNEL); 2401 if (ohci->next_config_rom == NULL) 2402 return -ENOMEM; 2403 2404 copy_config_rom(ohci->next_config_rom, config_rom, length); 2405 } else { 2406 /* 2407 * In the suspend case, config_rom is NULL, which 2408 * means that we just reuse the old config rom. 2409 */ 2410 ohci->next_config_rom = ohci->config_rom; 2411 ohci->next_config_rom_bus = ohci->config_rom_bus; 2412 } 2413 2414 ohci->next_header = ohci->next_config_rom[0]; 2415 ohci->next_config_rom[0] = 0; 2416 reg_write(ohci, OHCI1394_ConfigROMhdr, 0); 2417 reg_write(ohci, OHCI1394_BusOptions, 2418 be32_to_cpu(ohci->next_config_rom[2])); 2419 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); 2420 2421 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000); 2422 2423 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete | 2424 OHCI1394_RQPkt | OHCI1394_RSPkt | 2425 OHCI1394_isochTx | OHCI1394_isochRx | 2426 OHCI1394_postedWriteErr | 2427 OHCI1394_selfIDComplete | 2428 OHCI1394_regAccessFail | 2429 OHCI1394_cycleInconsistent | 2430 OHCI1394_unrecoverableError | 2431 OHCI1394_cycleTooLong | 2432 OHCI1394_masterIntEnable; 2433 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS) 2434 irqs |= OHCI1394_busReset; 2435 reg_write(ohci, OHCI1394_IntMaskSet, irqs); 2436 2437 reg_write(ohci, OHCI1394_HCControlSet, 2438 OHCI1394_HCControl_linkEnable | 2439 OHCI1394_HCControl_BIBimageValid); 2440 2441 reg_write(ohci, OHCI1394_LinkControlSet, 2442 OHCI1394_LinkControl_rcvSelfID | 2443 OHCI1394_LinkControl_rcvPhyPkt); 2444 2445 ar_context_run(&ohci->ar_request_ctx); 2446 ar_context_run(&ohci->ar_response_ctx); 2447 2448 flush_writes(ohci); 2449 2450 /* We are ready to go, reset bus to finish initialization. */ 2451 fw_schedule_bus_reset(&ohci->card, false, true); 2452 2453 return 0; 2454 } 2455 2456 static int ohci_set_config_rom(struct fw_card *card, 2457 const __be32 *config_rom, size_t length) 2458 { 2459 struct fw_ohci *ohci; 2460 __be32 *next_config_rom; 2461 dma_addr_t uninitialized_var(next_config_rom_bus); 2462 2463 ohci = fw_ohci(card); 2464 2465 /* 2466 * When the OHCI controller is enabled, the config rom update 2467 * mechanism is a bit tricky, but easy enough to use. See 2468 * section 5.5.6 in the OHCI specification. 2469 * 2470 * The OHCI controller caches the new config rom address in a 2471 * shadow register (ConfigROMmapNext) and needs a bus reset 2472 * for the changes to take place. When the bus reset is 2473 * detected, the controller loads the new values for the 2474 * ConfigRomHeader and BusOptions registers from the specified 2475 * config rom and loads ConfigROMmap from the ConfigROMmapNext 2476 * shadow register. All automatically and atomically. 2477 * 2478 * Now, there's a twist to this story. The automatic load of 2479 * ConfigRomHeader and BusOptions doesn't honor the 2480 * noByteSwapData bit, so with a be32 config rom, the 2481 * controller will load be32 values in to these registers 2482 * during the atomic update, even on litte endian 2483 * architectures. The workaround we use is to put a 0 in the 2484 * header quadlet; 0 is endian agnostic and means that the 2485 * config rom isn't ready yet. In the bus reset tasklet we 2486 * then set up the real values for the two registers. 2487 * 2488 * We use ohci->lock to avoid racing with the code that sets 2489 * ohci->next_config_rom to NULL (see bus_reset_work). 2490 */ 2491 2492 next_config_rom = 2493 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, 2494 &next_config_rom_bus, GFP_KERNEL); 2495 if (next_config_rom == NULL) 2496 return -ENOMEM; 2497 2498 spin_lock_irq(&ohci->lock); 2499 2500 /* 2501 * If there is not an already pending config_rom update, 2502 * push our new allocation into the ohci->next_config_rom 2503 * and then mark the local variable as null so that we 2504 * won't deallocate the new buffer. 2505 * 2506 * OTOH, if there is a pending config_rom update, just 2507 * use that buffer with the new config_rom data, and 2508 * let this routine free the unused DMA allocation. 2509 */ 2510 2511 if (ohci->next_config_rom == NULL) { 2512 ohci->next_config_rom = next_config_rom; 2513 ohci->next_config_rom_bus = next_config_rom_bus; 2514 next_config_rom = NULL; 2515 } 2516 2517 copy_config_rom(ohci->next_config_rom, config_rom, length); 2518 2519 ohci->next_header = config_rom[0]; 2520 ohci->next_config_rom[0] = 0; 2521 2522 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); 2523 2524 spin_unlock_irq(&ohci->lock); 2525 2526 /* If we didn't use the DMA allocation, delete it. */ 2527 if (next_config_rom != NULL) 2528 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, 2529 next_config_rom, next_config_rom_bus); 2530 2531 /* 2532 * Now initiate a bus reset to have the changes take 2533 * effect. We clean up the old config rom memory and DMA 2534 * mappings in the bus reset tasklet, since the OHCI 2535 * controller could need to access it before the bus reset 2536 * takes effect. 2537 */ 2538 2539 fw_schedule_bus_reset(&ohci->card, true, true); 2540 2541 return 0; 2542 } 2543 2544 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet) 2545 { 2546 struct fw_ohci *ohci = fw_ohci(card); 2547 2548 at_context_transmit(&ohci->at_request_ctx, packet); 2549 } 2550 2551 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet) 2552 { 2553 struct fw_ohci *ohci = fw_ohci(card); 2554 2555 at_context_transmit(&ohci->at_response_ctx, packet); 2556 } 2557 2558 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet) 2559 { 2560 struct fw_ohci *ohci = fw_ohci(card); 2561 struct context *ctx = &ohci->at_request_ctx; 2562 struct driver_data *driver_data = packet->driver_data; 2563 int ret = -ENOENT; 2564 2565 tasklet_disable(&ctx->tasklet); 2566 2567 if (packet->ack != 0) 2568 goto out; 2569 2570 if (packet->payload_mapped) 2571 dma_unmap_single(ohci->card.device, packet->payload_bus, 2572 packet->payload_length, DMA_TO_DEVICE); 2573 2574 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20); 2575 driver_data->packet = NULL; 2576 packet->ack = RCODE_CANCELLED; 2577 packet->callback(packet, &ohci->card, packet->ack); 2578 ret = 0; 2579 out: 2580 tasklet_enable(&ctx->tasklet); 2581 2582 return ret; 2583 } 2584 2585 static int ohci_enable_phys_dma(struct fw_card *card, 2586 int node_id, int generation) 2587 { 2588 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA 2589 return 0; 2590 #else 2591 struct fw_ohci *ohci = fw_ohci(card); 2592 unsigned long flags; 2593 int n, ret = 0; 2594 2595 /* 2596 * FIXME: Make sure this bitmask is cleared when we clear the busReset 2597 * interrupt bit. Clear physReqResourceAllBuses on bus reset. 2598 */ 2599 2600 spin_lock_irqsave(&ohci->lock, flags); 2601 2602 if (ohci->generation != generation) { 2603 ret = -ESTALE; 2604 goto out; 2605 } 2606 2607 /* 2608 * Note, if the node ID contains a non-local bus ID, physical DMA is 2609 * enabled for _all_ nodes on remote buses. 2610 */ 2611 2612 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63; 2613 if (n < 32) 2614 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n); 2615 else 2616 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32)); 2617 2618 flush_writes(ohci); 2619 out: 2620 spin_unlock_irqrestore(&ohci->lock, flags); 2621 2622 return ret; 2623 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */ 2624 } 2625 2626 static u32 ohci_read_csr(struct fw_card *card, int csr_offset) 2627 { 2628 struct fw_ohci *ohci = fw_ohci(card); 2629 unsigned long flags; 2630 u32 value; 2631 2632 switch (csr_offset) { 2633 case CSR_STATE_CLEAR: 2634 case CSR_STATE_SET: 2635 if (ohci->is_root && 2636 (reg_read(ohci, OHCI1394_LinkControlSet) & 2637 OHCI1394_LinkControl_cycleMaster)) 2638 value = CSR_STATE_BIT_CMSTR; 2639 else 2640 value = 0; 2641 if (ohci->csr_state_setclear_abdicate) 2642 value |= CSR_STATE_BIT_ABDICATE; 2643 2644 return value; 2645 2646 case CSR_NODE_IDS: 2647 return reg_read(ohci, OHCI1394_NodeID) << 16; 2648 2649 case CSR_CYCLE_TIME: 2650 return get_cycle_time(ohci); 2651 2652 case CSR_BUS_TIME: 2653 /* 2654 * We might be called just after the cycle timer has wrapped 2655 * around but just before the cycle64Seconds handler, so we 2656 * better check here, too, if the bus time needs to be updated. 2657 */ 2658 spin_lock_irqsave(&ohci->lock, flags); 2659 value = update_bus_time(ohci); 2660 spin_unlock_irqrestore(&ohci->lock, flags); 2661 return value; 2662 2663 case CSR_BUSY_TIMEOUT: 2664 value = reg_read(ohci, OHCI1394_ATRetries); 2665 return (value >> 4) & 0x0ffff00f; 2666 2667 case CSR_PRIORITY_BUDGET: 2668 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) | 2669 (ohci->pri_req_max << 8); 2670 2671 default: 2672 WARN_ON(1); 2673 return 0; 2674 } 2675 } 2676 2677 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value) 2678 { 2679 struct fw_ohci *ohci = fw_ohci(card); 2680 unsigned long flags; 2681 2682 switch (csr_offset) { 2683 case CSR_STATE_CLEAR: 2684 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) { 2685 reg_write(ohci, OHCI1394_LinkControlClear, 2686 OHCI1394_LinkControl_cycleMaster); 2687 flush_writes(ohci); 2688 } 2689 if (value & CSR_STATE_BIT_ABDICATE) 2690 ohci->csr_state_setclear_abdicate = false; 2691 break; 2692 2693 case CSR_STATE_SET: 2694 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) { 2695 reg_write(ohci, OHCI1394_LinkControlSet, 2696 OHCI1394_LinkControl_cycleMaster); 2697 flush_writes(ohci); 2698 } 2699 if (value & CSR_STATE_BIT_ABDICATE) 2700 ohci->csr_state_setclear_abdicate = true; 2701 break; 2702 2703 case CSR_NODE_IDS: 2704 reg_write(ohci, OHCI1394_NodeID, value >> 16); 2705 flush_writes(ohci); 2706 break; 2707 2708 case CSR_CYCLE_TIME: 2709 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value); 2710 reg_write(ohci, OHCI1394_IntEventSet, 2711 OHCI1394_cycleInconsistent); 2712 flush_writes(ohci); 2713 break; 2714 2715 case CSR_BUS_TIME: 2716 spin_lock_irqsave(&ohci->lock, flags); 2717 ohci->bus_time = (update_bus_time(ohci) & 0x40) | 2718 (value & ~0x7f); 2719 spin_unlock_irqrestore(&ohci->lock, flags); 2720 break; 2721 2722 case CSR_BUSY_TIMEOUT: 2723 value = (value & 0xf) | ((value & 0xf) << 4) | 2724 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4); 2725 reg_write(ohci, OHCI1394_ATRetries, value); 2726 flush_writes(ohci); 2727 break; 2728 2729 case CSR_PRIORITY_BUDGET: 2730 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f); 2731 flush_writes(ohci); 2732 break; 2733 2734 default: 2735 WARN_ON(1); 2736 break; 2737 } 2738 } 2739 2740 static void flush_iso_completions(struct iso_context *ctx) 2741 { 2742 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp, 2743 ctx->header_length, ctx->header, 2744 ctx->base.callback_data); 2745 ctx->header_length = 0; 2746 } 2747 2748 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr) 2749 { 2750 u32 *ctx_hdr; 2751 2752 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) { 2753 if (ctx->base.drop_overflow_headers) 2754 return; 2755 flush_iso_completions(ctx); 2756 } 2757 2758 ctx_hdr = ctx->header + ctx->header_length; 2759 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]); 2760 2761 /* 2762 * The two iso header quadlets are byteswapped to little 2763 * endian by the controller, but we want to present them 2764 * as big endian for consistency with the bus endianness. 2765 */ 2766 if (ctx->base.header_size > 0) 2767 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */ 2768 if (ctx->base.header_size > 4) 2769 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */ 2770 if (ctx->base.header_size > 8) 2771 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8); 2772 ctx->header_length += ctx->base.header_size; 2773 } 2774 2775 static int handle_ir_packet_per_buffer(struct context *context, 2776 struct descriptor *d, 2777 struct descriptor *last) 2778 { 2779 struct iso_context *ctx = 2780 container_of(context, struct iso_context, context); 2781 struct descriptor *pd; 2782 u32 buffer_dma; 2783 2784 for (pd = d; pd <= last; pd++) 2785 if (pd->transfer_status) 2786 break; 2787 if (pd > last) 2788 /* Descriptor(s) not done yet, stop iteration */ 2789 return 0; 2790 2791 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) { 2792 d++; 2793 buffer_dma = le32_to_cpu(d->data_address); 2794 dma_sync_single_range_for_cpu(context->ohci->card.device, 2795 buffer_dma & PAGE_MASK, 2796 buffer_dma & ~PAGE_MASK, 2797 le16_to_cpu(d->req_count), 2798 DMA_FROM_DEVICE); 2799 } 2800 2801 copy_iso_headers(ctx, (u32 *) (last + 1)); 2802 2803 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) 2804 flush_iso_completions(ctx); 2805 2806 return 1; 2807 } 2808 2809 /* d == last because each descriptor block is only a single descriptor. */ 2810 static int handle_ir_buffer_fill(struct context *context, 2811 struct descriptor *d, 2812 struct descriptor *last) 2813 { 2814 struct iso_context *ctx = 2815 container_of(context, struct iso_context, context); 2816 unsigned int req_count, res_count, completed; 2817 u32 buffer_dma; 2818 2819 req_count = le16_to_cpu(last->req_count); 2820 res_count = le16_to_cpu(ACCESS_ONCE(last->res_count)); 2821 completed = req_count - res_count; 2822 buffer_dma = le32_to_cpu(last->data_address); 2823 2824 if (completed > 0) { 2825 ctx->mc_buffer_bus = buffer_dma; 2826 ctx->mc_completed = completed; 2827 } 2828 2829 if (res_count != 0) 2830 /* Descriptor(s) not done yet, stop iteration */ 2831 return 0; 2832 2833 dma_sync_single_range_for_cpu(context->ohci->card.device, 2834 buffer_dma & PAGE_MASK, 2835 buffer_dma & ~PAGE_MASK, 2836 completed, DMA_FROM_DEVICE); 2837 2838 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) { 2839 ctx->base.callback.mc(&ctx->base, 2840 buffer_dma + completed, 2841 ctx->base.callback_data); 2842 ctx->mc_completed = 0; 2843 } 2844 2845 return 1; 2846 } 2847 2848 static void flush_ir_buffer_fill(struct iso_context *ctx) 2849 { 2850 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device, 2851 ctx->mc_buffer_bus & PAGE_MASK, 2852 ctx->mc_buffer_bus & ~PAGE_MASK, 2853 ctx->mc_completed, DMA_FROM_DEVICE); 2854 2855 ctx->base.callback.mc(&ctx->base, 2856 ctx->mc_buffer_bus + ctx->mc_completed, 2857 ctx->base.callback_data); 2858 ctx->mc_completed = 0; 2859 } 2860 2861 static inline void sync_it_packet_for_cpu(struct context *context, 2862 struct descriptor *pd) 2863 { 2864 __le16 control; 2865 u32 buffer_dma; 2866 2867 /* only packets beginning with OUTPUT_MORE* have data buffers */ 2868 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) 2869 return; 2870 2871 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */ 2872 pd += 2; 2873 2874 /* 2875 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's 2876 * data buffer is in the context program's coherent page and must not 2877 * be synced. 2878 */ 2879 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) == 2880 (context->current_bus & PAGE_MASK)) { 2881 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)) 2882 return; 2883 pd++; 2884 } 2885 2886 do { 2887 buffer_dma = le32_to_cpu(pd->data_address); 2888 dma_sync_single_range_for_cpu(context->ohci->card.device, 2889 buffer_dma & PAGE_MASK, 2890 buffer_dma & ~PAGE_MASK, 2891 le16_to_cpu(pd->req_count), 2892 DMA_TO_DEVICE); 2893 control = pd->control; 2894 pd++; 2895 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))); 2896 } 2897 2898 static int handle_it_packet(struct context *context, 2899 struct descriptor *d, 2900 struct descriptor *last) 2901 { 2902 struct iso_context *ctx = 2903 container_of(context, struct iso_context, context); 2904 struct descriptor *pd; 2905 __be32 *ctx_hdr; 2906 2907 for (pd = d; pd <= last; pd++) 2908 if (pd->transfer_status) 2909 break; 2910 if (pd > last) 2911 /* Descriptor(s) not done yet, stop iteration */ 2912 return 0; 2913 2914 sync_it_packet_for_cpu(context, d); 2915 2916 if (ctx->header_length + 4 > PAGE_SIZE) { 2917 if (ctx->base.drop_overflow_headers) 2918 return 1; 2919 flush_iso_completions(ctx); 2920 } 2921 2922 ctx_hdr = ctx->header + ctx->header_length; 2923 ctx->last_timestamp = le16_to_cpu(last->res_count); 2924 /* Present this value as big-endian to match the receive code */ 2925 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) | 2926 le16_to_cpu(pd->res_count)); 2927 ctx->header_length += 4; 2928 2929 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) 2930 flush_iso_completions(ctx); 2931 2932 return 1; 2933 } 2934 2935 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels) 2936 { 2937 u32 hi = channels >> 32, lo = channels; 2938 2939 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi); 2940 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo); 2941 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi); 2942 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo); 2943 mmiowb(); 2944 ohci->mc_channels = channels; 2945 } 2946 2947 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card, 2948 int type, int channel, size_t header_size) 2949 { 2950 struct fw_ohci *ohci = fw_ohci(card); 2951 struct iso_context *uninitialized_var(ctx); 2952 descriptor_callback_t uninitialized_var(callback); 2953 u64 *uninitialized_var(channels); 2954 u32 *uninitialized_var(mask), uninitialized_var(regs); 2955 int index, ret = -EBUSY; 2956 2957 spin_lock_irq(&ohci->lock); 2958 2959 switch (type) { 2960 case FW_ISO_CONTEXT_TRANSMIT: 2961 mask = &ohci->it_context_mask; 2962 callback = handle_it_packet; 2963 index = ffs(*mask) - 1; 2964 if (index >= 0) { 2965 *mask &= ~(1 << index); 2966 regs = OHCI1394_IsoXmitContextBase(index); 2967 ctx = &ohci->it_context_list[index]; 2968 } 2969 break; 2970 2971 case FW_ISO_CONTEXT_RECEIVE: 2972 channels = &ohci->ir_context_channels; 2973 mask = &ohci->ir_context_mask; 2974 callback = handle_ir_packet_per_buffer; 2975 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1; 2976 if (index >= 0) { 2977 *channels &= ~(1ULL << channel); 2978 *mask &= ~(1 << index); 2979 regs = OHCI1394_IsoRcvContextBase(index); 2980 ctx = &ohci->ir_context_list[index]; 2981 } 2982 break; 2983 2984 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 2985 mask = &ohci->ir_context_mask; 2986 callback = handle_ir_buffer_fill; 2987 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1; 2988 if (index >= 0) { 2989 ohci->mc_allocated = true; 2990 *mask &= ~(1 << index); 2991 regs = OHCI1394_IsoRcvContextBase(index); 2992 ctx = &ohci->ir_context_list[index]; 2993 } 2994 break; 2995 2996 default: 2997 index = -1; 2998 ret = -ENOSYS; 2999 } 3000 3001 spin_unlock_irq(&ohci->lock); 3002 3003 if (index < 0) 3004 return ERR_PTR(ret); 3005 3006 memset(ctx, 0, sizeof(*ctx)); 3007 ctx->header_length = 0; 3008 ctx->header = (void *) __get_free_page(GFP_KERNEL); 3009 if (ctx->header == NULL) { 3010 ret = -ENOMEM; 3011 goto out; 3012 } 3013 ret = context_init(&ctx->context, ohci, regs, callback); 3014 if (ret < 0) 3015 goto out_with_header; 3016 3017 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) { 3018 set_multichannel_mask(ohci, 0); 3019 ctx->mc_completed = 0; 3020 } 3021 3022 return &ctx->base; 3023 3024 out_with_header: 3025 free_page((unsigned long)ctx->header); 3026 out: 3027 spin_lock_irq(&ohci->lock); 3028 3029 switch (type) { 3030 case FW_ISO_CONTEXT_RECEIVE: 3031 *channels |= 1ULL << channel; 3032 break; 3033 3034 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3035 ohci->mc_allocated = false; 3036 break; 3037 } 3038 *mask |= 1 << index; 3039 3040 spin_unlock_irq(&ohci->lock); 3041 3042 return ERR_PTR(ret); 3043 } 3044 3045 static int ohci_start_iso(struct fw_iso_context *base, 3046 s32 cycle, u32 sync, u32 tags) 3047 { 3048 struct iso_context *ctx = container_of(base, struct iso_context, base); 3049 struct fw_ohci *ohci = ctx->context.ohci; 3050 u32 control = IR_CONTEXT_ISOCH_HEADER, match; 3051 int index; 3052 3053 /* the controller cannot start without any queued packets */ 3054 if (ctx->context.last->branch_address == 0) 3055 return -ENODATA; 3056 3057 switch (ctx->base.type) { 3058 case FW_ISO_CONTEXT_TRANSMIT: 3059 index = ctx - ohci->it_context_list; 3060 match = 0; 3061 if (cycle >= 0) 3062 match = IT_CONTEXT_CYCLE_MATCH_ENABLE | 3063 (cycle & 0x7fff) << 16; 3064 3065 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index); 3066 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index); 3067 context_run(&ctx->context, match); 3068 break; 3069 3070 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3071 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE; 3072 /* fall through */ 3073 case FW_ISO_CONTEXT_RECEIVE: 3074 index = ctx - ohci->ir_context_list; 3075 match = (tags << 28) | (sync << 8) | ctx->base.channel; 3076 if (cycle >= 0) { 3077 match |= (cycle & 0x07fff) << 12; 3078 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE; 3079 } 3080 3081 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index); 3082 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index); 3083 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match); 3084 context_run(&ctx->context, control); 3085 3086 ctx->sync = sync; 3087 ctx->tags = tags; 3088 3089 break; 3090 } 3091 3092 return 0; 3093 } 3094 3095 static int ohci_stop_iso(struct fw_iso_context *base) 3096 { 3097 struct fw_ohci *ohci = fw_ohci(base->card); 3098 struct iso_context *ctx = container_of(base, struct iso_context, base); 3099 int index; 3100 3101 switch (ctx->base.type) { 3102 case FW_ISO_CONTEXT_TRANSMIT: 3103 index = ctx - ohci->it_context_list; 3104 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index); 3105 break; 3106 3107 case FW_ISO_CONTEXT_RECEIVE: 3108 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3109 index = ctx - ohci->ir_context_list; 3110 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index); 3111 break; 3112 } 3113 flush_writes(ohci); 3114 context_stop(&ctx->context); 3115 tasklet_kill(&ctx->context.tasklet); 3116 3117 return 0; 3118 } 3119 3120 static void ohci_free_iso_context(struct fw_iso_context *base) 3121 { 3122 struct fw_ohci *ohci = fw_ohci(base->card); 3123 struct iso_context *ctx = container_of(base, struct iso_context, base); 3124 unsigned long flags; 3125 int index; 3126 3127 ohci_stop_iso(base); 3128 context_release(&ctx->context); 3129 free_page((unsigned long)ctx->header); 3130 3131 spin_lock_irqsave(&ohci->lock, flags); 3132 3133 switch (base->type) { 3134 case FW_ISO_CONTEXT_TRANSMIT: 3135 index = ctx - ohci->it_context_list; 3136 ohci->it_context_mask |= 1 << index; 3137 break; 3138 3139 case FW_ISO_CONTEXT_RECEIVE: 3140 index = ctx - ohci->ir_context_list; 3141 ohci->ir_context_mask |= 1 << index; 3142 ohci->ir_context_channels |= 1ULL << base->channel; 3143 break; 3144 3145 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3146 index = ctx - ohci->ir_context_list; 3147 ohci->ir_context_mask |= 1 << index; 3148 ohci->ir_context_channels |= ohci->mc_channels; 3149 ohci->mc_channels = 0; 3150 ohci->mc_allocated = false; 3151 break; 3152 } 3153 3154 spin_unlock_irqrestore(&ohci->lock, flags); 3155 } 3156 3157 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels) 3158 { 3159 struct fw_ohci *ohci = fw_ohci(base->card); 3160 unsigned long flags; 3161 int ret; 3162 3163 switch (base->type) { 3164 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3165 3166 spin_lock_irqsave(&ohci->lock, flags); 3167 3168 /* Don't allow multichannel to grab other contexts' channels. */ 3169 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) { 3170 *channels = ohci->ir_context_channels; 3171 ret = -EBUSY; 3172 } else { 3173 set_multichannel_mask(ohci, *channels); 3174 ret = 0; 3175 } 3176 3177 spin_unlock_irqrestore(&ohci->lock, flags); 3178 3179 break; 3180 default: 3181 ret = -EINVAL; 3182 } 3183 3184 return ret; 3185 } 3186 3187 #ifdef CONFIG_PM 3188 static void ohci_resume_iso_dma(struct fw_ohci *ohci) 3189 { 3190 int i; 3191 struct iso_context *ctx; 3192 3193 for (i = 0 ; i < ohci->n_ir ; i++) { 3194 ctx = &ohci->ir_context_list[i]; 3195 if (ctx->context.running) 3196 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags); 3197 } 3198 3199 for (i = 0 ; i < ohci->n_it ; i++) { 3200 ctx = &ohci->it_context_list[i]; 3201 if (ctx->context.running) 3202 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags); 3203 } 3204 } 3205 #endif 3206 3207 static int queue_iso_transmit(struct iso_context *ctx, 3208 struct fw_iso_packet *packet, 3209 struct fw_iso_buffer *buffer, 3210 unsigned long payload) 3211 { 3212 struct descriptor *d, *last, *pd; 3213 struct fw_iso_packet *p; 3214 __le32 *header; 3215 dma_addr_t d_bus, page_bus; 3216 u32 z, header_z, payload_z, irq; 3217 u32 payload_index, payload_end_index, next_page_index; 3218 int page, end_page, i, length, offset; 3219 3220 p = packet; 3221 payload_index = payload; 3222 3223 if (p->skip) 3224 z = 1; 3225 else 3226 z = 2; 3227 if (p->header_length > 0) 3228 z++; 3229 3230 /* Determine the first page the payload isn't contained in. */ 3231 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT; 3232 if (p->payload_length > 0) 3233 payload_z = end_page - (payload_index >> PAGE_SHIFT); 3234 else 3235 payload_z = 0; 3236 3237 z += payload_z; 3238 3239 /* Get header size in number of descriptors. */ 3240 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d)); 3241 3242 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus); 3243 if (d == NULL) 3244 return -ENOMEM; 3245 3246 if (!p->skip) { 3247 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE); 3248 d[0].req_count = cpu_to_le16(8); 3249 /* 3250 * Link the skip address to this descriptor itself. This causes 3251 * a context to skip a cycle whenever lost cycles or FIFO 3252 * overruns occur, without dropping the data. The application 3253 * should then decide whether this is an error condition or not. 3254 * FIXME: Make the context's cycle-lost behaviour configurable? 3255 */ 3256 d[0].branch_address = cpu_to_le32(d_bus | z); 3257 3258 header = (__le32 *) &d[1]; 3259 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) | 3260 IT_HEADER_TAG(p->tag) | 3261 IT_HEADER_TCODE(TCODE_STREAM_DATA) | 3262 IT_HEADER_CHANNEL(ctx->base.channel) | 3263 IT_HEADER_SPEED(ctx->base.speed)); 3264 header[1] = 3265 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length + 3266 p->payload_length)); 3267 } 3268 3269 if (p->header_length > 0) { 3270 d[2].req_count = cpu_to_le16(p->header_length); 3271 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d)); 3272 memcpy(&d[z], p->header, p->header_length); 3273 } 3274 3275 pd = d + z - payload_z; 3276 payload_end_index = payload_index + p->payload_length; 3277 for (i = 0; i < payload_z; i++) { 3278 page = payload_index >> PAGE_SHIFT; 3279 offset = payload_index & ~PAGE_MASK; 3280 next_page_index = (page + 1) << PAGE_SHIFT; 3281 length = 3282 min(next_page_index, payload_end_index) - payload_index; 3283 pd[i].req_count = cpu_to_le16(length); 3284 3285 page_bus = page_private(buffer->pages[page]); 3286 pd[i].data_address = cpu_to_le32(page_bus + offset); 3287 3288 dma_sync_single_range_for_device(ctx->context.ohci->card.device, 3289 page_bus, offset, length, 3290 DMA_TO_DEVICE); 3291 3292 payload_index += length; 3293 } 3294 3295 if (p->interrupt) 3296 irq = DESCRIPTOR_IRQ_ALWAYS; 3297 else 3298 irq = DESCRIPTOR_NO_IRQ; 3299 3300 last = z == 2 ? d : d + z - 1; 3301 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST | 3302 DESCRIPTOR_STATUS | 3303 DESCRIPTOR_BRANCH_ALWAYS | 3304 irq); 3305 3306 context_append(&ctx->context, d, z, header_z); 3307 3308 return 0; 3309 } 3310 3311 static int queue_iso_packet_per_buffer(struct iso_context *ctx, 3312 struct fw_iso_packet *packet, 3313 struct fw_iso_buffer *buffer, 3314 unsigned long payload) 3315 { 3316 struct device *device = ctx->context.ohci->card.device; 3317 struct descriptor *d, *pd; 3318 dma_addr_t d_bus, page_bus; 3319 u32 z, header_z, rest; 3320 int i, j, length; 3321 int page, offset, packet_count, header_size, payload_per_buffer; 3322 3323 /* 3324 * The OHCI controller puts the isochronous header and trailer in the 3325 * buffer, so we need at least 8 bytes. 3326 */ 3327 packet_count = packet->header_length / ctx->base.header_size; 3328 header_size = max(ctx->base.header_size, (size_t)8); 3329 3330 /* Get header size in number of descriptors. */ 3331 header_z = DIV_ROUND_UP(header_size, sizeof(*d)); 3332 page = payload >> PAGE_SHIFT; 3333 offset = payload & ~PAGE_MASK; 3334 payload_per_buffer = packet->payload_length / packet_count; 3335 3336 for (i = 0; i < packet_count; i++) { 3337 /* d points to the header descriptor */ 3338 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1; 3339 d = context_get_descriptors(&ctx->context, 3340 z + header_z, &d_bus); 3341 if (d == NULL) 3342 return -ENOMEM; 3343 3344 d->control = cpu_to_le16(DESCRIPTOR_STATUS | 3345 DESCRIPTOR_INPUT_MORE); 3346 if (packet->skip && i == 0) 3347 d->control |= cpu_to_le16(DESCRIPTOR_WAIT); 3348 d->req_count = cpu_to_le16(header_size); 3349 d->res_count = d->req_count; 3350 d->transfer_status = 0; 3351 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d))); 3352 3353 rest = payload_per_buffer; 3354 pd = d; 3355 for (j = 1; j < z; j++) { 3356 pd++; 3357 pd->control = cpu_to_le16(DESCRIPTOR_STATUS | 3358 DESCRIPTOR_INPUT_MORE); 3359 3360 if (offset + rest < PAGE_SIZE) 3361 length = rest; 3362 else 3363 length = PAGE_SIZE - offset; 3364 pd->req_count = cpu_to_le16(length); 3365 pd->res_count = pd->req_count; 3366 pd->transfer_status = 0; 3367 3368 page_bus = page_private(buffer->pages[page]); 3369 pd->data_address = cpu_to_le32(page_bus + offset); 3370 3371 dma_sync_single_range_for_device(device, page_bus, 3372 offset, length, 3373 DMA_FROM_DEVICE); 3374 3375 offset = (offset + length) & ~PAGE_MASK; 3376 rest -= length; 3377 if (offset == 0) 3378 page++; 3379 } 3380 pd->control = cpu_to_le16(DESCRIPTOR_STATUS | 3381 DESCRIPTOR_INPUT_LAST | 3382 DESCRIPTOR_BRANCH_ALWAYS); 3383 if (packet->interrupt && i == packet_count - 1) 3384 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS); 3385 3386 context_append(&ctx->context, d, z, header_z); 3387 } 3388 3389 return 0; 3390 } 3391 3392 static int queue_iso_buffer_fill(struct iso_context *ctx, 3393 struct fw_iso_packet *packet, 3394 struct fw_iso_buffer *buffer, 3395 unsigned long payload) 3396 { 3397 struct descriptor *d; 3398 dma_addr_t d_bus, page_bus; 3399 int page, offset, rest, z, i, length; 3400 3401 page = payload >> PAGE_SHIFT; 3402 offset = payload & ~PAGE_MASK; 3403 rest = packet->payload_length; 3404 3405 /* We need one descriptor for each page in the buffer. */ 3406 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE); 3407 3408 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count)) 3409 return -EFAULT; 3410 3411 for (i = 0; i < z; i++) { 3412 d = context_get_descriptors(&ctx->context, 1, &d_bus); 3413 if (d == NULL) 3414 return -ENOMEM; 3415 3416 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE | 3417 DESCRIPTOR_BRANCH_ALWAYS); 3418 if (packet->skip && i == 0) 3419 d->control |= cpu_to_le16(DESCRIPTOR_WAIT); 3420 if (packet->interrupt && i == z - 1) 3421 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS); 3422 3423 if (offset + rest < PAGE_SIZE) 3424 length = rest; 3425 else 3426 length = PAGE_SIZE - offset; 3427 d->req_count = cpu_to_le16(length); 3428 d->res_count = d->req_count; 3429 d->transfer_status = 0; 3430 3431 page_bus = page_private(buffer->pages[page]); 3432 d->data_address = cpu_to_le32(page_bus + offset); 3433 3434 dma_sync_single_range_for_device(ctx->context.ohci->card.device, 3435 page_bus, offset, length, 3436 DMA_FROM_DEVICE); 3437 3438 rest -= length; 3439 offset = 0; 3440 page++; 3441 3442 context_append(&ctx->context, d, 1, 0); 3443 } 3444 3445 return 0; 3446 } 3447 3448 static int ohci_queue_iso(struct fw_iso_context *base, 3449 struct fw_iso_packet *packet, 3450 struct fw_iso_buffer *buffer, 3451 unsigned long payload) 3452 { 3453 struct iso_context *ctx = container_of(base, struct iso_context, base); 3454 unsigned long flags; 3455 int ret = -ENOSYS; 3456 3457 spin_lock_irqsave(&ctx->context.ohci->lock, flags); 3458 switch (base->type) { 3459 case FW_ISO_CONTEXT_TRANSMIT: 3460 ret = queue_iso_transmit(ctx, packet, buffer, payload); 3461 break; 3462 case FW_ISO_CONTEXT_RECEIVE: 3463 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload); 3464 break; 3465 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3466 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload); 3467 break; 3468 } 3469 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags); 3470 3471 return ret; 3472 } 3473 3474 static void ohci_flush_queue_iso(struct fw_iso_context *base) 3475 { 3476 struct context *ctx = 3477 &container_of(base, struct iso_context, base)->context; 3478 3479 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); 3480 } 3481 3482 static int ohci_flush_iso_completions(struct fw_iso_context *base) 3483 { 3484 struct iso_context *ctx = container_of(base, struct iso_context, base); 3485 int ret = 0; 3486 3487 tasklet_disable(&ctx->context.tasklet); 3488 3489 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) { 3490 context_tasklet((unsigned long)&ctx->context); 3491 3492 switch (base->type) { 3493 case FW_ISO_CONTEXT_TRANSMIT: 3494 case FW_ISO_CONTEXT_RECEIVE: 3495 if (ctx->header_length != 0) 3496 flush_iso_completions(ctx); 3497 break; 3498 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: 3499 if (ctx->mc_completed != 0) 3500 flush_ir_buffer_fill(ctx); 3501 break; 3502 default: 3503 ret = -ENOSYS; 3504 } 3505 3506 clear_bit_unlock(0, &ctx->flushing_completions); 3507 smp_mb__after_clear_bit(); 3508 } 3509 3510 tasklet_enable(&ctx->context.tasklet); 3511 3512 return ret; 3513 } 3514 3515 static const struct fw_card_driver ohci_driver = { 3516 .enable = ohci_enable, 3517 .read_phy_reg = ohci_read_phy_reg, 3518 .update_phy_reg = ohci_update_phy_reg, 3519 .set_config_rom = ohci_set_config_rom, 3520 .send_request = ohci_send_request, 3521 .send_response = ohci_send_response, 3522 .cancel_packet = ohci_cancel_packet, 3523 .enable_phys_dma = ohci_enable_phys_dma, 3524 .read_csr = ohci_read_csr, 3525 .write_csr = ohci_write_csr, 3526 3527 .allocate_iso_context = ohci_allocate_iso_context, 3528 .free_iso_context = ohci_free_iso_context, 3529 .set_iso_channels = ohci_set_iso_channels, 3530 .queue_iso = ohci_queue_iso, 3531 .flush_queue_iso = ohci_flush_queue_iso, 3532 .flush_iso_completions = ohci_flush_iso_completions, 3533 .start_iso = ohci_start_iso, 3534 .stop_iso = ohci_stop_iso, 3535 }; 3536 3537 #ifdef CONFIG_PPC_PMAC 3538 static void pmac_ohci_on(struct pci_dev *dev) 3539 { 3540 if (machine_is(powermac)) { 3541 struct device_node *ofn = pci_device_to_OF_node(dev); 3542 3543 if (ofn) { 3544 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1); 3545 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1); 3546 } 3547 } 3548 } 3549 3550 static void pmac_ohci_off(struct pci_dev *dev) 3551 { 3552 if (machine_is(powermac)) { 3553 struct device_node *ofn = pci_device_to_OF_node(dev); 3554 3555 if (ofn) { 3556 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0); 3557 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0); 3558 } 3559 } 3560 } 3561 #else 3562 static inline void pmac_ohci_on(struct pci_dev *dev) {} 3563 static inline void pmac_ohci_off(struct pci_dev *dev) {} 3564 #endif /* CONFIG_PPC_PMAC */ 3565 3566 static int pci_probe(struct pci_dev *dev, 3567 const struct pci_device_id *ent) 3568 { 3569 struct fw_ohci *ohci; 3570 u32 bus_options, max_receive, link_speed, version; 3571 u64 guid; 3572 int i, err; 3573 size_t size; 3574 3575 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) { 3576 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n"); 3577 return -ENOSYS; 3578 } 3579 3580 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL); 3581 if (ohci == NULL) { 3582 err = -ENOMEM; 3583 goto fail; 3584 } 3585 3586 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev); 3587 3588 pmac_ohci_on(dev); 3589 3590 err = pci_enable_device(dev); 3591 if (err) { 3592 dev_err(&dev->dev, "failed to enable OHCI hardware\n"); 3593 goto fail_free; 3594 } 3595 3596 pci_set_master(dev); 3597 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0); 3598 pci_set_drvdata(dev, ohci); 3599 3600 spin_lock_init(&ohci->lock); 3601 mutex_init(&ohci->phy_reg_mutex); 3602 3603 INIT_WORK(&ohci->bus_reset_work, bus_reset_work); 3604 3605 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) || 3606 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) { 3607 ohci_err(ohci, "invalid MMIO resource\n"); 3608 err = -ENXIO; 3609 goto fail_disable; 3610 } 3611 3612 err = pci_request_region(dev, 0, ohci_driver_name); 3613 if (err) { 3614 ohci_err(ohci, "MMIO resource unavailable\n"); 3615 goto fail_disable; 3616 } 3617 3618 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE); 3619 if (ohci->registers == NULL) { 3620 ohci_err(ohci, "failed to remap registers\n"); 3621 err = -ENXIO; 3622 goto fail_iomem; 3623 } 3624 3625 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++) 3626 if ((ohci_quirks[i].vendor == dev->vendor) && 3627 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID || 3628 ohci_quirks[i].device == dev->device) && 3629 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID || 3630 ohci_quirks[i].revision >= dev->revision)) { 3631 ohci->quirks = ohci_quirks[i].flags; 3632 break; 3633 } 3634 if (param_quirks) 3635 ohci->quirks = param_quirks; 3636 3637 /* 3638 * Because dma_alloc_coherent() allocates at least one page, 3639 * we save space by using a common buffer for the AR request/ 3640 * response descriptors and the self IDs buffer. 3641 */ 3642 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4); 3643 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2); 3644 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device, 3645 PAGE_SIZE, 3646 &ohci->misc_buffer_bus, 3647 GFP_KERNEL); 3648 if (!ohci->misc_buffer) { 3649 err = -ENOMEM; 3650 goto fail_iounmap; 3651 } 3652 3653 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0, 3654 OHCI1394_AsReqRcvContextControlSet); 3655 if (err < 0) 3656 goto fail_misc_buf; 3657 3658 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4, 3659 OHCI1394_AsRspRcvContextControlSet); 3660 if (err < 0) 3661 goto fail_arreq_ctx; 3662 3663 err = context_init(&ohci->at_request_ctx, ohci, 3664 OHCI1394_AsReqTrContextControlSet, handle_at_packet); 3665 if (err < 0) 3666 goto fail_arrsp_ctx; 3667 3668 err = context_init(&ohci->at_response_ctx, ohci, 3669 OHCI1394_AsRspTrContextControlSet, handle_at_packet); 3670 if (err < 0) 3671 goto fail_atreq_ctx; 3672 3673 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0); 3674 ohci->ir_context_channels = ~0ULL; 3675 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet); 3676 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0); 3677 ohci->ir_context_mask = ohci->ir_context_support; 3678 ohci->n_ir = hweight32(ohci->ir_context_mask); 3679 size = sizeof(struct iso_context) * ohci->n_ir; 3680 ohci->ir_context_list = kzalloc(size, GFP_KERNEL); 3681 3682 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0); 3683 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet); 3684 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0); 3685 ohci->it_context_mask = ohci->it_context_support; 3686 ohci->n_it = hweight32(ohci->it_context_mask); 3687 size = sizeof(struct iso_context) * ohci->n_it; 3688 ohci->it_context_list = kzalloc(size, GFP_KERNEL); 3689 3690 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) { 3691 err = -ENOMEM; 3692 goto fail_contexts; 3693 } 3694 3695 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2; 3696 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2; 3697 3698 bus_options = reg_read(ohci, OHCI1394_BusOptions); 3699 max_receive = (bus_options >> 12) & 0xf; 3700 link_speed = bus_options & 0x7; 3701 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) | 3702 reg_read(ohci, OHCI1394_GUIDLo); 3703 3704 if (!(ohci->quirks & QUIRK_NO_MSI)) 3705 pci_enable_msi(dev); 3706 if (request_irq(dev->irq, irq_handler, 3707 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, 3708 ohci_driver_name, ohci)) { 3709 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq); 3710 err = -EIO; 3711 goto fail_msi; 3712 } 3713 3714 err = fw_card_add(&ohci->card, max_receive, link_speed, guid); 3715 if (err) 3716 goto fail_irq; 3717 3718 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff; 3719 ohci_notice(ohci, 3720 "added OHCI v%x.%x device as card %d, " 3721 "%d IR + %d IT contexts, quirks 0x%x\n", 3722 version >> 16, version & 0xff, ohci->card.index, 3723 ohci->n_ir, ohci->n_it, ohci->quirks); 3724 3725 return 0; 3726 3727 fail_irq: 3728 free_irq(dev->irq, ohci); 3729 fail_msi: 3730 pci_disable_msi(dev); 3731 fail_contexts: 3732 kfree(ohci->ir_context_list); 3733 kfree(ohci->it_context_list); 3734 context_release(&ohci->at_response_ctx); 3735 fail_atreq_ctx: 3736 context_release(&ohci->at_request_ctx); 3737 fail_arrsp_ctx: 3738 ar_context_release(&ohci->ar_response_ctx); 3739 fail_arreq_ctx: 3740 ar_context_release(&ohci->ar_request_ctx); 3741 fail_misc_buf: 3742 dma_free_coherent(ohci->card.device, PAGE_SIZE, 3743 ohci->misc_buffer, ohci->misc_buffer_bus); 3744 fail_iounmap: 3745 pci_iounmap(dev, ohci->registers); 3746 fail_iomem: 3747 pci_release_region(dev, 0); 3748 fail_disable: 3749 pci_disable_device(dev); 3750 fail_free: 3751 kfree(ohci); 3752 pmac_ohci_off(dev); 3753 fail: 3754 return err; 3755 } 3756 3757 static void pci_remove(struct pci_dev *dev) 3758 { 3759 struct fw_ohci *ohci = pci_get_drvdata(dev); 3760 3761 /* 3762 * If the removal is happening from the suspend state, LPS won't be 3763 * enabled and host registers (eg., IntMaskClear) won't be accessible. 3764 */ 3765 if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) { 3766 reg_write(ohci, OHCI1394_IntMaskClear, ~0); 3767 flush_writes(ohci); 3768 } 3769 cancel_work_sync(&ohci->bus_reset_work); 3770 fw_core_remove_card(&ohci->card); 3771 3772 /* 3773 * FIXME: Fail all pending packets here, now that the upper 3774 * layers can't queue any more. 3775 */ 3776 3777 software_reset(ohci); 3778 free_irq(dev->irq, ohci); 3779 3780 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom) 3781 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, 3782 ohci->next_config_rom, ohci->next_config_rom_bus); 3783 if (ohci->config_rom) 3784 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, 3785 ohci->config_rom, ohci->config_rom_bus); 3786 ar_context_release(&ohci->ar_request_ctx); 3787 ar_context_release(&ohci->ar_response_ctx); 3788 dma_free_coherent(ohci->card.device, PAGE_SIZE, 3789 ohci->misc_buffer, ohci->misc_buffer_bus); 3790 context_release(&ohci->at_request_ctx); 3791 context_release(&ohci->at_response_ctx); 3792 kfree(ohci->it_context_list); 3793 kfree(ohci->ir_context_list); 3794 pci_disable_msi(dev); 3795 pci_iounmap(dev, ohci->registers); 3796 pci_release_region(dev, 0); 3797 pci_disable_device(dev); 3798 kfree(ohci); 3799 pmac_ohci_off(dev); 3800 3801 dev_notice(&dev->dev, "removed fw-ohci device\n"); 3802 } 3803 3804 #ifdef CONFIG_PM 3805 static int pci_suspend(struct pci_dev *dev, pm_message_t state) 3806 { 3807 struct fw_ohci *ohci = pci_get_drvdata(dev); 3808 int err; 3809 3810 software_reset(ohci); 3811 err = pci_save_state(dev); 3812 if (err) { 3813 ohci_err(ohci, "pci_save_state failed\n"); 3814 return err; 3815 } 3816 err = pci_set_power_state(dev, pci_choose_state(dev, state)); 3817 if (err) 3818 ohci_err(ohci, "pci_set_power_state failed with %d\n", err); 3819 pmac_ohci_off(dev); 3820 3821 return 0; 3822 } 3823 3824 static int pci_resume(struct pci_dev *dev) 3825 { 3826 struct fw_ohci *ohci = pci_get_drvdata(dev); 3827 int err; 3828 3829 pmac_ohci_on(dev); 3830 pci_set_power_state(dev, PCI_D0); 3831 pci_restore_state(dev); 3832 err = pci_enable_device(dev); 3833 if (err) { 3834 ohci_err(ohci, "pci_enable_device failed\n"); 3835 return err; 3836 } 3837 3838 /* Some systems don't setup GUID register on resume from ram */ 3839 if (!reg_read(ohci, OHCI1394_GUIDLo) && 3840 !reg_read(ohci, OHCI1394_GUIDHi)) { 3841 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid); 3842 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32)); 3843 } 3844 3845 err = ohci_enable(&ohci->card, NULL, 0); 3846 if (err) 3847 return err; 3848 3849 ohci_resume_iso_dma(ohci); 3850 3851 return 0; 3852 } 3853 #endif 3854 3855 static const struct pci_device_id pci_table[] = { 3856 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) }, 3857 { } 3858 }; 3859 3860 MODULE_DEVICE_TABLE(pci, pci_table); 3861 3862 static struct pci_driver fw_ohci_pci_driver = { 3863 .name = ohci_driver_name, 3864 .id_table = pci_table, 3865 .probe = pci_probe, 3866 .remove = pci_remove, 3867 #ifdef CONFIG_PM 3868 .resume = pci_resume, 3869 .suspend = pci_suspend, 3870 #endif 3871 }; 3872 3873 module_pci_driver(fw_ohci_pci_driver); 3874 3875 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 3876 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers"); 3877 MODULE_LICENSE("GPL"); 3878 3879 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 3880 MODULE_ALIAS("ohci1394"); 3881