xref: /openbmc/linux/drivers/firewire/ohci.c (revision 7dd65feb)
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40 
41 #include <asm/atomic.h>
42 #include <asm/byteorder.h>
43 #include <asm/page.h>
44 #include <asm/system.h>
45 
46 #ifdef CONFIG_PPC_PMAC
47 #include <asm/pmac_feature.h>
48 #endif
49 
50 #include "core.h"
51 #include "ohci.h"
52 
53 #define DESCRIPTOR_OUTPUT_MORE		0
54 #define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
55 #define DESCRIPTOR_INPUT_MORE		(2 << 12)
56 #define DESCRIPTOR_INPUT_LAST		(3 << 12)
57 #define DESCRIPTOR_STATUS		(1 << 11)
58 #define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
59 #define DESCRIPTOR_PING			(1 << 7)
60 #define DESCRIPTOR_YY			(1 << 6)
61 #define DESCRIPTOR_NO_IRQ		(0 << 4)
62 #define DESCRIPTOR_IRQ_ERROR		(1 << 4)
63 #define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
64 #define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
65 #define DESCRIPTOR_WAIT			(3 << 0)
66 
67 struct descriptor {
68 	__le16 req_count;
69 	__le16 control;
70 	__le32 data_address;
71 	__le32 branch_address;
72 	__le16 res_count;
73 	__le16 transfer_status;
74 } __attribute__((aligned(16)));
75 
76 struct db_descriptor {
77 	__le16 first_size;
78 	__le16 control;
79 	__le16 second_req_count;
80 	__le16 first_req_count;
81 	__le32 branch_address;
82 	__le16 second_res_count;
83 	__le16 first_res_count;
84 	__le32 reserved0;
85 	__le32 first_buffer;
86 	__le32 second_buffer;
87 	__le32 reserved1;
88 } __attribute__((aligned(16)));
89 
90 #define CONTROL_SET(regs)	(regs)
91 #define CONTROL_CLEAR(regs)	((regs) + 4)
92 #define COMMAND_PTR(regs)	((regs) + 12)
93 #define CONTEXT_MATCH(regs)	((regs) + 16)
94 
95 struct ar_buffer {
96 	struct descriptor descriptor;
97 	struct ar_buffer *next;
98 	__le32 data[0];
99 };
100 
101 struct ar_context {
102 	struct fw_ohci *ohci;
103 	struct ar_buffer *current_buffer;
104 	struct ar_buffer *last_buffer;
105 	void *pointer;
106 	u32 regs;
107 	struct tasklet_struct tasklet;
108 };
109 
110 struct context;
111 
112 typedef int (*descriptor_callback_t)(struct context *ctx,
113 				     struct descriptor *d,
114 				     struct descriptor *last);
115 
116 /*
117  * A buffer that contains a block of DMA-able coherent memory used for
118  * storing a portion of a DMA descriptor program.
119  */
120 struct descriptor_buffer {
121 	struct list_head list;
122 	dma_addr_t buffer_bus;
123 	size_t buffer_size;
124 	size_t used;
125 	struct descriptor buffer[0];
126 };
127 
128 struct context {
129 	struct fw_ohci *ohci;
130 	u32 regs;
131 	int total_allocation;
132 
133 	/*
134 	 * List of page-sized buffers for storing DMA descriptors.
135 	 * Head of list contains buffers in use and tail of list contains
136 	 * free buffers.
137 	 */
138 	struct list_head buffer_list;
139 
140 	/*
141 	 * Pointer to a buffer inside buffer_list that contains the tail
142 	 * end of the current DMA program.
143 	 */
144 	struct descriptor_buffer *buffer_tail;
145 
146 	/*
147 	 * The descriptor containing the branch address of the first
148 	 * descriptor that has not yet been filled by the device.
149 	 */
150 	struct descriptor *last;
151 
152 	/*
153 	 * The last descriptor in the DMA program.  It contains the branch
154 	 * address that must be updated upon appending a new descriptor.
155 	 */
156 	struct descriptor *prev;
157 
158 	descriptor_callback_t callback;
159 
160 	struct tasklet_struct tasklet;
161 };
162 
163 #define IT_HEADER_SY(v)          ((v) <<  0)
164 #define IT_HEADER_TCODE(v)       ((v) <<  4)
165 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
166 #define IT_HEADER_TAG(v)         ((v) << 14)
167 #define IT_HEADER_SPEED(v)       ((v) << 16)
168 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
169 
170 struct iso_context {
171 	struct fw_iso_context base;
172 	struct context context;
173 	int excess_bytes;
174 	void *header;
175 	size_t header_length;
176 };
177 
178 #define CONFIG_ROM_SIZE 1024
179 
180 struct fw_ohci {
181 	struct fw_card card;
182 
183 	__iomem char *registers;
184 	dma_addr_t self_id_bus;
185 	__le32 *self_id_cpu;
186 	struct tasklet_struct bus_reset_tasklet;
187 	int node_id;
188 	int generation;
189 	int request_generation;	/* for timestamping incoming requests */
190 	atomic_t bus_seconds;
191 
192 	bool use_dualbuffer;
193 	bool old_uninorth;
194 	bool bus_reset_packet_quirk;
195 
196 	/*
197 	 * Spinlock for accessing fw_ohci data.  Never call out of
198 	 * this driver with this lock held.
199 	 */
200 	spinlock_t lock;
201 	u32 self_id_buffer[512];
202 
203 	/* Config rom buffers */
204 	__be32 *config_rom;
205 	dma_addr_t config_rom_bus;
206 	__be32 *next_config_rom;
207 	dma_addr_t next_config_rom_bus;
208 	__be32 next_header;
209 
210 	struct ar_context ar_request_ctx;
211 	struct ar_context ar_response_ctx;
212 	struct context at_request_ctx;
213 	struct context at_response_ctx;
214 
215 	u32 it_context_mask;
216 	struct iso_context *it_context_list;
217 	u64 ir_context_channels;
218 	u32 ir_context_mask;
219 	struct iso_context *ir_context_list;
220 };
221 
222 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
223 {
224 	return container_of(card, struct fw_ohci, card);
225 }
226 
227 #define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
228 #define IR_CONTEXT_BUFFER_FILL		0x80000000
229 #define IR_CONTEXT_ISOCH_HEADER		0x40000000
230 #define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
231 #define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
232 #define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
233 
234 #define CONTEXT_RUN	0x8000
235 #define CONTEXT_WAKE	0x1000
236 #define CONTEXT_DEAD	0x0800
237 #define CONTEXT_ACTIVE	0x0400
238 
239 #define OHCI1394_MAX_AT_REQ_RETRIES	0xf
240 #define OHCI1394_MAX_AT_RESP_RETRIES	0x2
241 #define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
242 
243 #define OHCI1394_REGISTER_SIZE		0x800
244 #define OHCI_LOOP_COUNT			500
245 #define OHCI1394_PCI_HCI_Control	0x40
246 #define SELF_ID_BUF_SIZE		0x800
247 #define OHCI_TCODE_PHY_PACKET		0x0e
248 #define OHCI_VERSION_1_1		0x010010
249 
250 static char ohci_driver_name[] = KBUILD_MODNAME;
251 
252 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
253 
254 #define OHCI_PARAM_DEBUG_AT_AR		1
255 #define OHCI_PARAM_DEBUG_SELFIDS	2
256 #define OHCI_PARAM_DEBUG_IRQS		4
257 #define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
258 
259 static int param_debug;
260 module_param_named(debug, param_debug, int, 0644);
261 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
262 	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
263 	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
264 	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
265 	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
266 	", or a combination, or all = -1)");
267 
268 static void log_irqs(u32 evt)
269 {
270 	if (likely(!(param_debug &
271 			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
272 		return;
273 
274 	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
275 	    !(evt & OHCI1394_busReset))
276 		return;
277 
278 	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
279 	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
280 	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
281 	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
282 	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
283 	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
284 	    evt & OHCI1394_isochRx		? " IR"			: "",
285 	    evt & OHCI1394_isochTx		? " IT"			: "",
286 	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
287 	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
288 	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
289 	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
290 	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
291 	    evt & OHCI1394_busReset		? " busReset"		: "",
292 	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
293 		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
294 		    OHCI1394_respTxComplete | OHCI1394_isochRx |
295 		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
296 		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
297 		    OHCI1394_cycleInconsistent |
298 		    OHCI1394_regAccessFail | OHCI1394_busReset)
299 						? " ?"			: "");
300 }
301 
302 static const char *speed[] = {
303 	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
304 };
305 static const char *power[] = {
306 	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
307 	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
308 };
309 static const char port[] = { '.', '-', 'p', 'c', };
310 
311 static char _p(u32 *s, int shift)
312 {
313 	return port[*s >> shift & 3];
314 }
315 
316 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
317 {
318 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
319 		return;
320 
321 	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
322 		  self_id_count, generation, node_id);
323 
324 	for (; self_id_count--; ++s)
325 		if ((*s & 1 << 23) == 0)
326 			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
327 			    "%s gc=%d %s %s%s%s\n",
328 			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
329 			    speed[*s >> 14 & 3], *s >> 16 & 63,
330 			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
331 			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
332 		else
333 			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
334 			    *s, *s >> 24 & 63,
335 			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
336 			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
337 }
338 
339 static const char *evts[] = {
340 	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
341 	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
342 	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
343 	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
344 	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
345 	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
346 	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
347 	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
348 	[0x10] = "-reserved-",		[0x11] = "ack_complete",
349 	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
350 	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
351 	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
352 	[0x18] = "-reserved-",		[0x19] = "-reserved-",
353 	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
354 	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
355 	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
356 	[0x20] = "pending/cancelled",
357 };
358 static const char *tcodes[] = {
359 	[0x0] = "QW req",		[0x1] = "BW req",
360 	[0x2] = "W resp",		[0x3] = "-reserved-",
361 	[0x4] = "QR req",		[0x5] = "BR req",
362 	[0x6] = "QR resp",		[0x7] = "BR resp",
363 	[0x8] = "cycle start",		[0x9] = "Lk req",
364 	[0xa] = "async stream packet",	[0xb] = "Lk resp",
365 	[0xc] = "-reserved-",		[0xd] = "-reserved-",
366 	[0xe] = "link internal",	[0xf] = "-reserved-",
367 };
368 static const char *phys[] = {
369 	[0x0] = "phy config packet",	[0x1] = "link-on packet",
370 	[0x2] = "self-id packet",	[0x3] = "-reserved-",
371 };
372 
373 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
374 {
375 	int tcode = header[0] >> 4 & 0xf;
376 	char specific[12];
377 
378 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
379 		return;
380 
381 	if (unlikely(evt >= ARRAY_SIZE(evts)))
382 			evt = 0x1f;
383 
384 	if (evt == OHCI1394_evt_bus_reset) {
385 		fw_notify("A%c evt_bus_reset, generation %d\n",
386 		    dir, (header[2] >> 16) & 0xff);
387 		return;
388 	}
389 
390 	if (header[0] == ~header[1]) {
391 		fw_notify("A%c %s, %s, %08x\n",
392 		    dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
393 		return;
394 	}
395 
396 	switch (tcode) {
397 	case 0x0: case 0x6: case 0x8:
398 		snprintf(specific, sizeof(specific), " = %08x",
399 			 be32_to_cpu((__force __be32)header[3]));
400 		break;
401 	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
402 		snprintf(specific, sizeof(specific), " %x,%x",
403 			 header[3] >> 16, header[3] & 0xffff);
404 		break;
405 	default:
406 		specific[0] = '\0';
407 	}
408 
409 	switch (tcode) {
410 	case 0xe: case 0xa:
411 		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
412 		break;
413 	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
414 		fw_notify("A%c spd %x tl %02x, "
415 		    "%04x -> %04x, %s, "
416 		    "%s, %04x%08x%s\n",
417 		    dir, speed, header[0] >> 10 & 0x3f,
418 		    header[1] >> 16, header[0] >> 16, evts[evt],
419 		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
420 		break;
421 	default:
422 		fw_notify("A%c spd %x tl %02x, "
423 		    "%04x -> %04x, %s, "
424 		    "%s%s\n",
425 		    dir, speed, header[0] >> 10 & 0x3f,
426 		    header[1] >> 16, header[0] >> 16, evts[evt],
427 		    tcodes[tcode], specific);
428 	}
429 }
430 
431 #else
432 
433 #define log_irqs(evt)
434 #define log_selfids(node_id, generation, self_id_count, sid)
435 #define log_ar_at_event(dir, speed, header, evt)
436 
437 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
438 
439 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
440 {
441 	writel(data, ohci->registers + offset);
442 }
443 
444 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
445 {
446 	return readl(ohci->registers + offset);
447 }
448 
449 static inline void flush_writes(const struct fw_ohci *ohci)
450 {
451 	/* Do a dummy read to flush writes. */
452 	reg_read(ohci, OHCI1394_Version);
453 }
454 
455 static int ohci_update_phy_reg(struct fw_card *card, int addr,
456 			       int clear_bits, int set_bits)
457 {
458 	struct fw_ohci *ohci = fw_ohci(card);
459 	u32 val, old;
460 
461 	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
462 	flush_writes(ohci);
463 	msleep(2);
464 	val = reg_read(ohci, OHCI1394_PhyControl);
465 	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
466 		fw_error("failed to set phy reg bits.\n");
467 		return -EBUSY;
468 	}
469 
470 	old = OHCI1394_PhyControl_ReadData(val);
471 	old = (old & ~clear_bits) | set_bits;
472 	reg_write(ohci, OHCI1394_PhyControl,
473 		  OHCI1394_PhyControl_Write(addr, old));
474 
475 	return 0;
476 }
477 
478 static int ar_context_add_page(struct ar_context *ctx)
479 {
480 	struct device *dev = ctx->ohci->card.device;
481 	struct ar_buffer *ab;
482 	dma_addr_t uninitialized_var(ab_bus);
483 	size_t offset;
484 
485 	ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
486 	if (ab == NULL)
487 		return -ENOMEM;
488 
489 	ab->next = NULL;
490 	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
491 	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
492 						    DESCRIPTOR_STATUS |
493 						    DESCRIPTOR_BRANCH_ALWAYS);
494 	offset = offsetof(struct ar_buffer, data);
495 	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
496 	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
497 	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
498 	ab->descriptor.branch_address = 0;
499 
500 	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
501 	ctx->last_buffer->next = ab;
502 	ctx->last_buffer = ab;
503 
504 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
505 	flush_writes(ctx->ohci);
506 
507 	return 0;
508 }
509 
510 static void ar_context_release(struct ar_context *ctx)
511 {
512 	struct ar_buffer *ab, *ab_next;
513 	size_t offset;
514 	dma_addr_t ab_bus;
515 
516 	for (ab = ctx->current_buffer; ab; ab = ab_next) {
517 		ab_next = ab->next;
518 		offset = offsetof(struct ar_buffer, data);
519 		ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
520 		dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
521 				  ab, ab_bus);
522 	}
523 }
524 
525 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
526 #define cond_le32_to_cpu(v) \
527 	(ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
528 #else
529 #define cond_le32_to_cpu(v) le32_to_cpu(v)
530 #endif
531 
532 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
533 {
534 	struct fw_ohci *ohci = ctx->ohci;
535 	struct fw_packet p;
536 	u32 status, length, tcode;
537 	int evt;
538 
539 	p.header[0] = cond_le32_to_cpu(buffer[0]);
540 	p.header[1] = cond_le32_to_cpu(buffer[1]);
541 	p.header[2] = cond_le32_to_cpu(buffer[2]);
542 
543 	tcode = (p.header[0] >> 4) & 0x0f;
544 	switch (tcode) {
545 	case TCODE_WRITE_QUADLET_REQUEST:
546 	case TCODE_READ_QUADLET_RESPONSE:
547 		p.header[3] = (__force __u32) buffer[3];
548 		p.header_length = 16;
549 		p.payload_length = 0;
550 		break;
551 
552 	case TCODE_READ_BLOCK_REQUEST :
553 		p.header[3] = cond_le32_to_cpu(buffer[3]);
554 		p.header_length = 16;
555 		p.payload_length = 0;
556 		break;
557 
558 	case TCODE_WRITE_BLOCK_REQUEST:
559 	case TCODE_READ_BLOCK_RESPONSE:
560 	case TCODE_LOCK_REQUEST:
561 	case TCODE_LOCK_RESPONSE:
562 		p.header[3] = cond_le32_to_cpu(buffer[3]);
563 		p.header_length = 16;
564 		p.payload_length = p.header[3] >> 16;
565 		break;
566 
567 	case TCODE_WRITE_RESPONSE:
568 	case TCODE_READ_QUADLET_REQUEST:
569 	case OHCI_TCODE_PHY_PACKET:
570 		p.header_length = 12;
571 		p.payload_length = 0;
572 		break;
573 
574 	default:
575 		/* FIXME: Stop context, discard everything, and restart? */
576 		p.header_length = 0;
577 		p.payload_length = 0;
578 	}
579 
580 	p.payload = (void *) buffer + p.header_length;
581 
582 	/* FIXME: What to do about evt_* errors? */
583 	length = (p.header_length + p.payload_length + 3) / 4;
584 	status = cond_le32_to_cpu(buffer[length]);
585 	evt    = (status >> 16) & 0x1f;
586 
587 	p.ack        = evt - 16;
588 	p.speed      = (status >> 21) & 0x7;
589 	p.timestamp  = status & 0xffff;
590 	p.generation = ohci->request_generation;
591 
592 	log_ar_at_event('R', p.speed, p.header, evt);
593 
594 	/*
595 	 * The OHCI bus reset handler synthesizes a phy packet with
596 	 * the new generation number when a bus reset happens (see
597 	 * section 8.4.2.3).  This helps us determine when a request
598 	 * was received and make sure we send the response in the same
599 	 * generation.  We only need this for requests; for responses
600 	 * we use the unique tlabel for finding the matching
601 	 * request.
602 	 *
603 	 * Alas some chips sometimes emit bus reset packets with a
604 	 * wrong generation.  We set the correct generation for these
605 	 * at a slightly incorrect time (in bus_reset_tasklet).
606 	 */
607 	if (evt == OHCI1394_evt_bus_reset) {
608 		if (!ohci->bus_reset_packet_quirk)
609 			ohci->request_generation = (p.header[2] >> 16) & 0xff;
610 	} else if (ctx == &ohci->ar_request_ctx) {
611 		fw_core_handle_request(&ohci->card, &p);
612 	} else {
613 		fw_core_handle_response(&ohci->card, &p);
614 	}
615 
616 	return buffer + length + 1;
617 }
618 
619 static void ar_context_tasklet(unsigned long data)
620 {
621 	struct ar_context *ctx = (struct ar_context *)data;
622 	struct fw_ohci *ohci = ctx->ohci;
623 	struct ar_buffer *ab;
624 	struct descriptor *d;
625 	void *buffer, *end;
626 
627 	ab = ctx->current_buffer;
628 	d = &ab->descriptor;
629 
630 	if (d->res_count == 0) {
631 		size_t size, rest, offset;
632 		dma_addr_t start_bus;
633 		void *start;
634 
635 		/*
636 		 * This descriptor is finished and we may have a
637 		 * packet split across this and the next buffer. We
638 		 * reuse the page for reassembling the split packet.
639 		 */
640 
641 		offset = offsetof(struct ar_buffer, data);
642 		start = buffer = ab;
643 		start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
644 
645 		ab = ab->next;
646 		d = &ab->descriptor;
647 		size = buffer + PAGE_SIZE - ctx->pointer;
648 		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
649 		memmove(buffer, ctx->pointer, size);
650 		memcpy(buffer + size, ab->data, rest);
651 		ctx->current_buffer = ab;
652 		ctx->pointer = (void *) ab->data + rest;
653 		end = buffer + size + rest;
654 
655 		while (buffer < end)
656 			buffer = handle_ar_packet(ctx, buffer);
657 
658 		dma_free_coherent(ohci->card.device, PAGE_SIZE,
659 				  start, start_bus);
660 		ar_context_add_page(ctx);
661 	} else {
662 		buffer = ctx->pointer;
663 		ctx->pointer = end =
664 			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
665 
666 		while (buffer < end)
667 			buffer = handle_ar_packet(ctx, buffer);
668 	}
669 }
670 
671 static int ar_context_init(struct ar_context *ctx,
672 			   struct fw_ohci *ohci, u32 regs)
673 {
674 	struct ar_buffer ab;
675 
676 	ctx->regs        = regs;
677 	ctx->ohci        = ohci;
678 	ctx->last_buffer = &ab;
679 	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
680 
681 	ar_context_add_page(ctx);
682 	ar_context_add_page(ctx);
683 	ctx->current_buffer = ab.next;
684 	ctx->pointer = ctx->current_buffer->data;
685 
686 	return 0;
687 }
688 
689 static void ar_context_run(struct ar_context *ctx)
690 {
691 	struct ar_buffer *ab = ctx->current_buffer;
692 	dma_addr_t ab_bus;
693 	size_t offset;
694 
695 	offset = offsetof(struct ar_buffer, data);
696 	ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
697 
698 	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
699 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
700 	flush_writes(ctx->ohci);
701 }
702 
703 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
704 {
705 	int b, key;
706 
707 	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
708 	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
709 
710 	/* figure out which descriptor the branch address goes in */
711 	if (z == 2 && (b == 3 || key == 2))
712 		return d;
713 	else
714 		return d + z - 1;
715 }
716 
717 static void context_tasklet(unsigned long data)
718 {
719 	struct context *ctx = (struct context *) data;
720 	struct descriptor *d, *last;
721 	u32 address;
722 	int z;
723 	struct descriptor_buffer *desc;
724 
725 	desc = list_entry(ctx->buffer_list.next,
726 			struct descriptor_buffer, list);
727 	last = ctx->last;
728 	while (last->branch_address != 0) {
729 		struct descriptor_buffer *old_desc = desc;
730 		address = le32_to_cpu(last->branch_address);
731 		z = address & 0xf;
732 		address &= ~0xf;
733 
734 		/* If the branch address points to a buffer outside of the
735 		 * current buffer, advance to the next buffer. */
736 		if (address < desc->buffer_bus ||
737 				address >= desc->buffer_bus + desc->used)
738 			desc = list_entry(desc->list.next,
739 					struct descriptor_buffer, list);
740 		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
741 		last = find_branch_descriptor(d, z);
742 
743 		if (!ctx->callback(ctx, d, last))
744 			break;
745 
746 		if (old_desc != desc) {
747 			/* If we've advanced to the next buffer, move the
748 			 * previous buffer to the free list. */
749 			unsigned long flags;
750 			old_desc->used = 0;
751 			spin_lock_irqsave(&ctx->ohci->lock, flags);
752 			list_move_tail(&old_desc->list, &ctx->buffer_list);
753 			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
754 		}
755 		ctx->last = last;
756 	}
757 }
758 
759 /*
760  * Allocate a new buffer and add it to the list of free buffers for this
761  * context.  Must be called with ohci->lock held.
762  */
763 static int context_add_buffer(struct context *ctx)
764 {
765 	struct descriptor_buffer *desc;
766 	dma_addr_t uninitialized_var(bus_addr);
767 	int offset;
768 
769 	/*
770 	 * 16MB of descriptors should be far more than enough for any DMA
771 	 * program.  This will catch run-away userspace or DoS attacks.
772 	 */
773 	if (ctx->total_allocation >= 16*1024*1024)
774 		return -ENOMEM;
775 
776 	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
777 			&bus_addr, GFP_ATOMIC);
778 	if (!desc)
779 		return -ENOMEM;
780 
781 	offset = (void *)&desc->buffer - (void *)desc;
782 	desc->buffer_size = PAGE_SIZE - offset;
783 	desc->buffer_bus = bus_addr + offset;
784 	desc->used = 0;
785 
786 	list_add_tail(&desc->list, &ctx->buffer_list);
787 	ctx->total_allocation += PAGE_SIZE;
788 
789 	return 0;
790 }
791 
792 static int context_init(struct context *ctx, struct fw_ohci *ohci,
793 			u32 regs, descriptor_callback_t callback)
794 {
795 	ctx->ohci = ohci;
796 	ctx->regs = regs;
797 	ctx->total_allocation = 0;
798 
799 	INIT_LIST_HEAD(&ctx->buffer_list);
800 	if (context_add_buffer(ctx) < 0)
801 		return -ENOMEM;
802 
803 	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
804 			struct descriptor_buffer, list);
805 
806 	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
807 	ctx->callback = callback;
808 
809 	/*
810 	 * We put a dummy descriptor in the buffer that has a NULL
811 	 * branch address and looks like it's been sent.  That way we
812 	 * have a descriptor to append DMA programs to.
813 	 */
814 	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
815 	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
816 	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
817 	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
818 	ctx->last = ctx->buffer_tail->buffer;
819 	ctx->prev = ctx->buffer_tail->buffer;
820 
821 	return 0;
822 }
823 
824 static void context_release(struct context *ctx)
825 {
826 	struct fw_card *card = &ctx->ohci->card;
827 	struct descriptor_buffer *desc, *tmp;
828 
829 	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
830 		dma_free_coherent(card->device, PAGE_SIZE, desc,
831 			desc->buffer_bus -
832 			((void *)&desc->buffer - (void *)desc));
833 }
834 
835 /* Must be called with ohci->lock held */
836 static struct descriptor *context_get_descriptors(struct context *ctx,
837 						  int z, dma_addr_t *d_bus)
838 {
839 	struct descriptor *d = NULL;
840 	struct descriptor_buffer *desc = ctx->buffer_tail;
841 
842 	if (z * sizeof(*d) > desc->buffer_size)
843 		return NULL;
844 
845 	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
846 		/* No room for the descriptor in this buffer, so advance to the
847 		 * next one. */
848 
849 		if (desc->list.next == &ctx->buffer_list) {
850 			/* If there is no free buffer next in the list,
851 			 * allocate one. */
852 			if (context_add_buffer(ctx) < 0)
853 				return NULL;
854 		}
855 		desc = list_entry(desc->list.next,
856 				struct descriptor_buffer, list);
857 		ctx->buffer_tail = desc;
858 	}
859 
860 	d = desc->buffer + desc->used / sizeof(*d);
861 	memset(d, 0, z * sizeof(*d));
862 	*d_bus = desc->buffer_bus + desc->used;
863 
864 	return d;
865 }
866 
867 static void context_run(struct context *ctx, u32 extra)
868 {
869 	struct fw_ohci *ohci = ctx->ohci;
870 
871 	reg_write(ohci, COMMAND_PTR(ctx->regs),
872 		  le32_to_cpu(ctx->last->branch_address));
873 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
874 	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
875 	flush_writes(ohci);
876 }
877 
878 static void context_append(struct context *ctx,
879 			   struct descriptor *d, int z, int extra)
880 {
881 	dma_addr_t d_bus;
882 	struct descriptor_buffer *desc = ctx->buffer_tail;
883 
884 	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
885 
886 	desc->used += (z + extra) * sizeof(*d);
887 	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
888 	ctx->prev = find_branch_descriptor(d, z);
889 
890 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
891 	flush_writes(ctx->ohci);
892 }
893 
894 static void context_stop(struct context *ctx)
895 {
896 	u32 reg;
897 	int i;
898 
899 	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
900 	flush_writes(ctx->ohci);
901 
902 	for (i = 0; i < 10; i++) {
903 		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
904 		if ((reg & CONTEXT_ACTIVE) == 0)
905 			return;
906 
907 		mdelay(1);
908 	}
909 	fw_error("Error: DMA context still active (0x%08x)\n", reg);
910 }
911 
912 struct driver_data {
913 	struct fw_packet *packet;
914 };
915 
916 /*
917  * This function apppends a packet to the DMA queue for transmission.
918  * Must always be called with the ochi->lock held to ensure proper
919  * generation handling and locking around packet queue manipulation.
920  */
921 static int at_context_queue_packet(struct context *ctx,
922 				   struct fw_packet *packet)
923 {
924 	struct fw_ohci *ohci = ctx->ohci;
925 	dma_addr_t d_bus, uninitialized_var(payload_bus);
926 	struct driver_data *driver_data;
927 	struct descriptor *d, *last;
928 	__le32 *header;
929 	int z, tcode;
930 	u32 reg;
931 
932 	d = context_get_descriptors(ctx, 4, &d_bus);
933 	if (d == NULL) {
934 		packet->ack = RCODE_SEND_ERROR;
935 		return -1;
936 	}
937 
938 	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
939 	d[0].res_count = cpu_to_le16(packet->timestamp);
940 
941 	/*
942 	 * The DMA format for asyncronous link packets is different
943 	 * from the IEEE1394 layout, so shift the fields around
944 	 * accordingly.  If header_length is 8, it's a PHY packet, to
945 	 * which we need to prepend an extra quadlet.
946 	 */
947 
948 	header = (__le32 *) &d[1];
949 	switch (packet->header_length) {
950 	case 16:
951 	case 12:
952 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
953 					(packet->speed << 16));
954 		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
955 					(packet->header[0] & 0xffff0000));
956 		header[2] = cpu_to_le32(packet->header[2]);
957 
958 		tcode = (packet->header[0] >> 4) & 0x0f;
959 		if (TCODE_IS_BLOCK_PACKET(tcode))
960 			header[3] = cpu_to_le32(packet->header[3]);
961 		else
962 			header[3] = (__force __le32) packet->header[3];
963 
964 		d[0].req_count = cpu_to_le16(packet->header_length);
965 		break;
966 
967 	case 8:
968 		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
969 					(packet->speed << 16));
970 		header[1] = cpu_to_le32(packet->header[0]);
971 		header[2] = cpu_to_le32(packet->header[1]);
972 		d[0].req_count = cpu_to_le16(12);
973 		break;
974 
975 	case 4:
976 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
977 					(packet->speed << 16));
978 		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
979 		d[0].req_count = cpu_to_le16(8);
980 		break;
981 
982 	default:
983 		/* BUG(); */
984 		packet->ack = RCODE_SEND_ERROR;
985 		return -1;
986 	}
987 
988 	driver_data = (struct driver_data *) &d[3];
989 	driver_data->packet = packet;
990 	packet->driver_data = driver_data;
991 
992 	if (packet->payload_length > 0) {
993 		payload_bus =
994 			dma_map_single(ohci->card.device, packet->payload,
995 				       packet->payload_length, DMA_TO_DEVICE);
996 		if (dma_mapping_error(ohci->card.device, payload_bus)) {
997 			packet->ack = RCODE_SEND_ERROR;
998 			return -1;
999 		}
1000 		packet->payload_bus	= payload_bus;
1001 		packet->payload_mapped	= true;
1002 
1003 		d[2].req_count    = cpu_to_le16(packet->payload_length);
1004 		d[2].data_address = cpu_to_le32(payload_bus);
1005 		last = &d[2];
1006 		z = 3;
1007 	} else {
1008 		last = &d[0];
1009 		z = 2;
1010 	}
1011 
1012 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1013 				     DESCRIPTOR_IRQ_ALWAYS |
1014 				     DESCRIPTOR_BRANCH_ALWAYS);
1015 
1016 	/*
1017 	 * If the controller and packet generations don't match, we need to
1018 	 * bail out and try again.  If IntEvent.busReset is set, the AT context
1019 	 * is halted, so appending to the context and trying to run it is
1020 	 * futile.  Most controllers do the right thing and just flush the AT
1021 	 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1022 	 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1023 	 * up stalling out.  So we just bail out in software and try again
1024 	 * later, and everyone is happy.
1025 	 * FIXME: Document how the locking works.
1026 	 */
1027 	if (ohci->generation != packet->generation ||
1028 	    reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1029 		if (packet->payload_mapped)
1030 			dma_unmap_single(ohci->card.device, payload_bus,
1031 					 packet->payload_length, DMA_TO_DEVICE);
1032 		packet->ack = RCODE_GENERATION;
1033 		return -1;
1034 	}
1035 
1036 	context_append(ctx, d, z, 4 - z);
1037 
1038 	/* If the context isn't already running, start it up. */
1039 	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1040 	if ((reg & CONTEXT_RUN) == 0)
1041 		context_run(ctx, 0);
1042 
1043 	return 0;
1044 }
1045 
1046 static int handle_at_packet(struct context *context,
1047 			    struct descriptor *d,
1048 			    struct descriptor *last)
1049 {
1050 	struct driver_data *driver_data;
1051 	struct fw_packet *packet;
1052 	struct fw_ohci *ohci = context->ohci;
1053 	int evt;
1054 
1055 	if (last->transfer_status == 0)
1056 		/* This descriptor isn't done yet, stop iteration. */
1057 		return 0;
1058 
1059 	driver_data = (struct driver_data *) &d[3];
1060 	packet = driver_data->packet;
1061 	if (packet == NULL)
1062 		/* This packet was cancelled, just continue. */
1063 		return 1;
1064 
1065 	if (packet->payload_mapped)
1066 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1067 				 packet->payload_length, DMA_TO_DEVICE);
1068 
1069 	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1070 	packet->timestamp = le16_to_cpu(last->res_count);
1071 
1072 	log_ar_at_event('T', packet->speed, packet->header, evt);
1073 
1074 	switch (evt) {
1075 	case OHCI1394_evt_timeout:
1076 		/* Async response transmit timed out. */
1077 		packet->ack = RCODE_CANCELLED;
1078 		break;
1079 
1080 	case OHCI1394_evt_flushed:
1081 		/*
1082 		 * The packet was flushed should give same error as
1083 		 * when we try to use a stale generation count.
1084 		 */
1085 		packet->ack = RCODE_GENERATION;
1086 		break;
1087 
1088 	case OHCI1394_evt_missing_ack:
1089 		/*
1090 		 * Using a valid (current) generation count, but the
1091 		 * node is not on the bus or not sending acks.
1092 		 */
1093 		packet->ack = RCODE_NO_ACK;
1094 		break;
1095 
1096 	case ACK_COMPLETE + 0x10:
1097 	case ACK_PENDING + 0x10:
1098 	case ACK_BUSY_X + 0x10:
1099 	case ACK_BUSY_A + 0x10:
1100 	case ACK_BUSY_B + 0x10:
1101 	case ACK_DATA_ERROR + 0x10:
1102 	case ACK_TYPE_ERROR + 0x10:
1103 		packet->ack = evt - 0x10;
1104 		break;
1105 
1106 	default:
1107 		packet->ack = RCODE_SEND_ERROR;
1108 		break;
1109 	}
1110 
1111 	packet->callback(packet, &ohci->card, packet->ack);
1112 
1113 	return 1;
1114 }
1115 
1116 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1117 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1118 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1119 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1120 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1121 
1122 static void handle_local_rom(struct fw_ohci *ohci,
1123 			     struct fw_packet *packet, u32 csr)
1124 {
1125 	struct fw_packet response;
1126 	int tcode, length, i;
1127 
1128 	tcode = HEADER_GET_TCODE(packet->header[0]);
1129 	if (TCODE_IS_BLOCK_PACKET(tcode))
1130 		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1131 	else
1132 		length = 4;
1133 
1134 	i = csr - CSR_CONFIG_ROM;
1135 	if (i + length > CONFIG_ROM_SIZE) {
1136 		fw_fill_response(&response, packet->header,
1137 				 RCODE_ADDRESS_ERROR, NULL, 0);
1138 	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1139 		fw_fill_response(&response, packet->header,
1140 				 RCODE_TYPE_ERROR, NULL, 0);
1141 	} else {
1142 		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1143 				 (void *) ohci->config_rom + i, length);
1144 	}
1145 
1146 	fw_core_handle_response(&ohci->card, &response);
1147 }
1148 
1149 static void handle_local_lock(struct fw_ohci *ohci,
1150 			      struct fw_packet *packet, u32 csr)
1151 {
1152 	struct fw_packet response;
1153 	int tcode, length, ext_tcode, sel;
1154 	__be32 *payload, lock_old;
1155 	u32 lock_arg, lock_data;
1156 
1157 	tcode = HEADER_GET_TCODE(packet->header[0]);
1158 	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1159 	payload = packet->payload;
1160 	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1161 
1162 	if (tcode == TCODE_LOCK_REQUEST &&
1163 	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1164 		lock_arg = be32_to_cpu(payload[0]);
1165 		lock_data = be32_to_cpu(payload[1]);
1166 	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1167 		lock_arg = 0;
1168 		lock_data = 0;
1169 	} else {
1170 		fw_fill_response(&response, packet->header,
1171 				 RCODE_TYPE_ERROR, NULL, 0);
1172 		goto out;
1173 	}
1174 
1175 	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1176 	reg_write(ohci, OHCI1394_CSRData, lock_data);
1177 	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1178 	reg_write(ohci, OHCI1394_CSRControl, sel);
1179 
1180 	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1181 		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1182 	else
1183 		fw_notify("swap not done yet\n");
1184 
1185 	fw_fill_response(&response, packet->header,
1186 			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1187  out:
1188 	fw_core_handle_response(&ohci->card, &response);
1189 }
1190 
1191 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1192 {
1193 	u64 offset;
1194 	u32 csr;
1195 
1196 	if (ctx == &ctx->ohci->at_request_ctx) {
1197 		packet->ack = ACK_PENDING;
1198 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1199 	}
1200 
1201 	offset =
1202 		((unsigned long long)
1203 		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1204 		packet->header[2];
1205 	csr = offset - CSR_REGISTER_BASE;
1206 
1207 	/* Handle config rom reads. */
1208 	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1209 		handle_local_rom(ctx->ohci, packet, csr);
1210 	else switch (csr) {
1211 	case CSR_BUS_MANAGER_ID:
1212 	case CSR_BANDWIDTH_AVAILABLE:
1213 	case CSR_CHANNELS_AVAILABLE_HI:
1214 	case CSR_CHANNELS_AVAILABLE_LO:
1215 		handle_local_lock(ctx->ohci, packet, csr);
1216 		break;
1217 	default:
1218 		if (ctx == &ctx->ohci->at_request_ctx)
1219 			fw_core_handle_request(&ctx->ohci->card, packet);
1220 		else
1221 			fw_core_handle_response(&ctx->ohci->card, packet);
1222 		break;
1223 	}
1224 
1225 	if (ctx == &ctx->ohci->at_response_ctx) {
1226 		packet->ack = ACK_COMPLETE;
1227 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1228 	}
1229 }
1230 
1231 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1232 {
1233 	unsigned long flags;
1234 	int ret;
1235 
1236 	spin_lock_irqsave(&ctx->ohci->lock, flags);
1237 
1238 	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1239 	    ctx->ohci->generation == packet->generation) {
1240 		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1241 		handle_local_request(ctx, packet);
1242 		return;
1243 	}
1244 
1245 	ret = at_context_queue_packet(ctx, packet);
1246 	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1247 
1248 	if (ret < 0)
1249 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1250 
1251 }
1252 
1253 static void bus_reset_tasklet(unsigned long data)
1254 {
1255 	struct fw_ohci *ohci = (struct fw_ohci *)data;
1256 	int self_id_count, i, j, reg;
1257 	int generation, new_generation;
1258 	unsigned long flags;
1259 	void *free_rom = NULL;
1260 	dma_addr_t free_rom_bus = 0;
1261 
1262 	reg = reg_read(ohci, OHCI1394_NodeID);
1263 	if (!(reg & OHCI1394_NodeID_idValid)) {
1264 		fw_notify("node ID not valid, new bus reset in progress\n");
1265 		return;
1266 	}
1267 	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1268 		fw_notify("malconfigured bus\n");
1269 		return;
1270 	}
1271 	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1272 			       OHCI1394_NodeID_nodeNumber);
1273 
1274 	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1275 	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1276 		fw_notify("inconsistent self IDs\n");
1277 		return;
1278 	}
1279 	/*
1280 	 * The count in the SelfIDCount register is the number of
1281 	 * bytes in the self ID receive buffer.  Since we also receive
1282 	 * the inverted quadlets and a header quadlet, we shift one
1283 	 * bit extra to get the actual number of self IDs.
1284 	 */
1285 	self_id_count = (reg >> 3) & 0xff;
1286 	if (self_id_count == 0 || self_id_count > 252) {
1287 		fw_notify("inconsistent self IDs\n");
1288 		return;
1289 	}
1290 	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1291 	rmb();
1292 
1293 	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1294 		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1295 			fw_notify("inconsistent self IDs\n");
1296 			return;
1297 		}
1298 		ohci->self_id_buffer[j] =
1299 				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1300 	}
1301 	rmb();
1302 
1303 	/*
1304 	 * Check the consistency of the self IDs we just read.  The
1305 	 * problem we face is that a new bus reset can start while we
1306 	 * read out the self IDs from the DMA buffer. If this happens,
1307 	 * the DMA buffer will be overwritten with new self IDs and we
1308 	 * will read out inconsistent data.  The OHCI specification
1309 	 * (section 11.2) recommends a technique similar to
1310 	 * linux/seqlock.h, where we remember the generation of the
1311 	 * self IDs in the buffer before reading them out and compare
1312 	 * it to the current generation after reading them out.  If
1313 	 * the two generations match we know we have a consistent set
1314 	 * of self IDs.
1315 	 */
1316 
1317 	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1318 	if (new_generation != generation) {
1319 		fw_notify("recursive bus reset detected, "
1320 			  "discarding self ids\n");
1321 		return;
1322 	}
1323 
1324 	/* FIXME: Document how the locking works. */
1325 	spin_lock_irqsave(&ohci->lock, flags);
1326 
1327 	ohci->generation = generation;
1328 	context_stop(&ohci->at_request_ctx);
1329 	context_stop(&ohci->at_response_ctx);
1330 	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1331 
1332 	if (ohci->bus_reset_packet_quirk)
1333 		ohci->request_generation = generation;
1334 
1335 	/*
1336 	 * This next bit is unrelated to the AT context stuff but we
1337 	 * have to do it under the spinlock also.  If a new config rom
1338 	 * was set up before this reset, the old one is now no longer
1339 	 * in use and we can free it. Update the config rom pointers
1340 	 * to point to the current config rom and clear the
1341 	 * next_config_rom pointer so a new udpate can take place.
1342 	 */
1343 
1344 	if (ohci->next_config_rom != NULL) {
1345 		if (ohci->next_config_rom != ohci->config_rom) {
1346 			free_rom      = ohci->config_rom;
1347 			free_rom_bus  = ohci->config_rom_bus;
1348 		}
1349 		ohci->config_rom      = ohci->next_config_rom;
1350 		ohci->config_rom_bus  = ohci->next_config_rom_bus;
1351 		ohci->next_config_rom = NULL;
1352 
1353 		/*
1354 		 * Restore config_rom image and manually update
1355 		 * config_rom registers.  Writing the header quadlet
1356 		 * will indicate that the config rom is ready, so we
1357 		 * do that last.
1358 		 */
1359 		reg_write(ohci, OHCI1394_BusOptions,
1360 			  be32_to_cpu(ohci->config_rom[2]));
1361 		ohci->config_rom[0] = ohci->next_header;
1362 		reg_write(ohci, OHCI1394_ConfigROMhdr,
1363 			  be32_to_cpu(ohci->next_header));
1364 	}
1365 
1366 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1367 	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1368 	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1369 #endif
1370 
1371 	spin_unlock_irqrestore(&ohci->lock, flags);
1372 
1373 	if (free_rom)
1374 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1375 				  free_rom, free_rom_bus);
1376 
1377 	log_selfids(ohci->node_id, generation,
1378 		    self_id_count, ohci->self_id_buffer);
1379 
1380 	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1381 				 self_id_count, ohci->self_id_buffer);
1382 }
1383 
1384 static irqreturn_t irq_handler(int irq, void *data)
1385 {
1386 	struct fw_ohci *ohci = data;
1387 	u32 event, iso_event, cycle_time;
1388 	int i;
1389 
1390 	event = reg_read(ohci, OHCI1394_IntEventClear);
1391 
1392 	if (!event || !~event)
1393 		return IRQ_NONE;
1394 
1395 	/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1396 	reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1397 	log_irqs(event);
1398 
1399 	if (event & OHCI1394_selfIDComplete)
1400 		tasklet_schedule(&ohci->bus_reset_tasklet);
1401 
1402 	if (event & OHCI1394_RQPkt)
1403 		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1404 
1405 	if (event & OHCI1394_RSPkt)
1406 		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1407 
1408 	if (event & OHCI1394_reqTxComplete)
1409 		tasklet_schedule(&ohci->at_request_ctx.tasklet);
1410 
1411 	if (event & OHCI1394_respTxComplete)
1412 		tasklet_schedule(&ohci->at_response_ctx.tasklet);
1413 
1414 	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1415 	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1416 
1417 	while (iso_event) {
1418 		i = ffs(iso_event) - 1;
1419 		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1420 		iso_event &= ~(1 << i);
1421 	}
1422 
1423 	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1424 	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1425 
1426 	while (iso_event) {
1427 		i = ffs(iso_event) - 1;
1428 		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1429 		iso_event &= ~(1 << i);
1430 	}
1431 
1432 	if (unlikely(event & OHCI1394_regAccessFail))
1433 		fw_error("Register access failure - "
1434 			 "please notify linux1394-devel@lists.sf.net\n");
1435 
1436 	if (unlikely(event & OHCI1394_postedWriteErr))
1437 		fw_error("PCI posted write error\n");
1438 
1439 	if (unlikely(event & OHCI1394_cycleTooLong)) {
1440 		if (printk_ratelimit())
1441 			fw_notify("isochronous cycle too long\n");
1442 		reg_write(ohci, OHCI1394_LinkControlSet,
1443 			  OHCI1394_LinkControl_cycleMaster);
1444 	}
1445 
1446 	if (unlikely(event & OHCI1394_cycleInconsistent)) {
1447 		/*
1448 		 * We need to clear this event bit in order to make
1449 		 * cycleMatch isochronous I/O work.  In theory we should
1450 		 * stop active cycleMatch iso contexts now and restart
1451 		 * them at least two cycles later.  (FIXME?)
1452 		 */
1453 		if (printk_ratelimit())
1454 			fw_notify("isochronous cycle inconsistent\n");
1455 	}
1456 
1457 	if (event & OHCI1394_cycle64Seconds) {
1458 		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1459 		if ((cycle_time & 0x80000000) == 0)
1460 			atomic_inc(&ohci->bus_seconds);
1461 	}
1462 
1463 	return IRQ_HANDLED;
1464 }
1465 
1466 static int software_reset(struct fw_ohci *ohci)
1467 {
1468 	int i;
1469 
1470 	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1471 
1472 	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1473 		if ((reg_read(ohci, OHCI1394_HCControlSet) &
1474 		     OHCI1394_HCControl_softReset) == 0)
1475 			return 0;
1476 		msleep(1);
1477 	}
1478 
1479 	return -EBUSY;
1480 }
1481 
1482 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1483 {
1484 	size_t size = length * 4;
1485 
1486 	memcpy(dest, src, size);
1487 	if (size < CONFIG_ROM_SIZE)
1488 		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1489 }
1490 
1491 static int ohci_enable(struct fw_card *card,
1492 		       const __be32 *config_rom, size_t length)
1493 {
1494 	struct fw_ohci *ohci = fw_ohci(card);
1495 	struct pci_dev *dev = to_pci_dev(card->device);
1496 	u32 lps;
1497 	int i;
1498 
1499 	if (software_reset(ohci)) {
1500 		fw_error("Failed to reset ohci card.\n");
1501 		return -EBUSY;
1502 	}
1503 
1504 	/*
1505 	 * Now enable LPS, which we need in order to start accessing
1506 	 * most of the registers.  In fact, on some cards (ALI M5251),
1507 	 * accessing registers in the SClk domain without LPS enabled
1508 	 * will lock up the machine.  Wait 50msec to make sure we have
1509 	 * full link enabled.  However, with some cards (well, at least
1510 	 * a JMicron PCIe card), we have to try again sometimes.
1511 	 */
1512 	reg_write(ohci, OHCI1394_HCControlSet,
1513 		  OHCI1394_HCControl_LPS |
1514 		  OHCI1394_HCControl_postedWriteEnable);
1515 	flush_writes(ohci);
1516 
1517 	for (lps = 0, i = 0; !lps && i < 3; i++) {
1518 		msleep(50);
1519 		lps = reg_read(ohci, OHCI1394_HCControlSet) &
1520 		      OHCI1394_HCControl_LPS;
1521 	}
1522 
1523 	if (!lps) {
1524 		fw_error("Failed to set Link Power Status\n");
1525 		return -EIO;
1526 	}
1527 
1528 	reg_write(ohci, OHCI1394_HCControlClear,
1529 		  OHCI1394_HCControl_noByteSwapData);
1530 
1531 	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1532 	reg_write(ohci, OHCI1394_LinkControlClear,
1533 		  OHCI1394_LinkControl_rcvPhyPkt);
1534 	reg_write(ohci, OHCI1394_LinkControlSet,
1535 		  OHCI1394_LinkControl_rcvSelfID |
1536 		  OHCI1394_LinkControl_cycleTimerEnable |
1537 		  OHCI1394_LinkControl_cycleMaster);
1538 
1539 	reg_write(ohci, OHCI1394_ATRetries,
1540 		  OHCI1394_MAX_AT_REQ_RETRIES |
1541 		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1542 		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1543 
1544 	ar_context_run(&ohci->ar_request_ctx);
1545 	ar_context_run(&ohci->ar_response_ctx);
1546 
1547 	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1548 	reg_write(ohci, OHCI1394_IntEventClear, ~0);
1549 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1550 	reg_write(ohci, OHCI1394_IntMaskSet,
1551 		  OHCI1394_selfIDComplete |
1552 		  OHCI1394_RQPkt | OHCI1394_RSPkt |
1553 		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1554 		  OHCI1394_isochRx | OHCI1394_isochTx |
1555 		  OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1556 		  OHCI1394_cycleInconsistent |
1557 		  OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1558 		  OHCI1394_masterIntEnable);
1559 	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1560 		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1561 
1562 	/* Activate link_on bit and contender bit in our self ID packets.*/
1563 	if (ohci_update_phy_reg(card, 4, 0,
1564 				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1565 		return -EIO;
1566 
1567 	/*
1568 	 * When the link is not yet enabled, the atomic config rom
1569 	 * update mechanism described below in ohci_set_config_rom()
1570 	 * is not active.  We have to update ConfigRomHeader and
1571 	 * BusOptions manually, and the write to ConfigROMmap takes
1572 	 * effect immediately.  We tie this to the enabling of the
1573 	 * link, so we have a valid config rom before enabling - the
1574 	 * OHCI requires that ConfigROMhdr and BusOptions have valid
1575 	 * values before enabling.
1576 	 *
1577 	 * However, when the ConfigROMmap is written, some controllers
1578 	 * always read back quadlets 0 and 2 from the config rom to
1579 	 * the ConfigRomHeader and BusOptions registers on bus reset.
1580 	 * They shouldn't do that in this initial case where the link
1581 	 * isn't enabled.  This means we have to use the same
1582 	 * workaround here, setting the bus header to 0 and then write
1583 	 * the right values in the bus reset tasklet.
1584 	 */
1585 
1586 	if (config_rom) {
1587 		ohci->next_config_rom =
1588 			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1589 					   &ohci->next_config_rom_bus,
1590 					   GFP_KERNEL);
1591 		if (ohci->next_config_rom == NULL)
1592 			return -ENOMEM;
1593 
1594 		copy_config_rom(ohci->next_config_rom, config_rom, length);
1595 	} else {
1596 		/*
1597 		 * In the suspend case, config_rom is NULL, which
1598 		 * means that we just reuse the old config rom.
1599 		 */
1600 		ohci->next_config_rom = ohci->config_rom;
1601 		ohci->next_config_rom_bus = ohci->config_rom_bus;
1602 	}
1603 
1604 	ohci->next_header = ohci->next_config_rom[0];
1605 	ohci->next_config_rom[0] = 0;
1606 	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1607 	reg_write(ohci, OHCI1394_BusOptions,
1608 		  be32_to_cpu(ohci->next_config_rom[2]));
1609 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1610 
1611 	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1612 
1613 	if (request_irq(dev->irq, irq_handler,
1614 			IRQF_SHARED, ohci_driver_name, ohci)) {
1615 		fw_error("Failed to allocate shared interrupt %d.\n",
1616 			 dev->irq);
1617 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1618 				  ohci->config_rom, ohci->config_rom_bus);
1619 		return -EIO;
1620 	}
1621 
1622 	reg_write(ohci, OHCI1394_HCControlSet,
1623 		  OHCI1394_HCControl_linkEnable |
1624 		  OHCI1394_HCControl_BIBimageValid);
1625 	flush_writes(ohci);
1626 
1627 	/*
1628 	 * We are ready to go, initiate bus reset to finish the
1629 	 * initialization.
1630 	 */
1631 
1632 	fw_core_initiate_bus_reset(&ohci->card, 1);
1633 
1634 	return 0;
1635 }
1636 
1637 static int ohci_set_config_rom(struct fw_card *card,
1638 			       const __be32 *config_rom, size_t length)
1639 {
1640 	struct fw_ohci *ohci;
1641 	unsigned long flags;
1642 	int ret = -EBUSY;
1643 	__be32 *next_config_rom;
1644 	dma_addr_t uninitialized_var(next_config_rom_bus);
1645 
1646 	ohci = fw_ohci(card);
1647 
1648 	/*
1649 	 * When the OHCI controller is enabled, the config rom update
1650 	 * mechanism is a bit tricky, but easy enough to use.  See
1651 	 * section 5.5.6 in the OHCI specification.
1652 	 *
1653 	 * The OHCI controller caches the new config rom address in a
1654 	 * shadow register (ConfigROMmapNext) and needs a bus reset
1655 	 * for the changes to take place.  When the bus reset is
1656 	 * detected, the controller loads the new values for the
1657 	 * ConfigRomHeader and BusOptions registers from the specified
1658 	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1659 	 * shadow register. All automatically and atomically.
1660 	 *
1661 	 * Now, there's a twist to this story.  The automatic load of
1662 	 * ConfigRomHeader and BusOptions doesn't honor the
1663 	 * noByteSwapData bit, so with a be32 config rom, the
1664 	 * controller will load be32 values in to these registers
1665 	 * during the atomic update, even on litte endian
1666 	 * architectures.  The workaround we use is to put a 0 in the
1667 	 * header quadlet; 0 is endian agnostic and means that the
1668 	 * config rom isn't ready yet.  In the bus reset tasklet we
1669 	 * then set up the real values for the two registers.
1670 	 *
1671 	 * We use ohci->lock to avoid racing with the code that sets
1672 	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1673 	 */
1674 
1675 	next_config_rom =
1676 		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1677 				   &next_config_rom_bus, GFP_KERNEL);
1678 	if (next_config_rom == NULL)
1679 		return -ENOMEM;
1680 
1681 	spin_lock_irqsave(&ohci->lock, flags);
1682 
1683 	if (ohci->next_config_rom == NULL) {
1684 		ohci->next_config_rom = next_config_rom;
1685 		ohci->next_config_rom_bus = next_config_rom_bus;
1686 
1687 		copy_config_rom(ohci->next_config_rom, config_rom, length);
1688 
1689 		ohci->next_header = config_rom[0];
1690 		ohci->next_config_rom[0] = 0;
1691 
1692 		reg_write(ohci, OHCI1394_ConfigROMmap,
1693 			  ohci->next_config_rom_bus);
1694 		ret = 0;
1695 	}
1696 
1697 	spin_unlock_irqrestore(&ohci->lock, flags);
1698 
1699 	/*
1700 	 * Now initiate a bus reset to have the changes take
1701 	 * effect. We clean up the old config rom memory and DMA
1702 	 * mappings in the bus reset tasklet, since the OHCI
1703 	 * controller could need to access it before the bus reset
1704 	 * takes effect.
1705 	 */
1706 	if (ret == 0)
1707 		fw_core_initiate_bus_reset(&ohci->card, 1);
1708 	else
1709 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1710 				  next_config_rom, next_config_rom_bus);
1711 
1712 	return ret;
1713 }
1714 
1715 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1716 {
1717 	struct fw_ohci *ohci = fw_ohci(card);
1718 
1719 	at_context_transmit(&ohci->at_request_ctx, packet);
1720 }
1721 
1722 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1723 {
1724 	struct fw_ohci *ohci = fw_ohci(card);
1725 
1726 	at_context_transmit(&ohci->at_response_ctx, packet);
1727 }
1728 
1729 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1730 {
1731 	struct fw_ohci *ohci = fw_ohci(card);
1732 	struct context *ctx = &ohci->at_request_ctx;
1733 	struct driver_data *driver_data = packet->driver_data;
1734 	int ret = -ENOENT;
1735 
1736 	tasklet_disable(&ctx->tasklet);
1737 
1738 	if (packet->ack != 0)
1739 		goto out;
1740 
1741 	if (packet->payload_mapped)
1742 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1743 				 packet->payload_length, DMA_TO_DEVICE);
1744 
1745 	log_ar_at_event('T', packet->speed, packet->header, 0x20);
1746 	driver_data->packet = NULL;
1747 	packet->ack = RCODE_CANCELLED;
1748 	packet->callback(packet, &ohci->card, packet->ack);
1749 	ret = 0;
1750  out:
1751 	tasklet_enable(&ctx->tasklet);
1752 
1753 	return ret;
1754 }
1755 
1756 static int ohci_enable_phys_dma(struct fw_card *card,
1757 				int node_id, int generation)
1758 {
1759 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1760 	return 0;
1761 #else
1762 	struct fw_ohci *ohci = fw_ohci(card);
1763 	unsigned long flags;
1764 	int n, ret = 0;
1765 
1766 	/*
1767 	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1768 	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1769 	 */
1770 
1771 	spin_lock_irqsave(&ohci->lock, flags);
1772 
1773 	if (ohci->generation != generation) {
1774 		ret = -ESTALE;
1775 		goto out;
1776 	}
1777 
1778 	/*
1779 	 * Note, if the node ID contains a non-local bus ID, physical DMA is
1780 	 * enabled for _all_ nodes on remote buses.
1781 	 */
1782 
1783 	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1784 	if (n < 32)
1785 		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1786 	else
1787 		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1788 
1789 	flush_writes(ohci);
1790  out:
1791 	spin_unlock_irqrestore(&ohci->lock, flags);
1792 
1793 	return ret;
1794 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1795 }
1796 
1797 static u64 ohci_get_bus_time(struct fw_card *card)
1798 {
1799 	struct fw_ohci *ohci = fw_ohci(card);
1800 	u32 cycle_time;
1801 	u64 bus_time;
1802 
1803 	cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1804 	bus_time = ((u64)atomic_read(&ohci->bus_seconds) << 32) | cycle_time;
1805 
1806 	return bus_time;
1807 }
1808 
1809 static void copy_iso_headers(struct iso_context *ctx, void *p)
1810 {
1811 	int i = ctx->header_length;
1812 
1813 	if (i + ctx->base.header_size > PAGE_SIZE)
1814 		return;
1815 
1816 	/*
1817 	 * The iso header is byteswapped to little endian by
1818 	 * the controller, but the remaining header quadlets
1819 	 * are big endian.  We want to present all the headers
1820 	 * as big endian, so we have to swap the first quadlet.
1821 	 */
1822 	if (ctx->base.header_size > 0)
1823 		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1824 	if (ctx->base.header_size > 4)
1825 		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1826 	if (ctx->base.header_size > 8)
1827 		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1828 	ctx->header_length += ctx->base.header_size;
1829 }
1830 
1831 static int handle_ir_dualbuffer_packet(struct context *context,
1832 				       struct descriptor *d,
1833 				       struct descriptor *last)
1834 {
1835 	struct iso_context *ctx =
1836 		container_of(context, struct iso_context, context);
1837 	struct db_descriptor *db = (struct db_descriptor *) d;
1838 	__le32 *ir_header;
1839 	size_t header_length;
1840 	void *p, *end;
1841 
1842 	if (db->first_res_count != 0 && db->second_res_count != 0) {
1843 		if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1844 			/* This descriptor isn't done yet, stop iteration. */
1845 			return 0;
1846 		}
1847 		ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1848 	}
1849 
1850 	header_length = le16_to_cpu(db->first_req_count) -
1851 		le16_to_cpu(db->first_res_count);
1852 
1853 	p = db + 1;
1854 	end = p + header_length;
1855 	while (p < end) {
1856 		copy_iso_headers(ctx, p);
1857 		ctx->excess_bytes +=
1858 			(le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1859 		p += max(ctx->base.header_size, (size_t)8);
1860 	}
1861 
1862 	ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1863 		le16_to_cpu(db->second_res_count);
1864 
1865 	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1866 		ir_header = (__le32 *) (db + 1);
1867 		ctx->base.callback(&ctx->base,
1868 				   le32_to_cpu(ir_header[0]) & 0xffff,
1869 				   ctx->header_length, ctx->header,
1870 				   ctx->base.callback_data);
1871 		ctx->header_length = 0;
1872 	}
1873 
1874 	return 1;
1875 }
1876 
1877 static int handle_ir_packet_per_buffer(struct context *context,
1878 				       struct descriptor *d,
1879 				       struct descriptor *last)
1880 {
1881 	struct iso_context *ctx =
1882 		container_of(context, struct iso_context, context);
1883 	struct descriptor *pd;
1884 	__le32 *ir_header;
1885 	void *p;
1886 
1887 	for (pd = d; pd <= last; pd++) {
1888 		if (pd->transfer_status)
1889 			break;
1890 	}
1891 	if (pd > last)
1892 		/* Descriptor(s) not done yet, stop iteration */
1893 		return 0;
1894 
1895 	p = last + 1;
1896 	copy_iso_headers(ctx, p);
1897 
1898 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1899 		ir_header = (__le32 *) p;
1900 		ctx->base.callback(&ctx->base,
1901 				   le32_to_cpu(ir_header[0]) & 0xffff,
1902 				   ctx->header_length, ctx->header,
1903 				   ctx->base.callback_data);
1904 		ctx->header_length = 0;
1905 	}
1906 
1907 	return 1;
1908 }
1909 
1910 static int handle_it_packet(struct context *context,
1911 			    struct descriptor *d,
1912 			    struct descriptor *last)
1913 {
1914 	struct iso_context *ctx =
1915 		container_of(context, struct iso_context, context);
1916 	int i;
1917 	struct descriptor *pd;
1918 
1919 	for (pd = d; pd <= last; pd++)
1920 		if (pd->transfer_status)
1921 			break;
1922 	if (pd > last)
1923 		/* Descriptor(s) not done yet, stop iteration */
1924 		return 0;
1925 
1926 	i = ctx->header_length;
1927 	if (i + 4 < PAGE_SIZE) {
1928 		/* Present this value as big-endian to match the receive code */
1929 		*(__be32 *)(ctx->header + i) = cpu_to_be32(
1930 				((u32)le16_to_cpu(pd->transfer_status) << 16) |
1931 				le16_to_cpu(pd->res_count));
1932 		ctx->header_length += 4;
1933 	}
1934 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1935 		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1936 				   ctx->header_length, ctx->header,
1937 				   ctx->base.callback_data);
1938 		ctx->header_length = 0;
1939 	}
1940 	return 1;
1941 }
1942 
1943 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1944 				int type, int channel, size_t header_size)
1945 {
1946 	struct fw_ohci *ohci = fw_ohci(card);
1947 	struct iso_context *ctx, *list;
1948 	descriptor_callback_t callback;
1949 	u64 *channels, dont_care = ~0ULL;
1950 	u32 *mask, regs;
1951 	unsigned long flags;
1952 	int index, ret = -ENOMEM;
1953 
1954 	if (type == FW_ISO_CONTEXT_TRANSMIT) {
1955 		channels = &dont_care;
1956 		mask = &ohci->it_context_mask;
1957 		list = ohci->it_context_list;
1958 		callback = handle_it_packet;
1959 	} else {
1960 		channels = &ohci->ir_context_channels;
1961 		mask = &ohci->ir_context_mask;
1962 		list = ohci->ir_context_list;
1963 		if (ohci->use_dualbuffer)
1964 			callback = handle_ir_dualbuffer_packet;
1965 		else
1966 			callback = handle_ir_packet_per_buffer;
1967 	}
1968 
1969 	spin_lock_irqsave(&ohci->lock, flags);
1970 	index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1971 	if (index >= 0) {
1972 		*channels &= ~(1ULL << channel);
1973 		*mask &= ~(1 << index);
1974 	}
1975 	spin_unlock_irqrestore(&ohci->lock, flags);
1976 
1977 	if (index < 0)
1978 		return ERR_PTR(-EBUSY);
1979 
1980 	if (type == FW_ISO_CONTEXT_TRANSMIT)
1981 		regs = OHCI1394_IsoXmitContextBase(index);
1982 	else
1983 		regs = OHCI1394_IsoRcvContextBase(index);
1984 
1985 	ctx = &list[index];
1986 	memset(ctx, 0, sizeof(*ctx));
1987 	ctx->header_length = 0;
1988 	ctx->header = (void *) __get_free_page(GFP_KERNEL);
1989 	if (ctx->header == NULL)
1990 		goto out;
1991 
1992 	ret = context_init(&ctx->context, ohci, regs, callback);
1993 	if (ret < 0)
1994 		goto out_with_header;
1995 
1996 	return &ctx->base;
1997 
1998  out_with_header:
1999 	free_page((unsigned long)ctx->header);
2000  out:
2001 	spin_lock_irqsave(&ohci->lock, flags);
2002 	*mask |= 1 << index;
2003 	spin_unlock_irqrestore(&ohci->lock, flags);
2004 
2005 	return ERR_PTR(ret);
2006 }
2007 
2008 static int ohci_start_iso(struct fw_iso_context *base,
2009 			  s32 cycle, u32 sync, u32 tags)
2010 {
2011 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2012 	struct fw_ohci *ohci = ctx->context.ohci;
2013 	u32 control, match;
2014 	int index;
2015 
2016 	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2017 		index = ctx - ohci->it_context_list;
2018 		match = 0;
2019 		if (cycle >= 0)
2020 			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2021 				(cycle & 0x7fff) << 16;
2022 
2023 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2024 		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2025 		context_run(&ctx->context, match);
2026 	} else {
2027 		index = ctx - ohci->ir_context_list;
2028 		control = IR_CONTEXT_ISOCH_HEADER;
2029 		if (ohci->use_dualbuffer)
2030 			control |= IR_CONTEXT_DUAL_BUFFER_MODE;
2031 		match = (tags << 28) | (sync << 8) | ctx->base.channel;
2032 		if (cycle >= 0) {
2033 			match |= (cycle & 0x07fff) << 12;
2034 			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2035 		}
2036 
2037 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2038 		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2039 		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2040 		context_run(&ctx->context, control);
2041 	}
2042 
2043 	return 0;
2044 }
2045 
2046 static int ohci_stop_iso(struct fw_iso_context *base)
2047 {
2048 	struct fw_ohci *ohci = fw_ohci(base->card);
2049 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2050 	int index;
2051 
2052 	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2053 		index = ctx - ohci->it_context_list;
2054 		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2055 	} else {
2056 		index = ctx - ohci->ir_context_list;
2057 		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2058 	}
2059 	flush_writes(ohci);
2060 	context_stop(&ctx->context);
2061 
2062 	return 0;
2063 }
2064 
2065 static void ohci_free_iso_context(struct fw_iso_context *base)
2066 {
2067 	struct fw_ohci *ohci = fw_ohci(base->card);
2068 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2069 	unsigned long flags;
2070 	int index;
2071 
2072 	ohci_stop_iso(base);
2073 	context_release(&ctx->context);
2074 	free_page((unsigned long)ctx->header);
2075 
2076 	spin_lock_irqsave(&ohci->lock, flags);
2077 
2078 	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2079 		index = ctx - ohci->it_context_list;
2080 		ohci->it_context_mask |= 1 << index;
2081 	} else {
2082 		index = ctx - ohci->ir_context_list;
2083 		ohci->ir_context_mask |= 1 << index;
2084 		ohci->ir_context_channels |= 1ULL << base->channel;
2085 	}
2086 
2087 	spin_unlock_irqrestore(&ohci->lock, flags);
2088 }
2089 
2090 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2091 				   struct fw_iso_packet *packet,
2092 				   struct fw_iso_buffer *buffer,
2093 				   unsigned long payload)
2094 {
2095 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2096 	struct descriptor *d, *last, *pd;
2097 	struct fw_iso_packet *p;
2098 	__le32 *header;
2099 	dma_addr_t d_bus, page_bus;
2100 	u32 z, header_z, payload_z, irq;
2101 	u32 payload_index, payload_end_index, next_page_index;
2102 	int page, end_page, i, length, offset;
2103 
2104 	/*
2105 	 * FIXME: Cycle lost behavior should be configurable: lose
2106 	 * packet, retransmit or terminate..
2107 	 */
2108 
2109 	p = packet;
2110 	payload_index = payload;
2111 
2112 	if (p->skip)
2113 		z = 1;
2114 	else
2115 		z = 2;
2116 	if (p->header_length > 0)
2117 		z++;
2118 
2119 	/* Determine the first page the payload isn't contained in. */
2120 	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2121 	if (p->payload_length > 0)
2122 		payload_z = end_page - (payload_index >> PAGE_SHIFT);
2123 	else
2124 		payload_z = 0;
2125 
2126 	z += payload_z;
2127 
2128 	/* Get header size in number of descriptors. */
2129 	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2130 
2131 	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2132 	if (d == NULL)
2133 		return -ENOMEM;
2134 
2135 	if (!p->skip) {
2136 		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2137 		d[0].req_count = cpu_to_le16(8);
2138 
2139 		header = (__le32 *) &d[1];
2140 		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2141 					IT_HEADER_TAG(p->tag) |
2142 					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2143 					IT_HEADER_CHANNEL(ctx->base.channel) |
2144 					IT_HEADER_SPEED(ctx->base.speed));
2145 		header[1] =
2146 			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2147 							  p->payload_length));
2148 	}
2149 
2150 	if (p->header_length > 0) {
2151 		d[2].req_count    = cpu_to_le16(p->header_length);
2152 		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2153 		memcpy(&d[z], p->header, p->header_length);
2154 	}
2155 
2156 	pd = d + z - payload_z;
2157 	payload_end_index = payload_index + p->payload_length;
2158 	for (i = 0; i < payload_z; i++) {
2159 		page               = payload_index >> PAGE_SHIFT;
2160 		offset             = payload_index & ~PAGE_MASK;
2161 		next_page_index    = (page + 1) << PAGE_SHIFT;
2162 		length             =
2163 			min(next_page_index, payload_end_index) - payload_index;
2164 		pd[i].req_count    = cpu_to_le16(length);
2165 
2166 		page_bus = page_private(buffer->pages[page]);
2167 		pd[i].data_address = cpu_to_le32(page_bus + offset);
2168 
2169 		payload_index += length;
2170 	}
2171 
2172 	if (p->interrupt)
2173 		irq = DESCRIPTOR_IRQ_ALWAYS;
2174 	else
2175 		irq = DESCRIPTOR_NO_IRQ;
2176 
2177 	last = z == 2 ? d : d + z - 1;
2178 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2179 				     DESCRIPTOR_STATUS |
2180 				     DESCRIPTOR_BRANCH_ALWAYS |
2181 				     irq);
2182 
2183 	context_append(&ctx->context, d, z, header_z);
2184 
2185 	return 0;
2186 }
2187 
2188 static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2189 					     struct fw_iso_packet *packet,
2190 					     struct fw_iso_buffer *buffer,
2191 					     unsigned long payload)
2192 {
2193 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2194 	struct db_descriptor *db = NULL;
2195 	struct descriptor *d;
2196 	struct fw_iso_packet *p;
2197 	dma_addr_t d_bus, page_bus;
2198 	u32 z, header_z, length, rest;
2199 	int page, offset, packet_count, header_size;
2200 
2201 	/*
2202 	 * FIXME: Cycle lost behavior should be configurable: lose
2203 	 * packet, retransmit or terminate..
2204 	 */
2205 
2206 	p = packet;
2207 	z = 2;
2208 
2209 	/*
2210 	 * The OHCI controller puts the isochronous header and trailer in the
2211 	 * buffer, so we need at least 8 bytes.
2212 	 */
2213 	packet_count = p->header_length / ctx->base.header_size;
2214 	header_size = packet_count * max(ctx->base.header_size, (size_t)8);
2215 
2216 	/* Get header size in number of descriptors. */
2217 	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2218 	page     = payload >> PAGE_SHIFT;
2219 	offset   = payload & ~PAGE_MASK;
2220 	rest     = p->payload_length;
2221 	/*
2222 	 * The controllers I've tested have not worked correctly when
2223 	 * second_req_count is zero.  Rather than do something we know won't
2224 	 * work, return an error
2225 	 */
2226 	if (rest == 0)
2227 		return -EINVAL;
2228 
2229 	while (rest > 0) {
2230 		d = context_get_descriptors(&ctx->context,
2231 					    z + header_z, &d_bus);
2232 		if (d == NULL)
2233 			return -ENOMEM;
2234 
2235 		db = (struct db_descriptor *) d;
2236 		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2237 					  DESCRIPTOR_BRANCH_ALWAYS);
2238 		db->first_size =
2239 		    cpu_to_le16(max(ctx->base.header_size, (size_t)8));
2240 		if (p->skip && rest == p->payload_length) {
2241 			db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2242 			db->first_req_count = db->first_size;
2243 		} else {
2244 			db->first_req_count = cpu_to_le16(header_size);
2245 		}
2246 		db->first_res_count = db->first_req_count;
2247 		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2248 
2249 		if (p->skip && rest == p->payload_length)
2250 			length = 4;
2251 		else if (offset + rest < PAGE_SIZE)
2252 			length = rest;
2253 		else
2254 			length = PAGE_SIZE - offset;
2255 
2256 		db->second_req_count = cpu_to_le16(length);
2257 		db->second_res_count = db->second_req_count;
2258 		page_bus = page_private(buffer->pages[page]);
2259 		db->second_buffer = cpu_to_le32(page_bus + offset);
2260 
2261 		if (p->interrupt && length == rest)
2262 			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2263 
2264 		context_append(&ctx->context, d, z, header_z);
2265 		offset = (offset + length) & ~PAGE_MASK;
2266 		rest -= length;
2267 		if (offset == 0)
2268 			page++;
2269 	}
2270 
2271 	return 0;
2272 }
2273 
2274 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2275 					struct fw_iso_packet *packet,
2276 					struct fw_iso_buffer *buffer,
2277 					unsigned long payload)
2278 {
2279 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2280 	struct descriptor *d, *pd;
2281 	struct fw_iso_packet *p = packet;
2282 	dma_addr_t d_bus, page_bus;
2283 	u32 z, header_z, rest;
2284 	int i, j, length;
2285 	int page, offset, packet_count, header_size, payload_per_buffer;
2286 
2287 	/*
2288 	 * The OHCI controller puts the isochronous header and trailer in the
2289 	 * buffer, so we need at least 8 bytes.
2290 	 */
2291 	packet_count = p->header_length / ctx->base.header_size;
2292 	header_size  = max(ctx->base.header_size, (size_t)8);
2293 
2294 	/* Get header size in number of descriptors. */
2295 	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2296 	page     = payload >> PAGE_SHIFT;
2297 	offset   = payload & ~PAGE_MASK;
2298 	payload_per_buffer = p->payload_length / packet_count;
2299 
2300 	for (i = 0; i < packet_count; i++) {
2301 		/* d points to the header descriptor */
2302 		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2303 		d = context_get_descriptors(&ctx->context,
2304 				z + header_z, &d_bus);
2305 		if (d == NULL)
2306 			return -ENOMEM;
2307 
2308 		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2309 					      DESCRIPTOR_INPUT_MORE);
2310 		if (p->skip && i == 0)
2311 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2312 		d->req_count    = cpu_to_le16(header_size);
2313 		d->res_count    = d->req_count;
2314 		d->transfer_status = 0;
2315 		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2316 
2317 		rest = payload_per_buffer;
2318 		pd = d;
2319 		for (j = 1; j < z; j++) {
2320 			pd++;
2321 			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2322 						  DESCRIPTOR_INPUT_MORE);
2323 
2324 			if (offset + rest < PAGE_SIZE)
2325 				length = rest;
2326 			else
2327 				length = PAGE_SIZE - offset;
2328 			pd->req_count = cpu_to_le16(length);
2329 			pd->res_count = pd->req_count;
2330 			pd->transfer_status = 0;
2331 
2332 			page_bus = page_private(buffer->pages[page]);
2333 			pd->data_address = cpu_to_le32(page_bus + offset);
2334 
2335 			offset = (offset + length) & ~PAGE_MASK;
2336 			rest -= length;
2337 			if (offset == 0)
2338 				page++;
2339 		}
2340 		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2341 					  DESCRIPTOR_INPUT_LAST |
2342 					  DESCRIPTOR_BRANCH_ALWAYS);
2343 		if (p->interrupt && i == packet_count - 1)
2344 			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2345 
2346 		context_append(&ctx->context, d, z, header_z);
2347 	}
2348 
2349 	return 0;
2350 }
2351 
2352 static int ohci_queue_iso(struct fw_iso_context *base,
2353 			  struct fw_iso_packet *packet,
2354 			  struct fw_iso_buffer *buffer,
2355 			  unsigned long payload)
2356 {
2357 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2358 	unsigned long flags;
2359 	int ret;
2360 
2361 	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2362 	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2363 		ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2364 	else if (ctx->context.ohci->use_dualbuffer)
2365 		ret = ohci_queue_iso_receive_dualbuffer(base, packet,
2366 							buffer, payload);
2367 	else
2368 		ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2369 							buffer, payload);
2370 	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2371 
2372 	return ret;
2373 }
2374 
2375 static const struct fw_card_driver ohci_driver = {
2376 	.enable			= ohci_enable,
2377 	.update_phy_reg		= ohci_update_phy_reg,
2378 	.set_config_rom		= ohci_set_config_rom,
2379 	.send_request		= ohci_send_request,
2380 	.send_response		= ohci_send_response,
2381 	.cancel_packet		= ohci_cancel_packet,
2382 	.enable_phys_dma	= ohci_enable_phys_dma,
2383 	.get_bus_time		= ohci_get_bus_time,
2384 
2385 	.allocate_iso_context	= ohci_allocate_iso_context,
2386 	.free_iso_context	= ohci_free_iso_context,
2387 	.queue_iso		= ohci_queue_iso,
2388 	.start_iso		= ohci_start_iso,
2389 	.stop_iso		= ohci_stop_iso,
2390 };
2391 
2392 #ifdef CONFIG_PPC_PMAC
2393 static void ohci_pmac_on(struct pci_dev *dev)
2394 {
2395 	if (machine_is(powermac)) {
2396 		struct device_node *ofn = pci_device_to_OF_node(dev);
2397 
2398 		if (ofn) {
2399 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2400 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2401 		}
2402 	}
2403 }
2404 
2405 static void ohci_pmac_off(struct pci_dev *dev)
2406 {
2407 	if (machine_is(powermac)) {
2408 		struct device_node *ofn = pci_device_to_OF_node(dev);
2409 
2410 		if (ofn) {
2411 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2412 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2413 		}
2414 	}
2415 }
2416 #else
2417 #define ohci_pmac_on(dev)
2418 #define ohci_pmac_off(dev)
2419 #endif /* CONFIG_PPC_PMAC */
2420 
2421 #define PCI_VENDOR_ID_AGERE		PCI_VENDOR_ID_ATT
2422 #define PCI_DEVICE_ID_AGERE_FW643	0x5901
2423 
2424 static int __devinit pci_probe(struct pci_dev *dev,
2425 			       const struct pci_device_id *ent)
2426 {
2427 	struct fw_ohci *ohci;
2428 	u32 bus_options, max_receive, link_speed, version;
2429 	u64 guid;
2430 	int err;
2431 	size_t size;
2432 
2433 	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2434 	if (ohci == NULL) {
2435 		err = -ENOMEM;
2436 		goto fail;
2437 	}
2438 
2439 	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2440 
2441 	ohci_pmac_on(dev);
2442 
2443 	err = pci_enable_device(dev);
2444 	if (err) {
2445 		fw_error("Failed to enable OHCI hardware\n");
2446 		goto fail_free;
2447 	}
2448 
2449 	pci_set_master(dev);
2450 	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2451 	pci_set_drvdata(dev, ohci);
2452 
2453 	spin_lock_init(&ohci->lock);
2454 
2455 	tasklet_init(&ohci->bus_reset_tasklet,
2456 		     bus_reset_tasklet, (unsigned long)ohci);
2457 
2458 	err = pci_request_region(dev, 0, ohci_driver_name);
2459 	if (err) {
2460 		fw_error("MMIO resource unavailable\n");
2461 		goto fail_disable;
2462 	}
2463 
2464 	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2465 	if (ohci->registers == NULL) {
2466 		fw_error("Failed to remap registers\n");
2467 		err = -ENXIO;
2468 		goto fail_iomem;
2469 	}
2470 
2471 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2472 #if 0
2473 	/* FIXME: make it a context option or remove dual-buffer mode */
2474 	ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;
2475 #endif
2476 
2477 	/* dual-buffer mode is broken if more than one IR context is active */
2478 	if (dev->vendor == PCI_VENDOR_ID_AGERE &&
2479 	    dev->device == PCI_DEVICE_ID_AGERE_FW643)
2480 		ohci->use_dualbuffer = false;
2481 
2482 	/* dual-buffer mode is broken */
2483 	if (dev->vendor == PCI_VENDOR_ID_RICOH &&
2484 	    dev->device == PCI_DEVICE_ID_RICOH_R5C832)
2485 		ohci->use_dualbuffer = false;
2486 
2487 /* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2488 #if !defined(CONFIG_X86_32)
2489 	/* dual-buffer mode is broken with descriptor addresses above 2G */
2490 	if (dev->vendor == PCI_VENDOR_ID_TI &&
2491 	    dev->device == PCI_DEVICE_ID_TI_TSB43AB22)
2492 		ohci->use_dualbuffer = false;
2493 #endif
2494 
2495 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2496 	ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2497 			     dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2498 #endif
2499 	ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2500 
2501 	ar_context_init(&ohci->ar_request_ctx, ohci,
2502 			OHCI1394_AsReqRcvContextControlSet);
2503 
2504 	ar_context_init(&ohci->ar_response_ctx, ohci,
2505 			OHCI1394_AsRspRcvContextControlSet);
2506 
2507 	context_init(&ohci->at_request_ctx, ohci,
2508 		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2509 
2510 	context_init(&ohci->at_response_ctx, ohci,
2511 		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2512 
2513 	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2514 	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2515 	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2516 	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2517 	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2518 
2519 	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2520 	ohci->ir_context_channels = ~0ULL;
2521 	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2522 	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2523 	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2524 	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2525 
2526 	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2527 		err = -ENOMEM;
2528 		goto fail_contexts;
2529 	}
2530 
2531 	/* self-id dma buffer allocation */
2532 	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2533 					       SELF_ID_BUF_SIZE,
2534 					       &ohci->self_id_bus,
2535 					       GFP_KERNEL);
2536 	if (ohci->self_id_cpu == NULL) {
2537 		err = -ENOMEM;
2538 		goto fail_contexts;
2539 	}
2540 
2541 	bus_options = reg_read(ohci, OHCI1394_BusOptions);
2542 	max_receive = (bus_options >> 12) & 0xf;
2543 	link_speed = bus_options & 0x7;
2544 	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2545 		reg_read(ohci, OHCI1394_GUIDLo);
2546 
2547 	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2548 	if (err)
2549 		goto fail_self_id;
2550 
2551 	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2552 		  dev_name(&dev->dev), version >> 16, version & 0xff);
2553 
2554 	return 0;
2555 
2556  fail_self_id:
2557 	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2558 			  ohci->self_id_cpu, ohci->self_id_bus);
2559  fail_contexts:
2560 	kfree(ohci->ir_context_list);
2561 	kfree(ohci->it_context_list);
2562 	context_release(&ohci->at_response_ctx);
2563 	context_release(&ohci->at_request_ctx);
2564 	ar_context_release(&ohci->ar_response_ctx);
2565 	ar_context_release(&ohci->ar_request_ctx);
2566 	pci_iounmap(dev, ohci->registers);
2567  fail_iomem:
2568 	pci_release_region(dev, 0);
2569  fail_disable:
2570 	pci_disable_device(dev);
2571  fail_free:
2572 	kfree(&ohci->card);
2573 	ohci_pmac_off(dev);
2574  fail:
2575 	if (err == -ENOMEM)
2576 		fw_error("Out of memory\n");
2577 
2578 	return err;
2579 }
2580 
2581 static void pci_remove(struct pci_dev *dev)
2582 {
2583 	struct fw_ohci *ohci;
2584 
2585 	ohci = pci_get_drvdata(dev);
2586 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2587 	flush_writes(ohci);
2588 	fw_core_remove_card(&ohci->card);
2589 
2590 	/*
2591 	 * FIXME: Fail all pending packets here, now that the upper
2592 	 * layers can't queue any more.
2593 	 */
2594 
2595 	software_reset(ohci);
2596 	free_irq(dev->irq, ohci);
2597 
2598 	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2599 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2600 				  ohci->next_config_rom, ohci->next_config_rom_bus);
2601 	if (ohci->config_rom)
2602 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2603 				  ohci->config_rom, ohci->config_rom_bus);
2604 	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2605 			  ohci->self_id_cpu, ohci->self_id_bus);
2606 	ar_context_release(&ohci->ar_request_ctx);
2607 	ar_context_release(&ohci->ar_response_ctx);
2608 	context_release(&ohci->at_request_ctx);
2609 	context_release(&ohci->at_response_ctx);
2610 	kfree(ohci->it_context_list);
2611 	kfree(ohci->ir_context_list);
2612 	pci_iounmap(dev, ohci->registers);
2613 	pci_release_region(dev, 0);
2614 	pci_disable_device(dev);
2615 	kfree(&ohci->card);
2616 	ohci_pmac_off(dev);
2617 
2618 	fw_notify("Removed fw-ohci device.\n");
2619 }
2620 
2621 #ifdef CONFIG_PM
2622 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2623 {
2624 	struct fw_ohci *ohci = pci_get_drvdata(dev);
2625 	int err;
2626 
2627 	software_reset(ohci);
2628 	free_irq(dev->irq, ohci);
2629 	err = pci_save_state(dev);
2630 	if (err) {
2631 		fw_error("pci_save_state failed\n");
2632 		return err;
2633 	}
2634 	err = pci_set_power_state(dev, pci_choose_state(dev, state));
2635 	if (err)
2636 		fw_error("pci_set_power_state failed with %d\n", err);
2637 	ohci_pmac_off(dev);
2638 
2639 	return 0;
2640 }
2641 
2642 static int pci_resume(struct pci_dev *dev)
2643 {
2644 	struct fw_ohci *ohci = pci_get_drvdata(dev);
2645 	int err;
2646 
2647 	ohci_pmac_on(dev);
2648 	pci_set_power_state(dev, PCI_D0);
2649 	pci_restore_state(dev);
2650 	err = pci_enable_device(dev);
2651 	if (err) {
2652 		fw_error("pci_enable_device failed\n");
2653 		return err;
2654 	}
2655 
2656 	return ohci_enable(&ohci->card, NULL, 0);
2657 }
2658 #endif
2659 
2660 static struct pci_device_id pci_table[] = {
2661 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2662 	{ }
2663 };
2664 
2665 MODULE_DEVICE_TABLE(pci, pci_table);
2666 
2667 static struct pci_driver fw_ohci_pci_driver = {
2668 	.name		= ohci_driver_name,
2669 	.id_table	= pci_table,
2670 	.probe		= pci_probe,
2671 	.remove		= pci_remove,
2672 #ifdef CONFIG_PM
2673 	.resume		= pci_resume,
2674 	.suspend	= pci_suspend,
2675 #endif
2676 };
2677 
2678 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2679 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2680 MODULE_LICENSE("GPL");
2681 
2682 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2683 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2684 MODULE_ALIAS("ohci1394");
2685 #endif
2686 
2687 static int __init fw_ohci_init(void)
2688 {
2689 	return pci_register_driver(&fw_ohci_pci_driver);
2690 }
2691 
2692 static void __exit fw_ohci_cleanup(void)
2693 {
2694 	pci_unregister_driver(&fw_ohci_pci_driver);
2695 }
2696 
2697 module_init(fw_ohci_init);
2698 module_exit(fw_ohci_cleanup);
2699