xref: /openbmc/linux/drivers/firewire/ohci.c (revision 7490ca1e)
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
46 
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
49 #include <asm/system.h>
50 
51 #ifdef CONFIG_PPC_PMAC
52 #include <asm/pmac_feature.h>
53 #endif
54 
55 #include "core.h"
56 #include "ohci.h"
57 
58 #define DESCRIPTOR_OUTPUT_MORE		0
59 #define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
60 #define DESCRIPTOR_INPUT_MORE		(2 << 12)
61 #define DESCRIPTOR_INPUT_LAST		(3 << 12)
62 #define DESCRIPTOR_STATUS		(1 << 11)
63 #define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
64 #define DESCRIPTOR_PING			(1 << 7)
65 #define DESCRIPTOR_YY			(1 << 6)
66 #define DESCRIPTOR_NO_IRQ		(0 << 4)
67 #define DESCRIPTOR_IRQ_ERROR		(1 << 4)
68 #define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
69 #define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
70 #define DESCRIPTOR_WAIT			(3 << 0)
71 
72 struct descriptor {
73 	__le16 req_count;
74 	__le16 control;
75 	__le32 data_address;
76 	__le32 branch_address;
77 	__le16 res_count;
78 	__le16 transfer_status;
79 } __attribute__((aligned(16)));
80 
81 #define CONTROL_SET(regs)	(regs)
82 #define CONTROL_CLEAR(regs)	((regs) + 4)
83 #define COMMAND_PTR(regs)	((regs) + 12)
84 #define CONTEXT_MATCH(regs)	((regs) + 16)
85 
86 #define AR_BUFFER_SIZE	(32*1024)
87 #define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
88 /* we need at least two pages for proper list management */
89 #define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90 
91 #define MAX_ASYNC_PAYLOAD	4096
92 #define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
93 #define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94 
95 struct ar_context {
96 	struct fw_ohci *ohci;
97 	struct page *pages[AR_BUFFERS];
98 	void *buffer;
99 	struct descriptor *descriptors;
100 	dma_addr_t descriptors_bus;
101 	void *pointer;
102 	unsigned int last_buffer_index;
103 	u32 regs;
104 	struct tasklet_struct tasklet;
105 };
106 
107 struct context;
108 
109 typedef int (*descriptor_callback_t)(struct context *ctx,
110 				     struct descriptor *d,
111 				     struct descriptor *last);
112 
113 /*
114  * A buffer that contains a block of DMA-able coherent memory used for
115  * storing a portion of a DMA descriptor program.
116  */
117 struct descriptor_buffer {
118 	struct list_head list;
119 	dma_addr_t buffer_bus;
120 	size_t buffer_size;
121 	size_t used;
122 	struct descriptor buffer[0];
123 };
124 
125 struct context {
126 	struct fw_ohci *ohci;
127 	u32 regs;
128 	int total_allocation;
129 	u32 current_bus;
130 	bool running;
131 	bool flushing;
132 
133 	/*
134 	 * List of page-sized buffers for storing DMA descriptors.
135 	 * Head of list contains buffers in use and tail of list contains
136 	 * free buffers.
137 	 */
138 	struct list_head buffer_list;
139 
140 	/*
141 	 * Pointer to a buffer inside buffer_list that contains the tail
142 	 * end of the current DMA program.
143 	 */
144 	struct descriptor_buffer *buffer_tail;
145 
146 	/*
147 	 * The descriptor containing the branch address of the first
148 	 * descriptor that has not yet been filled by the device.
149 	 */
150 	struct descriptor *last;
151 
152 	/*
153 	 * The last descriptor in the DMA program.  It contains the branch
154 	 * address that must be updated upon appending a new descriptor.
155 	 */
156 	struct descriptor *prev;
157 
158 	descriptor_callback_t callback;
159 
160 	struct tasklet_struct tasklet;
161 };
162 
163 #define IT_HEADER_SY(v)          ((v) <<  0)
164 #define IT_HEADER_TCODE(v)       ((v) <<  4)
165 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
166 #define IT_HEADER_TAG(v)         ((v) << 14)
167 #define IT_HEADER_SPEED(v)       ((v) << 16)
168 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
169 
170 struct iso_context {
171 	struct fw_iso_context base;
172 	struct context context;
173 	int excess_bytes;
174 	void *header;
175 	size_t header_length;
176 
177 	u8 sync;
178 	u8 tags;
179 };
180 
181 #define CONFIG_ROM_SIZE 1024
182 
183 struct fw_ohci {
184 	struct fw_card card;
185 
186 	__iomem char *registers;
187 	int node_id;
188 	int generation;
189 	int request_generation;	/* for timestamping incoming requests */
190 	unsigned quirks;
191 	unsigned int pri_req_max;
192 	u32 bus_time;
193 	bool is_root;
194 	bool csr_state_setclear_abdicate;
195 	int n_ir;
196 	int n_it;
197 	/*
198 	 * Spinlock for accessing fw_ohci data.  Never call out of
199 	 * this driver with this lock held.
200 	 */
201 	spinlock_t lock;
202 
203 	struct mutex phy_reg_mutex;
204 
205 	void *misc_buffer;
206 	dma_addr_t misc_buffer_bus;
207 
208 	struct ar_context ar_request_ctx;
209 	struct ar_context ar_response_ctx;
210 	struct context at_request_ctx;
211 	struct context at_response_ctx;
212 
213 	u32 it_context_support;
214 	u32 it_context_mask;     /* unoccupied IT contexts */
215 	struct iso_context *it_context_list;
216 	u64 ir_context_channels; /* unoccupied channels */
217 	u32 ir_context_support;
218 	u32 ir_context_mask;     /* unoccupied IR contexts */
219 	struct iso_context *ir_context_list;
220 	u64 mc_channels; /* channels in use by the multichannel IR context */
221 	bool mc_allocated;
222 
223 	__be32    *config_rom;
224 	dma_addr_t config_rom_bus;
225 	__be32    *next_config_rom;
226 	dma_addr_t next_config_rom_bus;
227 	__be32     next_header;
228 
229 	__le32    *self_id_cpu;
230 	dma_addr_t self_id_bus;
231 	struct work_struct bus_reset_work;
232 
233 	u32 self_id_buffer[512];
234 };
235 
236 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
237 {
238 	return container_of(card, struct fw_ohci, card);
239 }
240 
241 #define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
242 #define IR_CONTEXT_BUFFER_FILL		0x80000000
243 #define IR_CONTEXT_ISOCH_HEADER		0x40000000
244 #define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
245 #define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
246 #define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
247 
248 #define CONTEXT_RUN	0x8000
249 #define CONTEXT_WAKE	0x1000
250 #define CONTEXT_DEAD	0x0800
251 #define CONTEXT_ACTIVE	0x0400
252 
253 #define OHCI1394_MAX_AT_REQ_RETRIES	0xf
254 #define OHCI1394_MAX_AT_RESP_RETRIES	0x2
255 #define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
256 
257 #define OHCI1394_REGISTER_SIZE		0x800
258 #define OHCI1394_PCI_HCI_Control	0x40
259 #define SELF_ID_BUF_SIZE		0x800
260 #define OHCI_TCODE_PHY_PACKET		0x0e
261 #define OHCI_VERSION_1_1		0x010010
262 
263 static char ohci_driver_name[] = KBUILD_MODNAME;
264 
265 #define PCI_DEVICE_ID_AGERE_FW643	0x5901
266 #define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
267 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
268 #define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
269 #define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
270 #define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
271 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
272 
273 #define QUIRK_CYCLE_TIMER		1
274 #define QUIRK_RESET_PACKET		2
275 #define QUIRK_BE_HEADERS		4
276 #define QUIRK_NO_1394A			8
277 #define QUIRK_NO_MSI			16
278 #define QUIRK_TI_SLLZ059		32
279 
280 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
281 static const struct {
282 	unsigned short vendor, device, revision, flags;
283 } ohci_quirks[] = {
284 	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
285 		QUIRK_CYCLE_TIMER},
286 
287 	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
288 		QUIRK_BE_HEADERS},
289 
290 	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
291 		QUIRK_NO_MSI},
292 
293 	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
294 		QUIRK_RESET_PACKET},
295 
296 	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
297 		QUIRK_NO_MSI},
298 
299 	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
300 		QUIRK_CYCLE_TIMER},
301 
302 	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
303 		QUIRK_NO_MSI},
304 
305 	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
306 		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
307 
308 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
309 		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
310 
311 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
312 		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
313 
314 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
315 		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
316 
317 	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
318 		QUIRK_RESET_PACKET},
319 
320 	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
321 		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
322 };
323 
324 /* This overrides anything that was found in ohci_quirks[]. */
325 static int param_quirks;
326 module_param_named(quirks, param_quirks, int, 0644);
327 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
328 	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
329 	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
330 	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
331 	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
332 	", disable MSI = "		__stringify(QUIRK_NO_MSI)
333 	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
334 	")");
335 
336 #define OHCI_PARAM_DEBUG_AT_AR		1
337 #define OHCI_PARAM_DEBUG_SELFIDS	2
338 #define OHCI_PARAM_DEBUG_IRQS		4
339 #define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
340 
341 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
342 
343 static int param_debug;
344 module_param_named(debug, param_debug, int, 0644);
345 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
346 	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
347 	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
348 	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
349 	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
350 	", or a combination, or all = -1)");
351 
352 static void log_irqs(u32 evt)
353 {
354 	if (likely(!(param_debug &
355 			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
356 		return;
357 
358 	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
359 	    !(evt & OHCI1394_busReset))
360 		return;
361 
362 	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
363 	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
364 	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
365 	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
366 	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
367 	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
368 	    evt & OHCI1394_isochRx		? " IR"			: "",
369 	    evt & OHCI1394_isochTx		? " IT"			: "",
370 	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
371 	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
372 	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
373 	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
374 	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
375 	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
376 	    evt & OHCI1394_busReset		? " busReset"		: "",
377 	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
378 		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
379 		    OHCI1394_respTxComplete | OHCI1394_isochRx |
380 		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
381 		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
382 		    OHCI1394_cycleInconsistent |
383 		    OHCI1394_regAccessFail | OHCI1394_busReset)
384 						? " ?"			: "");
385 }
386 
387 static const char *speed[] = {
388 	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
389 };
390 static const char *power[] = {
391 	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
392 	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
393 };
394 static const char port[] = { '.', '-', 'p', 'c', };
395 
396 static char _p(u32 *s, int shift)
397 {
398 	return port[*s >> shift & 3];
399 }
400 
401 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
402 {
403 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
404 		return;
405 
406 	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
407 		  self_id_count, generation, node_id);
408 
409 	for (; self_id_count--; ++s)
410 		if ((*s & 1 << 23) == 0)
411 			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
412 			    "%s gc=%d %s %s%s%s\n",
413 			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
414 			    speed[*s >> 14 & 3], *s >> 16 & 63,
415 			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
416 			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
417 		else
418 			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
419 			    *s, *s >> 24 & 63,
420 			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
421 			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
422 }
423 
424 static const char *evts[] = {
425 	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
426 	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
427 	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
428 	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
429 	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
430 	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
431 	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
432 	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
433 	[0x10] = "-reserved-",		[0x11] = "ack_complete",
434 	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
435 	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
436 	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
437 	[0x18] = "-reserved-",		[0x19] = "-reserved-",
438 	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
439 	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
440 	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
441 	[0x20] = "pending/cancelled",
442 };
443 static const char *tcodes[] = {
444 	[0x0] = "QW req",		[0x1] = "BW req",
445 	[0x2] = "W resp",		[0x3] = "-reserved-",
446 	[0x4] = "QR req",		[0x5] = "BR req",
447 	[0x6] = "QR resp",		[0x7] = "BR resp",
448 	[0x8] = "cycle start",		[0x9] = "Lk req",
449 	[0xa] = "async stream packet",	[0xb] = "Lk resp",
450 	[0xc] = "-reserved-",		[0xd] = "-reserved-",
451 	[0xe] = "link internal",	[0xf] = "-reserved-",
452 };
453 
454 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
455 {
456 	int tcode = header[0] >> 4 & 0xf;
457 	char specific[12];
458 
459 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
460 		return;
461 
462 	if (unlikely(evt >= ARRAY_SIZE(evts)))
463 			evt = 0x1f;
464 
465 	if (evt == OHCI1394_evt_bus_reset) {
466 		fw_notify("A%c evt_bus_reset, generation %d\n",
467 		    dir, (header[2] >> 16) & 0xff);
468 		return;
469 	}
470 
471 	switch (tcode) {
472 	case 0x0: case 0x6: case 0x8:
473 		snprintf(specific, sizeof(specific), " = %08x",
474 			 be32_to_cpu((__force __be32)header[3]));
475 		break;
476 	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
477 		snprintf(specific, sizeof(specific), " %x,%x",
478 			 header[3] >> 16, header[3] & 0xffff);
479 		break;
480 	default:
481 		specific[0] = '\0';
482 	}
483 
484 	switch (tcode) {
485 	case 0xa:
486 		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
487 		break;
488 	case 0xe:
489 		fw_notify("A%c %s, PHY %08x %08x\n",
490 			  dir, evts[evt], header[1], header[2]);
491 		break;
492 	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
493 		fw_notify("A%c spd %x tl %02x, "
494 		    "%04x -> %04x, %s, "
495 		    "%s, %04x%08x%s\n",
496 		    dir, speed, header[0] >> 10 & 0x3f,
497 		    header[1] >> 16, header[0] >> 16, evts[evt],
498 		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
499 		break;
500 	default:
501 		fw_notify("A%c spd %x tl %02x, "
502 		    "%04x -> %04x, %s, "
503 		    "%s%s\n",
504 		    dir, speed, header[0] >> 10 & 0x3f,
505 		    header[1] >> 16, header[0] >> 16, evts[evt],
506 		    tcodes[tcode], specific);
507 	}
508 }
509 
510 #else
511 
512 #define param_debug 0
513 static inline void log_irqs(u32 evt) {}
514 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
515 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
516 
517 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
518 
519 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
520 {
521 	writel(data, ohci->registers + offset);
522 }
523 
524 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
525 {
526 	return readl(ohci->registers + offset);
527 }
528 
529 static inline void flush_writes(const struct fw_ohci *ohci)
530 {
531 	/* Do a dummy read to flush writes. */
532 	reg_read(ohci, OHCI1394_Version);
533 }
534 
535 /*
536  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
537  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
538  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
539  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
540  */
541 static int read_phy_reg(struct fw_ohci *ohci, int addr)
542 {
543 	u32 val;
544 	int i;
545 
546 	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
547 	for (i = 0; i < 3 + 100; i++) {
548 		val = reg_read(ohci, OHCI1394_PhyControl);
549 		if (!~val)
550 			return -ENODEV; /* Card was ejected. */
551 
552 		if (val & OHCI1394_PhyControl_ReadDone)
553 			return OHCI1394_PhyControl_ReadData(val);
554 
555 		/*
556 		 * Try a few times without waiting.  Sleeping is necessary
557 		 * only when the link/PHY interface is busy.
558 		 */
559 		if (i >= 3)
560 			msleep(1);
561 	}
562 	fw_error("failed to read phy reg\n");
563 
564 	return -EBUSY;
565 }
566 
567 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
568 {
569 	int i;
570 
571 	reg_write(ohci, OHCI1394_PhyControl,
572 		  OHCI1394_PhyControl_Write(addr, val));
573 	for (i = 0; i < 3 + 100; i++) {
574 		val = reg_read(ohci, OHCI1394_PhyControl);
575 		if (!~val)
576 			return -ENODEV; /* Card was ejected. */
577 
578 		if (!(val & OHCI1394_PhyControl_WritePending))
579 			return 0;
580 
581 		if (i >= 3)
582 			msleep(1);
583 	}
584 	fw_error("failed to write phy reg\n");
585 
586 	return -EBUSY;
587 }
588 
589 static int update_phy_reg(struct fw_ohci *ohci, int addr,
590 			  int clear_bits, int set_bits)
591 {
592 	int ret = read_phy_reg(ohci, addr);
593 	if (ret < 0)
594 		return ret;
595 
596 	/*
597 	 * The interrupt status bits are cleared by writing a one bit.
598 	 * Avoid clearing them unless explicitly requested in set_bits.
599 	 */
600 	if (addr == 5)
601 		clear_bits |= PHY_INT_STATUS_BITS;
602 
603 	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
604 }
605 
606 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
607 {
608 	int ret;
609 
610 	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
611 	if (ret < 0)
612 		return ret;
613 
614 	return read_phy_reg(ohci, addr);
615 }
616 
617 static int ohci_read_phy_reg(struct fw_card *card, int addr)
618 {
619 	struct fw_ohci *ohci = fw_ohci(card);
620 	int ret;
621 
622 	mutex_lock(&ohci->phy_reg_mutex);
623 	ret = read_phy_reg(ohci, addr);
624 	mutex_unlock(&ohci->phy_reg_mutex);
625 
626 	return ret;
627 }
628 
629 static int ohci_update_phy_reg(struct fw_card *card, int addr,
630 			       int clear_bits, int set_bits)
631 {
632 	struct fw_ohci *ohci = fw_ohci(card);
633 	int ret;
634 
635 	mutex_lock(&ohci->phy_reg_mutex);
636 	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
637 	mutex_unlock(&ohci->phy_reg_mutex);
638 
639 	return ret;
640 }
641 
642 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
643 {
644 	return page_private(ctx->pages[i]);
645 }
646 
647 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
648 {
649 	struct descriptor *d;
650 
651 	d = &ctx->descriptors[index];
652 	d->branch_address  &= cpu_to_le32(~0xf);
653 	d->res_count       =  cpu_to_le16(PAGE_SIZE);
654 	d->transfer_status =  0;
655 
656 	wmb(); /* finish init of new descriptors before branch_address update */
657 	d = &ctx->descriptors[ctx->last_buffer_index];
658 	d->branch_address  |= cpu_to_le32(1);
659 
660 	ctx->last_buffer_index = index;
661 
662 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
663 }
664 
665 static void ar_context_release(struct ar_context *ctx)
666 {
667 	unsigned int i;
668 
669 	if (ctx->buffer)
670 		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
671 
672 	for (i = 0; i < AR_BUFFERS; i++)
673 		if (ctx->pages[i]) {
674 			dma_unmap_page(ctx->ohci->card.device,
675 				       ar_buffer_bus(ctx, i),
676 				       PAGE_SIZE, DMA_FROM_DEVICE);
677 			__free_page(ctx->pages[i]);
678 		}
679 }
680 
681 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
682 {
683 	if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
684 		reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
685 		flush_writes(ctx->ohci);
686 
687 		fw_error("AR error: %s; DMA stopped\n", error_msg);
688 	}
689 	/* FIXME: restart? */
690 }
691 
692 static inline unsigned int ar_next_buffer_index(unsigned int index)
693 {
694 	return (index + 1) % AR_BUFFERS;
695 }
696 
697 static inline unsigned int ar_prev_buffer_index(unsigned int index)
698 {
699 	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
700 }
701 
702 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
703 {
704 	return ar_next_buffer_index(ctx->last_buffer_index);
705 }
706 
707 /*
708  * We search for the buffer that contains the last AR packet DMA data written
709  * by the controller.
710  */
711 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
712 						 unsigned int *buffer_offset)
713 {
714 	unsigned int i, next_i, last = ctx->last_buffer_index;
715 	__le16 res_count, next_res_count;
716 
717 	i = ar_first_buffer_index(ctx);
718 	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
719 
720 	/* A buffer that is not yet completely filled must be the last one. */
721 	while (i != last && res_count == 0) {
722 
723 		/* Peek at the next descriptor. */
724 		next_i = ar_next_buffer_index(i);
725 		rmb(); /* read descriptors in order */
726 		next_res_count = ACCESS_ONCE(
727 				ctx->descriptors[next_i].res_count);
728 		/*
729 		 * If the next descriptor is still empty, we must stop at this
730 		 * descriptor.
731 		 */
732 		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
733 			/*
734 			 * The exception is when the DMA data for one packet is
735 			 * split over three buffers; in this case, the middle
736 			 * buffer's descriptor might be never updated by the
737 			 * controller and look still empty, and we have to peek
738 			 * at the third one.
739 			 */
740 			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
741 				next_i = ar_next_buffer_index(next_i);
742 				rmb();
743 				next_res_count = ACCESS_ONCE(
744 					ctx->descriptors[next_i].res_count);
745 				if (next_res_count != cpu_to_le16(PAGE_SIZE))
746 					goto next_buffer_is_active;
747 			}
748 
749 			break;
750 		}
751 
752 next_buffer_is_active:
753 		i = next_i;
754 		res_count = next_res_count;
755 	}
756 
757 	rmb(); /* read res_count before the DMA data */
758 
759 	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
760 	if (*buffer_offset > PAGE_SIZE) {
761 		*buffer_offset = 0;
762 		ar_context_abort(ctx, "corrupted descriptor");
763 	}
764 
765 	return i;
766 }
767 
768 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
769 				    unsigned int end_buffer_index,
770 				    unsigned int end_buffer_offset)
771 {
772 	unsigned int i;
773 
774 	i = ar_first_buffer_index(ctx);
775 	while (i != end_buffer_index) {
776 		dma_sync_single_for_cpu(ctx->ohci->card.device,
777 					ar_buffer_bus(ctx, i),
778 					PAGE_SIZE, DMA_FROM_DEVICE);
779 		i = ar_next_buffer_index(i);
780 	}
781 	if (end_buffer_offset > 0)
782 		dma_sync_single_for_cpu(ctx->ohci->card.device,
783 					ar_buffer_bus(ctx, i),
784 					end_buffer_offset, DMA_FROM_DEVICE);
785 }
786 
787 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
788 #define cond_le32_to_cpu(v) \
789 	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
790 #else
791 #define cond_le32_to_cpu(v) le32_to_cpu(v)
792 #endif
793 
794 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
795 {
796 	struct fw_ohci *ohci = ctx->ohci;
797 	struct fw_packet p;
798 	u32 status, length, tcode;
799 	int evt;
800 
801 	p.header[0] = cond_le32_to_cpu(buffer[0]);
802 	p.header[1] = cond_le32_to_cpu(buffer[1]);
803 	p.header[2] = cond_le32_to_cpu(buffer[2]);
804 
805 	tcode = (p.header[0] >> 4) & 0x0f;
806 	switch (tcode) {
807 	case TCODE_WRITE_QUADLET_REQUEST:
808 	case TCODE_READ_QUADLET_RESPONSE:
809 		p.header[3] = (__force __u32) buffer[3];
810 		p.header_length = 16;
811 		p.payload_length = 0;
812 		break;
813 
814 	case TCODE_READ_BLOCK_REQUEST :
815 		p.header[3] = cond_le32_to_cpu(buffer[3]);
816 		p.header_length = 16;
817 		p.payload_length = 0;
818 		break;
819 
820 	case TCODE_WRITE_BLOCK_REQUEST:
821 	case TCODE_READ_BLOCK_RESPONSE:
822 	case TCODE_LOCK_REQUEST:
823 	case TCODE_LOCK_RESPONSE:
824 		p.header[3] = cond_le32_to_cpu(buffer[3]);
825 		p.header_length = 16;
826 		p.payload_length = p.header[3] >> 16;
827 		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
828 			ar_context_abort(ctx, "invalid packet length");
829 			return NULL;
830 		}
831 		break;
832 
833 	case TCODE_WRITE_RESPONSE:
834 	case TCODE_READ_QUADLET_REQUEST:
835 	case OHCI_TCODE_PHY_PACKET:
836 		p.header_length = 12;
837 		p.payload_length = 0;
838 		break;
839 
840 	default:
841 		ar_context_abort(ctx, "invalid tcode");
842 		return NULL;
843 	}
844 
845 	p.payload = (void *) buffer + p.header_length;
846 
847 	/* FIXME: What to do about evt_* errors? */
848 	length = (p.header_length + p.payload_length + 3) / 4;
849 	status = cond_le32_to_cpu(buffer[length]);
850 	evt    = (status >> 16) & 0x1f;
851 
852 	p.ack        = evt - 16;
853 	p.speed      = (status >> 21) & 0x7;
854 	p.timestamp  = status & 0xffff;
855 	p.generation = ohci->request_generation;
856 
857 	log_ar_at_event('R', p.speed, p.header, evt);
858 
859 	/*
860 	 * Several controllers, notably from NEC and VIA, forget to
861 	 * write ack_complete status at PHY packet reception.
862 	 */
863 	if (evt == OHCI1394_evt_no_status &&
864 	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
865 		p.ack = ACK_COMPLETE;
866 
867 	/*
868 	 * The OHCI bus reset handler synthesizes a PHY packet with
869 	 * the new generation number when a bus reset happens (see
870 	 * section 8.4.2.3).  This helps us determine when a request
871 	 * was received and make sure we send the response in the same
872 	 * generation.  We only need this for requests; for responses
873 	 * we use the unique tlabel for finding the matching
874 	 * request.
875 	 *
876 	 * Alas some chips sometimes emit bus reset packets with a
877 	 * wrong generation.  We set the correct generation for these
878 	 * at a slightly incorrect time (in bus_reset_work).
879 	 */
880 	if (evt == OHCI1394_evt_bus_reset) {
881 		if (!(ohci->quirks & QUIRK_RESET_PACKET))
882 			ohci->request_generation = (p.header[2] >> 16) & 0xff;
883 	} else if (ctx == &ohci->ar_request_ctx) {
884 		fw_core_handle_request(&ohci->card, &p);
885 	} else {
886 		fw_core_handle_response(&ohci->card, &p);
887 	}
888 
889 	return buffer + length + 1;
890 }
891 
892 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
893 {
894 	void *next;
895 
896 	while (p < end) {
897 		next = handle_ar_packet(ctx, p);
898 		if (!next)
899 			return p;
900 		p = next;
901 	}
902 
903 	return p;
904 }
905 
906 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
907 {
908 	unsigned int i;
909 
910 	i = ar_first_buffer_index(ctx);
911 	while (i != end_buffer) {
912 		dma_sync_single_for_device(ctx->ohci->card.device,
913 					   ar_buffer_bus(ctx, i),
914 					   PAGE_SIZE, DMA_FROM_DEVICE);
915 		ar_context_link_page(ctx, i);
916 		i = ar_next_buffer_index(i);
917 	}
918 }
919 
920 static void ar_context_tasklet(unsigned long data)
921 {
922 	struct ar_context *ctx = (struct ar_context *)data;
923 	unsigned int end_buffer_index, end_buffer_offset;
924 	void *p, *end;
925 
926 	p = ctx->pointer;
927 	if (!p)
928 		return;
929 
930 	end_buffer_index = ar_search_last_active_buffer(ctx,
931 							&end_buffer_offset);
932 	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
933 	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
934 
935 	if (end_buffer_index < ar_first_buffer_index(ctx)) {
936 		/*
937 		 * The filled part of the overall buffer wraps around; handle
938 		 * all packets up to the buffer end here.  If the last packet
939 		 * wraps around, its tail will be visible after the buffer end
940 		 * because the buffer start pages are mapped there again.
941 		 */
942 		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
943 		p = handle_ar_packets(ctx, p, buffer_end);
944 		if (p < buffer_end)
945 			goto error;
946 		/* adjust p to point back into the actual buffer */
947 		p -= AR_BUFFERS * PAGE_SIZE;
948 	}
949 
950 	p = handle_ar_packets(ctx, p, end);
951 	if (p != end) {
952 		if (p > end)
953 			ar_context_abort(ctx, "inconsistent descriptor");
954 		goto error;
955 	}
956 
957 	ctx->pointer = p;
958 	ar_recycle_buffers(ctx, end_buffer_index);
959 
960 	return;
961 
962 error:
963 	ctx->pointer = NULL;
964 }
965 
966 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
967 			   unsigned int descriptors_offset, u32 regs)
968 {
969 	unsigned int i;
970 	dma_addr_t dma_addr;
971 	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
972 	struct descriptor *d;
973 
974 	ctx->regs        = regs;
975 	ctx->ohci        = ohci;
976 	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
977 
978 	for (i = 0; i < AR_BUFFERS; i++) {
979 		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
980 		if (!ctx->pages[i])
981 			goto out_of_memory;
982 		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
983 					0, PAGE_SIZE, DMA_FROM_DEVICE);
984 		if (dma_mapping_error(ohci->card.device, dma_addr)) {
985 			__free_page(ctx->pages[i]);
986 			ctx->pages[i] = NULL;
987 			goto out_of_memory;
988 		}
989 		set_page_private(ctx->pages[i], dma_addr);
990 	}
991 
992 	for (i = 0; i < AR_BUFFERS; i++)
993 		pages[i]              = ctx->pages[i];
994 	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
995 		pages[AR_BUFFERS + i] = ctx->pages[i];
996 	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
997 				 -1, PAGE_KERNEL);
998 	if (!ctx->buffer)
999 		goto out_of_memory;
1000 
1001 	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1002 	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1003 
1004 	for (i = 0; i < AR_BUFFERS; i++) {
1005 		d = &ctx->descriptors[i];
1006 		d->req_count      = cpu_to_le16(PAGE_SIZE);
1007 		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1008 						DESCRIPTOR_STATUS |
1009 						DESCRIPTOR_BRANCH_ALWAYS);
1010 		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1011 		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1012 			ar_next_buffer_index(i) * sizeof(struct descriptor));
1013 	}
1014 
1015 	return 0;
1016 
1017 out_of_memory:
1018 	ar_context_release(ctx);
1019 
1020 	return -ENOMEM;
1021 }
1022 
1023 static void ar_context_run(struct ar_context *ctx)
1024 {
1025 	unsigned int i;
1026 
1027 	for (i = 0; i < AR_BUFFERS; i++)
1028 		ar_context_link_page(ctx, i);
1029 
1030 	ctx->pointer = ctx->buffer;
1031 
1032 	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1033 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1034 }
1035 
1036 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1037 {
1038 	__le16 branch;
1039 
1040 	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1041 
1042 	/* figure out which descriptor the branch address goes in */
1043 	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1044 		return d;
1045 	else
1046 		return d + z - 1;
1047 }
1048 
1049 static void context_tasklet(unsigned long data)
1050 {
1051 	struct context *ctx = (struct context *) data;
1052 	struct descriptor *d, *last;
1053 	u32 address;
1054 	int z;
1055 	struct descriptor_buffer *desc;
1056 
1057 	desc = list_entry(ctx->buffer_list.next,
1058 			struct descriptor_buffer, list);
1059 	last = ctx->last;
1060 	while (last->branch_address != 0) {
1061 		struct descriptor_buffer *old_desc = desc;
1062 		address = le32_to_cpu(last->branch_address);
1063 		z = address & 0xf;
1064 		address &= ~0xf;
1065 		ctx->current_bus = address;
1066 
1067 		/* If the branch address points to a buffer outside of the
1068 		 * current buffer, advance to the next buffer. */
1069 		if (address < desc->buffer_bus ||
1070 				address >= desc->buffer_bus + desc->used)
1071 			desc = list_entry(desc->list.next,
1072 					struct descriptor_buffer, list);
1073 		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1074 		last = find_branch_descriptor(d, z);
1075 
1076 		if (!ctx->callback(ctx, d, last))
1077 			break;
1078 
1079 		if (old_desc != desc) {
1080 			/* If we've advanced to the next buffer, move the
1081 			 * previous buffer to the free list. */
1082 			unsigned long flags;
1083 			old_desc->used = 0;
1084 			spin_lock_irqsave(&ctx->ohci->lock, flags);
1085 			list_move_tail(&old_desc->list, &ctx->buffer_list);
1086 			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1087 		}
1088 		ctx->last = last;
1089 	}
1090 }
1091 
1092 /*
1093  * Allocate a new buffer and add it to the list of free buffers for this
1094  * context.  Must be called with ohci->lock held.
1095  */
1096 static int context_add_buffer(struct context *ctx)
1097 {
1098 	struct descriptor_buffer *desc;
1099 	dma_addr_t uninitialized_var(bus_addr);
1100 	int offset;
1101 
1102 	/*
1103 	 * 16MB of descriptors should be far more than enough for any DMA
1104 	 * program.  This will catch run-away userspace or DoS attacks.
1105 	 */
1106 	if (ctx->total_allocation >= 16*1024*1024)
1107 		return -ENOMEM;
1108 
1109 	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1110 			&bus_addr, GFP_ATOMIC);
1111 	if (!desc)
1112 		return -ENOMEM;
1113 
1114 	offset = (void *)&desc->buffer - (void *)desc;
1115 	desc->buffer_size = PAGE_SIZE - offset;
1116 	desc->buffer_bus = bus_addr + offset;
1117 	desc->used = 0;
1118 
1119 	list_add_tail(&desc->list, &ctx->buffer_list);
1120 	ctx->total_allocation += PAGE_SIZE;
1121 
1122 	return 0;
1123 }
1124 
1125 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1126 			u32 regs, descriptor_callback_t callback)
1127 {
1128 	ctx->ohci = ohci;
1129 	ctx->regs = regs;
1130 	ctx->total_allocation = 0;
1131 
1132 	INIT_LIST_HEAD(&ctx->buffer_list);
1133 	if (context_add_buffer(ctx) < 0)
1134 		return -ENOMEM;
1135 
1136 	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1137 			struct descriptor_buffer, list);
1138 
1139 	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1140 	ctx->callback = callback;
1141 
1142 	/*
1143 	 * We put a dummy descriptor in the buffer that has a NULL
1144 	 * branch address and looks like it's been sent.  That way we
1145 	 * have a descriptor to append DMA programs to.
1146 	 */
1147 	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1148 	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1149 	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1150 	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1151 	ctx->last = ctx->buffer_tail->buffer;
1152 	ctx->prev = ctx->buffer_tail->buffer;
1153 
1154 	return 0;
1155 }
1156 
1157 static void context_release(struct context *ctx)
1158 {
1159 	struct fw_card *card = &ctx->ohci->card;
1160 	struct descriptor_buffer *desc, *tmp;
1161 
1162 	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1163 		dma_free_coherent(card->device, PAGE_SIZE, desc,
1164 			desc->buffer_bus -
1165 			((void *)&desc->buffer - (void *)desc));
1166 }
1167 
1168 /* Must be called with ohci->lock held */
1169 static struct descriptor *context_get_descriptors(struct context *ctx,
1170 						  int z, dma_addr_t *d_bus)
1171 {
1172 	struct descriptor *d = NULL;
1173 	struct descriptor_buffer *desc = ctx->buffer_tail;
1174 
1175 	if (z * sizeof(*d) > desc->buffer_size)
1176 		return NULL;
1177 
1178 	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1179 		/* No room for the descriptor in this buffer, so advance to the
1180 		 * next one. */
1181 
1182 		if (desc->list.next == &ctx->buffer_list) {
1183 			/* If there is no free buffer next in the list,
1184 			 * allocate one. */
1185 			if (context_add_buffer(ctx) < 0)
1186 				return NULL;
1187 		}
1188 		desc = list_entry(desc->list.next,
1189 				struct descriptor_buffer, list);
1190 		ctx->buffer_tail = desc;
1191 	}
1192 
1193 	d = desc->buffer + desc->used / sizeof(*d);
1194 	memset(d, 0, z * sizeof(*d));
1195 	*d_bus = desc->buffer_bus + desc->used;
1196 
1197 	return d;
1198 }
1199 
1200 static void context_run(struct context *ctx, u32 extra)
1201 {
1202 	struct fw_ohci *ohci = ctx->ohci;
1203 
1204 	reg_write(ohci, COMMAND_PTR(ctx->regs),
1205 		  le32_to_cpu(ctx->last->branch_address));
1206 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1207 	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1208 	ctx->running = true;
1209 	flush_writes(ohci);
1210 }
1211 
1212 static void context_append(struct context *ctx,
1213 			   struct descriptor *d, int z, int extra)
1214 {
1215 	dma_addr_t d_bus;
1216 	struct descriptor_buffer *desc = ctx->buffer_tail;
1217 
1218 	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1219 
1220 	desc->used += (z + extra) * sizeof(*d);
1221 
1222 	wmb(); /* finish init of new descriptors before branch_address update */
1223 	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1224 	ctx->prev = find_branch_descriptor(d, z);
1225 }
1226 
1227 static void context_stop(struct context *ctx)
1228 {
1229 	u32 reg;
1230 	int i;
1231 
1232 	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1233 	ctx->running = false;
1234 
1235 	for (i = 0; i < 1000; i++) {
1236 		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1237 		if ((reg & CONTEXT_ACTIVE) == 0)
1238 			return;
1239 
1240 		if (i)
1241 			udelay(10);
1242 	}
1243 	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1244 }
1245 
1246 struct driver_data {
1247 	u8 inline_data[8];
1248 	struct fw_packet *packet;
1249 };
1250 
1251 /*
1252  * This function apppends a packet to the DMA queue for transmission.
1253  * Must always be called with the ochi->lock held to ensure proper
1254  * generation handling and locking around packet queue manipulation.
1255  */
1256 static int at_context_queue_packet(struct context *ctx,
1257 				   struct fw_packet *packet)
1258 {
1259 	struct fw_ohci *ohci = ctx->ohci;
1260 	dma_addr_t d_bus, uninitialized_var(payload_bus);
1261 	struct driver_data *driver_data;
1262 	struct descriptor *d, *last;
1263 	__le32 *header;
1264 	int z, tcode;
1265 
1266 	d = context_get_descriptors(ctx, 4, &d_bus);
1267 	if (d == NULL) {
1268 		packet->ack = RCODE_SEND_ERROR;
1269 		return -1;
1270 	}
1271 
1272 	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1273 	d[0].res_count = cpu_to_le16(packet->timestamp);
1274 
1275 	/*
1276 	 * The DMA format for asyncronous link packets is different
1277 	 * from the IEEE1394 layout, so shift the fields around
1278 	 * accordingly.
1279 	 */
1280 
1281 	tcode = (packet->header[0] >> 4) & 0x0f;
1282 	header = (__le32 *) &d[1];
1283 	switch (tcode) {
1284 	case TCODE_WRITE_QUADLET_REQUEST:
1285 	case TCODE_WRITE_BLOCK_REQUEST:
1286 	case TCODE_WRITE_RESPONSE:
1287 	case TCODE_READ_QUADLET_REQUEST:
1288 	case TCODE_READ_BLOCK_REQUEST:
1289 	case TCODE_READ_QUADLET_RESPONSE:
1290 	case TCODE_READ_BLOCK_RESPONSE:
1291 	case TCODE_LOCK_REQUEST:
1292 	case TCODE_LOCK_RESPONSE:
1293 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1294 					(packet->speed << 16));
1295 		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1296 					(packet->header[0] & 0xffff0000));
1297 		header[2] = cpu_to_le32(packet->header[2]);
1298 
1299 		if (TCODE_IS_BLOCK_PACKET(tcode))
1300 			header[3] = cpu_to_le32(packet->header[3]);
1301 		else
1302 			header[3] = (__force __le32) packet->header[3];
1303 
1304 		d[0].req_count = cpu_to_le16(packet->header_length);
1305 		break;
1306 
1307 	case TCODE_LINK_INTERNAL:
1308 		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1309 					(packet->speed << 16));
1310 		header[1] = cpu_to_le32(packet->header[1]);
1311 		header[2] = cpu_to_le32(packet->header[2]);
1312 		d[0].req_count = cpu_to_le16(12);
1313 
1314 		if (is_ping_packet(&packet->header[1]))
1315 			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1316 		break;
1317 
1318 	case TCODE_STREAM_DATA:
1319 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1320 					(packet->speed << 16));
1321 		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1322 		d[0].req_count = cpu_to_le16(8);
1323 		break;
1324 
1325 	default:
1326 		/* BUG(); */
1327 		packet->ack = RCODE_SEND_ERROR;
1328 		return -1;
1329 	}
1330 
1331 	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1332 	driver_data = (struct driver_data *) &d[3];
1333 	driver_data->packet = packet;
1334 	packet->driver_data = driver_data;
1335 
1336 	if (packet->payload_length > 0) {
1337 		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1338 			payload_bus = dma_map_single(ohci->card.device,
1339 						     packet->payload,
1340 						     packet->payload_length,
1341 						     DMA_TO_DEVICE);
1342 			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1343 				packet->ack = RCODE_SEND_ERROR;
1344 				return -1;
1345 			}
1346 			packet->payload_bus	= payload_bus;
1347 			packet->payload_mapped	= true;
1348 		} else {
1349 			memcpy(driver_data->inline_data, packet->payload,
1350 			       packet->payload_length);
1351 			payload_bus = d_bus + 3 * sizeof(*d);
1352 		}
1353 
1354 		d[2].req_count    = cpu_to_le16(packet->payload_length);
1355 		d[2].data_address = cpu_to_le32(payload_bus);
1356 		last = &d[2];
1357 		z = 3;
1358 	} else {
1359 		last = &d[0];
1360 		z = 2;
1361 	}
1362 
1363 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1364 				     DESCRIPTOR_IRQ_ALWAYS |
1365 				     DESCRIPTOR_BRANCH_ALWAYS);
1366 
1367 	/* FIXME: Document how the locking works. */
1368 	if (ohci->generation != packet->generation) {
1369 		if (packet->payload_mapped)
1370 			dma_unmap_single(ohci->card.device, payload_bus,
1371 					 packet->payload_length, DMA_TO_DEVICE);
1372 		packet->ack = RCODE_GENERATION;
1373 		return -1;
1374 	}
1375 
1376 	context_append(ctx, d, z, 4 - z);
1377 
1378 	if (ctx->running)
1379 		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1380 	else
1381 		context_run(ctx, 0);
1382 
1383 	return 0;
1384 }
1385 
1386 static void at_context_flush(struct context *ctx)
1387 {
1388 	tasklet_disable(&ctx->tasklet);
1389 
1390 	ctx->flushing = true;
1391 	context_tasklet((unsigned long)ctx);
1392 	ctx->flushing = false;
1393 
1394 	tasklet_enable(&ctx->tasklet);
1395 }
1396 
1397 static int handle_at_packet(struct context *context,
1398 			    struct descriptor *d,
1399 			    struct descriptor *last)
1400 {
1401 	struct driver_data *driver_data;
1402 	struct fw_packet *packet;
1403 	struct fw_ohci *ohci = context->ohci;
1404 	int evt;
1405 
1406 	if (last->transfer_status == 0 && !context->flushing)
1407 		/* This descriptor isn't done yet, stop iteration. */
1408 		return 0;
1409 
1410 	driver_data = (struct driver_data *) &d[3];
1411 	packet = driver_data->packet;
1412 	if (packet == NULL)
1413 		/* This packet was cancelled, just continue. */
1414 		return 1;
1415 
1416 	if (packet->payload_mapped)
1417 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1418 				 packet->payload_length, DMA_TO_DEVICE);
1419 
1420 	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1421 	packet->timestamp = le16_to_cpu(last->res_count);
1422 
1423 	log_ar_at_event('T', packet->speed, packet->header, evt);
1424 
1425 	switch (evt) {
1426 	case OHCI1394_evt_timeout:
1427 		/* Async response transmit timed out. */
1428 		packet->ack = RCODE_CANCELLED;
1429 		break;
1430 
1431 	case OHCI1394_evt_flushed:
1432 		/*
1433 		 * The packet was flushed should give same error as
1434 		 * when we try to use a stale generation count.
1435 		 */
1436 		packet->ack = RCODE_GENERATION;
1437 		break;
1438 
1439 	case OHCI1394_evt_missing_ack:
1440 		if (context->flushing)
1441 			packet->ack = RCODE_GENERATION;
1442 		else {
1443 			/*
1444 			 * Using a valid (current) generation count, but the
1445 			 * node is not on the bus or not sending acks.
1446 			 */
1447 			packet->ack = RCODE_NO_ACK;
1448 		}
1449 		break;
1450 
1451 	case ACK_COMPLETE + 0x10:
1452 	case ACK_PENDING + 0x10:
1453 	case ACK_BUSY_X + 0x10:
1454 	case ACK_BUSY_A + 0x10:
1455 	case ACK_BUSY_B + 0x10:
1456 	case ACK_DATA_ERROR + 0x10:
1457 	case ACK_TYPE_ERROR + 0x10:
1458 		packet->ack = evt - 0x10;
1459 		break;
1460 
1461 	case OHCI1394_evt_no_status:
1462 		if (context->flushing) {
1463 			packet->ack = RCODE_GENERATION;
1464 			break;
1465 		}
1466 		/* fall through */
1467 
1468 	default:
1469 		packet->ack = RCODE_SEND_ERROR;
1470 		break;
1471 	}
1472 
1473 	packet->callback(packet, &ohci->card, packet->ack);
1474 
1475 	return 1;
1476 }
1477 
1478 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1479 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1480 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1481 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1482 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1483 
1484 static void handle_local_rom(struct fw_ohci *ohci,
1485 			     struct fw_packet *packet, u32 csr)
1486 {
1487 	struct fw_packet response;
1488 	int tcode, length, i;
1489 
1490 	tcode = HEADER_GET_TCODE(packet->header[0]);
1491 	if (TCODE_IS_BLOCK_PACKET(tcode))
1492 		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1493 	else
1494 		length = 4;
1495 
1496 	i = csr - CSR_CONFIG_ROM;
1497 	if (i + length > CONFIG_ROM_SIZE) {
1498 		fw_fill_response(&response, packet->header,
1499 				 RCODE_ADDRESS_ERROR, NULL, 0);
1500 	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1501 		fw_fill_response(&response, packet->header,
1502 				 RCODE_TYPE_ERROR, NULL, 0);
1503 	} else {
1504 		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1505 				 (void *) ohci->config_rom + i, length);
1506 	}
1507 
1508 	fw_core_handle_response(&ohci->card, &response);
1509 }
1510 
1511 static void handle_local_lock(struct fw_ohci *ohci,
1512 			      struct fw_packet *packet, u32 csr)
1513 {
1514 	struct fw_packet response;
1515 	int tcode, length, ext_tcode, sel, try;
1516 	__be32 *payload, lock_old;
1517 	u32 lock_arg, lock_data;
1518 
1519 	tcode = HEADER_GET_TCODE(packet->header[0]);
1520 	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1521 	payload = packet->payload;
1522 	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1523 
1524 	if (tcode == TCODE_LOCK_REQUEST &&
1525 	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1526 		lock_arg = be32_to_cpu(payload[0]);
1527 		lock_data = be32_to_cpu(payload[1]);
1528 	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1529 		lock_arg = 0;
1530 		lock_data = 0;
1531 	} else {
1532 		fw_fill_response(&response, packet->header,
1533 				 RCODE_TYPE_ERROR, NULL, 0);
1534 		goto out;
1535 	}
1536 
1537 	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1538 	reg_write(ohci, OHCI1394_CSRData, lock_data);
1539 	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1540 	reg_write(ohci, OHCI1394_CSRControl, sel);
1541 
1542 	for (try = 0; try < 20; try++)
1543 		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1544 			lock_old = cpu_to_be32(reg_read(ohci,
1545 							OHCI1394_CSRData));
1546 			fw_fill_response(&response, packet->header,
1547 					 RCODE_COMPLETE,
1548 					 &lock_old, sizeof(lock_old));
1549 			goto out;
1550 		}
1551 
1552 	fw_error("swap not done (CSR lock timeout)\n");
1553 	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1554 
1555  out:
1556 	fw_core_handle_response(&ohci->card, &response);
1557 }
1558 
1559 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1560 {
1561 	u64 offset, csr;
1562 
1563 	if (ctx == &ctx->ohci->at_request_ctx) {
1564 		packet->ack = ACK_PENDING;
1565 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1566 	}
1567 
1568 	offset =
1569 		((unsigned long long)
1570 		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1571 		packet->header[2];
1572 	csr = offset - CSR_REGISTER_BASE;
1573 
1574 	/* Handle config rom reads. */
1575 	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1576 		handle_local_rom(ctx->ohci, packet, csr);
1577 	else switch (csr) {
1578 	case CSR_BUS_MANAGER_ID:
1579 	case CSR_BANDWIDTH_AVAILABLE:
1580 	case CSR_CHANNELS_AVAILABLE_HI:
1581 	case CSR_CHANNELS_AVAILABLE_LO:
1582 		handle_local_lock(ctx->ohci, packet, csr);
1583 		break;
1584 	default:
1585 		if (ctx == &ctx->ohci->at_request_ctx)
1586 			fw_core_handle_request(&ctx->ohci->card, packet);
1587 		else
1588 			fw_core_handle_response(&ctx->ohci->card, packet);
1589 		break;
1590 	}
1591 
1592 	if (ctx == &ctx->ohci->at_response_ctx) {
1593 		packet->ack = ACK_COMPLETE;
1594 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1595 	}
1596 }
1597 
1598 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1599 {
1600 	unsigned long flags;
1601 	int ret;
1602 
1603 	spin_lock_irqsave(&ctx->ohci->lock, flags);
1604 
1605 	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1606 	    ctx->ohci->generation == packet->generation) {
1607 		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1608 		handle_local_request(ctx, packet);
1609 		return;
1610 	}
1611 
1612 	ret = at_context_queue_packet(ctx, packet);
1613 	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1614 
1615 	if (ret < 0)
1616 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1617 
1618 }
1619 
1620 static void detect_dead_context(struct fw_ohci *ohci,
1621 				const char *name, unsigned int regs)
1622 {
1623 	u32 ctl;
1624 
1625 	ctl = reg_read(ohci, CONTROL_SET(regs));
1626 	if (ctl & CONTEXT_DEAD) {
1627 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1628 		fw_error("DMA context %s has stopped, error code: %s\n",
1629 			 name, evts[ctl & 0x1f]);
1630 #else
1631 		fw_error("DMA context %s has stopped, error code: %#x\n",
1632 			 name, ctl & 0x1f);
1633 #endif
1634 	}
1635 }
1636 
1637 static void handle_dead_contexts(struct fw_ohci *ohci)
1638 {
1639 	unsigned int i;
1640 	char name[8];
1641 
1642 	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1643 	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1644 	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1645 	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1646 	for (i = 0; i < 32; ++i) {
1647 		if (!(ohci->it_context_support & (1 << i)))
1648 			continue;
1649 		sprintf(name, "IT%u", i);
1650 		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1651 	}
1652 	for (i = 0; i < 32; ++i) {
1653 		if (!(ohci->ir_context_support & (1 << i)))
1654 			continue;
1655 		sprintf(name, "IR%u", i);
1656 		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1657 	}
1658 	/* TODO: maybe try to flush and restart the dead contexts */
1659 }
1660 
1661 static u32 cycle_timer_ticks(u32 cycle_timer)
1662 {
1663 	u32 ticks;
1664 
1665 	ticks = cycle_timer & 0xfff;
1666 	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1667 	ticks += (3072 * 8000) * (cycle_timer >> 25);
1668 
1669 	return ticks;
1670 }
1671 
1672 /*
1673  * Some controllers exhibit one or more of the following bugs when updating the
1674  * iso cycle timer register:
1675  *  - When the lowest six bits are wrapping around to zero, a read that happens
1676  *    at the same time will return garbage in the lowest ten bits.
1677  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1678  *    not incremented for about 60 ns.
1679  *  - Occasionally, the entire register reads zero.
1680  *
1681  * To catch these, we read the register three times and ensure that the
1682  * difference between each two consecutive reads is approximately the same, i.e.
1683  * less than twice the other.  Furthermore, any negative difference indicates an
1684  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1685  * execute, so we have enough precision to compute the ratio of the differences.)
1686  */
1687 static u32 get_cycle_time(struct fw_ohci *ohci)
1688 {
1689 	u32 c0, c1, c2;
1690 	u32 t0, t1, t2;
1691 	s32 diff01, diff12;
1692 	int i;
1693 
1694 	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1695 
1696 	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1697 		i = 0;
1698 		c1 = c2;
1699 		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1700 		do {
1701 			c0 = c1;
1702 			c1 = c2;
1703 			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1704 			t0 = cycle_timer_ticks(c0);
1705 			t1 = cycle_timer_ticks(c1);
1706 			t2 = cycle_timer_ticks(c2);
1707 			diff01 = t1 - t0;
1708 			diff12 = t2 - t1;
1709 		} while ((diff01 <= 0 || diff12 <= 0 ||
1710 			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1711 			 && i++ < 20);
1712 	}
1713 
1714 	return c2;
1715 }
1716 
1717 /*
1718  * This function has to be called at least every 64 seconds.  The bus_time
1719  * field stores not only the upper 25 bits of the BUS_TIME register but also
1720  * the most significant bit of the cycle timer in bit 6 so that we can detect
1721  * changes in this bit.
1722  */
1723 static u32 update_bus_time(struct fw_ohci *ohci)
1724 {
1725 	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1726 
1727 	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1728 		ohci->bus_time += 0x40;
1729 
1730 	return ohci->bus_time | cycle_time_seconds;
1731 }
1732 
1733 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1734 {
1735 	int reg;
1736 
1737 	mutex_lock(&ohci->phy_reg_mutex);
1738 	reg = write_phy_reg(ohci, 7, port_index);
1739 	if (reg >= 0)
1740 		reg = read_phy_reg(ohci, 8);
1741 	mutex_unlock(&ohci->phy_reg_mutex);
1742 	if (reg < 0)
1743 		return reg;
1744 
1745 	switch (reg & 0x0f) {
1746 	case 0x06:
1747 		return 2;	/* is child node (connected to parent node) */
1748 	case 0x0e:
1749 		return 3;	/* is parent node (connected to child node) */
1750 	}
1751 	return 1;		/* not connected */
1752 }
1753 
1754 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1755 	int self_id_count)
1756 {
1757 	int i;
1758 	u32 entry;
1759 
1760 	for (i = 0; i < self_id_count; i++) {
1761 		entry = ohci->self_id_buffer[i];
1762 		if ((self_id & 0xff000000) == (entry & 0xff000000))
1763 			return -1;
1764 		if ((self_id & 0xff000000) < (entry & 0xff000000))
1765 			return i;
1766 	}
1767 	return i;
1768 }
1769 
1770 /*
1771  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1772  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1773  * Construct the selfID from phy register contents.
1774  * FIXME:  How to determine the selfID.i flag?
1775  */
1776 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1777 {
1778 	int reg, i, pos, status;
1779 	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1780 	u32 self_id = 0x8040c800;
1781 
1782 	reg = reg_read(ohci, OHCI1394_NodeID);
1783 	if (!(reg & OHCI1394_NodeID_idValid)) {
1784 		fw_notify("node ID not valid, new bus reset in progress\n");
1785 		return -EBUSY;
1786 	}
1787 	self_id |= ((reg & 0x3f) << 24); /* phy ID */
1788 
1789 	reg = ohci_read_phy_reg(&ohci->card, 4);
1790 	if (reg < 0)
1791 		return reg;
1792 	self_id |= ((reg & 0x07) << 8); /* power class */
1793 
1794 	reg = ohci_read_phy_reg(&ohci->card, 1);
1795 	if (reg < 0)
1796 		return reg;
1797 	self_id |= ((reg & 0x3f) << 16); /* gap count */
1798 
1799 	for (i = 0; i < 3; i++) {
1800 		status = get_status_for_port(ohci, i);
1801 		if (status < 0)
1802 			return status;
1803 		self_id |= ((status & 0x3) << (6 - (i * 2)));
1804 	}
1805 
1806 	pos = get_self_id_pos(ohci, self_id, self_id_count);
1807 	if (pos >= 0) {
1808 		memmove(&(ohci->self_id_buffer[pos+1]),
1809 			&(ohci->self_id_buffer[pos]),
1810 			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1811 		ohci->self_id_buffer[pos] = self_id;
1812 		self_id_count++;
1813 	}
1814 	return self_id_count;
1815 }
1816 
1817 static void bus_reset_work(struct work_struct *work)
1818 {
1819 	struct fw_ohci *ohci =
1820 		container_of(work, struct fw_ohci, bus_reset_work);
1821 	int self_id_count, i, j, reg;
1822 	int generation, new_generation;
1823 	unsigned long flags;
1824 	void *free_rom = NULL;
1825 	dma_addr_t free_rom_bus = 0;
1826 	bool is_new_root;
1827 
1828 	reg = reg_read(ohci, OHCI1394_NodeID);
1829 	if (!(reg & OHCI1394_NodeID_idValid)) {
1830 		fw_notify("node ID not valid, new bus reset in progress\n");
1831 		return;
1832 	}
1833 	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1834 		fw_notify("malconfigured bus\n");
1835 		return;
1836 	}
1837 	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1838 			       OHCI1394_NodeID_nodeNumber);
1839 
1840 	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1841 	if (!(ohci->is_root && is_new_root))
1842 		reg_write(ohci, OHCI1394_LinkControlSet,
1843 			  OHCI1394_LinkControl_cycleMaster);
1844 	ohci->is_root = is_new_root;
1845 
1846 	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1847 	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1848 		fw_notify("inconsistent self IDs\n");
1849 		return;
1850 	}
1851 	/*
1852 	 * The count in the SelfIDCount register is the number of
1853 	 * bytes in the self ID receive buffer.  Since we also receive
1854 	 * the inverted quadlets and a header quadlet, we shift one
1855 	 * bit extra to get the actual number of self IDs.
1856 	 */
1857 	self_id_count = (reg >> 3) & 0xff;
1858 
1859 	if (self_id_count > 252) {
1860 		fw_notify("inconsistent self IDs\n");
1861 		return;
1862 	}
1863 
1864 	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1865 	rmb();
1866 
1867 	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1868 		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1869 			/*
1870 			 * If the invalid data looks like a cycle start packet,
1871 			 * it's likely to be the result of the cycle master
1872 			 * having a wrong gap count.  In this case, the self IDs
1873 			 * so far are valid and should be processed so that the
1874 			 * bus manager can then correct the gap count.
1875 			 */
1876 			if (cond_le32_to_cpu(ohci->self_id_cpu[i])
1877 							== 0xffff008f) {
1878 				fw_notify("ignoring spurious self IDs\n");
1879 				self_id_count = j;
1880 				break;
1881 			} else {
1882 				fw_notify("inconsistent self IDs\n");
1883 				return;
1884 			}
1885 		}
1886 		ohci->self_id_buffer[j] =
1887 				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1888 	}
1889 
1890 	if (ohci->quirks & QUIRK_TI_SLLZ059) {
1891 		self_id_count = find_and_insert_self_id(ohci, self_id_count);
1892 		if (self_id_count < 0) {
1893 			fw_notify("could not construct local self ID\n");
1894 			return;
1895 		}
1896 	}
1897 
1898 	if (self_id_count == 0) {
1899 		fw_notify("inconsistent self IDs\n");
1900 		return;
1901 	}
1902 	rmb();
1903 
1904 	/*
1905 	 * Check the consistency of the self IDs we just read.  The
1906 	 * problem we face is that a new bus reset can start while we
1907 	 * read out the self IDs from the DMA buffer. If this happens,
1908 	 * the DMA buffer will be overwritten with new self IDs and we
1909 	 * will read out inconsistent data.  The OHCI specification
1910 	 * (section 11.2) recommends a technique similar to
1911 	 * linux/seqlock.h, where we remember the generation of the
1912 	 * self IDs in the buffer before reading them out and compare
1913 	 * it to the current generation after reading them out.  If
1914 	 * the two generations match we know we have a consistent set
1915 	 * of self IDs.
1916 	 */
1917 
1918 	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1919 	if (new_generation != generation) {
1920 		fw_notify("recursive bus reset detected, "
1921 			  "discarding self ids\n");
1922 		return;
1923 	}
1924 
1925 	/* FIXME: Document how the locking works. */
1926 	spin_lock_irqsave(&ohci->lock, flags);
1927 
1928 	ohci->generation = -1; /* prevent AT packet queueing */
1929 	context_stop(&ohci->at_request_ctx);
1930 	context_stop(&ohci->at_response_ctx);
1931 
1932 	spin_unlock_irqrestore(&ohci->lock, flags);
1933 
1934 	/*
1935 	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1936 	 * packets in the AT queues and software needs to drain them.
1937 	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1938 	 */
1939 	at_context_flush(&ohci->at_request_ctx);
1940 	at_context_flush(&ohci->at_response_ctx);
1941 
1942 	spin_lock_irqsave(&ohci->lock, flags);
1943 
1944 	ohci->generation = generation;
1945 	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1946 
1947 	if (ohci->quirks & QUIRK_RESET_PACKET)
1948 		ohci->request_generation = generation;
1949 
1950 	/*
1951 	 * This next bit is unrelated to the AT context stuff but we
1952 	 * have to do it under the spinlock also.  If a new config rom
1953 	 * was set up before this reset, the old one is now no longer
1954 	 * in use and we can free it. Update the config rom pointers
1955 	 * to point to the current config rom and clear the
1956 	 * next_config_rom pointer so a new update can take place.
1957 	 */
1958 
1959 	if (ohci->next_config_rom != NULL) {
1960 		if (ohci->next_config_rom != ohci->config_rom) {
1961 			free_rom      = ohci->config_rom;
1962 			free_rom_bus  = ohci->config_rom_bus;
1963 		}
1964 		ohci->config_rom      = ohci->next_config_rom;
1965 		ohci->config_rom_bus  = ohci->next_config_rom_bus;
1966 		ohci->next_config_rom = NULL;
1967 
1968 		/*
1969 		 * Restore config_rom image and manually update
1970 		 * config_rom registers.  Writing the header quadlet
1971 		 * will indicate that the config rom is ready, so we
1972 		 * do that last.
1973 		 */
1974 		reg_write(ohci, OHCI1394_BusOptions,
1975 			  be32_to_cpu(ohci->config_rom[2]));
1976 		ohci->config_rom[0] = ohci->next_header;
1977 		reg_write(ohci, OHCI1394_ConfigROMhdr,
1978 			  be32_to_cpu(ohci->next_header));
1979 	}
1980 
1981 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1982 	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1983 	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1984 #endif
1985 
1986 	spin_unlock_irqrestore(&ohci->lock, flags);
1987 
1988 	if (free_rom)
1989 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1990 				  free_rom, free_rom_bus);
1991 
1992 	log_selfids(ohci->node_id, generation,
1993 		    self_id_count, ohci->self_id_buffer);
1994 
1995 	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1996 				 self_id_count, ohci->self_id_buffer,
1997 				 ohci->csr_state_setclear_abdicate);
1998 	ohci->csr_state_setclear_abdicate = false;
1999 }
2000 
2001 static irqreturn_t irq_handler(int irq, void *data)
2002 {
2003 	struct fw_ohci *ohci = data;
2004 	u32 event, iso_event;
2005 	int i;
2006 
2007 	event = reg_read(ohci, OHCI1394_IntEventClear);
2008 
2009 	if (!event || !~event)
2010 		return IRQ_NONE;
2011 
2012 	/*
2013 	 * busReset and postedWriteErr must not be cleared yet
2014 	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2015 	 */
2016 	reg_write(ohci, OHCI1394_IntEventClear,
2017 		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2018 	log_irqs(event);
2019 
2020 	if (event & OHCI1394_selfIDComplete)
2021 		queue_work(fw_workqueue, &ohci->bus_reset_work);
2022 
2023 	if (event & OHCI1394_RQPkt)
2024 		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2025 
2026 	if (event & OHCI1394_RSPkt)
2027 		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2028 
2029 	if (event & OHCI1394_reqTxComplete)
2030 		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2031 
2032 	if (event & OHCI1394_respTxComplete)
2033 		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2034 
2035 	if (event & OHCI1394_isochRx) {
2036 		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2037 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2038 
2039 		while (iso_event) {
2040 			i = ffs(iso_event) - 1;
2041 			tasklet_schedule(
2042 				&ohci->ir_context_list[i].context.tasklet);
2043 			iso_event &= ~(1 << i);
2044 		}
2045 	}
2046 
2047 	if (event & OHCI1394_isochTx) {
2048 		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2049 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2050 
2051 		while (iso_event) {
2052 			i = ffs(iso_event) - 1;
2053 			tasklet_schedule(
2054 				&ohci->it_context_list[i].context.tasklet);
2055 			iso_event &= ~(1 << i);
2056 		}
2057 	}
2058 
2059 	if (unlikely(event & OHCI1394_regAccessFail))
2060 		fw_error("Register access failure - "
2061 			 "please notify linux1394-devel@lists.sf.net\n");
2062 
2063 	if (unlikely(event & OHCI1394_postedWriteErr)) {
2064 		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2065 		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2066 		reg_write(ohci, OHCI1394_IntEventClear,
2067 			  OHCI1394_postedWriteErr);
2068 		if (printk_ratelimit())
2069 			fw_error("PCI posted write error\n");
2070 	}
2071 
2072 	if (unlikely(event & OHCI1394_cycleTooLong)) {
2073 		if (printk_ratelimit())
2074 			fw_notify("isochronous cycle too long\n");
2075 		reg_write(ohci, OHCI1394_LinkControlSet,
2076 			  OHCI1394_LinkControl_cycleMaster);
2077 	}
2078 
2079 	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2080 		/*
2081 		 * We need to clear this event bit in order to make
2082 		 * cycleMatch isochronous I/O work.  In theory we should
2083 		 * stop active cycleMatch iso contexts now and restart
2084 		 * them at least two cycles later.  (FIXME?)
2085 		 */
2086 		if (printk_ratelimit())
2087 			fw_notify("isochronous cycle inconsistent\n");
2088 	}
2089 
2090 	if (unlikely(event & OHCI1394_unrecoverableError))
2091 		handle_dead_contexts(ohci);
2092 
2093 	if (event & OHCI1394_cycle64Seconds) {
2094 		spin_lock(&ohci->lock);
2095 		update_bus_time(ohci);
2096 		spin_unlock(&ohci->lock);
2097 	} else
2098 		flush_writes(ohci);
2099 
2100 	return IRQ_HANDLED;
2101 }
2102 
2103 static int software_reset(struct fw_ohci *ohci)
2104 {
2105 	u32 val;
2106 	int i;
2107 
2108 	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2109 	for (i = 0; i < 500; i++) {
2110 		val = reg_read(ohci, OHCI1394_HCControlSet);
2111 		if (!~val)
2112 			return -ENODEV; /* Card was ejected. */
2113 
2114 		if (!(val & OHCI1394_HCControl_softReset))
2115 			return 0;
2116 
2117 		msleep(1);
2118 	}
2119 
2120 	return -EBUSY;
2121 }
2122 
2123 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2124 {
2125 	size_t size = length * 4;
2126 
2127 	memcpy(dest, src, size);
2128 	if (size < CONFIG_ROM_SIZE)
2129 		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2130 }
2131 
2132 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2133 {
2134 	bool enable_1394a;
2135 	int ret, clear, set, offset;
2136 
2137 	/* Check if the driver should configure link and PHY. */
2138 	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2139 	      OHCI1394_HCControl_programPhyEnable))
2140 		return 0;
2141 
2142 	/* Paranoia: check whether the PHY supports 1394a, too. */
2143 	enable_1394a = false;
2144 	ret = read_phy_reg(ohci, 2);
2145 	if (ret < 0)
2146 		return ret;
2147 	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2148 		ret = read_paged_phy_reg(ohci, 1, 8);
2149 		if (ret < 0)
2150 			return ret;
2151 		if (ret >= 1)
2152 			enable_1394a = true;
2153 	}
2154 
2155 	if (ohci->quirks & QUIRK_NO_1394A)
2156 		enable_1394a = false;
2157 
2158 	/* Configure PHY and link consistently. */
2159 	if (enable_1394a) {
2160 		clear = 0;
2161 		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2162 	} else {
2163 		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2164 		set = 0;
2165 	}
2166 	ret = update_phy_reg(ohci, 5, clear, set);
2167 	if (ret < 0)
2168 		return ret;
2169 
2170 	if (enable_1394a)
2171 		offset = OHCI1394_HCControlSet;
2172 	else
2173 		offset = OHCI1394_HCControlClear;
2174 	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2175 
2176 	/* Clean up: configuration has been taken care of. */
2177 	reg_write(ohci, OHCI1394_HCControlClear,
2178 		  OHCI1394_HCControl_programPhyEnable);
2179 
2180 	return 0;
2181 }
2182 
2183 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2184 {
2185 	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2186 	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2187 	int reg, i;
2188 
2189 	reg = read_phy_reg(ohci, 2);
2190 	if (reg < 0)
2191 		return reg;
2192 	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2193 		return 0;
2194 
2195 	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2196 		reg = read_paged_phy_reg(ohci, 1, i + 10);
2197 		if (reg < 0)
2198 			return reg;
2199 		if (reg != id[i])
2200 			return 0;
2201 	}
2202 	return 1;
2203 }
2204 
2205 static int ohci_enable(struct fw_card *card,
2206 		       const __be32 *config_rom, size_t length)
2207 {
2208 	struct fw_ohci *ohci = fw_ohci(card);
2209 	struct pci_dev *dev = to_pci_dev(card->device);
2210 	u32 lps, seconds, version, irqs;
2211 	int i, ret;
2212 
2213 	if (software_reset(ohci)) {
2214 		fw_error("Failed to reset ohci card.\n");
2215 		return -EBUSY;
2216 	}
2217 
2218 	/*
2219 	 * Now enable LPS, which we need in order to start accessing
2220 	 * most of the registers.  In fact, on some cards (ALI M5251),
2221 	 * accessing registers in the SClk domain without LPS enabled
2222 	 * will lock up the machine.  Wait 50msec to make sure we have
2223 	 * full link enabled.  However, with some cards (well, at least
2224 	 * a JMicron PCIe card), we have to try again sometimes.
2225 	 */
2226 	reg_write(ohci, OHCI1394_HCControlSet,
2227 		  OHCI1394_HCControl_LPS |
2228 		  OHCI1394_HCControl_postedWriteEnable);
2229 	flush_writes(ohci);
2230 
2231 	for (lps = 0, i = 0; !lps && i < 3; i++) {
2232 		msleep(50);
2233 		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2234 		      OHCI1394_HCControl_LPS;
2235 	}
2236 
2237 	if (!lps) {
2238 		fw_error("Failed to set Link Power Status\n");
2239 		return -EIO;
2240 	}
2241 
2242 	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2243 		ret = probe_tsb41ba3d(ohci);
2244 		if (ret < 0)
2245 			return ret;
2246 		if (ret)
2247 			fw_notify("local TSB41BA3D phy\n");
2248 		else
2249 			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2250 	}
2251 
2252 	reg_write(ohci, OHCI1394_HCControlClear,
2253 		  OHCI1394_HCControl_noByteSwapData);
2254 
2255 	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2256 	reg_write(ohci, OHCI1394_LinkControlSet,
2257 		  OHCI1394_LinkControl_cycleTimerEnable |
2258 		  OHCI1394_LinkControl_cycleMaster);
2259 
2260 	reg_write(ohci, OHCI1394_ATRetries,
2261 		  OHCI1394_MAX_AT_REQ_RETRIES |
2262 		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2263 		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2264 		  (200 << 16));
2265 
2266 	seconds = lower_32_bits(get_seconds());
2267 	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2268 	ohci->bus_time = seconds & ~0x3f;
2269 
2270 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2271 	if (version >= OHCI_VERSION_1_1) {
2272 		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2273 			  0xfffffffe);
2274 		card->broadcast_channel_auto_allocated = true;
2275 	}
2276 
2277 	/* Get implemented bits of the priority arbitration request counter. */
2278 	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2279 	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2280 	reg_write(ohci, OHCI1394_FairnessControl, 0);
2281 	card->priority_budget_implemented = ohci->pri_req_max != 0;
2282 
2283 	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2284 	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2285 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2286 
2287 	ret = configure_1394a_enhancements(ohci);
2288 	if (ret < 0)
2289 		return ret;
2290 
2291 	/* Activate link_on bit and contender bit in our self ID packets.*/
2292 	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2293 	if (ret < 0)
2294 		return ret;
2295 
2296 	/*
2297 	 * When the link is not yet enabled, the atomic config rom
2298 	 * update mechanism described below in ohci_set_config_rom()
2299 	 * is not active.  We have to update ConfigRomHeader and
2300 	 * BusOptions manually, and the write to ConfigROMmap takes
2301 	 * effect immediately.  We tie this to the enabling of the
2302 	 * link, so we have a valid config rom before enabling - the
2303 	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2304 	 * values before enabling.
2305 	 *
2306 	 * However, when the ConfigROMmap is written, some controllers
2307 	 * always read back quadlets 0 and 2 from the config rom to
2308 	 * the ConfigRomHeader and BusOptions registers on bus reset.
2309 	 * They shouldn't do that in this initial case where the link
2310 	 * isn't enabled.  This means we have to use the same
2311 	 * workaround here, setting the bus header to 0 and then write
2312 	 * the right values in the bus reset tasklet.
2313 	 */
2314 
2315 	if (config_rom) {
2316 		ohci->next_config_rom =
2317 			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2318 					   &ohci->next_config_rom_bus,
2319 					   GFP_KERNEL);
2320 		if (ohci->next_config_rom == NULL)
2321 			return -ENOMEM;
2322 
2323 		copy_config_rom(ohci->next_config_rom, config_rom, length);
2324 	} else {
2325 		/*
2326 		 * In the suspend case, config_rom is NULL, which
2327 		 * means that we just reuse the old config rom.
2328 		 */
2329 		ohci->next_config_rom = ohci->config_rom;
2330 		ohci->next_config_rom_bus = ohci->config_rom_bus;
2331 	}
2332 
2333 	ohci->next_header = ohci->next_config_rom[0];
2334 	ohci->next_config_rom[0] = 0;
2335 	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2336 	reg_write(ohci, OHCI1394_BusOptions,
2337 		  be32_to_cpu(ohci->next_config_rom[2]));
2338 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2339 
2340 	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2341 
2342 	if (!(ohci->quirks & QUIRK_NO_MSI))
2343 		pci_enable_msi(dev);
2344 	if (request_irq(dev->irq, irq_handler,
2345 			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2346 			ohci_driver_name, ohci)) {
2347 		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2348 		pci_disable_msi(dev);
2349 
2350 		if (config_rom) {
2351 			dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2352 					  ohci->next_config_rom,
2353 					  ohci->next_config_rom_bus);
2354 			ohci->next_config_rom = NULL;
2355 		}
2356 		return -EIO;
2357 	}
2358 
2359 	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2360 		OHCI1394_RQPkt | OHCI1394_RSPkt |
2361 		OHCI1394_isochTx | OHCI1394_isochRx |
2362 		OHCI1394_postedWriteErr |
2363 		OHCI1394_selfIDComplete |
2364 		OHCI1394_regAccessFail |
2365 		OHCI1394_cycle64Seconds |
2366 		OHCI1394_cycleInconsistent |
2367 		OHCI1394_unrecoverableError |
2368 		OHCI1394_cycleTooLong |
2369 		OHCI1394_masterIntEnable;
2370 	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2371 		irqs |= OHCI1394_busReset;
2372 	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2373 
2374 	reg_write(ohci, OHCI1394_HCControlSet,
2375 		  OHCI1394_HCControl_linkEnable |
2376 		  OHCI1394_HCControl_BIBimageValid);
2377 
2378 	reg_write(ohci, OHCI1394_LinkControlSet,
2379 		  OHCI1394_LinkControl_rcvSelfID |
2380 		  OHCI1394_LinkControl_rcvPhyPkt);
2381 
2382 	ar_context_run(&ohci->ar_request_ctx);
2383 	ar_context_run(&ohci->ar_response_ctx);
2384 
2385 	flush_writes(ohci);
2386 
2387 	/* We are ready to go, reset bus to finish initialization. */
2388 	fw_schedule_bus_reset(&ohci->card, false, true);
2389 
2390 	return 0;
2391 }
2392 
2393 static int ohci_set_config_rom(struct fw_card *card,
2394 			       const __be32 *config_rom, size_t length)
2395 {
2396 	struct fw_ohci *ohci;
2397 	unsigned long flags;
2398 	__be32 *next_config_rom;
2399 	dma_addr_t uninitialized_var(next_config_rom_bus);
2400 
2401 	ohci = fw_ohci(card);
2402 
2403 	/*
2404 	 * When the OHCI controller is enabled, the config rom update
2405 	 * mechanism is a bit tricky, but easy enough to use.  See
2406 	 * section 5.5.6 in the OHCI specification.
2407 	 *
2408 	 * The OHCI controller caches the new config rom address in a
2409 	 * shadow register (ConfigROMmapNext) and needs a bus reset
2410 	 * for the changes to take place.  When the bus reset is
2411 	 * detected, the controller loads the new values for the
2412 	 * ConfigRomHeader and BusOptions registers from the specified
2413 	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2414 	 * shadow register. All automatically and atomically.
2415 	 *
2416 	 * Now, there's a twist to this story.  The automatic load of
2417 	 * ConfigRomHeader and BusOptions doesn't honor the
2418 	 * noByteSwapData bit, so with a be32 config rom, the
2419 	 * controller will load be32 values in to these registers
2420 	 * during the atomic update, even on litte endian
2421 	 * architectures.  The workaround we use is to put a 0 in the
2422 	 * header quadlet; 0 is endian agnostic and means that the
2423 	 * config rom isn't ready yet.  In the bus reset tasklet we
2424 	 * then set up the real values for the two registers.
2425 	 *
2426 	 * We use ohci->lock to avoid racing with the code that sets
2427 	 * ohci->next_config_rom to NULL (see bus_reset_work).
2428 	 */
2429 
2430 	next_config_rom =
2431 		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2432 				   &next_config_rom_bus, GFP_KERNEL);
2433 	if (next_config_rom == NULL)
2434 		return -ENOMEM;
2435 
2436 	spin_lock_irqsave(&ohci->lock, flags);
2437 
2438 	/*
2439 	 * If there is not an already pending config_rom update,
2440 	 * push our new allocation into the ohci->next_config_rom
2441 	 * and then mark the local variable as null so that we
2442 	 * won't deallocate the new buffer.
2443 	 *
2444 	 * OTOH, if there is a pending config_rom update, just
2445 	 * use that buffer with the new config_rom data, and
2446 	 * let this routine free the unused DMA allocation.
2447 	 */
2448 
2449 	if (ohci->next_config_rom == NULL) {
2450 		ohci->next_config_rom = next_config_rom;
2451 		ohci->next_config_rom_bus = next_config_rom_bus;
2452 		next_config_rom = NULL;
2453 	}
2454 
2455 	copy_config_rom(ohci->next_config_rom, config_rom, length);
2456 
2457 	ohci->next_header = config_rom[0];
2458 	ohci->next_config_rom[0] = 0;
2459 
2460 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2461 
2462 	spin_unlock_irqrestore(&ohci->lock, flags);
2463 
2464 	/* If we didn't use the DMA allocation, delete it. */
2465 	if (next_config_rom != NULL)
2466 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2467 				  next_config_rom, next_config_rom_bus);
2468 
2469 	/*
2470 	 * Now initiate a bus reset to have the changes take
2471 	 * effect. We clean up the old config rom memory and DMA
2472 	 * mappings in the bus reset tasklet, since the OHCI
2473 	 * controller could need to access it before the bus reset
2474 	 * takes effect.
2475 	 */
2476 
2477 	fw_schedule_bus_reset(&ohci->card, true, true);
2478 
2479 	return 0;
2480 }
2481 
2482 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2483 {
2484 	struct fw_ohci *ohci = fw_ohci(card);
2485 
2486 	at_context_transmit(&ohci->at_request_ctx, packet);
2487 }
2488 
2489 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2490 {
2491 	struct fw_ohci *ohci = fw_ohci(card);
2492 
2493 	at_context_transmit(&ohci->at_response_ctx, packet);
2494 }
2495 
2496 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2497 {
2498 	struct fw_ohci *ohci = fw_ohci(card);
2499 	struct context *ctx = &ohci->at_request_ctx;
2500 	struct driver_data *driver_data = packet->driver_data;
2501 	int ret = -ENOENT;
2502 
2503 	tasklet_disable(&ctx->tasklet);
2504 
2505 	if (packet->ack != 0)
2506 		goto out;
2507 
2508 	if (packet->payload_mapped)
2509 		dma_unmap_single(ohci->card.device, packet->payload_bus,
2510 				 packet->payload_length, DMA_TO_DEVICE);
2511 
2512 	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2513 	driver_data->packet = NULL;
2514 	packet->ack = RCODE_CANCELLED;
2515 	packet->callback(packet, &ohci->card, packet->ack);
2516 	ret = 0;
2517  out:
2518 	tasklet_enable(&ctx->tasklet);
2519 
2520 	return ret;
2521 }
2522 
2523 static int ohci_enable_phys_dma(struct fw_card *card,
2524 				int node_id, int generation)
2525 {
2526 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2527 	return 0;
2528 #else
2529 	struct fw_ohci *ohci = fw_ohci(card);
2530 	unsigned long flags;
2531 	int n, ret = 0;
2532 
2533 	/*
2534 	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2535 	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2536 	 */
2537 
2538 	spin_lock_irqsave(&ohci->lock, flags);
2539 
2540 	if (ohci->generation != generation) {
2541 		ret = -ESTALE;
2542 		goto out;
2543 	}
2544 
2545 	/*
2546 	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2547 	 * enabled for _all_ nodes on remote buses.
2548 	 */
2549 
2550 	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2551 	if (n < 32)
2552 		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2553 	else
2554 		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2555 
2556 	flush_writes(ohci);
2557  out:
2558 	spin_unlock_irqrestore(&ohci->lock, flags);
2559 
2560 	return ret;
2561 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2562 }
2563 
2564 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2565 {
2566 	struct fw_ohci *ohci = fw_ohci(card);
2567 	unsigned long flags;
2568 	u32 value;
2569 
2570 	switch (csr_offset) {
2571 	case CSR_STATE_CLEAR:
2572 	case CSR_STATE_SET:
2573 		if (ohci->is_root &&
2574 		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2575 		     OHCI1394_LinkControl_cycleMaster))
2576 			value = CSR_STATE_BIT_CMSTR;
2577 		else
2578 			value = 0;
2579 		if (ohci->csr_state_setclear_abdicate)
2580 			value |= CSR_STATE_BIT_ABDICATE;
2581 
2582 		return value;
2583 
2584 	case CSR_NODE_IDS:
2585 		return reg_read(ohci, OHCI1394_NodeID) << 16;
2586 
2587 	case CSR_CYCLE_TIME:
2588 		return get_cycle_time(ohci);
2589 
2590 	case CSR_BUS_TIME:
2591 		/*
2592 		 * We might be called just after the cycle timer has wrapped
2593 		 * around but just before the cycle64Seconds handler, so we
2594 		 * better check here, too, if the bus time needs to be updated.
2595 		 */
2596 		spin_lock_irqsave(&ohci->lock, flags);
2597 		value = update_bus_time(ohci);
2598 		spin_unlock_irqrestore(&ohci->lock, flags);
2599 		return value;
2600 
2601 	case CSR_BUSY_TIMEOUT:
2602 		value = reg_read(ohci, OHCI1394_ATRetries);
2603 		return (value >> 4) & 0x0ffff00f;
2604 
2605 	case CSR_PRIORITY_BUDGET:
2606 		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2607 			(ohci->pri_req_max << 8);
2608 
2609 	default:
2610 		WARN_ON(1);
2611 		return 0;
2612 	}
2613 }
2614 
2615 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2616 {
2617 	struct fw_ohci *ohci = fw_ohci(card);
2618 	unsigned long flags;
2619 
2620 	switch (csr_offset) {
2621 	case CSR_STATE_CLEAR:
2622 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2623 			reg_write(ohci, OHCI1394_LinkControlClear,
2624 				  OHCI1394_LinkControl_cycleMaster);
2625 			flush_writes(ohci);
2626 		}
2627 		if (value & CSR_STATE_BIT_ABDICATE)
2628 			ohci->csr_state_setclear_abdicate = false;
2629 		break;
2630 
2631 	case CSR_STATE_SET:
2632 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2633 			reg_write(ohci, OHCI1394_LinkControlSet,
2634 				  OHCI1394_LinkControl_cycleMaster);
2635 			flush_writes(ohci);
2636 		}
2637 		if (value & CSR_STATE_BIT_ABDICATE)
2638 			ohci->csr_state_setclear_abdicate = true;
2639 		break;
2640 
2641 	case CSR_NODE_IDS:
2642 		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2643 		flush_writes(ohci);
2644 		break;
2645 
2646 	case CSR_CYCLE_TIME:
2647 		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2648 		reg_write(ohci, OHCI1394_IntEventSet,
2649 			  OHCI1394_cycleInconsistent);
2650 		flush_writes(ohci);
2651 		break;
2652 
2653 	case CSR_BUS_TIME:
2654 		spin_lock_irqsave(&ohci->lock, flags);
2655 		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2656 		spin_unlock_irqrestore(&ohci->lock, flags);
2657 		break;
2658 
2659 	case CSR_BUSY_TIMEOUT:
2660 		value = (value & 0xf) | ((value & 0xf) << 4) |
2661 			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2662 		reg_write(ohci, OHCI1394_ATRetries, value);
2663 		flush_writes(ohci);
2664 		break;
2665 
2666 	case CSR_PRIORITY_BUDGET:
2667 		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2668 		flush_writes(ohci);
2669 		break;
2670 
2671 	default:
2672 		WARN_ON(1);
2673 		break;
2674 	}
2675 }
2676 
2677 static void copy_iso_headers(struct iso_context *ctx, void *p)
2678 {
2679 	int i = ctx->header_length;
2680 
2681 	if (i + ctx->base.header_size > PAGE_SIZE)
2682 		return;
2683 
2684 	/*
2685 	 * The iso header is byteswapped to little endian by
2686 	 * the controller, but the remaining header quadlets
2687 	 * are big endian.  We want to present all the headers
2688 	 * as big endian, so we have to swap the first quadlet.
2689 	 */
2690 	if (ctx->base.header_size > 0)
2691 		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2692 	if (ctx->base.header_size > 4)
2693 		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2694 	if (ctx->base.header_size > 8)
2695 		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2696 	ctx->header_length += ctx->base.header_size;
2697 }
2698 
2699 static int handle_ir_packet_per_buffer(struct context *context,
2700 				       struct descriptor *d,
2701 				       struct descriptor *last)
2702 {
2703 	struct iso_context *ctx =
2704 		container_of(context, struct iso_context, context);
2705 	struct descriptor *pd;
2706 	u32 buffer_dma;
2707 	__le32 *ir_header;
2708 	void *p;
2709 
2710 	for (pd = d; pd <= last; pd++)
2711 		if (pd->transfer_status)
2712 			break;
2713 	if (pd > last)
2714 		/* Descriptor(s) not done yet, stop iteration */
2715 		return 0;
2716 
2717 	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2718 		d++;
2719 		buffer_dma = le32_to_cpu(d->data_address);
2720 		dma_sync_single_range_for_cpu(context->ohci->card.device,
2721 					      buffer_dma & PAGE_MASK,
2722 					      buffer_dma & ~PAGE_MASK,
2723 					      le16_to_cpu(d->req_count),
2724 					      DMA_FROM_DEVICE);
2725 	}
2726 
2727 	p = last + 1;
2728 	copy_iso_headers(ctx, p);
2729 
2730 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2731 		ir_header = (__le32 *) p;
2732 		ctx->base.callback.sc(&ctx->base,
2733 				      le32_to_cpu(ir_header[0]) & 0xffff,
2734 				      ctx->header_length, ctx->header,
2735 				      ctx->base.callback_data);
2736 		ctx->header_length = 0;
2737 	}
2738 
2739 	return 1;
2740 }
2741 
2742 /* d == last because each descriptor block is only a single descriptor. */
2743 static int handle_ir_buffer_fill(struct context *context,
2744 				 struct descriptor *d,
2745 				 struct descriptor *last)
2746 {
2747 	struct iso_context *ctx =
2748 		container_of(context, struct iso_context, context);
2749 	u32 buffer_dma;
2750 
2751 	if (!last->transfer_status)
2752 		/* Descriptor(s) not done yet, stop iteration */
2753 		return 0;
2754 
2755 	buffer_dma = le32_to_cpu(last->data_address);
2756 	dma_sync_single_range_for_cpu(context->ohci->card.device,
2757 				      buffer_dma & PAGE_MASK,
2758 				      buffer_dma & ~PAGE_MASK,
2759 				      le16_to_cpu(last->req_count),
2760 				      DMA_FROM_DEVICE);
2761 
2762 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2763 		ctx->base.callback.mc(&ctx->base,
2764 				      le32_to_cpu(last->data_address) +
2765 				      le16_to_cpu(last->req_count) -
2766 				      le16_to_cpu(last->res_count),
2767 				      ctx->base.callback_data);
2768 
2769 	return 1;
2770 }
2771 
2772 static inline void sync_it_packet_for_cpu(struct context *context,
2773 					  struct descriptor *pd)
2774 {
2775 	__le16 control;
2776 	u32 buffer_dma;
2777 
2778 	/* only packets beginning with OUTPUT_MORE* have data buffers */
2779 	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2780 		return;
2781 
2782 	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2783 	pd += 2;
2784 
2785 	/*
2786 	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2787 	 * data buffer is in the context program's coherent page and must not
2788 	 * be synced.
2789 	 */
2790 	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2791 	    (context->current_bus          & PAGE_MASK)) {
2792 		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2793 			return;
2794 		pd++;
2795 	}
2796 
2797 	do {
2798 		buffer_dma = le32_to_cpu(pd->data_address);
2799 		dma_sync_single_range_for_cpu(context->ohci->card.device,
2800 					      buffer_dma & PAGE_MASK,
2801 					      buffer_dma & ~PAGE_MASK,
2802 					      le16_to_cpu(pd->req_count),
2803 					      DMA_TO_DEVICE);
2804 		control = pd->control;
2805 		pd++;
2806 	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2807 }
2808 
2809 static int handle_it_packet(struct context *context,
2810 			    struct descriptor *d,
2811 			    struct descriptor *last)
2812 {
2813 	struct iso_context *ctx =
2814 		container_of(context, struct iso_context, context);
2815 	int i;
2816 	struct descriptor *pd;
2817 
2818 	for (pd = d; pd <= last; pd++)
2819 		if (pd->transfer_status)
2820 			break;
2821 	if (pd > last)
2822 		/* Descriptor(s) not done yet, stop iteration */
2823 		return 0;
2824 
2825 	sync_it_packet_for_cpu(context, d);
2826 
2827 	i = ctx->header_length;
2828 	if (i + 4 < PAGE_SIZE) {
2829 		/* Present this value as big-endian to match the receive code */
2830 		*(__be32 *)(ctx->header + i) = cpu_to_be32(
2831 				((u32)le16_to_cpu(pd->transfer_status) << 16) |
2832 				le16_to_cpu(pd->res_count));
2833 		ctx->header_length += 4;
2834 	}
2835 	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2836 		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2837 				      ctx->header_length, ctx->header,
2838 				      ctx->base.callback_data);
2839 		ctx->header_length = 0;
2840 	}
2841 	return 1;
2842 }
2843 
2844 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2845 {
2846 	u32 hi = channels >> 32, lo = channels;
2847 
2848 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2849 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2850 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2851 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2852 	mmiowb();
2853 	ohci->mc_channels = channels;
2854 }
2855 
2856 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2857 				int type, int channel, size_t header_size)
2858 {
2859 	struct fw_ohci *ohci = fw_ohci(card);
2860 	struct iso_context *uninitialized_var(ctx);
2861 	descriptor_callback_t uninitialized_var(callback);
2862 	u64 *uninitialized_var(channels);
2863 	u32 *uninitialized_var(mask), uninitialized_var(regs);
2864 	unsigned long flags;
2865 	int index, ret = -EBUSY;
2866 
2867 	spin_lock_irqsave(&ohci->lock, flags);
2868 
2869 	switch (type) {
2870 	case FW_ISO_CONTEXT_TRANSMIT:
2871 		mask     = &ohci->it_context_mask;
2872 		callback = handle_it_packet;
2873 		index    = ffs(*mask) - 1;
2874 		if (index >= 0) {
2875 			*mask &= ~(1 << index);
2876 			regs = OHCI1394_IsoXmitContextBase(index);
2877 			ctx  = &ohci->it_context_list[index];
2878 		}
2879 		break;
2880 
2881 	case FW_ISO_CONTEXT_RECEIVE:
2882 		channels = &ohci->ir_context_channels;
2883 		mask     = &ohci->ir_context_mask;
2884 		callback = handle_ir_packet_per_buffer;
2885 		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2886 		if (index >= 0) {
2887 			*channels &= ~(1ULL << channel);
2888 			*mask     &= ~(1 << index);
2889 			regs = OHCI1394_IsoRcvContextBase(index);
2890 			ctx  = &ohci->ir_context_list[index];
2891 		}
2892 		break;
2893 
2894 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2895 		mask     = &ohci->ir_context_mask;
2896 		callback = handle_ir_buffer_fill;
2897 		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2898 		if (index >= 0) {
2899 			ohci->mc_allocated = true;
2900 			*mask &= ~(1 << index);
2901 			regs = OHCI1394_IsoRcvContextBase(index);
2902 			ctx  = &ohci->ir_context_list[index];
2903 		}
2904 		break;
2905 
2906 	default:
2907 		index = -1;
2908 		ret = -ENOSYS;
2909 	}
2910 
2911 	spin_unlock_irqrestore(&ohci->lock, flags);
2912 
2913 	if (index < 0)
2914 		return ERR_PTR(ret);
2915 
2916 	memset(ctx, 0, sizeof(*ctx));
2917 	ctx->header_length = 0;
2918 	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2919 	if (ctx->header == NULL) {
2920 		ret = -ENOMEM;
2921 		goto out;
2922 	}
2923 	ret = context_init(&ctx->context, ohci, regs, callback);
2924 	if (ret < 0)
2925 		goto out_with_header;
2926 
2927 	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2928 		set_multichannel_mask(ohci, 0);
2929 
2930 	return &ctx->base;
2931 
2932  out_with_header:
2933 	free_page((unsigned long)ctx->header);
2934  out:
2935 	spin_lock_irqsave(&ohci->lock, flags);
2936 
2937 	switch (type) {
2938 	case FW_ISO_CONTEXT_RECEIVE:
2939 		*channels |= 1ULL << channel;
2940 		break;
2941 
2942 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2943 		ohci->mc_allocated = false;
2944 		break;
2945 	}
2946 	*mask |= 1 << index;
2947 
2948 	spin_unlock_irqrestore(&ohci->lock, flags);
2949 
2950 	return ERR_PTR(ret);
2951 }
2952 
2953 static int ohci_start_iso(struct fw_iso_context *base,
2954 			  s32 cycle, u32 sync, u32 tags)
2955 {
2956 	struct iso_context *ctx = container_of(base, struct iso_context, base);
2957 	struct fw_ohci *ohci = ctx->context.ohci;
2958 	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2959 	int index;
2960 
2961 	/* the controller cannot start without any queued packets */
2962 	if (ctx->context.last->branch_address == 0)
2963 		return -ENODATA;
2964 
2965 	switch (ctx->base.type) {
2966 	case FW_ISO_CONTEXT_TRANSMIT:
2967 		index = ctx - ohci->it_context_list;
2968 		match = 0;
2969 		if (cycle >= 0)
2970 			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2971 				(cycle & 0x7fff) << 16;
2972 
2973 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2974 		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2975 		context_run(&ctx->context, match);
2976 		break;
2977 
2978 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2979 		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2980 		/* fall through */
2981 	case FW_ISO_CONTEXT_RECEIVE:
2982 		index = ctx - ohci->ir_context_list;
2983 		match = (tags << 28) | (sync << 8) | ctx->base.channel;
2984 		if (cycle >= 0) {
2985 			match |= (cycle & 0x07fff) << 12;
2986 			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2987 		}
2988 
2989 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2990 		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2991 		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2992 		context_run(&ctx->context, control);
2993 
2994 		ctx->sync = sync;
2995 		ctx->tags = tags;
2996 
2997 		break;
2998 	}
2999 
3000 	return 0;
3001 }
3002 
3003 static int ohci_stop_iso(struct fw_iso_context *base)
3004 {
3005 	struct fw_ohci *ohci = fw_ohci(base->card);
3006 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3007 	int index;
3008 
3009 	switch (ctx->base.type) {
3010 	case FW_ISO_CONTEXT_TRANSMIT:
3011 		index = ctx - ohci->it_context_list;
3012 		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3013 		break;
3014 
3015 	case FW_ISO_CONTEXT_RECEIVE:
3016 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3017 		index = ctx - ohci->ir_context_list;
3018 		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3019 		break;
3020 	}
3021 	flush_writes(ohci);
3022 	context_stop(&ctx->context);
3023 	tasklet_kill(&ctx->context.tasklet);
3024 
3025 	return 0;
3026 }
3027 
3028 static void ohci_free_iso_context(struct fw_iso_context *base)
3029 {
3030 	struct fw_ohci *ohci = fw_ohci(base->card);
3031 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3032 	unsigned long flags;
3033 	int index;
3034 
3035 	ohci_stop_iso(base);
3036 	context_release(&ctx->context);
3037 	free_page((unsigned long)ctx->header);
3038 
3039 	spin_lock_irqsave(&ohci->lock, flags);
3040 
3041 	switch (base->type) {
3042 	case FW_ISO_CONTEXT_TRANSMIT:
3043 		index = ctx - ohci->it_context_list;
3044 		ohci->it_context_mask |= 1 << index;
3045 		break;
3046 
3047 	case FW_ISO_CONTEXT_RECEIVE:
3048 		index = ctx - ohci->ir_context_list;
3049 		ohci->ir_context_mask |= 1 << index;
3050 		ohci->ir_context_channels |= 1ULL << base->channel;
3051 		break;
3052 
3053 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3054 		index = ctx - ohci->ir_context_list;
3055 		ohci->ir_context_mask |= 1 << index;
3056 		ohci->ir_context_channels |= ohci->mc_channels;
3057 		ohci->mc_channels = 0;
3058 		ohci->mc_allocated = false;
3059 		break;
3060 	}
3061 
3062 	spin_unlock_irqrestore(&ohci->lock, flags);
3063 }
3064 
3065 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3066 {
3067 	struct fw_ohci *ohci = fw_ohci(base->card);
3068 	unsigned long flags;
3069 	int ret;
3070 
3071 	switch (base->type) {
3072 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3073 
3074 		spin_lock_irqsave(&ohci->lock, flags);
3075 
3076 		/* Don't allow multichannel to grab other contexts' channels. */
3077 		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3078 			*channels = ohci->ir_context_channels;
3079 			ret = -EBUSY;
3080 		} else {
3081 			set_multichannel_mask(ohci, *channels);
3082 			ret = 0;
3083 		}
3084 
3085 		spin_unlock_irqrestore(&ohci->lock, flags);
3086 
3087 		break;
3088 	default:
3089 		ret = -EINVAL;
3090 	}
3091 
3092 	return ret;
3093 }
3094 
3095 #ifdef CONFIG_PM
3096 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3097 {
3098 	int i;
3099 	struct iso_context *ctx;
3100 
3101 	for (i = 0 ; i < ohci->n_ir ; i++) {
3102 		ctx = &ohci->ir_context_list[i];
3103 		if (ctx->context.running)
3104 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3105 	}
3106 
3107 	for (i = 0 ; i < ohci->n_it ; i++) {
3108 		ctx = &ohci->it_context_list[i];
3109 		if (ctx->context.running)
3110 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3111 	}
3112 }
3113 #endif
3114 
3115 static int queue_iso_transmit(struct iso_context *ctx,
3116 			      struct fw_iso_packet *packet,
3117 			      struct fw_iso_buffer *buffer,
3118 			      unsigned long payload)
3119 {
3120 	struct descriptor *d, *last, *pd;
3121 	struct fw_iso_packet *p;
3122 	__le32 *header;
3123 	dma_addr_t d_bus, page_bus;
3124 	u32 z, header_z, payload_z, irq;
3125 	u32 payload_index, payload_end_index, next_page_index;
3126 	int page, end_page, i, length, offset;
3127 
3128 	p = packet;
3129 	payload_index = payload;
3130 
3131 	if (p->skip)
3132 		z = 1;
3133 	else
3134 		z = 2;
3135 	if (p->header_length > 0)
3136 		z++;
3137 
3138 	/* Determine the first page the payload isn't contained in. */
3139 	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3140 	if (p->payload_length > 0)
3141 		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3142 	else
3143 		payload_z = 0;
3144 
3145 	z += payload_z;
3146 
3147 	/* Get header size in number of descriptors. */
3148 	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3149 
3150 	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3151 	if (d == NULL)
3152 		return -ENOMEM;
3153 
3154 	if (!p->skip) {
3155 		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3156 		d[0].req_count = cpu_to_le16(8);
3157 		/*
3158 		 * Link the skip address to this descriptor itself.  This causes
3159 		 * a context to skip a cycle whenever lost cycles or FIFO
3160 		 * overruns occur, without dropping the data.  The application
3161 		 * should then decide whether this is an error condition or not.
3162 		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3163 		 */
3164 		d[0].branch_address = cpu_to_le32(d_bus | z);
3165 
3166 		header = (__le32 *) &d[1];
3167 		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3168 					IT_HEADER_TAG(p->tag) |
3169 					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3170 					IT_HEADER_CHANNEL(ctx->base.channel) |
3171 					IT_HEADER_SPEED(ctx->base.speed));
3172 		header[1] =
3173 			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3174 							  p->payload_length));
3175 	}
3176 
3177 	if (p->header_length > 0) {
3178 		d[2].req_count    = cpu_to_le16(p->header_length);
3179 		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3180 		memcpy(&d[z], p->header, p->header_length);
3181 	}
3182 
3183 	pd = d + z - payload_z;
3184 	payload_end_index = payload_index + p->payload_length;
3185 	for (i = 0; i < payload_z; i++) {
3186 		page               = payload_index >> PAGE_SHIFT;
3187 		offset             = payload_index & ~PAGE_MASK;
3188 		next_page_index    = (page + 1) << PAGE_SHIFT;
3189 		length             =
3190 			min(next_page_index, payload_end_index) - payload_index;
3191 		pd[i].req_count    = cpu_to_le16(length);
3192 
3193 		page_bus = page_private(buffer->pages[page]);
3194 		pd[i].data_address = cpu_to_le32(page_bus + offset);
3195 
3196 		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3197 						 page_bus, offset, length,
3198 						 DMA_TO_DEVICE);
3199 
3200 		payload_index += length;
3201 	}
3202 
3203 	if (p->interrupt)
3204 		irq = DESCRIPTOR_IRQ_ALWAYS;
3205 	else
3206 		irq = DESCRIPTOR_NO_IRQ;
3207 
3208 	last = z == 2 ? d : d + z - 1;
3209 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3210 				     DESCRIPTOR_STATUS |
3211 				     DESCRIPTOR_BRANCH_ALWAYS |
3212 				     irq);
3213 
3214 	context_append(&ctx->context, d, z, header_z);
3215 
3216 	return 0;
3217 }
3218 
3219 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3220 				       struct fw_iso_packet *packet,
3221 				       struct fw_iso_buffer *buffer,
3222 				       unsigned long payload)
3223 {
3224 	struct device *device = ctx->context.ohci->card.device;
3225 	struct descriptor *d, *pd;
3226 	dma_addr_t d_bus, page_bus;
3227 	u32 z, header_z, rest;
3228 	int i, j, length;
3229 	int page, offset, packet_count, header_size, payload_per_buffer;
3230 
3231 	/*
3232 	 * The OHCI controller puts the isochronous header and trailer in the
3233 	 * buffer, so we need at least 8 bytes.
3234 	 */
3235 	packet_count = packet->header_length / ctx->base.header_size;
3236 	header_size  = max(ctx->base.header_size, (size_t)8);
3237 
3238 	/* Get header size in number of descriptors. */
3239 	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3240 	page     = payload >> PAGE_SHIFT;
3241 	offset   = payload & ~PAGE_MASK;
3242 	payload_per_buffer = packet->payload_length / packet_count;
3243 
3244 	for (i = 0; i < packet_count; i++) {
3245 		/* d points to the header descriptor */
3246 		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3247 		d = context_get_descriptors(&ctx->context,
3248 				z + header_z, &d_bus);
3249 		if (d == NULL)
3250 			return -ENOMEM;
3251 
3252 		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3253 					      DESCRIPTOR_INPUT_MORE);
3254 		if (packet->skip && i == 0)
3255 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3256 		d->req_count    = cpu_to_le16(header_size);
3257 		d->res_count    = d->req_count;
3258 		d->transfer_status = 0;
3259 		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3260 
3261 		rest = payload_per_buffer;
3262 		pd = d;
3263 		for (j = 1; j < z; j++) {
3264 			pd++;
3265 			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3266 						  DESCRIPTOR_INPUT_MORE);
3267 
3268 			if (offset + rest < PAGE_SIZE)
3269 				length = rest;
3270 			else
3271 				length = PAGE_SIZE - offset;
3272 			pd->req_count = cpu_to_le16(length);
3273 			pd->res_count = pd->req_count;
3274 			pd->transfer_status = 0;
3275 
3276 			page_bus = page_private(buffer->pages[page]);
3277 			pd->data_address = cpu_to_le32(page_bus + offset);
3278 
3279 			dma_sync_single_range_for_device(device, page_bus,
3280 							 offset, length,
3281 							 DMA_FROM_DEVICE);
3282 
3283 			offset = (offset + length) & ~PAGE_MASK;
3284 			rest -= length;
3285 			if (offset == 0)
3286 				page++;
3287 		}
3288 		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3289 					  DESCRIPTOR_INPUT_LAST |
3290 					  DESCRIPTOR_BRANCH_ALWAYS);
3291 		if (packet->interrupt && i == packet_count - 1)
3292 			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3293 
3294 		context_append(&ctx->context, d, z, header_z);
3295 	}
3296 
3297 	return 0;
3298 }
3299 
3300 static int queue_iso_buffer_fill(struct iso_context *ctx,
3301 				 struct fw_iso_packet *packet,
3302 				 struct fw_iso_buffer *buffer,
3303 				 unsigned long payload)
3304 {
3305 	struct descriptor *d;
3306 	dma_addr_t d_bus, page_bus;
3307 	int page, offset, rest, z, i, length;
3308 
3309 	page   = payload >> PAGE_SHIFT;
3310 	offset = payload & ~PAGE_MASK;
3311 	rest   = packet->payload_length;
3312 
3313 	/* We need one descriptor for each page in the buffer. */
3314 	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3315 
3316 	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3317 		return -EFAULT;
3318 
3319 	for (i = 0; i < z; i++) {
3320 		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3321 		if (d == NULL)
3322 			return -ENOMEM;
3323 
3324 		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3325 					 DESCRIPTOR_BRANCH_ALWAYS);
3326 		if (packet->skip && i == 0)
3327 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3328 		if (packet->interrupt && i == z - 1)
3329 			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3330 
3331 		if (offset + rest < PAGE_SIZE)
3332 			length = rest;
3333 		else
3334 			length = PAGE_SIZE - offset;
3335 		d->req_count = cpu_to_le16(length);
3336 		d->res_count = d->req_count;
3337 		d->transfer_status = 0;
3338 
3339 		page_bus = page_private(buffer->pages[page]);
3340 		d->data_address = cpu_to_le32(page_bus + offset);
3341 
3342 		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3343 						 page_bus, offset, length,
3344 						 DMA_FROM_DEVICE);
3345 
3346 		rest -= length;
3347 		offset = 0;
3348 		page++;
3349 
3350 		context_append(&ctx->context, d, 1, 0);
3351 	}
3352 
3353 	return 0;
3354 }
3355 
3356 static int ohci_queue_iso(struct fw_iso_context *base,
3357 			  struct fw_iso_packet *packet,
3358 			  struct fw_iso_buffer *buffer,
3359 			  unsigned long payload)
3360 {
3361 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3362 	unsigned long flags;
3363 	int ret = -ENOSYS;
3364 
3365 	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3366 	switch (base->type) {
3367 	case FW_ISO_CONTEXT_TRANSMIT:
3368 		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3369 		break;
3370 	case FW_ISO_CONTEXT_RECEIVE:
3371 		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3372 		break;
3373 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3374 		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3375 		break;
3376 	}
3377 	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3378 
3379 	return ret;
3380 }
3381 
3382 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3383 {
3384 	struct context *ctx =
3385 			&container_of(base, struct iso_context, base)->context;
3386 
3387 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3388 }
3389 
3390 static const struct fw_card_driver ohci_driver = {
3391 	.enable			= ohci_enable,
3392 	.read_phy_reg		= ohci_read_phy_reg,
3393 	.update_phy_reg		= ohci_update_phy_reg,
3394 	.set_config_rom		= ohci_set_config_rom,
3395 	.send_request		= ohci_send_request,
3396 	.send_response		= ohci_send_response,
3397 	.cancel_packet		= ohci_cancel_packet,
3398 	.enable_phys_dma	= ohci_enable_phys_dma,
3399 	.read_csr		= ohci_read_csr,
3400 	.write_csr		= ohci_write_csr,
3401 
3402 	.allocate_iso_context	= ohci_allocate_iso_context,
3403 	.free_iso_context	= ohci_free_iso_context,
3404 	.set_iso_channels	= ohci_set_iso_channels,
3405 	.queue_iso		= ohci_queue_iso,
3406 	.flush_queue_iso	= ohci_flush_queue_iso,
3407 	.start_iso		= ohci_start_iso,
3408 	.stop_iso		= ohci_stop_iso,
3409 };
3410 
3411 #ifdef CONFIG_PPC_PMAC
3412 static void pmac_ohci_on(struct pci_dev *dev)
3413 {
3414 	if (machine_is(powermac)) {
3415 		struct device_node *ofn = pci_device_to_OF_node(dev);
3416 
3417 		if (ofn) {
3418 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3419 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3420 		}
3421 	}
3422 }
3423 
3424 static void pmac_ohci_off(struct pci_dev *dev)
3425 {
3426 	if (machine_is(powermac)) {
3427 		struct device_node *ofn = pci_device_to_OF_node(dev);
3428 
3429 		if (ofn) {
3430 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3431 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3432 		}
3433 	}
3434 }
3435 #else
3436 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3437 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3438 #endif /* CONFIG_PPC_PMAC */
3439 
3440 static int __devinit pci_probe(struct pci_dev *dev,
3441 			       const struct pci_device_id *ent)
3442 {
3443 	struct fw_ohci *ohci;
3444 	u32 bus_options, max_receive, link_speed, version;
3445 	u64 guid;
3446 	int i, err;
3447 	size_t size;
3448 
3449 	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3450 		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3451 		return -ENOSYS;
3452 	}
3453 
3454 	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3455 	if (ohci == NULL) {
3456 		err = -ENOMEM;
3457 		goto fail;
3458 	}
3459 
3460 	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3461 
3462 	pmac_ohci_on(dev);
3463 
3464 	err = pci_enable_device(dev);
3465 	if (err) {
3466 		fw_error("Failed to enable OHCI hardware\n");
3467 		goto fail_free;
3468 	}
3469 
3470 	pci_set_master(dev);
3471 	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3472 	pci_set_drvdata(dev, ohci);
3473 
3474 	spin_lock_init(&ohci->lock);
3475 	mutex_init(&ohci->phy_reg_mutex);
3476 
3477 	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3478 
3479 	err = pci_request_region(dev, 0, ohci_driver_name);
3480 	if (err) {
3481 		fw_error("MMIO resource unavailable\n");
3482 		goto fail_disable;
3483 	}
3484 
3485 	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3486 	if (ohci->registers == NULL) {
3487 		fw_error("Failed to remap registers\n");
3488 		err = -ENXIO;
3489 		goto fail_iomem;
3490 	}
3491 
3492 	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3493 		if ((ohci_quirks[i].vendor == dev->vendor) &&
3494 		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3495 		     ohci_quirks[i].device == dev->device) &&
3496 		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3497 		     ohci_quirks[i].revision >= dev->revision)) {
3498 			ohci->quirks = ohci_quirks[i].flags;
3499 			break;
3500 		}
3501 	if (param_quirks)
3502 		ohci->quirks = param_quirks;
3503 
3504 	/*
3505 	 * Because dma_alloc_coherent() allocates at least one page,
3506 	 * we save space by using a common buffer for the AR request/
3507 	 * response descriptors and the self IDs buffer.
3508 	 */
3509 	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3510 	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3511 	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3512 					       PAGE_SIZE,
3513 					       &ohci->misc_buffer_bus,
3514 					       GFP_KERNEL);
3515 	if (!ohci->misc_buffer) {
3516 		err = -ENOMEM;
3517 		goto fail_iounmap;
3518 	}
3519 
3520 	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3521 			      OHCI1394_AsReqRcvContextControlSet);
3522 	if (err < 0)
3523 		goto fail_misc_buf;
3524 
3525 	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3526 			      OHCI1394_AsRspRcvContextControlSet);
3527 	if (err < 0)
3528 		goto fail_arreq_ctx;
3529 
3530 	err = context_init(&ohci->at_request_ctx, ohci,
3531 			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3532 	if (err < 0)
3533 		goto fail_arrsp_ctx;
3534 
3535 	err = context_init(&ohci->at_response_ctx, ohci,
3536 			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3537 	if (err < 0)
3538 		goto fail_atreq_ctx;
3539 
3540 	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3541 	ohci->ir_context_channels = ~0ULL;
3542 	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3543 	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3544 	ohci->ir_context_mask = ohci->ir_context_support;
3545 	ohci->n_ir = hweight32(ohci->ir_context_mask);
3546 	size = sizeof(struct iso_context) * ohci->n_ir;
3547 	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3548 
3549 	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3550 	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3551 	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3552 	ohci->it_context_mask = ohci->it_context_support;
3553 	ohci->n_it = hweight32(ohci->it_context_mask);
3554 	size = sizeof(struct iso_context) * ohci->n_it;
3555 	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3556 
3557 	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3558 		err = -ENOMEM;
3559 		goto fail_contexts;
3560 	}
3561 
3562 	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
3563 	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3564 
3565 	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3566 	max_receive = (bus_options >> 12) & 0xf;
3567 	link_speed = bus_options & 0x7;
3568 	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3569 		reg_read(ohci, OHCI1394_GUIDLo);
3570 
3571 	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3572 	if (err)
3573 		goto fail_contexts;
3574 
3575 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3576 	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3577 		  "%d IR + %d IT contexts, quirks 0x%x\n",
3578 		  dev_name(&dev->dev), version >> 16, version & 0xff,
3579 		  ohci->n_ir, ohci->n_it, ohci->quirks);
3580 
3581 	return 0;
3582 
3583  fail_contexts:
3584 	kfree(ohci->ir_context_list);
3585 	kfree(ohci->it_context_list);
3586 	context_release(&ohci->at_response_ctx);
3587  fail_atreq_ctx:
3588 	context_release(&ohci->at_request_ctx);
3589  fail_arrsp_ctx:
3590 	ar_context_release(&ohci->ar_response_ctx);
3591  fail_arreq_ctx:
3592 	ar_context_release(&ohci->ar_request_ctx);
3593  fail_misc_buf:
3594 	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3595 			  ohci->misc_buffer, ohci->misc_buffer_bus);
3596  fail_iounmap:
3597 	pci_iounmap(dev, ohci->registers);
3598  fail_iomem:
3599 	pci_release_region(dev, 0);
3600  fail_disable:
3601 	pci_disable_device(dev);
3602  fail_free:
3603 	kfree(ohci);
3604 	pmac_ohci_off(dev);
3605  fail:
3606 	if (err == -ENOMEM)
3607 		fw_error("Out of memory\n");
3608 
3609 	return err;
3610 }
3611 
3612 static void pci_remove(struct pci_dev *dev)
3613 {
3614 	struct fw_ohci *ohci;
3615 
3616 	ohci = pci_get_drvdata(dev);
3617 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3618 	flush_writes(ohci);
3619 	cancel_work_sync(&ohci->bus_reset_work);
3620 	fw_core_remove_card(&ohci->card);
3621 
3622 	/*
3623 	 * FIXME: Fail all pending packets here, now that the upper
3624 	 * layers can't queue any more.
3625 	 */
3626 
3627 	software_reset(ohci);
3628 	free_irq(dev->irq, ohci);
3629 
3630 	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3631 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3632 				  ohci->next_config_rom, ohci->next_config_rom_bus);
3633 	if (ohci->config_rom)
3634 		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3635 				  ohci->config_rom, ohci->config_rom_bus);
3636 	ar_context_release(&ohci->ar_request_ctx);
3637 	ar_context_release(&ohci->ar_response_ctx);
3638 	dma_free_coherent(ohci->card.device, PAGE_SIZE,
3639 			  ohci->misc_buffer, ohci->misc_buffer_bus);
3640 	context_release(&ohci->at_request_ctx);
3641 	context_release(&ohci->at_response_ctx);
3642 	kfree(ohci->it_context_list);
3643 	kfree(ohci->ir_context_list);
3644 	pci_disable_msi(dev);
3645 	pci_iounmap(dev, ohci->registers);
3646 	pci_release_region(dev, 0);
3647 	pci_disable_device(dev);
3648 	kfree(ohci);
3649 	pmac_ohci_off(dev);
3650 
3651 	fw_notify("Removed fw-ohci device.\n");
3652 }
3653 
3654 #ifdef CONFIG_PM
3655 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3656 {
3657 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3658 	int err;
3659 
3660 	software_reset(ohci);
3661 	free_irq(dev->irq, ohci);
3662 	pci_disable_msi(dev);
3663 	err = pci_save_state(dev);
3664 	if (err) {
3665 		fw_error("pci_save_state failed\n");
3666 		return err;
3667 	}
3668 	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3669 	if (err)
3670 		fw_error("pci_set_power_state failed with %d\n", err);
3671 	pmac_ohci_off(dev);
3672 
3673 	return 0;
3674 }
3675 
3676 static int pci_resume(struct pci_dev *dev)
3677 {
3678 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3679 	int err;
3680 
3681 	pmac_ohci_on(dev);
3682 	pci_set_power_state(dev, PCI_D0);
3683 	pci_restore_state(dev);
3684 	err = pci_enable_device(dev);
3685 	if (err) {
3686 		fw_error("pci_enable_device failed\n");
3687 		return err;
3688 	}
3689 
3690 	/* Some systems don't setup GUID register on resume from ram  */
3691 	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3692 					!reg_read(ohci, OHCI1394_GUIDHi)) {
3693 		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3694 		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3695 	}
3696 
3697 	err = ohci_enable(&ohci->card, NULL, 0);
3698 	if (err)
3699 		return err;
3700 
3701 	ohci_resume_iso_dma(ohci);
3702 
3703 	return 0;
3704 }
3705 #endif
3706 
3707 static const struct pci_device_id pci_table[] = {
3708 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3709 	{ }
3710 };
3711 
3712 MODULE_DEVICE_TABLE(pci, pci_table);
3713 
3714 static struct pci_driver fw_ohci_pci_driver = {
3715 	.name		= ohci_driver_name,
3716 	.id_table	= pci_table,
3717 	.probe		= pci_probe,
3718 	.remove		= pci_remove,
3719 #ifdef CONFIG_PM
3720 	.resume		= pci_resume,
3721 	.suspend	= pci_suspend,
3722 #endif
3723 };
3724 
3725 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3726 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3727 MODULE_LICENSE("GPL");
3728 
3729 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3730 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3731 MODULE_ALIAS("ohci1394");
3732 #endif
3733 
3734 static int __init fw_ohci_init(void)
3735 {
3736 	return pci_register_driver(&fw_ohci_pci_driver);
3737 }
3738 
3739 static void __exit fw_ohci_cleanup(void)
3740 {
3741 	pci_unregister_driver(&fw_ohci_pci_driver);
3742 }
3743 
3744 module_init(fw_ohci_init);
3745 module_exit(fw_ohci_cleanup);
3746