1 /* 2 * Driver for OHCI 1394 controllers 3 * 4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 #include <linux/compiler.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/firewire.h> 26 #include <linux/firewire-constants.h> 27 #include <linux/gfp.h> 28 #include <linux/init.h> 29 #include <linux/interrupt.h> 30 #include <linux/io.h> 31 #include <linux/kernel.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/moduleparam.h> 36 #include <linux/pci.h> 37 #include <linux/pci_ids.h> 38 #include <linux/spinlock.h> 39 #include <linux/string.h> 40 41 #include <asm/atomic.h> 42 #include <asm/byteorder.h> 43 #include <asm/page.h> 44 #include <asm/system.h> 45 46 #ifdef CONFIG_PPC_PMAC 47 #include <asm/pmac_feature.h> 48 #endif 49 50 #include "core.h" 51 #include "ohci.h" 52 53 #define DESCRIPTOR_OUTPUT_MORE 0 54 #define DESCRIPTOR_OUTPUT_LAST (1 << 12) 55 #define DESCRIPTOR_INPUT_MORE (2 << 12) 56 #define DESCRIPTOR_INPUT_LAST (3 << 12) 57 #define DESCRIPTOR_STATUS (1 << 11) 58 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8) 59 #define DESCRIPTOR_PING (1 << 7) 60 #define DESCRIPTOR_YY (1 << 6) 61 #define DESCRIPTOR_NO_IRQ (0 << 4) 62 #define DESCRIPTOR_IRQ_ERROR (1 << 4) 63 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4) 64 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2) 65 #define DESCRIPTOR_WAIT (3 << 0) 66 67 struct descriptor { 68 __le16 req_count; 69 __le16 control; 70 __le32 data_address; 71 __le32 branch_address; 72 __le16 res_count; 73 __le16 transfer_status; 74 } __attribute__((aligned(16))); 75 76 struct db_descriptor { 77 __le16 first_size; 78 __le16 control; 79 __le16 second_req_count; 80 __le16 first_req_count; 81 __le32 branch_address; 82 __le16 second_res_count; 83 __le16 first_res_count; 84 __le32 reserved0; 85 __le32 first_buffer; 86 __le32 second_buffer; 87 __le32 reserved1; 88 } __attribute__((aligned(16))); 89 90 #define CONTROL_SET(regs) (regs) 91 #define CONTROL_CLEAR(regs) ((regs) + 4) 92 #define COMMAND_PTR(regs) ((regs) + 12) 93 #define CONTEXT_MATCH(regs) ((regs) + 16) 94 95 struct ar_buffer { 96 struct descriptor descriptor; 97 struct ar_buffer *next; 98 __le32 data[0]; 99 }; 100 101 struct ar_context { 102 struct fw_ohci *ohci; 103 struct ar_buffer *current_buffer; 104 struct ar_buffer *last_buffer; 105 void *pointer; 106 u32 regs; 107 struct tasklet_struct tasklet; 108 }; 109 110 struct context; 111 112 typedef int (*descriptor_callback_t)(struct context *ctx, 113 struct descriptor *d, 114 struct descriptor *last); 115 116 /* 117 * A buffer that contains a block of DMA-able coherent memory used for 118 * storing a portion of a DMA descriptor program. 119 */ 120 struct descriptor_buffer { 121 struct list_head list; 122 dma_addr_t buffer_bus; 123 size_t buffer_size; 124 size_t used; 125 struct descriptor buffer[0]; 126 }; 127 128 struct context { 129 struct fw_ohci *ohci; 130 u32 regs; 131 int total_allocation; 132 133 /* 134 * List of page-sized buffers for storing DMA descriptors. 135 * Head of list contains buffers in use and tail of list contains 136 * free buffers. 137 */ 138 struct list_head buffer_list; 139 140 /* 141 * Pointer to a buffer inside buffer_list that contains the tail 142 * end of the current DMA program. 143 */ 144 struct descriptor_buffer *buffer_tail; 145 146 /* 147 * The descriptor containing the branch address of the first 148 * descriptor that has not yet been filled by the device. 149 */ 150 struct descriptor *last; 151 152 /* 153 * The last descriptor in the DMA program. It contains the branch 154 * address that must be updated upon appending a new descriptor. 155 */ 156 struct descriptor *prev; 157 158 descriptor_callback_t callback; 159 160 struct tasklet_struct tasklet; 161 }; 162 163 #define IT_HEADER_SY(v) ((v) << 0) 164 #define IT_HEADER_TCODE(v) ((v) << 4) 165 #define IT_HEADER_CHANNEL(v) ((v) << 8) 166 #define IT_HEADER_TAG(v) ((v) << 14) 167 #define IT_HEADER_SPEED(v) ((v) << 16) 168 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16) 169 170 struct iso_context { 171 struct fw_iso_context base; 172 struct context context; 173 int excess_bytes; 174 void *header; 175 size_t header_length; 176 }; 177 178 #define CONFIG_ROM_SIZE 1024 179 180 struct fw_ohci { 181 struct fw_card card; 182 183 __iomem char *registers; 184 dma_addr_t self_id_bus; 185 __le32 *self_id_cpu; 186 struct tasklet_struct bus_reset_tasklet; 187 int node_id; 188 int generation; 189 int request_generation; /* for timestamping incoming requests */ 190 atomic_t bus_seconds; 191 192 bool use_dualbuffer; 193 bool old_uninorth; 194 bool bus_reset_packet_quirk; 195 196 /* 197 * Spinlock for accessing fw_ohci data. Never call out of 198 * this driver with this lock held. 199 */ 200 spinlock_t lock; 201 u32 self_id_buffer[512]; 202 203 /* Config rom buffers */ 204 __be32 *config_rom; 205 dma_addr_t config_rom_bus; 206 __be32 *next_config_rom; 207 dma_addr_t next_config_rom_bus; 208 __be32 next_header; 209 210 struct ar_context ar_request_ctx; 211 struct ar_context ar_response_ctx; 212 struct context at_request_ctx; 213 struct context at_response_ctx; 214 215 u32 it_context_mask; 216 struct iso_context *it_context_list; 217 u64 ir_context_channels; 218 u32 ir_context_mask; 219 struct iso_context *ir_context_list; 220 }; 221 222 static inline struct fw_ohci *fw_ohci(struct fw_card *card) 223 { 224 return container_of(card, struct fw_ohci, card); 225 } 226 227 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000 228 #define IR_CONTEXT_BUFFER_FILL 0x80000000 229 #define IR_CONTEXT_ISOCH_HEADER 0x40000000 230 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000 231 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000 232 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000 233 234 #define CONTEXT_RUN 0x8000 235 #define CONTEXT_WAKE 0x1000 236 #define CONTEXT_DEAD 0x0800 237 #define CONTEXT_ACTIVE 0x0400 238 239 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf 240 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2 241 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8 242 243 #define OHCI1394_REGISTER_SIZE 0x800 244 #define OHCI_LOOP_COUNT 500 245 #define OHCI1394_PCI_HCI_Control 0x40 246 #define SELF_ID_BUF_SIZE 0x800 247 #define OHCI_TCODE_PHY_PACKET 0x0e 248 #define OHCI_VERSION_1_1 0x010010 249 250 static char ohci_driver_name[] = KBUILD_MODNAME; 251 252 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG 253 254 #define OHCI_PARAM_DEBUG_AT_AR 1 255 #define OHCI_PARAM_DEBUG_SELFIDS 2 256 #define OHCI_PARAM_DEBUG_IRQS 4 257 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */ 258 259 static int param_debug; 260 module_param_named(debug, param_debug, int, 0644); 261 MODULE_PARM_DESC(debug, "Verbose logging (default = 0" 262 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR) 263 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS) 264 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS) 265 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS) 266 ", or a combination, or all = -1)"); 267 268 static void log_irqs(u32 evt) 269 { 270 if (likely(!(param_debug & 271 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS)))) 272 return; 273 274 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) && 275 !(evt & OHCI1394_busReset)) 276 return; 277 278 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt, 279 evt & OHCI1394_selfIDComplete ? " selfID" : "", 280 evt & OHCI1394_RQPkt ? " AR_req" : "", 281 evt & OHCI1394_RSPkt ? " AR_resp" : "", 282 evt & OHCI1394_reqTxComplete ? " AT_req" : "", 283 evt & OHCI1394_respTxComplete ? " AT_resp" : "", 284 evt & OHCI1394_isochRx ? " IR" : "", 285 evt & OHCI1394_isochTx ? " IT" : "", 286 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "", 287 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "", 288 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "", 289 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "", 290 evt & OHCI1394_regAccessFail ? " regAccessFail" : "", 291 evt & OHCI1394_busReset ? " busReset" : "", 292 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt | 293 OHCI1394_RSPkt | OHCI1394_reqTxComplete | 294 OHCI1394_respTxComplete | OHCI1394_isochRx | 295 OHCI1394_isochTx | OHCI1394_postedWriteErr | 296 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds | 297 OHCI1394_cycleInconsistent | 298 OHCI1394_regAccessFail | OHCI1394_busReset) 299 ? " ?" : ""); 300 } 301 302 static const char *speed[] = { 303 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta", 304 }; 305 static const char *power[] = { 306 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W", 307 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W", 308 }; 309 static const char port[] = { '.', '-', 'p', 'c', }; 310 311 static char _p(u32 *s, int shift) 312 { 313 return port[*s >> shift & 3]; 314 } 315 316 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s) 317 { 318 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS))) 319 return; 320 321 fw_notify("%d selfIDs, generation %d, local node ID %04x\n", 322 self_id_count, generation, node_id); 323 324 for (; self_id_count--; ++s) 325 if ((*s & 1 << 23) == 0) 326 fw_notify("selfID 0: %08x, phy %d [%c%c%c] " 327 "%s gc=%d %s %s%s%s\n", 328 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2), 329 speed[*s >> 14 & 3], *s >> 16 & 63, 330 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "", 331 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : ""); 332 else 333 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n", 334 *s, *s >> 24 & 63, 335 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10), 336 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2)); 337 } 338 339 static const char *evts[] = { 340 [0x00] = "evt_no_status", [0x01] = "-reserved-", 341 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack", 342 [0x04] = "evt_underrun", [0x05] = "evt_overrun", 343 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read", 344 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset", 345 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err", 346 [0x0c] = "-reserved-", [0x0d] = "-reserved-", 347 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed", 348 [0x10] = "-reserved-", [0x11] = "ack_complete", 349 [0x12] = "ack_pending ", [0x13] = "-reserved-", 350 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A", 351 [0x16] = "ack_busy_B", [0x17] = "-reserved-", 352 [0x18] = "-reserved-", [0x19] = "-reserved-", 353 [0x1a] = "-reserved-", [0x1b] = "ack_tardy", 354 [0x1c] = "-reserved-", [0x1d] = "ack_data_error", 355 [0x1e] = "ack_type_error", [0x1f] = "-reserved-", 356 [0x20] = "pending/cancelled", 357 }; 358 static const char *tcodes[] = { 359 [0x0] = "QW req", [0x1] = "BW req", 360 [0x2] = "W resp", [0x3] = "-reserved-", 361 [0x4] = "QR req", [0x5] = "BR req", 362 [0x6] = "QR resp", [0x7] = "BR resp", 363 [0x8] = "cycle start", [0x9] = "Lk req", 364 [0xa] = "async stream packet", [0xb] = "Lk resp", 365 [0xc] = "-reserved-", [0xd] = "-reserved-", 366 [0xe] = "link internal", [0xf] = "-reserved-", 367 }; 368 static const char *phys[] = { 369 [0x0] = "phy config packet", [0x1] = "link-on packet", 370 [0x2] = "self-id packet", [0x3] = "-reserved-", 371 }; 372 373 static void log_ar_at_event(char dir, int speed, u32 *header, int evt) 374 { 375 int tcode = header[0] >> 4 & 0xf; 376 char specific[12]; 377 378 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR))) 379 return; 380 381 if (unlikely(evt >= ARRAY_SIZE(evts))) 382 evt = 0x1f; 383 384 if (evt == OHCI1394_evt_bus_reset) { 385 fw_notify("A%c evt_bus_reset, generation %d\n", 386 dir, (header[2] >> 16) & 0xff); 387 return; 388 } 389 390 if (header[0] == ~header[1]) { 391 fw_notify("A%c %s, %s, %08x\n", 392 dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]); 393 return; 394 } 395 396 switch (tcode) { 397 case 0x0: case 0x6: case 0x8: 398 snprintf(specific, sizeof(specific), " = %08x", 399 be32_to_cpu((__force __be32)header[3])); 400 break; 401 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb: 402 snprintf(specific, sizeof(specific), " %x,%x", 403 header[3] >> 16, header[3] & 0xffff); 404 break; 405 default: 406 specific[0] = '\0'; 407 } 408 409 switch (tcode) { 410 case 0xe: case 0xa: 411 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]); 412 break; 413 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9: 414 fw_notify("A%c spd %x tl %02x, " 415 "%04x -> %04x, %s, " 416 "%s, %04x%08x%s\n", 417 dir, speed, header[0] >> 10 & 0x3f, 418 header[1] >> 16, header[0] >> 16, evts[evt], 419 tcodes[tcode], header[1] & 0xffff, header[2], specific); 420 break; 421 default: 422 fw_notify("A%c spd %x tl %02x, " 423 "%04x -> %04x, %s, " 424 "%s%s\n", 425 dir, speed, header[0] >> 10 & 0x3f, 426 header[1] >> 16, header[0] >> 16, evts[evt], 427 tcodes[tcode], specific); 428 } 429 } 430 431 #else 432 433 #define log_irqs(evt) 434 #define log_selfids(node_id, generation, self_id_count, sid) 435 #define log_ar_at_event(dir, speed, header, evt) 436 437 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */ 438 439 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data) 440 { 441 writel(data, ohci->registers + offset); 442 } 443 444 static inline u32 reg_read(const struct fw_ohci *ohci, int offset) 445 { 446 return readl(ohci->registers + offset); 447 } 448 449 static inline void flush_writes(const struct fw_ohci *ohci) 450 { 451 /* Do a dummy read to flush writes. */ 452 reg_read(ohci, OHCI1394_Version); 453 } 454 455 static int ohci_update_phy_reg(struct fw_card *card, int addr, 456 int clear_bits, int set_bits) 457 { 458 struct fw_ohci *ohci = fw_ohci(card); 459 u32 val, old; 460 461 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr)); 462 flush_writes(ohci); 463 msleep(2); 464 val = reg_read(ohci, OHCI1394_PhyControl); 465 if ((val & OHCI1394_PhyControl_ReadDone) == 0) { 466 fw_error("failed to set phy reg bits.\n"); 467 return -EBUSY; 468 } 469 470 old = OHCI1394_PhyControl_ReadData(val); 471 old = (old & ~clear_bits) | set_bits; 472 reg_write(ohci, OHCI1394_PhyControl, 473 OHCI1394_PhyControl_Write(addr, old)); 474 475 return 0; 476 } 477 478 static int ar_context_add_page(struct ar_context *ctx) 479 { 480 struct device *dev = ctx->ohci->card.device; 481 struct ar_buffer *ab; 482 dma_addr_t uninitialized_var(ab_bus); 483 size_t offset; 484 485 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC); 486 if (ab == NULL) 487 return -ENOMEM; 488 489 ab->next = NULL; 490 memset(&ab->descriptor, 0, sizeof(ab->descriptor)); 491 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE | 492 DESCRIPTOR_STATUS | 493 DESCRIPTOR_BRANCH_ALWAYS); 494 offset = offsetof(struct ar_buffer, data); 495 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset); 496 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset); 497 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset); 498 ab->descriptor.branch_address = 0; 499 500 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1); 501 ctx->last_buffer->next = ab; 502 ctx->last_buffer = ab; 503 504 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); 505 flush_writes(ctx->ohci); 506 507 return 0; 508 } 509 510 static void ar_context_release(struct ar_context *ctx) 511 { 512 struct ar_buffer *ab, *ab_next; 513 size_t offset; 514 dma_addr_t ab_bus; 515 516 for (ab = ctx->current_buffer; ab; ab = ab_next) { 517 ab_next = ab->next; 518 offset = offsetof(struct ar_buffer, data); 519 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset; 520 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE, 521 ab, ab_bus); 522 } 523 } 524 525 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32) 526 #define cond_le32_to_cpu(v) \ 527 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v)) 528 #else 529 #define cond_le32_to_cpu(v) le32_to_cpu(v) 530 #endif 531 532 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer) 533 { 534 struct fw_ohci *ohci = ctx->ohci; 535 struct fw_packet p; 536 u32 status, length, tcode; 537 int evt; 538 539 p.header[0] = cond_le32_to_cpu(buffer[0]); 540 p.header[1] = cond_le32_to_cpu(buffer[1]); 541 p.header[2] = cond_le32_to_cpu(buffer[2]); 542 543 tcode = (p.header[0] >> 4) & 0x0f; 544 switch (tcode) { 545 case TCODE_WRITE_QUADLET_REQUEST: 546 case TCODE_READ_QUADLET_RESPONSE: 547 p.header[3] = (__force __u32) buffer[3]; 548 p.header_length = 16; 549 p.payload_length = 0; 550 break; 551 552 case TCODE_READ_BLOCK_REQUEST : 553 p.header[3] = cond_le32_to_cpu(buffer[3]); 554 p.header_length = 16; 555 p.payload_length = 0; 556 break; 557 558 case TCODE_WRITE_BLOCK_REQUEST: 559 case TCODE_READ_BLOCK_RESPONSE: 560 case TCODE_LOCK_REQUEST: 561 case TCODE_LOCK_RESPONSE: 562 p.header[3] = cond_le32_to_cpu(buffer[3]); 563 p.header_length = 16; 564 p.payload_length = p.header[3] >> 16; 565 break; 566 567 case TCODE_WRITE_RESPONSE: 568 case TCODE_READ_QUADLET_REQUEST: 569 case OHCI_TCODE_PHY_PACKET: 570 p.header_length = 12; 571 p.payload_length = 0; 572 break; 573 574 default: 575 /* FIXME: Stop context, discard everything, and restart? */ 576 p.header_length = 0; 577 p.payload_length = 0; 578 } 579 580 p.payload = (void *) buffer + p.header_length; 581 582 /* FIXME: What to do about evt_* errors? */ 583 length = (p.header_length + p.payload_length + 3) / 4; 584 status = cond_le32_to_cpu(buffer[length]); 585 evt = (status >> 16) & 0x1f; 586 587 p.ack = evt - 16; 588 p.speed = (status >> 21) & 0x7; 589 p.timestamp = status & 0xffff; 590 p.generation = ohci->request_generation; 591 592 log_ar_at_event('R', p.speed, p.header, evt); 593 594 /* 595 * The OHCI bus reset handler synthesizes a phy packet with 596 * the new generation number when a bus reset happens (see 597 * section 8.4.2.3). This helps us determine when a request 598 * was received and make sure we send the response in the same 599 * generation. We only need this for requests; for responses 600 * we use the unique tlabel for finding the matching 601 * request. 602 * 603 * Alas some chips sometimes emit bus reset packets with a 604 * wrong generation. We set the correct generation for these 605 * at a slightly incorrect time (in bus_reset_tasklet). 606 */ 607 if (evt == OHCI1394_evt_bus_reset) { 608 if (!ohci->bus_reset_packet_quirk) 609 ohci->request_generation = (p.header[2] >> 16) & 0xff; 610 } else if (ctx == &ohci->ar_request_ctx) { 611 fw_core_handle_request(&ohci->card, &p); 612 } else { 613 fw_core_handle_response(&ohci->card, &p); 614 } 615 616 return buffer + length + 1; 617 } 618 619 static void ar_context_tasklet(unsigned long data) 620 { 621 struct ar_context *ctx = (struct ar_context *)data; 622 struct fw_ohci *ohci = ctx->ohci; 623 struct ar_buffer *ab; 624 struct descriptor *d; 625 void *buffer, *end; 626 627 ab = ctx->current_buffer; 628 d = &ab->descriptor; 629 630 if (d->res_count == 0) { 631 size_t size, rest, offset; 632 dma_addr_t start_bus; 633 void *start; 634 635 /* 636 * This descriptor is finished and we may have a 637 * packet split across this and the next buffer. We 638 * reuse the page for reassembling the split packet. 639 */ 640 641 offset = offsetof(struct ar_buffer, data); 642 start = buffer = ab; 643 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset; 644 645 ab = ab->next; 646 d = &ab->descriptor; 647 size = buffer + PAGE_SIZE - ctx->pointer; 648 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count); 649 memmove(buffer, ctx->pointer, size); 650 memcpy(buffer + size, ab->data, rest); 651 ctx->current_buffer = ab; 652 ctx->pointer = (void *) ab->data + rest; 653 end = buffer + size + rest; 654 655 while (buffer < end) 656 buffer = handle_ar_packet(ctx, buffer); 657 658 dma_free_coherent(ohci->card.device, PAGE_SIZE, 659 start, start_bus); 660 ar_context_add_page(ctx); 661 } else { 662 buffer = ctx->pointer; 663 ctx->pointer = end = 664 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count); 665 666 while (buffer < end) 667 buffer = handle_ar_packet(ctx, buffer); 668 } 669 } 670 671 static int ar_context_init(struct ar_context *ctx, 672 struct fw_ohci *ohci, u32 regs) 673 { 674 struct ar_buffer ab; 675 676 ctx->regs = regs; 677 ctx->ohci = ohci; 678 ctx->last_buffer = &ab; 679 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx); 680 681 ar_context_add_page(ctx); 682 ar_context_add_page(ctx); 683 ctx->current_buffer = ab.next; 684 ctx->pointer = ctx->current_buffer->data; 685 686 return 0; 687 } 688 689 static void ar_context_run(struct ar_context *ctx) 690 { 691 struct ar_buffer *ab = ctx->current_buffer; 692 dma_addr_t ab_bus; 693 size_t offset; 694 695 offset = offsetof(struct ar_buffer, data); 696 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset; 697 698 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1); 699 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN); 700 flush_writes(ctx->ohci); 701 } 702 703 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z) 704 { 705 int b, key; 706 707 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2; 708 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8; 709 710 /* figure out which descriptor the branch address goes in */ 711 if (z == 2 && (b == 3 || key == 2)) 712 return d; 713 else 714 return d + z - 1; 715 } 716 717 static void context_tasklet(unsigned long data) 718 { 719 struct context *ctx = (struct context *) data; 720 struct descriptor *d, *last; 721 u32 address; 722 int z; 723 struct descriptor_buffer *desc; 724 725 desc = list_entry(ctx->buffer_list.next, 726 struct descriptor_buffer, list); 727 last = ctx->last; 728 while (last->branch_address != 0) { 729 struct descriptor_buffer *old_desc = desc; 730 address = le32_to_cpu(last->branch_address); 731 z = address & 0xf; 732 address &= ~0xf; 733 734 /* If the branch address points to a buffer outside of the 735 * current buffer, advance to the next buffer. */ 736 if (address < desc->buffer_bus || 737 address >= desc->buffer_bus + desc->used) 738 desc = list_entry(desc->list.next, 739 struct descriptor_buffer, list); 740 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d); 741 last = find_branch_descriptor(d, z); 742 743 if (!ctx->callback(ctx, d, last)) 744 break; 745 746 if (old_desc != desc) { 747 /* If we've advanced to the next buffer, move the 748 * previous buffer to the free list. */ 749 unsigned long flags; 750 old_desc->used = 0; 751 spin_lock_irqsave(&ctx->ohci->lock, flags); 752 list_move_tail(&old_desc->list, &ctx->buffer_list); 753 spin_unlock_irqrestore(&ctx->ohci->lock, flags); 754 } 755 ctx->last = last; 756 } 757 } 758 759 /* 760 * Allocate a new buffer and add it to the list of free buffers for this 761 * context. Must be called with ohci->lock held. 762 */ 763 static int context_add_buffer(struct context *ctx) 764 { 765 struct descriptor_buffer *desc; 766 dma_addr_t uninitialized_var(bus_addr); 767 int offset; 768 769 /* 770 * 16MB of descriptors should be far more than enough for any DMA 771 * program. This will catch run-away userspace or DoS attacks. 772 */ 773 if (ctx->total_allocation >= 16*1024*1024) 774 return -ENOMEM; 775 776 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, 777 &bus_addr, GFP_ATOMIC); 778 if (!desc) 779 return -ENOMEM; 780 781 offset = (void *)&desc->buffer - (void *)desc; 782 desc->buffer_size = PAGE_SIZE - offset; 783 desc->buffer_bus = bus_addr + offset; 784 desc->used = 0; 785 786 list_add_tail(&desc->list, &ctx->buffer_list); 787 ctx->total_allocation += PAGE_SIZE; 788 789 return 0; 790 } 791 792 static int context_init(struct context *ctx, struct fw_ohci *ohci, 793 u32 regs, descriptor_callback_t callback) 794 { 795 ctx->ohci = ohci; 796 ctx->regs = regs; 797 ctx->total_allocation = 0; 798 799 INIT_LIST_HEAD(&ctx->buffer_list); 800 if (context_add_buffer(ctx) < 0) 801 return -ENOMEM; 802 803 ctx->buffer_tail = list_entry(ctx->buffer_list.next, 804 struct descriptor_buffer, list); 805 806 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx); 807 ctx->callback = callback; 808 809 /* 810 * We put a dummy descriptor in the buffer that has a NULL 811 * branch address and looks like it's been sent. That way we 812 * have a descriptor to append DMA programs to. 813 */ 814 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer)); 815 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST); 816 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011); 817 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer); 818 ctx->last = ctx->buffer_tail->buffer; 819 ctx->prev = ctx->buffer_tail->buffer; 820 821 return 0; 822 } 823 824 static void context_release(struct context *ctx) 825 { 826 struct fw_card *card = &ctx->ohci->card; 827 struct descriptor_buffer *desc, *tmp; 828 829 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) 830 dma_free_coherent(card->device, PAGE_SIZE, desc, 831 desc->buffer_bus - 832 ((void *)&desc->buffer - (void *)desc)); 833 } 834 835 /* Must be called with ohci->lock held */ 836 static struct descriptor *context_get_descriptors(struct context *ctx, 837 int z, dma_addr_t *d_bus) 838 { 839 struct descriptor *d = NULL; 840 struct descriptor_buffer *desc = ctx->buffer_tail; 841 842 if (z * sizeof(*d) > desc->buffer_size) 843 return NULL; 844 845 if (z * sizeof(*d) > desc->buffer_size - desc->used) { 846 /* No room for the descriptor in this buffer, so advance to the 847 * next one. */ 848 849 if (desc->list.next == &ctx->buffer_list) { 850 /* If there is no free buffer next in the list, 851 * allocate one. */ 852 if (context_add_buffer(ctx) < 0) 853 return NULL; 854 } 855 desc = list_entry(desc->list.next, 856 struct descriptor_buffer, list); 857 ctx->buffer_tail = desc; 858 } 859 860 d = desc->buffer + desc->used / sizeof(*d); 861 memset(d, 0, z * sizeof(*d)); 862 *d_bus = desc->buffer_bus + desc->used; 863 864 return d; 865 } 866 867 static void context_run(struct context *ctx, u32 extra) 868 { 869 struct fw_ohci *ohci = ctx->ohci; 870 871 reg_write(ohci, COMMAND_PTR(ctx->regs), 872 le32_to_cpu(ctx->last->branch_address)); 873 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0); 874 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra); 875 flush_writes(ohci); 876 } 877 878 static void context_append(struct context *ctx, 879 struct descriptor *d, int z, int extra) 880 { 881 dma_addr_t d_bus; 882 struct descriptor_buffer *desc = ctx->buffer_tail; 883 884 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d); 885 886 desc->used += (z + extra) * sizeof(*d); 887 ctx->prev->branch_address = cpu_to_le32(d_bus | z); 888 ctx->prev = find_branch_descriptor(d, z); 889 890 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE); 891 flush_writes(ctx->ohci); 892 } 893 894 static void context_stop(struct context *ctx) 895 { 896 u32 reg; 897 int i; 898 899 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN); 900 flush_writes(ctx->ohci); 901 902 for (i = 0; i < 10; i++) { 903 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs)); 904 if ((reg & CONTEXT_ACTIVE) == 0) 905 return; 906 907 mdelay(1); 908 } 909 fw_error("Error: DMA context still active (0x%08x)\n", reg); 910 } 911 912 struct driver_data { 913 struct fw_packet *packet; 914 }; 915 916 /* 917 * This function apppends a packet to the DMA queue for transmission. 918 * Must always be called with the ochi->lock held to ensure proper 919 * generation handling and locking around packet queue manipulation. 920 */ 921 static int at_context_queue_packet(struct context *ctx, 922 struct fw_packet *packet) 923 { 924 struct fw_ohci *ohci = ctx->ohci; 925 dma_addr_t d_bus, uninitialized_var(payload_bus); 926 struct driver_data *driver_data; 927 struct descriptor *d, *last; 928 __le32 *header; 929 int z, tcode; 930 u32 reg; 931 932 d = context_get_descriptors(ctx, 4, &d_bus); 933 if (d == NULL) { 934 packet->ack = RCODE_SEND_ERROR; 935 return -1; 936 } 937 938 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE); 939 d[0].res_count = cpu_to_le16(packet->timestamp); 940 941 /* 942 * The DMA format for asyncronous link packets is different 943 * from the IEEE1394 layout, so shift the fields around 944 * accordingly. If header_length is 8, it's a PHY packet, to 945 * which we need to prepend an extra quadlet. 946 */ 947 948 header = (__le32 *) &d[1]; 949 switch (packet->header_length) { 950 case 16: 951 case 12: 952 header[0] = cpu_to_le32((packet->header[0] & 0xffff) | 953 (packet->speed << 16)); 954 header[1] = cpu_to_le32((packet->header[1] & 0xffff) | 955 (packet->header[0] & 0xffff0000)); 956 header[2] = cpu_to_le32(packet->header[2]); 957 958 tcode = (packet->header[0] >> 4) & 0x0f; 959 if (TCODE_IS_BLOCK_PACKET(tcode)) 960 header[3] = cpu_to_le32(packet->header[3]); 961 else 962 header[3] = (__force __le32) packet->header[3]; 963 964 d[0].req_count = cpu_to_le16(packet->header_length); 965 break; 966 967 case 8: 968 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) | 969 (packet->speed << 16)); 970 header[1] = cpu_to_le32(packet->header[0]); 971 header[2] = cpu_to_le32(packet->header[1]); 972 d[0].req_count = cpu_to_le16(12); 973 break; 974 975 case 4: 976 header[0] = cpu_to_le32((packet->header[0] & 0xffff) | 977 (packet->speed << 16)); 978 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000); 979 d[0].req_count = cpu_to_le16(8); 980 break; 981 982 default: 983 /* BUG(); */ 984 packet->ack = RCODE_SEND_ERROR; 985 return -1; 986 } 987 988 driver_data = (struct driver_data *) &d[3]; 989 driver_data->packet = packet; 990 packet->driver_data = driver_data; 991 992 if (packet->payload_length > 0) { 993 payload_bus = 994 dma_map_single(ohci->card.device, packet->payload, 995 packet->payload_length, DMA_TO_DEVICE); 996 if (dma_mapping_error(ohci->card.device, payload_bus)) { 997 packet->ack = RCODE_SEND_ERROR; 998 return -1; 999 } 1000 packet->payload_bus = payload_bus; 1001 packet->payload_mapped = true; 1002 1003 d[2].req_count = cpu_to_le16(packet->payload_length); 1004 d[2].data_address = cpu_to_le32(payload_bus); 1005 last = &d[2]; 1006 z = 3; 1007 } else { 1008 last = &d[0]; 1009 z = 2; 1010 } 1011 1012 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST | 1013 DESCRIPTOR_IRQ_ALWAYS | 1014 DESCRIPTOR_BRANCH_ALWAYS); 1015 1016 /* 1017 * If the controller and packet generations don't match, we need to 1018 * bail out and try again. If IntEvent.busReset is set, the AT context 1019 * is halted, so appending to the context and trying to run it is 1020 * futile. Most controllers do the right thing and just flush the AT 1021 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but 1022 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind 1023 * up stalling out. So we just bail out in software and try again 1024 * later, and everyone is happy. 1025 * FIXME: Document how the locking works. 1026 */ 1027 if (ohci->generation != packet->generation || 1028 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) { 1029 if (packet->payload_mapped) 1030 dma_unmap_single(ohci->card.device, payload_bus, 1031 packet->payload_length, DMA_TO_DEVICE); 1032 packet->ack = RCODE_GENERATION; 1033 return -1; 1034 } 1035 1036 context_append(ctx, d, z, 4 - z); 1037 1038 /* If the context isn't already running, start it up. */ 1039 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs)); 1040 if ((reg & CONTEXT_RUN) == 0) 1041 context_run(ctx, 0); 1042 1043 return 0; 1044 } 1045 1046 static int handle_at_packet(struct context *context, 1047 struct descriptor *d, 1048 struct descriptor *last) 1049 { 1050 struct driver_data *driver_data; 1051 struct fw_packet *packet; 1052 struct fw_ohci *ohci = context->ohci; 1053 int evt; 1054 1055 if (last->transfer_status == 0) 1056 /* This descriptor isn't done yet, stop iteration. */ 1057 return 0; 1058 1059 driver_data = (struct driver_data *) &d[3]; 1060 packet = driver_data->packet; 1061 if (packet == NULL) 1062 /* This packet was cancelled, just continue. */ 1063 return 1; 1064 1065 if (packet->payload_mapped) 1066 dma_unmap_single(ohci->card.device, packet->payload_bus, 1067 packet->payload_length, DMA_TO_DEVICE); 1068 1069 evt = le16_to_cpu(last->transfer_status) & 0x1f; 1070 packet->timestamp = le16_to_cpu(last->res_count); 1071 1072 log_ar_at_event('T', packet->speed, packet->header, evt); 1073 1074 switch (evt) { 1075 case OHCI1394_evt_timeout: 1076 /* Async response transmit timed out. */ 1077 packet->ack = RCODE_CANCELLED; 1078 break; 1079 1080 case OHCI1394_evt_flushed: 1081 /* 1082 * The packet was flushed should give same error as 1083 * when we try to use a stale generation count. 1084 */ 1085 packet->ack = RCODE_GENERATION; 1086 break; 1087 1088 case OHCI1394_evt_missing_ack: 1089 /* 1090 * Using a valid (current) generation count, but the 1091 * node is not on the bus or not sending acks. 1092 */ 1093 packet->ack = RCODE_NO_ACK; 1094 break; 1095 1096 case ACK_COMPLETE + 0x10: 1097 case ACK_PENDING + 0x10: 1098 case ACK_BUSY_X + 0x10: 1099 case ACK_BUSY_A + 0x10: 1100 case ACK_BUSY_B + 0x10: 1101 case ACK_DATA_ERROR + 0x10: 1102 case ACK_TYPE_ERROR + 0x10: 1103 packet->ack = evt - 0x10; 1104 break; 1105 1106 default: 1107 packet->ack = RCODE_SEND_ERROR; 1108 break; 1109 } 1110 1111 packet->callback(packet, &ohci->card, packet->ack); 1112 1113 return 1; 1114 } 1115 1116 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff) 1117 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f) 1118 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff) 1119 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff) 1120 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff) 1121 1122 static void handle_local_rom(struct fw_ohci *ohci, 1123 struct fw_packet *packet, u32 csr) 1124 { 1125 struct fw_packet response; 1126 int tcode, length, i; 1127 1128 tcode = HEADER_GET_TCODE(packet->header[0]); 1129 if (TCODE_IS_BLOCK_PACKET(tcode)) 1130 length = HEADER_GET_DATA_LENGTH(packet->header[3]); 1131 else 1132 length = 4; 1133 1134 i = csr - CSR_CONFIG_ROM; 1135 if (i + length > CONFIG_ROM_SIZE) { 1136 fw_fill_response(&response, packet->header, 1137 RCODE_ADDRESS_ERROR, NULL, 0); 1138 } else if (!TCODE_IS_READ_REQUEST(tcode)) { 1139 fw_fill_response(&response, packet->header, 1140 RCODE_TYPE_ERROR, NULL, 0); 1141 } else { 1142 fw_fill_response(&response, packet->header, RCODE_COMPLETE, 1143 (void *) ohci->config_rom + i, length); 1144 } 1145 1146 fw_core_handle_response(&ohci->card, &response); 1147 } 1148 1149 static void handle_local_lock(struct fw_ohci *ohci, 1150 struct fw_packet *packet, u32 csr) 1151 { 1152 struct fw_packet response; 1153 int tcode, length, ext_tcode, sel; 1154 __be32 *payload, lock_old; 1155 u32 lock_arg, lock_data; 1156 1157 tcode = HEADER_GET_TCODE(packet->header[0]); 1158 length = HEADER_GET_DATA_LENGTH(packet->header[3]); 1159 payload = packet->payload; 1160 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]); 1161 1162 if (tcode == TCODE_LOCK_REQUEST && 1163 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) { 1164 lock_arg = be32_to_cpu(payload[0]); 1165 lock_data = be32_to_cpu(payload[1]); 1166 } else if (tcode == TCODE_READ_QUADLET_REQUEST) { 1167 lock_arg = 0; 1168 lock_data = 0; 1169 } else { 1170 fw_fill_response(&response, packet->header, 1171 RCODE_TYPE_ERROR, NULL, 0); 1172 goto out; 1173 } 1174 1175 sel = (csr - CSR_BUS_MANAGER_ID) / 4; 1176 reg_write(ohci, OHCI1394_CSRData, lock_data); 1177 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg); 1178 reg_write(ohci, OHCI1394_CSRControl, sel); 1179 1180 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) 1181 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData)); 1182 else 1183 fw_notify("swap not done yet\n"); 1184 1185 fw_fill_response(&response, packet->header, 1186 RCODE_COMPLETE, &lock_old, sizeof(lock_old)); 1187 out: 1188 fw_core_handle_response(&ohci->card, &response); 1189 } 1190 1191 static void handle_local_request(struct context *ctx, struct fw_packet *packet) 1192 { 1193 u64 offset; 1194 u32 csr; 1195 1196 if (ctx == &ctx->ohci->at_request_ctx) { 1197 packet->ack = ACK_PENDING; 1198 packet->callback(packet, &ctx->ohci->card, packet->ack); 1199 } 1200 1201 offset = 1202 ((unsigned long long) 1203 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) | 1204 packet->header[2]; 1205 csr = offset - CSR_REGISTER_BASE; 1206 1207 /* Handle config rom reads. */ 1208 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END) 1209 handle_local_rom(ctx->ohci, packet, csr); 1210 else switch (csr) { 1211 case CSR_BUS_MANAGER_ID: 1212 case CSR_BANDWIDTH_AVAILABLE: 1213 case CSR_CHANNELS_AVAILABLE_HI: 1214 case CSR_CHANNELS_AVAILABLE_LO: 1215 handle_local_lock(ctx->ohci, packet, csr); 1216 break; 1217 default: 1218 if (ctx == &ctx->ohci->at_request_ctx) 1219 fw_core_handle_request(&ctx->ohci->card, packet); 1220 else 1221 fw_core_handle_response(&ctx->ohci->card, packet); 1222 break; 1223 } 1224 1225 if (ctx == &ctx->ohci->at_response_ctx) { 1226 packet->ack = ACK_COMPLETE; 1227 packet->callback(packet, &ctx->ohci->card, packet->ack); 1228 } 1229 } 1230 1231 static void at_context_transmit(struct context *ctx, struct fw_packet *packet) 1232 { 1233 unsigned long flags; 1234 int ret; 1235 1236 spin_lock_irqsave(&ctx->ohci->lock, flags); 1237 1238 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id && 1239 ctx->ohci->generation == packet->generation) { 1240 spin_unlock_irqrestore(&ctx->ohci->lock, flags); 1241 handle_local_request(ctx, packet); 1242 return; 1243 } 1244 1245 ret = at_context_queue_packet(ctx, packet); 1246 spin_unlock_irqrestore(&ctx->ohci->lock, flags); 1247 1248 if (ret < 0) 1249 packet->callback(packet, &ctx->ohci->card, packet->ack); 1250 1251 } 1252 1253 static void bus_reset_tasklet(unsigned long data) 1254 { 1255 struct fw_ohci *ohci = (struct fw_ohci *)data; 1256 int self_id_count, i, j, reg; 1257 int generation, new_generation; 1258 unsigned long flags; 1259 void *free_rom = NULL; 1260 dma_addr_t free_rom_bus = 0; 1261 1262 reg = reg_read(ohci, OHCI1394_NodeID); 1263 if (!(reg & OHCI1394_NodeID_idValid)) { 1264 fw_notify("node ID not valid, new bus reset in progress\n"); 1265 return; 1266 } 1267 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) { 1268 fw_notify("malconfigured bus\n"); 1269 return; 1270 } 1271 ohci->node_id = reg & (OHCI1394_NodeID_busNumber | 1272 OHCI1394_NodeID_nodeNumber); 1273 1274 reg = reg_read(ohci, OHCI1394_SelfIDCount); 1275 if (reg & OHCI1394_SelfIDCount_selfIDError) { 1276 fw_notify("inconsistent self IDs\n"); 1277 return; 1278 } 1279 /* 1280 * The count in the SelfIDCount register is the number of 1281 * bytes in the self ID receive buffer. Since we also receive 1282 * the inverted quadlets and a header quadlet, we shift one 1283 * bit extra to get the actual number of self IDs. 1284 */ 1285 self_id_count = (reg >> 3) & 0xff; 1286 if (self_id_count == 0 || self_id_count > 252) { 1287 fw_notify("inconsistent self IDs\n"); 1288 return; 1289 } 1290 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff; 1291 rmb(); 1292 1293 for (i = 1, j = 0; j < self_id_count; i += 2, j++) { 1294 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) { 1295 fw_notify("inconsistent self IDs\n"); 1296 return; 1297 } 1298 ohci->self_id_buffer[j] = 1299 cond_le32_to_cpu(ohci->self_id_cpu[i]); 1300 } 1301 rmb(); 1302 1303 /* 1304 * Check the consistency of the self IDs we just read. The 1305 * problem we face is that a new bus reset can start while we 1306 * read out the self IDs from the DMA buffer. If this happens, 1307 * the DMA buffer will be overwritten with new self IDs and we 1308 * will read out inconsistent data. The OHCI specification 1309 * (section 11.2) recommends a technique similar to 1310 * linux/seqlock.h, where we remember the generation of the 1311 * self IDs in the buffer before reading them out and compare 1312 * it to the current generation after reading them out. If 1313 * the two generations match we know we have a consistent set 1314 * of self IDs. 1315 */ 1316 1317 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff; 1318 if (new_generation != generation) { 1319 fw_notify("recursive bus reset detected, " 1320 "discarding self ids\n"); 1321 return; 1322 } 1323 1324 /* FIXME: Document how the locking works. */ 1325 spin_lock_irqsave(&ohci->lock, flags); 1326 1327 ohci->generation = generation; 1328 context_stop(&ohci->at_request_ctx); 1329 context_stop(&ohci->at_response_ctx); 1330 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset); 1331 1332 if (ohci->bus_reset_packet_quirk) 1333 ohci->request_generation = generation; 1334 1335 /* 1336 * This next bit is unrelated to the AT context stuff but we 1337 * have to do it under the spinlock also. If a new config rom 1338 * was set up before this reset, the old one is now no longer 1339 * in use and we can free it. Update the config rom pointers 1340 * to point to the current config rom and clear the 1341 * next_config_rom pointer so a new udpate can take place. 1342 */ 1343 1344 if (ohci->next_config_rom != NULL) { 1345 if (ohci->next_config_rom != ohci->config_rom) { 1346 free_rom = ohci->config_rom; 1347 free_rom_bus = ohci->config_rom_bus; 1348 } 1349 ohci->config_rom = ohci->next_config_rom; 1350 ohci->config_rom_bus = ohci->next_config_rom_bus; 1351 ohci->next_config_rom = NULL; 1352 1353 /* 1354 * Restore config_rom image and manually update 1355 * config_rom registers. Writing the header quadlet 1356 * will indicate that the config rom is ready, so we 1357 * do that last. 1358 */ 1359 reg_write(ohci, OHCI1394_BusOptions, 1360 be32_to_cpu(ohci->config_rom[2])); 1361 ohci->config_rom[0] = ohci->next_header; 1362 reg_write(ohci, OHCI1394_ConfigROMhdr, 1363 be32_to_cpu(ohci->next_header)); 1364 } 1365 1366 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA 1367 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0); 1368 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0); 1369 #endif 1370 1371 spin_unlock_irqrestore(&ohci->lock, flags); 1372 1373 if (free_rom) 1374 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, 1375 free_rom, free_rom_bus); 1376 1377 log_selfids(ohci->node_id, generation, 1378 self_id_count, ohci->self_id_buffer); 1379 1380 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation, 1381 self_id_count, ohci->self_id_buffer); 1382 } 1383 1384 static irqreturn_t irq_handler(int irq, void *data) 1385 { 1386 struct fw_ohci *ohci = data; 1387 u32 event, iso_event, cycle_time; 1388 int i; 1389 1390 event = reg_read(ohci, OHCI1394_IntEventClear); 1391 1392 if (!event || !~event) 1393 return IRQ_NONE; 1394 1395 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */ 1396 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset); 1397 log_irqs(event); 1398 1399 if (event & OHCI1394_selfIDComplete) 1400 tasklet_schedule(&ohci->bus_reset_tasklet); 1401 1402 if (event & OHCI1394_RQPkt) 1403 tasklet_schedule(&ohci->ar_request_ctx.tasklet); 1404 1405 if (event & OHCI1394_RSPkt) 1406 tasklet_schedule(&ohci->ar_response_ctx.tasklet); 1407 1408 if (event & OHCI1394_reqTxComplete) 1409 tasklet_schedule(&ohci->at_request_ctx.tasklet); 1410 1411 if (event & OHCI1394_respTxComplete) 1412 tasklet_schedule(&ohci->at_response_ctx.tasklet); 1413 1414 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear); 1415 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event); 1416 1417 while (iso_event) { 1418 i = ffs(iso_event) - 1; 1419 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet); 1420 iso_event &= ~(1 << i); 1421 } 1422 1423 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear); 1424 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event); 1425 1426 while (iso_event) { 1427 i = ffs(iso_event) - 1; 1428 tasklet_schedule(&ohci->it_context_list[i].context.tasklet); 1429 iso_event &= ~(1 << i); 1430 } 1431 1432 if (unlikely(event & OHCI1394_regAccessFail)) 1433 fw_error("Register access failure - " 1434 "please notify linux1394-devel@lists.sf.net\n"); 1435 1436 if (unlikely(event & OHCI1394_postedWriteErr)) 1437 fw_error("PCI posted write error\n"); 1438 1439 if (unlikely(event & OHCI1394_cycleTooLong)) { 1440 if (printk_ratelimit()) 1441 fw_notify("isochronous cycle too long\n"); 1442 reg_write(ohci, OHCI1394_LinkControlSet, 1443 OHCI1394_LinkControl_cycleMaster); 1444 } 1445 1446 if (unlikely(event & OHCI1394_cycleInconsistent)) { 1447 /* 1448 * We need to clear this event bit in order to make 1449 * cycleMatch isochronous I/O work. In theory we should 1450 * stop active cycleMatch iso contexts now and restart 1451 * them at least two cycles later. (FIXME?) 1452 */ 1453 if (printk_ratelimit()) 1454 fw_notify("isochronous cycle inconsistent\n"); 1455 } 1456 1457 if (event & OHCI1394_cycle64Seconds) { 1458 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer); 1459 if ((cycle_time & 0x80000000) == 0) 1460 atomic_inc(&ohci->bus_seconds); 1461 } 1462 1463 return IRQ_HANDLED; 1464 } 1465 1466 static int software_reset(struct fw_ohci *ohci) 1467 { 1468 int i; 1469 1470 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset); 1471 1472 for (i = 0; i < OHCI_LOOP_COUNT; i++) { 1473 if ((reg_read(ohci, OHCI1394_HCControlSet) & 1474 OHCI1394_HCControl_softReset) == 0) 1475 return 0; 1476 msleep(1); 1477 } 1478 1479 return -EBUSY; 1480 } 1481 1482 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length) 1483 { 1484 size_t size = length * 4; 1485 1486 memcpy(dest, src, size); 1487 if (size < CONFIG_ROM_SIZE) 1488 memset(&dest[length], 0, CONFIG_ROM_SIZE - size); 1489 } 1490 1491 static int ohci_enable(struct fw_card *card, 1492 const __be32 *config_rom, size_t length) 1493 { 1494 struct fw_ohci *ohci = fw_ohci(card); 1495 struct pci_dev *dev = to_pci_dev(card->device); 1496 u32 lps; 1497 int i; 1498 1499 if (software_reset(ohci)) { 1500 fw_error("Failed to reset ohci card.\n"); 1501 return -EBUSY; 1502 } 1503 1504 /* 1505 * Now enable LPS, which we need in order to start accessing 1506 * most of the registers. In fact, on some cards (ALI M5251), 1507 * accessing registers in the SClk domain without LPS enabled 1508 * will lock up the machine. Wait 50msec to make sure we have 1509 * full link enabled. However, with some cards (well, at least 1510 * a JMicron PCIe card), we have to try again sometimes. 1511 */ 1512 reg_write(ohci, OHCI1394_HCControlSet, 1513 OHCI1394_HCControl_LPS | 1514 OHCI1394_HCControl_postedWriteEnable); 1515 flush_writes(ohci); 1516 1517 for (lps = 0, i = 0; !lps && i < 3; i++) { 1518 msleep(50); 1519 lps = reg_read(ohci, OHCI1394_HCControlSet) & 1520 OHCI1394_HCControl_LPS; 1521 } 1522 1523 if (!lps) { 1524 fw_error("Failed to set Link Power Status\n"); 1525 return -EIO; 1526 } 1527 1528 reg_write(ohci, OHCI1394_HCControlClear, 1529 OHCI1394_HCControl_noByteSwapData); 1530 1531 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus); 1532 reg_write(ohci, OHCI1394_LinkControlClear, 1533 OHCI1394_LinkControl_rcvPhyPkt); 1534 reg_write(ohci, OHCI1394_LinkControlSet, 1535 OHCI1394_LinkControl_rcvSelfID | 1536 OHCI1394_LinkControl_cycleTimerEnable | 1537 OHCI1394_LinkControl_cycleMaster); 1538 1539 reg_write(ohci, OHCI1394_ATRetries, 1540 OHCI1394_MAX_AT_REQ_RETRIES | 1541 (OHCI1394_MAX_AT_RESP_RETRIES << 4) | 1542 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8)); 1543 1544 ar_context_run(&ohci->ar_request_ctx); 1545 ar_context_run(&ohci->ar_response_ctx); 1546 1547 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000); 1548 reg_write(ohci, OHCI1394_IntEventClear, ~0); 1549 reg_write(ohci, OHCI1394_IntMaskClear, ~0); 1550 reg_write(ohci, OHCI1394_IntMaskSet, 1551 OHCI1394_selfIDComplete | 1552 OHCI1394_RQPkt | OHCI1394_RSPkt | 1553 OHCI1394_reqTxComplete | OHCI1394_respTxComplete | 1554 OHCI1394_isochRx | OHCI1394_isochTx | 1555 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong | 1556 OHCI1394_cycleInconsistent | 1557 OHCI1394_cycle64Seconds | OHCI1394_regAccessFail | 1558 OHCI1394_masterIntEnable); 1559 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS) 1560 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset); 1561 1562 /* Activate link_on bit and contender bit in our self ID packets.*/ 1563 if (ohci_update_phy_reg(card, 4, 0, 1564 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0) 1565 return -EIO; 1566 1567 /* 1568 * When the link is not yet enabled, the atomic config rom 1569 * update mechanism described below in ohci_set_config_rom() 1570 * is not active. We have to update ConfigRomHeader and 1571 * BusOptions manually, and the write to ConfigROMmap takes 1572 * effect immediately. We tie this to the enabling of the 1573 * link, so we have a valid config rom before enabling - the 1574 * OHCI requires that ConfigROMhdr and BusOptions have valid 1575 * values before enabling. 1576 * 1577 * However, when the ConfigROMmap is written, some controllers 1578 * always read back quadlets 0 and 2 from the config rom to 1579 * the ConfigRomHeader and BusOptions registers on bus reset. 1580 * They shouldn't do that in this initial case where the link 1581 * isn't enabled. This means we have to use the same 1582 * workaround here, setting the bus header to 0 and then write 1583 * the right values in the bus reset tasklet. 1584 */ 1585 1586 if (config_rom) { 1587 ohci->next_config_rom = 1588 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, 1589 &ohci->next_config_rom_bus, 1590 GFP_KERNEL); 1591 if (ohci->next_config_rom == NULL) 1592 return -ENOMEM; 1593 1594 copy_config_rom(ohci->next_config_rom, config_rom, length); 1595 } else { 1596 /* 1597 * In the suspend case, config_rom is NULL, which 1598 * means that we just reuse the old config rom. 1599 */ 1600 ohci->next_config_rom = ohci->config_rom; 1601 ohci->next_config_rom_bus = ohci->config_rom_bus; 1602 } 1603 1604 ohci->next_header = ohci->next_config_rom[0]; 1605 ohci->next_config_rom[0] = 0; 1606 reg_write(ohci, OHCI1394_ConfigROMhdr, 0); 1607 reg_write(ohci, OHCI1394_BusOptions, 1608 be32_to_cpu(ohci->next_config_rom[2])); 1609 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus); 1610 1611 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000); 1612 1613 if (request_irq(dev->irq, irq_handler, 1614 IRQF_SHARED, ohci_driver_name, ohci)) { 1615 fw_error("Failed to allocate shared interrupt %d.\n", 1616 dev->irq); 1617 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, 1618 ohci->config_rom, ohci->config_rom_bus); 1619 return -EIO; 1620 } 1621 1622 reg_write(ohci, OHCI1394_HCControlSet, 1623 OHCI1394_HCControl_linkEnable | 1624 OHCI1394_HCControl_BIBimageValid); 1625 flush_writes(ohci); 1626 1627 /* 1628 * We are ready to go, initiate bus reset to finish the 1629 * initialization. 1630 */ 1631 1632 fw_core_initiate_bus_reset(&ohci->card, 1); 1633 1634 return 0; 1635 } 1636 1637 static int ohci_set_config_rom(struct fw_card *card, 1638 const __be32 *config_rom, size_t length) 1639 { 1640 struct fw_ohci *ohci; 1641 unsigned long flags; 1642 int ret = -EBUSY; 1643 __be32 *next_config_rom; 1644 dma_addr_t uninitialized_var(next_config_rom_bus); 1645 1646 ohci = fw_ohci(card); 1647 1648 /* 1649 * When the OHCI controller is enabled, the config rom update 1650 * mechanism is a bit tricky, but easy enough to use. See 1651 * section 5.5.6 in the OHCI specification. 1652 * 1653 * The OHCI controller caches the new config rom address in a 1654 * shadow register (ConfigROMmapNext) and needs a bus reset 1655 * for the changes to take place. When the bus reset is 1656 * detected, the controller loads the new values for the 1657 * ConfigRomHeader and BusOptions registers from the specified 1658 * config rom and loads ConfigROMmap from the ConfigROMmapNext 1659 * shadow register. All automatically and atomically. 1660 * 1661 * Now, there's a twist to this story. The automatic load of 1662 * ConfigRomHeader and BusOptions doesn't honor the 1663 * noByteSwapData bit, so with a be32 config rom, the 1664 * controller will load be32 values in to these registers 1665 * during the atomic update, even on litte endian 1666 * architectures. The workaround we use is to put a 0 in the 1667 * header quadlet; 0 is endian agnostic and means that the 1668 * config rom isn't ready yet. In the bus reset tasklet we 1669 * then set up the real values for the two registers. 1670 * 1671 * We use ohci->lock to avoid racing with the code that sets 1672 * ohci->next_config_rom to NULL (see bus_reset_tasklet). 1673 */ 1674 1675 next_config_rom = 1676 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE, 1677 &next_config_rom_bus, GFP_KERNEL); 1678 if (next_config_rom == NULL) 1679 return -ENOMEM; 1680 1681 spin_lock_irqsave(&ohci->lock, flags); 1682 1683 if (ohci->next_config_rom == NULL) { 1684 ohci->next_config_rom = next_config_rom; 1685 ohci->next_config_rom_bus = next_config_rom_bus; 1686 1687 copy_config_rom(ohci->next_config_rom, config_rom, length); 1688 1689 ohci->next_header = config_rom[0]; 1690 ohci->next_config_rom[0] = 0; 1691 1692 reg_write(ohci, OHCI1394_ConfigROMmap, 1693 ohci->next_config_rom_bus); 1694 ret = 0; 1695 } 1696 1697 spin_unlock_irqrestore(&ohci->lock, flags); 1698 1699 /* 1700 * Now initiate a bus reset to have the changes take 1701 * effect. We clean up the old config rom memory and DMA 1702 * mappings in the bus reset tasklet, since the OHCI 1703 * controller could need to access it before the bus reset 1704 * takes effect. 1705 */ 1706 if (ret == 0) 1707 fw_core_initiate_bus_reset(&ohci->card, 1); 1708 else 1709 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, 1710 next_config_rom, next_config_rom_bus); 1711 1712 return ret; 1713 } 1714 1715 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet) 1716 { 1717 struct fw_ohci *ohci = fw_ohci(card); 1718 1719 at_context_transmit(&ohci->at_request_ctx, packet); 1720 } 1721 1722 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet) 1723 { 1724 struct fw_ohci *ohci = fw_ohci(card); 1725 1726 at_context_transmit(&ohci->at_response_ctx, packet); 1727 } 1728 1729 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet) 1730 { 1731 struct fw_ohci *ohci = fw_ohci(card); 1732 struct context *ctx = &ohci->at_request_ctx; 1733 struct driver_data *driver_data = packet->driver_data; 1734 int ret = -ENOENT; 1735 1736 tasklet_disable(&ctx->tasklet); 1737 1738 if (packet->ack != 0) 1739 goto out; 1740 1741 if (packet->payload_mapped) 1742 dma_unmap_single(ohci->card.device, packet->payload_bus, 1743 packet->payload_length, DMA_TO_DEVICE); 1744 1745 log_ar_at_event('T', packet->speed, packet->header, 0x20); 1746 driver_data->packet = NULL; 1747 packet->ack = RCODE_CANCELLED; 1748 packet->callback(packet, &ohci->card, packet->ack); 1749 ret = 0; 1750 out: 1751 tasklet_enable(&ctx->tasklet); 1752 1753 return ret; 1754 } 1755 1756 static int ohci_enable_phys_dma(struct fw_card *card, 1757 int node_id, int generation) 1758 { 1759 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA 1760 return 0; 1761 #else 1762 struct fw_ohci *ohci = fw_ohci(card); 1763 unsigned long flags; 1764 int n, ret = 0; 1765 1766 /* 1767 * FIXME: Make sure this bitmask is cleared when we clear the busReset 1768 * interrupt bit. Clear physReqResourceAllBuses on bus reset. 1769 */ 1770 1771 spin_lock_irqsave(&ohci->lock, flags); 1772 1773 if (ohci->generation != generation) { 1774 ret = -ESTALE; 1775 goto out; 1776 } 1777 1778 /* 1779 * Note, if the node ID contains a non-local bus ID, physical DMA is 1780 * enabled for _all_ nodes on remote buses. 1781 */ 1782 1783 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63; 1784 if (n < 32) 1785 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n); 1786 else 1787 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32)); 1788 1789 flush_writes(ohci); 1790 out: 1791 spin_unlock_irqrestore(&ohci->lock, flags); 1792 1793 return ret; 1794 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */ 1795 } 1796 1797 static u64 ohci_get_bus_time(struct fw_card *card) 1798 { 1799 struct fw_ohci *ohci = fw_ohci(card); 1800 u32 cycle_time; 1801 u64 bus_time; 1802 1803 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer); 1804 bus_time = ((u64)atomic_read(&ohci->bus_seconds) << 32) | cycle_time; 1805 1806 return bus_time; 1807 } 1808 1809 static void copy_iso_headers(struct iso_context *ctx, void *p) 1810 { 1811 int i = ctx->header_length; 1812 1813 if (i + ctx->base.header_size > PAGE_SIZE) 1814 return; 1815 1816 /* 1817 * The iso header is byteswapped to little endian by 1818 * the controller, but the remaining header quadlets 1819 * are big endian. We want to present all the headers 1820 * as big endian, so we have to swap the first quadlet. 1821 */ 1822 if (ctx->base.header_size > 0) 1823 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4)); 1824 if (ctx->base.header_size > 4) 1825 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p); 1826 if (ctx->base.header_size > 8) 1827 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8); 1828 ctx->header_length += ctx->base.header_size; 1829 } 1830 1831 static int handle_ir_dualbuffer_packet(struct context *context, 1832 struct descriptor *d, 1833 struct descriptor *last) 1834 { 1835 struct iso_context *ctx = 1836 container_of(context, struct iso_context, context); 1837 struct db_descriptor *db = (struct db_descriptor *) d; 1838 __le32 *ir_header; 1839 size_t header_length; 1840 void *p, *end; 1841 1842 if (db->first_res_count != 0 && db->second_res_count != 0) { 1843 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) { 1844 /* This descriptor isn't done yet, stop iteration. */ 1845 return 0; 1846 } 1847 ctx->excess_bytes -= le16_to_cpu(db->second_req_count); 1848 } 1849 1850 header_length = le16_to_cpu(db->first_req_count) - 1851 le16_to_cpu(db->first_res_count); 1852 1853 p = db + 1; 1854 end = p + header_length; 1855 while (p < end) { 1856 copy_iso_headers(ctx, p); 1857 ctx->excess_bytes += 1858 (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff; 1859 p += max(ctx->base.header_size, (size_t)8); 1860 } 1861 1862 ctx->excess_bytes -= le16_to_cpu(db->second_req_count) - 1863 le16_to_cpu(db->second_res_count); 1864 1865 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) { 1866 ir_header = (__le32 *) (db + 1); 1867 ctx->base.callback(&ctx->base, 1868 le32_to_cpu(ir_header[0]) & 0xffff, 1869 ctx->header_length, ctx->header, 1870 ctx->base.callback_data); 1871 ctx->header_length = 0; 1872 } 1873 1874 return 1; 1875 } 1876 1877 static int handle_ir_packet_per_buffer(struct context *context, 1878 struct descriptor *d, 1879 struct descriptor *last) 1880 { 1881 struct iso_context *ctx = 1882 container_of(context, struct iso_context, context); 1883 struct descriptor *pd; 1884 __le32 *ir_header; 1885 void *p; 1886 1887 for (pd = d; pd <= last; pd++) { 1888 if (pd->transfer_status) 1889 break; 1890 } 1891 if (pd > last) 1892 /* Descriptor(s) not done yet, stop iteration */ 1893 return 0; 1894 1895 p = last + 1; 1896 copy_iso_headers(ctx, p); 1897 1898 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) { 1899 ir_header = (__le32 *) p; 1900 ctx->base.callback(&ctx->base, 1901 le32_to_cpu(ir_header[0]) & 0xffff, 1902 ctx->header_length, ctx->header, 1903 ctx->base.callback_data); 1904 ctx->header_length = 0; 1905 } 1906 1907 return 1; 1908 } 1909 1910 static int handle_it_packet(struct context *context, 1911 struct descriptor *d, 1912 struct descriptor *last) 1913 { 1914 struct iso_context *ctx = 1915 container_of(context, struct iso_context, context); 1916 int i; 1917 struct descriptor *pd; 1918 1919 for (pd = d; pd <= last; pd++) 1920 if (pd->transfer_status) 1921 break; 1922 if (pd > last) 1923 /* Descriptor(s) not done yet, stop iteration */ 1924 return 0; 1925 1926 i = ctx->header_length; 1927 if (i + 4 < PAGE_SIZE) { 1928 /* Present this value as big-endian to match the receive code */ 1929 *(__be32 *)(ctx->header + i) = cpu_to_be32( 1930 ((u32)le16_to_cpu(pd->transfer_status) << 16) | 1931 le16_to_cpu(pd->res_count)); 1932 ctx->header_length += 4; 1933 } 1934 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) { 1935 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count), 1936 ctx->header_length, ctx->header, 1937 ctx->base.callback_data); 1938 ctx->header_length = 0; 1939 } 1940 return 1; 1941 } 1942 1943 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card, 1944 int type, int channel, size_t header_size) 1945 { 1946 struct fw_ohci *ohci = fw_ohci(card); 1947 struct iso_context *ctx, *list; 1948 descriptor_callback_t callback; 1949 u64 *channels, dont_care = ~0ULL; 1950 u32 *mask, regs; 1951 unsigned long flags; 1952 int index, ret = -ENOMEM; 1953 1954 if (type == FW_ISO_CONTEXT_TRANSMIT) { 1955 channels = &dont_care; 1956 mask = &ohci->it_context_mask; 1957 list = ohci->it_context_list; 1958 callback = handle_it_packet; 1959 } else { 1960 channels = &ohci->ir_context_channels; 1961 mask = &ohci->ir_context_mask; 1962 list = ohci->ir_context_list; 1963 if (ohci->use_dualbuffer) 1964 callback = handle_ir_dualbuffer_packet; 1965 else 1966 callback = handle_ir_packet_per_buffer; 1967 } 1968 1969 spin_lock_irqsave(&ohci->lock, flags); 1970 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1; 1971 if (index >= 0) { 1972 *channels &= ~(1ULL << channel); 1973 *mask &= ~(1 << index); 1974 } 1975 spin_unlock_irqrestore(&ohci->lock, flags); 1976 1977 if (index < 0) 1978 return ERR_PTR(-EBUSY); 1979 1980 if (type == FW_ISO_CONTEXT_TRANSMIT) 1981 regs = OHCI1394_IsoXmitContextBase(index); 1982 else 1983 regs = OHCI1394_IsoRcvContextBase(index); 1984 1985 ctx = &list[index]; 1986 memset(ctx, 0, sizeof(*ctx)); 1987 ctx->header_length = 0; 1988 ctx->header = (void *) __get_free_page(GFP_KERNEL); 1989 if (ctx->header == NULL) 1990 goto out; 1991 1992 ret = context_init(&ctx->context, ohci, regs, callback); 1993 if (ret < 0) 1994 goto out_with_header; 1995 1996 return &ctx->base; 1997 1998 out_with_header: 1999 free_page((unsigned long)ctx->header); 2000 out: 2001 spin_lock_irqsave(&ohci->lock, flags); 2002 *mask |= 1 << index; 2003 spin_unlock_irqrestore(&ohci->lock, flags); 2004 2005 return ERR_PTR(ret); 2006 } 2007 2008 static int ohci_start_iso(struct fw_iso_context *base, 2009 s32 cycle, u32 sync, u32 tags) 2010 { 2011 struct iso_context *ctx = container_of(base, struct iso_context, base); 2012 struct fw_ohci *ohci = ctx->context.ohci; 2013 u32 control, match; 2014 int index; 2015 2016 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) { 2017 index = ctx - ohci->it_context_list; 2018 match = 0; 2019 if (cycle >= 0) 2020 match = IT_CONTEXT_CYCLE_MATCH_ENABLE | 2021 (cycle & 0x7fff) << 16; 2022 2023 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index); 2024 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index); 2025 context_run(&ctx->context, match); 2026 } else { 2027 index = ctx - ohci->ir_context_list; 2028 control = IR_CONTEXT_ISOCH_HEADER; 2029 if (ohci->use_dualbuffer) 2030 control |= IR_CONTEXT_DUAL_BUFFER_MODE; 2031 match = (tags << 28) | (sync << 8) | ctx->base.channel; 2032 if (cycle >= 0) { 2033 match |= (cycle & 0x07fff) << 12; 2034 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE; 2035 } 2036 2037 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index); 2038 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index); 2039 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match); 2040 context_run(&ctx->context, control); 2041 } 2042 2043 return 0; 2044 } 2045 2046 static int ohci_stop_iso(struct fw_iso_context *base) 2047 { 2048 struct fw_ohci *ohci = fw_ohci(base->card); 2049 struct iso_context *ctx = container_of(base, struct iso_context, base); 2050 int index; 2051 2052 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) { 2053 index = ctx - ohci->it_context_list; 2054 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index); 2055 } else { 2056 index = ctx - ohci->ir_context_list; 2057 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index); 2058 } 2059 flush_writes(ohci); 2060 context_stop(&ctx->context); 2061 2062 return 0; 2063 } 2064 2065 static void ohci_free_iso_context(struct fw_iso_context *base) 2066 { 2067 struct fw_ohci *ohci = fw_ohci(base->card); 2068 struct iso_context *ctx = container_of(base, struct iso_context, base); 2069 unsigned long flags; 2070 int index; 2071 2072 ohci_stop_iso(base); 2073 context_release(&ctx->context); 2074 free_page((unsigned long)ctx->header); 2075 2076 spin_lock_irqsave(&ohci->lock, flags); 2077 2078 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) { 2079 index = ctx - ohci->it_context_list; 2080 ohci->it_context_mask |= 1 << index; 2081 } else { 2082 index = ctx - ohci->ir_context_list; 2083 ohci->ir_context_mask |= 1 << index; 2084 ohci->ir_context_channels |= 1ULL << base->channel; 2085 } 2086 2087 spin_unlock_irqrestore(&ohci->lock, flags); 2088 } 2089 2090 static int ohci_queue_iso_transmit(struct fw_iso_context *base, 2091 struct fw_iso_packet *packet, 2092 struct fw_iso_buffer *buffer, 2093 unsigned long payload) 2094 { 2095 struct iso_context *ctx = container_of(base, struct iso_context, base); 2096 struct descriptor *d, *last, *pd; 2097 struct fw_iso_packet *p; 2098 __le32 *header; 2099 dma_addr_t d_bus, page_bus; 2100 u32 z, header_z, payload_z, irq; 2101 u32 payload_index, payload_end_index, next_page_index; 2102 int page, end_page, i, length, offset; 2103 2104 /* 2105 * FIXME: Cycle lost behavior should be configurable: lose 2106 * packet, retransmit or terminate.. 2107 */ 2108 2109 p = packet; 2110 payload_index = payload; 2111 2112 if (p->skip) 2113 z = 1; 2114 else 2115 z = 2; 2116 if (p->header_length > 0) 2117 z++; 2118 2119 /* Determine the first page the payload isn't contained in. */ 2120 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT; 2121 if (p->payload_length > 0) 2122 payload_z = end_page - (payload_index >> PAGE_SHIFT); 2123 else 2124 payload_z = 0; 2125 2126 z += payload_z; 2127 2128 /* Get header size in number of descriptors. */ 2129 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d)); 2130 2131 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus); 2132 if (d == NULL) 2133 return -ENOMEM; 2134 2135 if (!p->skip) { 2136 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE); 2137 d[0].req_count = cpu_to_le16(8); 2138 2139 header = (__le32 *) &d[1]; 2140 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) | 2141 IT_HEADER_TAG(p->tag) | 2142 IT_HEADER_TCODE(TCODE_STREAM_DATA) | 2143 IT_HEADER_CHANNEL(ctx->base.channel) | 2144 IT_HEADER_SPEED(ctx->base.speed)); 2145 header[1] = 2146 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length + 2147 p->payload_length)); 2148 } 2149 2150 if (p->header_length > 0) { 2151 d[2].req_count = cpu_to_le16(p->header_length); 2152 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d)); 2153 memcpy(&d[z], p->header, p->header_length); 2154 } 2155 2156 pd = d + z - payload_z; 2157 payload_end_index = payload_index + p->payload_length; 2158 for (i = 0; i < payload_z; i++) { 2159 page = payload_index >> PAGE_SHIFT; 2160 offset = payload_index & ~PAGE_MASK; 2161 next_page_index = (page + 1) << PAGE_SHIFT; 2162 length = 2163 min(next_page_index, payload_end_index) - payload_index; 2164 pd[i].req_count = cpu_to_le16(length); 2165 2166 page_bus = page_private(buffer->pages[page]); 2167 pd[i].data_address = cpu_to_le32(page_bus + offset); 2168 2169 payload_index += length; 2170 } 2171 2172 if (p->interrupt) 2173 irq = DESCRIPTOR_IRQ_ALWAYS; 2174 else 2175 irq = DESCRIPTOR_NO_IRQ; 2176 2177 last = z == 2 ? d : d + z - 1; 2178 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST | 2179 DESCRIPTOR_STATUS | 2180 DESCRIPTOR_BRANCH_ALWAYS | 2181 irq); 2182 2183 context_append(&ctx->context, d, z, header_z); 2184 2185 return 0; 2186 } 2187 2188 static int ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base, 2189 struct fw_iso_packet *packet, 2190 struct fw_iso_buffer *buffer, 2191 unsigned long payload) 2192 { 2193 struct iso_context *ctx = container_of(base, struct iso_context, base); 2194 struct db_descriptor *db = NULL; 2195 struct descriptor *d; 2196 struct fw_iso_packet *p; 2197 dma_addr_t d_bus, page_bus; 2198 u32 z, header_z, length, rest; 2199 int page, offset, packet_count, header_size; 2200 2201 /* 2202 * FIXME: Cycle lost behavior should be configurable: lose 2203 * packet, retransmit or terminate.. 2204 */ 2205 2206 p = packet; 2207 z = 2; 2208 2209 /* 2210 * The OHCI controller puts the isochronous header and trailer in the 2211 * buffer, so we need at least 8 bytes. 2212 */ 2213 packet_count = p->header_length / ctx->base.header_size; 2214 header_size = packet_count * max(ctx->base.header_size, (size_t)8); 2215 2216 /* Get header size in number of descriptors. */ 2217 header_z = DIV_ROUND_UP(header_size, sizeof(*d)); 2218 page = payload >> PAGE_SHIFT; 2219 offset = payload & ~PAGE_MASK; 2220 rest = p->payload_length; 2221 /* 2222 * The controllers I've tested have not worked correctly when 2223 * second_req_count is zero. Rather than do something we know won't 2224 * work, return an error 2225 */ 2226 if (rest == 0) 2227 return -EINVAL; 2228 2229 while (rest > 0) { 2230 d = context_get_descriptors(&ctx->context, 2231 z + header_z, &d_bus); 2232 if (d == NULL) 2233 return -ENOMEM; 2234 2235 db = (struct db_descriptor *) d; 2236 db->control = cpu_to_le16(DESCRIPTOR_STATUS | 2237 DESCRIPTOR_BRANCH_ALWAYS); 2238 db->first_size = 2239 cpu_to_le16(max(ctx->base.header_size, (size_t)8)); 2240 if (p->skip && rest == p->payload_length) { 2241 db->control |= cpu_to_le16(DESCRIPTOR_WAIT); 2242 db->first_req_count = db->first_size; 2243 } else { 2244 db->first_req_count = cpu_to_le16(header_size); 2245 } 2246 db->first_res_count = db->first_req_count; 2247 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db)); 2248 2249 if (p->skip && rest == p->payload_length) 2250 length = 4; 2251 else if (offset + rest < PAGE_SIZE) 2252 length = rest; 2253 else 2254 length = PAGE_SIZE - offset; 2255 2256 db->second_req_count = cpu_to_le16(length); 2257 db->second_res_count = db->second_req_count; 2258 page_bus = page_private(buffer->pages[page]); 2259 db->second_buffer = cpu_to_le32(page_bus + offset); 2260 2261 if (p->interrupt && length == rest) 2262 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS); 2263 2264 context_append(&ctx->context, d, z, header_z); 2265 offset = (offset + length) & ~PAGE_MASK; 2266 rest -= length; 2267 if (offset == 0) 2268 page++; 2269 } 2270 2271 return 0; 2272 } 2273 2274 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base, 2275 struct fw_iso_packet *packet, 2276 struct fw_iso_buffer *buffer, 2277 unsigned long payload) 2278 { 2279 struct iso_context *ctx = container_of(base, struct iso_context, base); 2280 struct descriptor *d, *pd; 2281 struct fw_iso_packet *p = packet; 2282 dma_addr_t d_bus, page_bus; 2283 u32 z, header_z, rest; 2284 int i, j, length; 2285 int page, offset, packet_count, header_size, payload_per_buffer; 2286 2287 /* 2288 * The OHCI controller puts the isochronous header and trailer in the 2289 * buffer, so we need at least 8 bytes. 2290 */ 2291 packet_count = p->header_length / ctx->base.header_size; 2292 header_size = max(ctx->base.header_size, (size_t)8); 2293 2294 /* Get header size in number of descriptors. */ 2295 header_z = DIV_ROUND_UP(header_size, sizeof(*d)); 2296 page = payload >> PAGE_SHIFT; 2297 offset = payload & ~PAGE_MASK; 2298 payload_per_buffer = p->payload_length / packet_count; 2299 2300 for (i = 0; i < packet_count; i++) { 2301 /* d points to the header descriptor */ 2302 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1; 2303 d = context_get_descriptors(&ctx->context, 2304 z + header_z, &d_bus); 2305 if (d == NULL) 2306 return -ENOMEM; 2307 2308 d->control = cpu_to_le16(DESCRIPTOR_STATUS | 2309 DESCRIPTOR_INPUT_MORE); 2310 if (p->skip && i == 0) 2311 d->control |= cpu_to_le16(DESCRIPTOR_WAIT); 2312 d->req_count = cpu_to_le16(header_size); 2313 d->res_count = d->req_count; 2314 d->transfer_status = 0; 2315 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d))); 2316 2317 rest = payload_per_buffer; 2318 pd = d; 2319 for (j = 1; j < z; j++) { 2320 pd++; 2321 pd->control = cpu_to_le16(DESCRIPTOR_STATUS | 2322 DESCRIPTOR_INPUT_MORE); 2323 2324 if (offset + rest < PAGE_SIZE) 2325 length = rest; 2326 else 2327 length = PAGE_SIZE - offset; 2328 pd->req_count = cpu_to_le16(length); 2329 pd->res_count = pd->req_count; 2330 pd->transfer_status = 0; 2331 2332 page_bus = page_private(buffer->pages[page]); 2333 pd->data_address = cpu_to_le32(page_bus + offset); 2334 2335 offset = (offset + length) & ~PAGE_MASK; 2336 rest -= length; 2337 if (offset == 0) 2338 page++; 2339 } 2340 pd->control = cpu_to_le16(DESCRIPTOR_STATUS | 2341 DESCRIPTOR_INPUT_LAST | 2342 DESCRIPTOR_BRANCH_ALWAYS); 2343 if (p->interrupt && i == packet_count - 1) 2344 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS); 2345 2346 context_append(&ctx->context, d, z, header_z); 2347 } 2348 2349 return 0; 2350 } 2351 2352 static int ohci_queue_iso(struct fw_iso_context *base, 2353 struct fw_iso_packet *packet, 2354 struct fw_iso_buffer *buffer, 2355 unsigned long payload) 2356 { 2357 struct iso_context *ctx = container_of(base, struct iso_context, base); 2358 unsigned long flags; 2359 int ret; 2360 2361 spin_lock_irqsave(&ctx->context.ohci->lock, flags); 2362 if (base->type == FW_ISO_CONTEXT_TRANSMIT) 2363 ret = ohci_queue_iso_transmit(base, packet, buffer, payload); 2364 else if (ctx->context.ohci->use_dualbuffer) 2365 ret = ohci_queue_iso_receive_dualbuffer(base, packet, 2366 buffer, payload); 2367 else 2368 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet, 2369 buffer, payload); 2370 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags); 2371 2372 return ret; 2373 } 2374 2375 static const struct fw_card_driver ohci_driver = { 2376 .enable = ohci_enable, 2377 .update_phy_reg = ohci_update_phy_reg, 2378 .set_config_rom = ohci_set_config_rom, 2379 .send_request = ohci_send_request, 2380 .send_response = ohci_send_response, 2381 .cancel_packet = ohci_cancel_packet, 2382 .enable_phys_dma = ohci_enable_phys_dma, 2383 .get_bus_time = ohci_get_bus_time, 2384 2385 .allocate_iso_context = ohci_allocate_iso_context, 2386 .free_iso_context = ohci_free_iso_context, 2387 .queue_iso = ohci_queue_iso, 2388 .start_iso = ohci_start_iso, 2389 .stop_iso = ohci_stop_iso, 2390 }; 2391 2392 #ifdef CONFIG_PPC_PMAC 2393 static void ohci_pmac_on(struct pci_dev *dev) 2394 { 2395 if (machine_is(powermac)) { 2396 struct device_node *ofn = pci_device_to_OF_node(dev); 2397 2398 if (ofn) { 2399 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1); 2400 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1); 2401 } 2402 } 2403 } 2404 2405 static void ohci_pmac_off(struct pci_dev *dev) 2406 { 2407 if (machine_is(powermac)) { 2408 struct device_node *ofn = pci_device_to_OF_node(dev); 2409 2410 if (ofn) { 2411 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0); 2412 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0); 2413 } 2414 } 2415 } 2416 #else 2417 #define ohci_pmac_on(dev) 2418 #define ohci_pmac_off(dev) 2419 #endif /* CONFIG_PPC_PMAC */ 2420 2421 #define PCI_VENDOR_ID_AGERE PCI_VENDOR_ID_ATT 2422 #define PCI_DEVICE_ID_AGERE_FW643 0x5901 2423 2424 static int __devinit pci_probe(struct pci_dev *dev, 2425 const struct pci_device_id *ent) 2426 { 2427 struct fw_ohci *ohci; 2428 u32 bus_options, max_receive, link_speed, version; 2429 u64 guid; 2430 int err; 2431 size_t size; 2432 2433 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL); 2434 if (ohci == NULL) { 2435 err = -ENOMEM; 2436 goto fail; 2437 } 2438 2439 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev); 2440 2441 ohci_pmac_on(dev); 2442 2443 err = pci_enable_device(dev); 2444 if (err) { 2445 fw_error("Failed to enable OHCI hardware\n"); 2446 goto fail_free; 2447 } 2448 2449 pci_set_master(dev); 2450 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0); 2451 pci_set_drvdata(dev, ohci); 2452 2453 spin_lock_init(&ohci->lock); 2454 2455 tasklet_init(&ohci->bus_reset_tasklet, 2456 bus_reset_tasklet, (unsigned long)ohci); 2457 2458 err = pci_request_region(dev, 0, ohci_driver_name); 2459 if (err) { 2460 fw_error("MMIO resource unavailable\n"); 2461 goto fail_disable; 2462 } 2463 2464 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE); 2465 if (ohci->registers == NULL) { 2466 fw_error("Failed to remap registers\n"); 2467 err = -ENXIO; 2468 goto fail_iomem; 2469 } 2470 2471 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff; 2472 #if 0 2473 /* FIXME: make it a context option or remove dual-buffer mode */ 2474 ohci->use_dualbuffer = version >= OHCI_VERSION_1_1; 2475 #endif 2476 2477 /* dual-buffer mode is broken if more than one IR context is active */ 2478 if (dev->vendor == PCI_VENDOR_ID_AGERE && 2479 dev->device == PCI_DEVICE_ID_AGERE_FW643) 2480 ohci->use_dualbuffer = false; 2481 2482 /* dual-buffer mode is broken */ 2483 if (dev->vendor == PCI_VENDOR_ID_RICOH && 2484 dev->device == PCI_DEVICE_ID_RICOH_R5C832) 2485 ohci->use_dualbuffer = false; 2486 2487 /* x86-32 currently doesn't use highmem for dma_alloc_coherent */ 2488 #if !defined(CONFIG_X86_32) 2489 /* dual-buffer mode is broken with descriptor addresses above 2G */ 2490 if (dev->vendor == PCI_VENDOR_ID_TI && 2491 dev->device == PCI_DEVICE_ID_TI_TSB43AB22) 2492 ohci->use_dualbuffer = false; 2493 #endif 2494 2495 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32) 2496 ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE && 2497 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW; 2498 #endif 2499 ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI; 2500 2501 ar_context_init(&ohci->ar_request_ctx, ohci, 2502 OHCI1394_AsReqRcvContextControlSet); 2503 2504 ar_context_init(&ohci->ar_response_ctx, ohci, 2505 OHCI1394_AsRspRcvContextControlSet); 2506 2507 context_init(&ohci->at_request_ctx, ohci, 2508 OHCI1394_AsReqTrContextControlSet, handle_at_packet); 2509 2510 context_init(&ohci->at_response_ctx, ohci, 2511 OHCI1394_AsRspTrContextControlSet, handle_at_packet); 2512 2513 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0); 2514 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet); 2515 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0); 2516 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask); 2517 ohci->it_context_list = kzalloc(size, GFP_KERNEL); 2518 2519 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0); 2520 ohci->ir_context_channels = ~0ULL; 2521 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet); 2522 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0); 2523 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask); 2524 ohci->ir_context_list = kzalloc(size, GFP_KERNEL); 2525 2526 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) { 2527 err = -ENOMEM; 2528 goto fail_contexts; 2529 } 2530 2531 /* self-id dma buffer allocation */ 2532 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device, 2533 SELF_ID_BUF_SIZE, 2534 &ohci->self_id_bus, 2535 GFP_KERNEL); 2536 if (ohci->self_id_cpu == NULL) { 2537 err = -ENOMEM; 2538 goto fail_contexts; 2539 } 2540 2541 bus_options = reg_read(ohci, OHCI1394_BusOptions); 2542 max_receive = (bus_options >> 12) & 0xf; 2543 link_speed = bus_options & 0x7; 2544 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) | 2545 reg_read(ohci, OHCI1394_GUIDLo); 2546 2547 err = fw_card_add(&ohci->card, max_receive, link_speed, guid); 2548 if (err) 2549 goto fail_self_id; 2550 2551 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n", 2552 dev_name(&dev->dev), version >> 16, version & 0xff); 2553 2554 return 0; 2555 2556 fail_self_id: 2557 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE, 2558 ohci->self_id_cpu, ohci->self_id_bus); 2559 fail_contexts: 2560 kfree(ohci->ir_context_list); 2561 kfree(ohci->it_context_list); 2562 context_release(&ohci->at_response_ctx); 2563 context_release(&ohci->at_request_ctx); 2564 ar_context_release(&ohci->ar_response_ctx); 2565 ar_context_release(&ohci->ar_request_ctx); 2566 pci_iounmap(dev, ohci->registers); 2567 fail_iomem: 2568 pci_release_region(dev, 0); 2569 fail_disable: 2570 pci_disable_device(dev); 2571 fail_free: 2572 kfree(&ohci->card); 2573 ohci_pmac_off(dev); 2574 fail: 2575 if (err == -ENOMEM) 2576 fw_error("Out of memory\n"); 2577 2578 return err; 2579 } 2580 2581 static void pci_remove(struct pci_dev *dev) 2582 { 2583 struct fw_ohci *ohci; 2584 2585 ohci = pci_get_drvdata(dev); 2586 reg_write(ohci, OHCI1394_IntMaskClear, ~0); 2587 flush_writes(ohci); 2588 fw_core_remove_card(&ohci->card); 2589 2590 /* 2591 * FIXME: Fail all pending packets here, now that the upper 2592 * layers can't queue any more. 2593 */ 2594 2595 software_reset(ohci); 2596 free_irq(dev->irq, ohci); 2597 2598 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom) 2599 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, 2600 ohci->next_config_rom, ohci->next_config_rom_bus); 2601 if (ohci->config_rom) 2602 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, 2603 ohci->config_rom, ohci->config_rom_bus); 2604 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE, 2605 ohci->self_id_cpu, ohci->self_id_bus); 2606 ar_context_release(&ohci->ar_request_ctx); 2607 ar_context_release(&ohci->ar_response_ctx); 2608 context_release(&ohci->at_request_ctx); 2609 context_release(&ohci->at_response_ctx); 2610 kfree(ohci->it_context_list); 2611 kfree(ohci->ir_context_list); 2612 pci_iounmap(dev, ohci->registers); 2613 pci_release_region(dev, 0); 2614 pci_disable_device(dev); 2615 kfree(&ohci->card); 2616 ohci_pmac_off(dev); 2617 2618 fw_notify("Removed fw-ohci device.\n"); 2619 } 2620 2621 #ifdef CONFIG_PM 2622 static int pci_suspend(struct pci_dev *dev, pm_message_t state) 2623 { 2624 struct fw_ohci *ohci = pci_get_drvdata(dev); 2625 int err; 2626 2627 software_reset(ohci); 2628 free_irq(dev->irq, ohci); 2629 err = pci_save_state(dev); 2630 if (err) { 2631 fw_error("pci_save_state failed\n"); 2632 return err; 2633 } 2634 err = pci_set_power_state(dev, pci_choose_state(dev, state)); 2635 if (err) 2636 fw_error("pci_set_power_state failed with %d\n", err); 2637 ohci_pmac_off(dev); 2638 2639 return 0; 2640 } 2641 2642 static int pci_resume(struct pci_dev *dev) 2643 { 2644 struct fw_ohci *ohci = pci_get_drvdata(dev); 2645 int err; 2646 2647 ohci_pmac_on(dev); 2648 pci_set_power_state(dev, PCI_D0); 2649 pci_restore_state(dev); 2650 err = pci_enable_device(dev); 2651 if (err) { 2652 fw_error("pci_enable_device failed\n"); 2653 return err; 2654 } 2655 2656 return ohci_enable(&ohci->card, NULL, 0); 2657 } 2658 #endif 2659 2660 static struct pci_device_id pci_table[] = { 2661 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) }, 2662 { } 2663 }; 2664 2665 MODULE_DEVICE_TABLE(pci, pci_table); 2666 2667 static struct pci_driver fw_ohci_pci_driver = { 2668 .name = ohci_driver_name, 2669 .id_table = pci_table, 2670 .probe = pci_probe, 2671 .remove = pci_remove, 2672 #ifdef CONFIG_PM 2673 .resume = pci_resume, 2674 .suspend = pci_suspend, 2675 #endif 2676 }; 2677 2678 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 2679 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers"); 2680 MODULE_LICENSE("GPL"); 2681 2682 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 2683 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE 2684 MODULE_ALIAS("ohci1394"); 2685 #endif 2686 2687 static int __init fw_ohci_init(void) 2688 { 2689 return pci_register_driver(&fw_ohci_pci_driver); 2690 } 2691 2692 static void __exit fw_ohci_cleanup(void) 2693 { 2694 pci_unregister_driver(&fw_ohci_pci_driver); 2695 } 2696 2697 module_init(fw_ohci_init); 2698 module_exit(fw_ohci_cleanup); 2699