xref: /openbmc/linux/drivers/firewire/ohci.c (revision 2ae1beb3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for OHCI 1394 controllers
4  *
5  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
33 
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36 
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40 
41 #include "core.h"
42 #include "ohci.h"
43 
44 #define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
45 #define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
46 #define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
47 
48 #define DESCRIPTOR_OUTPUT_MORE		0
49 #define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
50 #define DESCRIPTOR_INPUT_MORE		(2 << 12)
51 #define DESCRIPTOR_INPUT_LAST		(3 << 12)
52 #define DESCRIPTOR_STATUS		(1 << 11)
53 #define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
54 #define DESCRIPTOR_PING			(1 << 7)
55 #define DESCRIPTOR_YY			(1 << 6)
56 #define DESCRIPTOR_NO_IRQ		(0 << 4)
57 #define DESCRIPTOR_IRQ_ERROR		(1 << 4)
58 #define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
59 #define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
60 #define DESCRIPTOR_WAIT			(3 << 0)
61 
62 #define DESCRIPTOR_CMD			(0xf << 12)
63 
64 struct descriptor {
65 	__le16 req_count;
66 	__le16 control;
67 	__le32 data_address;
68 	__le32 branch_address;
69 	__le16 res_count;
70 	__le16 transfer_status;
71 } __attribute__((aligned(16)));
72 
73 #define CONTROL_SET(regs)	(regs)
74 #define CONTROL_CLEAR(regs)	((regs) + 4)
75 #define COMMAND_PTR(regs)	((regs) + 12)
76 #define CONTEXT_MATCH(regs)	((regs) + 16)
77 
78 #define AR_BUFFER_SIZE	(32*1024)
79 #define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
80 /* we need at least two pages for proper list management */
81 #define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
82 
83 #define MAX_ASYNC_PAYLOAD	4096
84 #define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
85 #define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
86 
87 struct ar_context {
88 	struct fw_ohci *ohci;
89 	struct page *pages[AR_BUFFERS];
90 	void *buffer;
91 	struct descriptor *descriptors;
92 	dma_addr_t descriptors_bus;
93 	void *pointer;
94 	unsigned int last_buffer_index;
95 	u32 regs;
96 	struct tasklet_struct tasklet;
97 };
98 
99 struct context;
100 
101 typedef int (*descriptor_callback_t)(struct context *ctx,
102 				     struct descriptor *d,
103 				     struct descriptor *last);
104 
105 /*
106  * A buffer that contains a block of DMA-able coherent memory used for
107  * storing a portion of a DMA descriptor program.
108  */
109 struct descriptor_buffer {
110 	struct list_head list;
111 	dma_addr_t buffer_bus;
112 	size_t buffer_size;
113 	size_t used;
114 	struct descriptor buffer[];
115 };
116 
117 struct context {
118 	struct fw_ohci *ohci;
119 	u32 regs;
120 	int total_allocation;
121 	u32 current_bus;
122 	bool running;
123 	bool flushing;
124 
125 	/*
126 	 * List of page-sized buffers for storing DMA descriptors.
127 	 * Head of list contains buffers in use and tail of list contains
128 	 * free buffers.
129 	 */
130 	struct list_head buffer_list;
131 
132 	/*
133 	 * Pointer to a buffer inside buffer_list that contains the tail
134 	 * end of the current DMA program.
135 	 */
136 	struct descriptor_buffer *buffer_tail;
137 
138 	/*
139 	 * The descriptor containing the branch address of the first
140 	 * descriptor that has not yet been filled by the device.
141 	 */
142 	struct descriptor *last;
143 
144 	/*
145 	 * The last descriptor block in the DMA program. It contains the branch
146 	 * address that must be updated upon appending a new descriptor.
147 	 */
148 	struct descriptor *prev;
149 	int prev_z;
150 
151 	descriptor_callback_t callback;
152 
153 	struct tasklet_struct tasklet;
154 };
155 
156 #define IT_HEADER_SY(v)          ((v) <<  0)
157 #define IT_HEADER_TCODE(v)       ((v) <<  4)
158 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
159 #define IT_HEADER_TAG(v)         ((v) << 14)
160 #define IT_HEADER_SPEED(v)       ((v) << 16)
161 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
162 
163 struct iso_context {
164 	struct fw_iso_context base;
165 	struct context context;
166 	void *header;
167 	size_t header_length;
168 	unsigned long flushing_completions;
169 	u32 mc_buffer_bus;
170 	u16 mc_completed;
171 	u16 last_timestamp;
172 	u8 sync;
173 	u8 tags;
174 };
175 
176 #define CONFIG_ROM_SIZE 1024
177 
178 struct fw_ohci {
179 	struct fw_card card;
180 
181 	__iomem char *registers;
182 	int node_id;
183 	int generation;
184 	int request_generation;	/* for timestamping incoming requests */
185 	unsigned quirks;
186 	unsigned int pri_req_max;
187 	u32 bus_time;
188 	bool bus_time_running;
189 	bool is_root;
190 	bool csr_state_setclear_abdicate;
191 	int n_ir;
192 	int n_it;
193 	/*
194 	 * Spinlock for accessing fw_ohci data.  Never call out of
195 	 * this driver with this lock held.
196 	 */
197 	spinlock_t lock;
198 
199 	struct mutex phy_reg_mutex;
200 
201 	void *misc_buffer;
202 	dma_addr_t misc_buffer_bus;
203 
204 	struct ar_context ar_request_ctx;
205 	struct ar_context ar_response_ctx;
206 	struct context at_request_ctx;
207 	struct context at_response_ctx;
208 
209 	u32 it_context_support;
210 	u32 it_context_mask;     /* unoccupied IT contexts */
211 	struct iso_context *it_context_list;
212 	u64 ir_context_channels; /* unoccupied channels */
213 	u32 ir_context_support;
214 	u32 ir_context_mask;     /* unoccupied IR contexts */
215 	struct iso_context *ir_context_list;
216 	u64 mc_channels; /* channels in use by the multichannel IR context */
217 	bool mc_allocated;
218 
219 	__be32    *config_rom;
220 	dma_addr_t config_rom_bus;
221 	__be32    *next_config_rom;
222 	dma_addr_t next_config_rom_bus;
223 	__be32     next_header;
224 
225 	__le32    *self_id;
226 	dma_addr_t self_id_bus;
227 	struct work_struct bus_reset_work;
228 
229 	u32 self_id_buffer[512];
230 };
231 
232 static struct workqueue_struct *selfid_workqueue;
233 
234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 {
236 	return container_of(card, struct fw_ohci, card);
237 }
238 
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
240 #define IR_CONTEXT_BUFFER_FILL		0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER		0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
245 
246 #define CONTEXT_RUN	0x8000
247 #define CONTEXT_WAKE	0x1000
248 #define CONTEXT_DEAD	0x0800
249 #define CONTEXT_ACTIVE	0x0400
250 
251 #define OHCI1394_MAX_AT_REQ_RETRIES	0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES	0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
254 
255 #define OHCI1394_REGISTER_SIZE		0x800
256 #define OHCI1394_PCI_HCI_Control	0x40
257 #define SELF_ID_BUF_SIZE		0x800
258 #define OHCI_TCODE_PHY_PACKET		0x0e
259 #define OHCI_VERSION_1_1		0x010010
260 
261 static char ohci_driver_name[] = KBUILD_MODNAME;
262 
263 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
264 #define PCI_DEVICE_ID_AGERE_FW643	0x5901
265 #define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
268 #define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
269 #define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
270 #define PCI_DEVICE_ID_VIA_VT630X	0x3044
271 #define PCI_REV_ID_VIA_VT6306		0x46
272 #define PCI_DEVICE_ID_VIA_VT6315	0x3403
273 
274 #define QUIRK_CYCLE_TIMER		0x1
275 #define QUIRK_RESET_PACKET		0x2
276 #define QUIRK_BE_HEADERS		0x4
277 #define QUIRK_NO_1394A			0x8
278 #define QUIRK_NO_MSI			0x10
279 #define QUIRK_TI_SLLZ059		0x20
280 #define QUIRK_IR_WAKE			0x40
281 
282 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
283 // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
284 // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
285 // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
286 // while it is probable due to detection of any type of PCIe error.
287 #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ	0x80000000
288 
289 #if IS_ENABLED(CONFIG_X86)
290 
291 static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
292 {
293 	return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
294 }
295 
296 #define PCI_DEVICE_ID_ASMEDIA_ASM108X	0x1080
297 
298 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
299 {
300 	const struct pci_dev *pcie_to_pci_bridge;
301 
302 	// Detect any type of AMD Ryzen machine.
303 	if (!static_cpu_has(X86_FEATURE_ZEN))
304 		return false;
305 
306 	// Detect VIA VT6306/6307/6308.
307 	if (pdev->vendor != PCI_VENDOR_ID_VIA)
308 		return false;
309 	if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
310 		return false;
311 
312 	// Detect Asmedia ASM1083/1085.
313 	pcie_to_pci_bridge = pdev->bus->self;
314 	if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
315 		return false;
316 	if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
317 		return false;
318 
319 	return true;
320 }
321 
322 #else
323 #define has_reboot_by_cycle_timer_read_quirk(ohci) false
324 #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)	false
325 #endif
326 
327 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
328 static const struct {
329 	unsigned short vendor, device, revision, flags;
330 } ohci_quirks[] = {
331 	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
332 		QUIRK_CYCLE_TIMER},
333 
334 	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
335 		QUIRK_BE_HEADERS},
336 
337 	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
338 		QUIRK_NO_MSI},
339 
340 	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
341 		QUIRK_RESET_PACKET},
342 
343 	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
344 		QUIRK_NO_MSI},
345 
346 	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
347 		QUIRK_CYCLE_TIMER},
348 
349 	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
350 		QUIRK_NO_MSI},
351 
352 	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
353 		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
354 
355 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
356 		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
357 
358 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
359 		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
360 
361 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
362 		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
363 
364 	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
365 		QUIRK_RESET_PACKET},
366 
367 	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
368 		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
369 
370 	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
371 		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
372 
373 	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
374 		QUIRK_NO_MSI},
375 
376 	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
377 		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
378 };
379 
380 /* This overrides anything that was found in ohci_quirks[]. */
381 static int param_quirks;
382 module_param_named(quirks, param_quirks, int, 0644);
383 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
384 	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
385 	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
386 	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
387 	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
388 	", disable MSI = "		__stringify(QUIRK_NO_MSI)
389 	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
390 	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
391 	")");
392 
393 #define OHCI_PARAM_DEBUG_AT_AR		1
394 #define OHCI_PARAM_DEBUG_SELFIDS	2
395 #define OHCI_PARAM_DEBUG_IRQS		4
396 #define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
397 
398 static int param_debug;
399 module_param_named(debug, param_debug, int, 0644);
400 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
401 	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
402 	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
403 	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
404 	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
405 	", or a combination, or all = -1)");
406 
407 static bool param_remote_dma;
408 module_param_named(remote_dma, param_remote_dma, bool, 0444);
409 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
410 
411 static void log_irqs(struct fw_ohci *ohci, u32 evt)
412 {
413 	if (likely(!(param_debug &
414 			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
415 		return;
416 
417 	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
418 	    !(evt & OHCI1394_busReset))
419 		return;
420 
421 	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
422 	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
423 	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
424 	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
425 	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
426 	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
427 	    evt & OHCI1394_isochRx		? " IR"			: "",
428 	    evt & OHCI1394_isochTx		? " IT"			: "",
429 	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
430 	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
431 	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
432 	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
433 	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
434 	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
435 	    evt & OHCI1394_busReset		? " busReset"		: "",
436 	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
437 		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
438 		    OHCI1394_respTxComplete | OHCI1394_isochRx |
439 		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
440 		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
441 		    OHCI1394_cycleInconsistent |
442 		    OHCI1394_regAccessFail | OHCI1394_busReset)
443 						? " ?"			: "");
444 }
445 
446 static const char *speed[] = {
447 	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
448 };
449 static const char *power[] = {
450 	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
451 	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
452 };
453 static const char port[] = { '.', '-', 'p', 'c', };
454 
455 static char _p(u32 *s, int shift)
456 {
457 	return port[*s >> shift & 3];
458 }
459 
460 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
461 {
462 	u32 *s;
463 
464 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
465 		return;
466 
467 	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
468 		    self_id_count, generation, ohci->node_id);
469 
470 	for (s = ohci->self_id_buffer; self_id_count--; ++s)
471 		if ((*s & 1 << 23) == 0)
472 			ohci_notice(ohci,
473 			    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
474 			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
475 			    speed[*s >> 14 & 3], *s >> 16 & 63,
476 			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
477 			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
478 		else
479 			ohci_notice(ohci,
480 			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
481 			    *s, *s >> 24 & 63,
482 			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
483 			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
484 }
485 
486 static const char *evts[] = {
487 	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
488 	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
489 	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
490 	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
491 	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
492 	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
493 	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
494 	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
495 	[0x10] = "-reserved-",		[0x11] = "ack_complete",
496 	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
497 	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
498 	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
499 	[0x18] = "-reserved-",		[0x19] = "-reserved-",
500 	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
501 	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
502 	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
503 	[0x20] = "pending/cancelled",
504 };
505 static const char *tcodes[] = {
506 	[0x0] = "QW req",		[0x1] = "BW req",
507 	[0x2] = "W resp",		[0x3] = "-reserved-",
508 	[0x4] = "QR req",		[0x5] = "BR req",
509 	[0x6] = "QR resp",		[0x7] = "BR resp",
510 	[0x8] = "cycle start",		[0x9] = "Lk req",
511 	[0xa] = "async stream packet",	[0xb] = "Lk resp",
512 	[0xc] = "-reserved-",		[0xd] = "-reserved-",
513 	[0xe] = "link internal",	[0xf] = "-reserved-",
514 };
515 
516 static void log_ar_at_event(struct fw_ohci *ohci,
517 			    char dir, int speed, u32 *header, int evt)
518 {
519 	int tcode = header[0] >> 4 & 0xf;
520 	char specific[12];
521 
522 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
523 		return;
524 
525 	if (unlikely(evt >= ARRAY_SIZE(evts)))
526 			evt = 0x1f;
527 
528 	if (evt == OHCI1394_evt_bus_reset) {
529 		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
530 			    dir, (header[2] >> 16) & 0xff);
531 		return;
532 	}
533 
534 	switch (tcode) {
535 	case 0x0: case 0x6: case 0x8:
536 		snprintf(specific, sizeof(specific), " = %08x",
537 			 be32_to_cpu((__force __be32)header[3]));
538 		break;
539 	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
540 		snprintf(specific, sizeof(specific), " %x,%x",
541 			 header[3] >> 16, header[3] & 0xffff);
542 		break;
543 	default:
544 		specific[0] = '\0';
545 	}
546 
547 	switch (tcode) {
548 	case 0xa:
549 		ohci_notice(ohci, "A%c %s, %s\n",
550 			    dir, evts[evt], tcodes[tcode]);
551 		break;
552 	case 0xe:
553 		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
554 			    dir, evts[evt], header[1], header[2]);
555 		break;
556 	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
557 		ohci_notice(ohci,
558 			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
559 			    dir, speed, header[0] >> 10 & 0x3f,
560 			    header[1] >> 16, header[0] >> 16, evts[evt],
561 			    tcodes[tcode], header[1] & 0xffff, header[2], specific);
562 		break;
563 	default:
564 		ohci_notice(ohci,
565 			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
566 			    dir, speed, header[0] >> 10 & 0x3f,
567 			    header[1] >> 16, header[0] >> 16, evts[evt],
568 			    tcodes[tcode], specific);
569 	}
570 }
571 
572 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
573 {
574 	writel(data, ohci->registers + offset);
575 }
576 
577 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
578 {
579 	return readl(ohci->registers + offset);
580 }
581 
582 static inline void flush_writes(const struct fw_ohci *ohci)
583 {
584 	/* Do a dummy read to flush writes. */
585 	reg_read(ohci, OHCI1394_Version);
586 }
587 
588 /*
589  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
590  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
591  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
592  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
593  */
594 static int read_phy_reg(struct fw_ohci *ohci, int addr)
595 {
596 	u32 val;
597 	int i;
598 
599 	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
600 	for (i = 0; i < 3 + 100; i++) {
601 		val = reg_read(ohci, OHCI1394_PhyControl);
602 		if (!~val)
603 			return -ENODEV; /* Card was ejected. */
604 
605 		if (val & OHCI1394_PhyControl_ReadDone)
606 			return OHCI1394_PhyControl_ReadData(val);
607 
608 		/*
609 		 * Try a few times without waiting.  Sleeping is necessary
610 		 * only when the link/PHY interface is busy.
611 		 */
612 		if (i >= 3)
613 			msleep(1);
614 	}
615 	ohci_err(ohci, "failed to read phy reg %d\n", addr);
616 	dump_stack();
617 
618 	return -EBUSY;
619 }
620 
621 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
622 {
623 	int i;
624 
625 	reg_write(ohci, OHCI1394_PhyControl,
626 		  OHCI1394_PhyControl_Write(addr, val));
627 	for (i = 0; i < 3 + 100; i++) {
628 		val = reg_read(ohci, OHCI1394_PhyControl);
629 		if (!~val)
630 			return -ENODEV; /* Card was ejected. */
631 
632 		if (!(val & OHCI1394_PhyControl_WritePending))
633 			return 0;
634 
635 		if (i >= 3)
636 			msleep(1);
637 	}
638 	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
639 	dump_stack();
640 
641 	return -EBUSY;
642 }
643 
644 static int update_phy_reg(struct fw_ohci *ohci, int addr,
645 			  int clear_bits, int set_bits)
646 {
647 	int ret = read_phy_reg(ohci, addr);
648 	if (ret < 0)
649 		return ret;
650 
651 	/*
652 	 * The interrupt status bits are cleared by writing a one bit.
653 	 * Avoid clearing them unless explicitly requested in set_bits.
654 	 */
655 	if (addr == 5)
656 		clear_bits |= PHY_INT_STATUS_BITS;
657 
658 	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
659 }
660 
661 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
662 {
663 	int ret;
664 
665 	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
666 	if (ret < 0)
667 		return ret;
668 
669 	return read_phy_reg(ohci, addr);
670 }
671 
672 static int ohci_read_phy_reg(struct fw_card *card, int addr)
673 {
674 	struct fw_ohci *ohci = fw_ohci(card);
675 	int ret;
676 
677 	mutex_lock(&ohci->phy_reg_mutex);
678 	ret = read_phy_reg(ohci, addr);
679 	mutex_unlock(&ohci->phy_reg_mutex);
680 
681 	return ret;
682 }
683 
684 static int ohci_update_phy_reg(struct fw_card *card, int addr,
685 			       int clear_bits, int set_bits)
686 {
687 	struct fw_ohci *ohci = fw_ohci(card);
688 	int ret;
689 
690 	mutex_lock(&ohci->phy_reg_mutex);
691 	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
692 	mutex_unlock(&ohci->phy_reg_mutex);
693 
694 	return ret;
695 }
696 
697 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
698 {
699 	return page_private(ctx->pages[i]);
700 }
701 
702 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
703 {
704 	struct descriptor *d;
705 
706 	d = &ctx->descriptors[index];
707 	d->branch_address  &= cpu_to_le32(~0xf);
708 	d->res_count       =  cpu_to_le16(PAGE_SIZE);
709 	d->transfer_status =  0;
710 
711 	wmb(); /* finish init of new descriptors before branch_address update */
712 	d = &ctx->descriptors[ctx->last_buffer_index];
713 	d->branch_address  |= cpu_to_le32(1);
714 
715 	ctx->last_buffer_index = index;
716 
717 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
718 }
719 
720 static void ar_context_release(struct ar_context *ctx)
721 {
722 	struct device *dev = ctx->ohci->card.device;
723 	unsigned int i;
724 
725 	if (!ctx->buffer)
726 		return;
727 
728 	vunmap(ctx->buffer);
729 
730 	for (i = 0; i < AR_BUFFERS; i++) {
731 		if (ctx->pages[i])
732 			dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
733 				       ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
734 	}
735 }
736 
737 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
738 {
739 	struct fw_ohci *ohci = ctx->ohci;
740 
741 	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
742 		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
743 		flush_writes(ohci);
744 
745 		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
746 	}
747 	/* FIXME: restart? */
748 }
749 
750 static inline unsigned int ar_next_buffer_index(unsigned int index)
751 {
752 	return (index + 1) % AR_BUFFERS;
753 }
754 
755 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
756 {
757 	return ar_next_buffer_index(ctx->last_buffer_index);
758 }
759 
760 /*
761  * We search for the buffer that contains the last AR packet DMA data written
762  * by the controller.
763  */
764 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
765 						 unsigned int *buffer_offset)
766 {
767 	unsigned int i, next_i, last = ctx->last_buffer_index;
768 	__le16 res_count, next_res_count;
769 
770 	i = ar_first_buffer_index(ctx);
771 	res_count = READ_ONCE(ctx->descriptors[i].res_count);
772 
773 	/* A buffer that is not yet completely filled must be the last one. */
774 	while (i != last && res_count == 0) {
775 
776 		/* Peek at the next descriptor. */
777 		next_i = ar_next_buffer_index(i);
778 		rmb(); /* read descriptors in order */
779 		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
780 		/*
781 		 * If the next descriptor is still empty, we must stop at this
782 		 * descriptor.
783 		 */
784 		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
785 			/*
786 			 * The exception is when the DMA data for one packet is
787 			 * split over three buffers; in this case, the middle
788 			 * buffer's descriptor might be never updated by the
789 			 * controller and look still empty, and we have to peek
790 			 * at the third one.
791 			 */
792 			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
793 				next_i = ar_next_buffer_index(next_i);
794 				rmb();
795 				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
796 				if (next_res_count != cpu_to_le16(PAGE_SIZE))
797 					goto next_buffer_is_active;
798 			}
799 
800 			break;
801 		}
802 
803 next_buffer_is_active:
804 		i = next_i;
805 		res_count = next_res_count;
806 	}
807 
808 	rmb(); /* read res_count before the DMA data */
809 
810 	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
811 	if (*buffer_offset > PAGE_SIZE) {
812 		*buffer_offset = 0;
813 		ar_context_abort(ctx, "corrupted descriptor");
814 	}
815 
816 	return i;
817 }
818 
819 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
820 				    unsigned int end_buffer_index,
821 				    unsigned int end_buffer_offset)
822 {
823 	unsigned int i;
824 
825 	i = ar_first_buffer_index(ctx);
826 	while (i != end_buffer_index) {
827 		dma_sync_single_for_cpu(ctx->ohci->card.device,
828 					ar_buffer_bus(ctx, i),
829 					PAGE_SIZE, DMA_FROM_DEVICE);
830 		i = ar_next_buffer_index(i);
831 	}
832 	if (end_buffer_offset > 0)
833 		dma_sync_single_for_cpu(ctx->ohci->card.device,
834 					ar_buffer_bus(ctx, i),
835 					end_buffer_offset, DMA_FROM_DEVICE);
836 }
837 
838 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
839 #define cond_le32_to_cpu(v) \
840 	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
841 #else
842 #define cond_le32_to_cpu(v) le32_to_cpu(v)
843 #endif
844 
845 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
846 {
847 	struct fw_ohci *ohci = ctx->ohci;
848 	struct fw_packet p;
849 	u32 status, length, tcode;
850 	int evt;
851 
852 	p.header[0] = cond_le32_to_cpu(buffer[0]);
853 	p.header[1] = cond_le32_to_cpu(buffer[1]);
854 	p.header[2] = cond_le32_to_cpu(buffer[2]);
855 
856 	tcode = (p.header[0] >> 4) & 0x0f;
857 	switch (tcode) {
858 	case TCODE_WRITE_QUADLET_REQUEST:
859 	case TCODE_READ_QUADLET_RESPONSE:
860 		p.header[3] = (__force __u32) buffer[3];
861 		p.header_length = 16;
862 		p.payload_length = 0;
863 		break;
864 
865 	case TCODE_READ_BLOCK_REQUEST :
866 		p.header[3] = cond_le32_to_cpu(buffer[3]);
867 		p.header_length = 16;
868 		p.payload_length = 0;
869 		break;
870 
871 	case TCODE_WRITE_BLOCK_REQUEST:
872 	case TCODE_READ_BLOCK_RESPONSE:
873 	case TCODE_LOCK_REQUEST:
874 	case TCODE_LOCK_RESPONSE:
875 		p.header[3] = cond_le32_to_cpu(buffer[3]);
876 		p.header_length = 16;
877 		p.payload_length = p.header[3] >> 16;
878 		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
879 			ar_context_abort(ctx, "invalid packet length");
880 			return NULL;
881 		}
882 		break;
883 
884 	case TCODE_WRITE_RESPONSE:
885 	case TCODE_READ_QUADLET_REQUEST:
886 	case OHCI_TCODE_PHY_PACKET:
887 		p.header_length = 12;
888 		p.payload_length = 0;
889 		break;
890 
891 	default:
892 		ar_context_abort(ctx, "invalid tcode");
893 		return NULL;
894 	}
895 
896 	p.payload = (void *) buffer + p.header_length;
897 
898 	/* FIXME: What to do about evt_* errors? */
899 	length = (p.header_length + p.payload_length + 3) / 4;
900 	status = cond_le32_to_cpu(buffer[length]);
901 	evt    = (status >> 16) & 0x1f;
902 
903 	p.ack        = evt - 16;
904 	p.speed      = (status >> 21) & 0x7;
905 	p.timestamp  = status & 0xffff;
906 	p.generation = ohci->request_generation;
907 
908 	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
909 
910 	/*
911 	 * Several controllers, notably from NEC and VIA, forget to
912 	 * write ack_complete status at PHY packet reception.
913 	 */
914 	if (evt == OHCI1394_evt_no_status &&
915 	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
916 		p.ack = ACK_COMPLETE;
917 
918 	/*
919 	 * The OHCI bus reset handler synthesizes a PHY packet with
920 	 * the new generation number when a bus reset happens (see
921 	 * section 8.4.2.3).  This helps us determine when a request
922 	 * was received and make sure we send the response in the same
923 	 * generation.  We only need this for requests; for responses
924 	 * we use the unique tlabel for finding the matching
925 	 * request.
926 	 *
927 	 * Alas some chips sometimes emit bus reset packets with a
928 	 * wrong generation.  We set the correct generation for these
929 	 * at a slightly incorrect time (in bus_reset_work).
930 	 */
931 	if (evt == OHCI1394_evt_bus_reset) {
932 		if (!(ohci->quirks & QUIRK_RESET_PACKET))
933 			ohci->request_generation = (p.header[2] >> 16) & 0xff;
934 	} else if (ctx == &ohci->ar_request_ctx) {
935 		fw_core_handle_request(&ohci->card, &p);
936 	} else {
937 		fw_core_handle_response(&ohci->card, &p);
938 	}
939 
940 	return buffer + length + 1;
941 }
942 
943 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
944 {
945 	void *next;
946 
947 	while (p < end) {
948 		next = handle_ar_packet(ctx, p);
949 		if (!next)
950 			return p;
951 		p = next;
952 	}
953 
954 	return p;
955 }
956 
957 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
958 {
959 	unsigned int i;
960 
961 	i = ar_first_buffer_index(ctx);
962 	while (i != end_buffer) {
963 		dma_sync_single_for_device(ctx->ohci->card.device,
964 					   ar_buffer_bus(ctx, i),
965 					   PAGE_SIZE, DMA_FROM_DEVICE);
966 		ar_context_link_page(ctx, i);
967 		i = ar_next_buffer_index(i);
968 	}
969 }
970 
971 static void ar_context_tasklet(unsigned long data)
972 {
973 	struct ar_context *ctx = (struct ar_context *)data;
974 	unsigned int end_buffer_index, end_buffer_offset;
975 	void *p, *end;
976 
977 	p = ctx->pointer;
978 	if (!p)
979 		return;
980 
981 	end_buffer_index = ar_search_last_active_buffer(ctx,
982 							&end_buffer_offset);
983 	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
984 	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
985 
986 	if (end_buffer_index < ar_first_buffer_index(ctx)) {
987 		/*
988 		 * The filled part of the overall buffer wraps around; handle
989 		 * all packets up to the buffer end here.  If the last packet
990 		 * wraps around, its tail will be visible after the buffer end
991 		 * because the buffer start pages are mapped there again.
992 		 */
993 		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
994 		p = handle_ar_packets(ctx, p, buffer_end);
995 		if (p < buffer_end)
996 			goto error;
997 		/* adjust p to point back into the actual buffer */
998 		p -= AR_BUFFERS * PAGE_SIZE;
999 	}
1000 
1001 	p = handle_ar_packets(ctx, p, end);
1002 	if (p != end) {
1003 		if (p > end)
1004 			ar_context_abort(ctx, "inconsistent descriptor");
1005 		goto error;
1006 	}
1007 
1008 	ctx->pointer = p;
1009 	ar_recycle_buffers(ctx, end_buffer_index);
1010 
1011 	return;
1012 
1013 error:
1014 	ctx->pointer = NULL;
1015 }
1016 
1017 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1018 			   unsigned int descriptors_offset, u32 regs)
1019 {
1020 	struct device *dev = ohci->card.device;
1021 	unsigned int i;
1022 	dma_addr_t dma_addr;
1023 	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1024 	struct descriptor *d;
1025 
1026 	ctx->regs        = regs;
1027 	ctx->ohci        = ohci;
1028 	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1029 
1030 	for (i = 0; i < AR_BUFFERS; i++) {
1031 		ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1032 						DMA_FROM_DEVICE, GFP_KERNEL);
1033 		if (!ctx->pages[i])
1034 			goto out_of_memory;
1035 		set_page_private(ctx->pages[i], dma_addr);
1036 		dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1037 					   DMA_FROM_DEVICE);
1038 	}
1039 
1040 	for (i = 0; i < AR_BUFFERS; i++)
1041 		pages[i]              = ctx->pages[i];
1042 	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1043 		pages[AR_BUFFERS + i] = ctx->pages[i];
1044 	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1045 	if (!ctx->buffer)
1046 		goto out_of_memory;
1047 
1048 	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1049 	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1050 
1051 	for (i = 0; i < AR_BUFFERS; i++) {
1052 		d = &ctx->descriptors[i];
1053 		d->req_count      = cpu_to_le16(PAGE_SIZE);
1054 		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1055 						DESCRIPTOR_STATUS |
1056 						DESCRIPTOR_BRANCH_ALWAYS);
1057 		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1058 		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1059 			ar_next_buffer_index(i) * sizeof(struct descriptor));
1060 	}
1061 
1062 	return 0;
1063 
1064 out_of_memory:
1065 	ar_context_release(ctx);
1066 
1067 	return -ENOMEM;
1068 }
1069 
1070 static void ar_context_run(struct ar_context *ctx)
1071 {
1072 	unsigned int i;
1073 
1074 	for (i = 0; i < AR_BUFFERS; i++)
1075 		ar_context_link_page(ctx, i);
1076 
1077 	ctx->pointer = ctx->buffer;
1078 
1079 	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1080 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1081 }
1082 
1083 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1084 {
1085 	__le16 branch;
1086 
1087 	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1088 
1089 	/* figure out which descriptor the branch address goes in */
1090 	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1091 		return d;
1092 	else
1093 		return d + z - 1;
1094 }
1095 
1096 static void context_tasklet(unsigned long data)
1097 {
1098 	struct context *ctx = (struct context *) data;
1099 	struct descriptor *d, *last;
1100 	u32 address;
1101 	int z;
1102 	struct descriptor_buffer *desc;
1103 
1104 	desc = list_entry(ctx->buffer_list.next,
1105 			struct descriptor_buffer, list);
1106 	last = ctx->last;
1107 	while (last->branch_address != 0) {
1108 		struct descriptor_buffer *old_desc = desc;
1109 		address = le32_to_cpu(last->branch_address);
1110 		z = address & 0xf;
1111 		address &= ~0xf;
1112 		ctx->current_bus = address;
1113 
1114 		/* If the branch address points to a buffer outside of the
1115 		 * current buffer, advance to the next buffer. */
1116 		if (address < desc->buffer_bus ||
1117 				address >= desc->buffer_bus + desc->used)
1118 			desc = list_entry(desc->list.next,
1119 					struct descriptor_buffer, list);
1120 		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1121 		last = find_branch_descriptor(d, z);
1122 
1123 		if (!ctx->callback(ctx, d, last))
1124 			break;
1125 
1126 		if (old_desc != desc) {
1127 			/* If we've advanced to the next buffer, move the
1128 			 * previous buffer to the free list. */
1129 			unsigned long flags;
1130 			old_desc->used = 0;
1131 			spin_lock_irqsave(&ctx->ohci->lock, flags);
1132 			list_move_tail(&old_desc->list, &ctx->buffer_list);
1133 			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1134 		}
1135 		ctx->last = last;
1136 	}
1137 }
1138 
1139 /*
1140  * Allocate a new buffer and add it to the list of free buffers for this
1141  * context.  Must be called with ohci->lock held.
1142  */
1143 static int context_add_buffer(struct context *ctx)
1144 {
1145 	struct descriptor_buffer *desc;
1146 	dma_addr_t bus_addr;
1147 	int offset;
1148 
1149 	/*
1150 	 * 16MB of descriptors should be far more than enough for any DMA
1151 	 * program.  This will catch run-away userspace or DoS attacks.
1152 	 */
1153 	if (ctx->total_allocation >= 16*1024*1024)
1154 		return -ENOMEM;
1155 
1156 	desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
1157 	if (!desc)
1158 		return -ENOMEM;
1159 
1160 	offset = (void *)&desc->buffer - (void *)desc;
1161 	/*
1162 	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1163 	 * for descriptors, even 0x10-byte ones. This can cause page faults when
1164 	 * an IOMMU is in use and the oversized read crosses a page boundary.
1165 	 * Work around this by always leaving at least 0x10 bytes of padding.
1166 	 */
1167 	desc->buffer_size = PAGE_SIZE - offset - 0x10;
1168 	desc->buffer_bus = bus_addr + offset;
1169 	desc->used = 0;
1170 
1171 	list_add_tail(&desc->list, &ctx->buffer_list);
1172 	ctx->total_allocation += PAGE_SIZE;
1173 
1174 	return 0;
1175 }
1176 
1177 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1178 			u32 regs, descriptor_callback_t callback)
1179 {
1180 	ctx->ohci = ohci;
1181 	ctx->regs = regs;
1182 	ctx->total_allocation = 0;
1183 
1184 	INIT_LIST_HEAD(&ctx->buffer_list);
1185 	if (context_add_buffer(ctx) < 0)
1186 		return -ENOMEM;
1187 
1188 	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1189 			struct descriptor_buffer, list);
1190 
1191 	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1192 	ctx->callback = callback;
1193 
1194 	/*
1195 	 * We put a dummy descriptor in the buffer that has a NULL
1196 	 * branch address and looks like it's been sent.  That way we
1197 	 * have a descriptor to append DMA programs to.
1198 	 */
1199 	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1200 	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1201 	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1202 	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1203 	ctx->last = ctx->buffer_tail->buffer;
1204 	ctx->prev = ctx->buffer_tail->buffer;
1205 	ctx->prev_z = 1;
1206 
1207 	return 0;
1208 }
1209 
1210 static void context_release(struct context *ctx)
1211 {
1212 	struct fw_card *card = &ctx->ohci->card;
1213 	struct descriptor_buffer *desc, *tmp;
1214 
1215 	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1216 		dmam_free_coherent(card->device, PAGE_SIZE, desc,
1217 				   desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1218 	}
1219 }
1220 
1221 /* Must be called with ohci->lock held */
1222 static struct descriptor *context_get_descriptors(struct context *ctx,
1223 						  int z, dma_addr_t *d_bus)
1224 {
1225 	struct descriptor *d = NULL;
1226 	struct descriptor_buffer *desc = ctx->buffer_tail;
1227 
1228 	if (z * sizeof(*d) > desc->buffer_size)
1229 		return NULL;
1230 
1231 	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1232 		/* No room for the descriptor in this buffer, so advance to the
1233 		 * next one. */
1234 
1235 		if (desc->list.next == &ctx->buffer_list) {
1236 			/* If there is no free buffer next in the list,
1237 			 * allocate one. */
1238 			if (context_add_buffer(ctx) < 0)
1239 				return NULL;
1240 		}
1241 		desc = list_entry(desc->list.next,
1242 				struct descriptor_buffer, list);
1243 		ctx->buffer_tail = desc;
1244 	}
1245 
1246 	d = desc->buffer + desc->used / sizeof(*d);
1247 	memset(d, 0, z * sizeof(*d));
1248 	*d_bus = desc->buffer_bus + desc->used;
1249 
1250 	return d;
1251 }
1252 
1253 static void context_run(struct context *ctx, u32 extra)
1254 {
1255 	struct fw_ohci *ohci = ctx->ohci;
1256 
1257 	reg_write(ohci, COMMAND_PTR(ctx->regs),
1258 		  le32_to_cpu(ctx->last->branch_address));
1259 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1260 	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1261 	ctx->running = true;
1262 	flush_writes(ohci);
1263 }
1264 
1265 static void context_append(struct context *ctx,
1266 			   struct descriptor *d, int z, int extra)
1267 {
1268 	dma_addr_t d_bus;
1269 	struct descriptor_buffer *desc = ctx->buffer_tail;
1270 	struct descriptor *d_branch;
1271 
1272 	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1273 
1274 	desc->used += (z + extra) * sizeof(*d);
1275 
1276 	wmb(); /* finish init of new descriptors before branch_address update */
1277 
1278 	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1279 	d_branch->branch_address = cpu_to_le32(d_bus | z);
1280 
1281 	/*
1282 	 * VT6306 incorrectly checks only the single descriptor at the
1283 	 * CommandPtr when the wake bit is written, so if it's a
1284 	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1285 	 * the branch address in the first descriptor.
1286 	 *
1287 	 * Not doing this for transmit contexts since not sure how it interacts
1288 	 * with skip addresses.
1289 	 */
1290 	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1291 	    d_branch != ctx->prev &&
1292 	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1293 	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1294 		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1295 	}
1296 
1297 	ctx->prev = d;
1298 	ctx->prev_z = z;
1299 }
1300 
1301 static void context_stop(struct context *ctx)
1302 {
1303 	struct fw_ohci *ohci = ctx->ohci;
1304 	u32 reg;
1305 	int i;
1306 
1307 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1308 	ctx->running = false;
1309 
1310 	for (i = 0; i < 1000; i++) {
1311 		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1312 		if ((reg & CONTEXT_ACTIVE) == 0)
1313 			return;
1314 
1315 		if (i)
1316 			udelay(10);
1317 	}
1318 	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1319 }
1320 
1321 struct driver_data {
1322 	u8 inline_data[8];
1323 	struct fw_packet *packet;
1324 };
1325 
1326 /*
1327  * This function apppends a packet to the DMA queue for transmission.
1328  * Must always be called with the ochi->lock held to ensure proper
1329  * generation handling and locking around packet queue manipulation.
1330  */
1331 static int at_context_queue_packet(struct context *ctx,
1332 				   struct fw_packet *packet)
1333 {
1334 	struct fw_ohci *ohci = ctx->ohci;
1335 	dma_addr_t d_bus, payload_bus;
1336 	struct driver_data *driver_data;
1337 	struct descriptor *d, *last;
1338 	__le32 *header;
1339 	int z, tcode;
1340 
1341 	d = context_get_descriptors(ctx, 4, &d_bus);
1342 	if (d == NULL) {
1343 		packet->ack = RCODE_SEND_ERROR;
1344 		return -1;
1345 	}
1346 
1347 	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1348 	d[0].res_count = cpu_to_le16(packet->timestamp);
1349 
1350 	/*
1351 	 * The DMA format for asynchronous link packets is different
1352 	 * from the IEEE1394 layout, so shift the fields around
1353 	 * accordingly.
1354 	 */
1355 
1356 	tcode = (packet->header[0] >> 4) & 0x0f;
1357 	header = (__le32 *) &d[1];
1358 	switch (tcode) {
1359 	case TCODE_WRITE_QUADLET_REQUEST:
1360 	case TCODE_WRITE_BLOCK_REQUEST:
1361 	case TCODE_WRITE_RESPONSE:
1362 	case TCODE_READ_QUADLET_REQUEST:
1363 	case TCODE_READ_BLOCK_REQUEST:
1364 	case TCODE_READ_QUADLET_RESPONSE:
1365 	case TCODE_READ_BLOCK_RESPONSE:
1366 	case TCODE_LOCK_REQUEST:
1367 	case TCODE_LOCK_RESPONSE:
1368 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1369 					(packet->speed << 16));
1370 		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1371 					(packet->header[0] & 0xffff0000));
1372 		header[2] = cpu_to_le32(packet->header[2]);
1373 
1374 		if (TCODE_IS_BLOCK_PACKET(tcode))
1375 			header[3] = cpu_to_le32(packet->header[3]);
1376 		else
1377 			header[3] = (__force __le32) packet->header[3];
1378 
1379 		d[0].req_count = cpu_to_le16(packet->header_length);
1380 		break;
1381 
1382 	case TCODE_LINK_INTERNAL:
1383 		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1384 					(packet->speed << 16));
1385 		header[1] = cpu_to_le32(packet->header[1]);
1386 		header[2] = cpu_to_le32(packet->header[2]);
1387 		d[0].req_count = cpu_to_le16(12);
1388 
1389 		if (is_ping_packet(&packet->header[1]))
1390 			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1391 		break;
1392 
1393 	case TCODE_STREAM_DATA:
1394 		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1395 					(packet->speed << 16));
1396 		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1397 		d[0].req_count = cpu_to_le16(8);
1398 		break;
1399 
1400 	default:
1401 		/* BUG(); */
1402 		packet->ack = RCODE_SEND_ERROR;
1403 		return -1;
1404 	}
1405 
1406 	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1407 	driver_data = (struct driver_data *) &d[3];
1408 	driver_data->packet = packet;
1409 	packet->driver_data = driver_data;
1410 
1411 	if (packet->payload_length > 0) {
1412 		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1413 			payload_bus = dma_map_single(ohci->card.device,
1414 						     packet->payload,
1415 						     packet->payload_length,
1416 						     DMA_TO_DEVICE);
1417 			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1418 				packet->ack = RCODE_SEND_ERROR;
1419 				return -1;
1420 			}
1421 			packet->payload_bus	= payload_bus;
1422 			packet->payload_mapped	= true;
1423 		} else {
1424 			memcpy(driver_data->inline_data, packet->payload,
1425 			       packet->payload_length);
1426 			payload_bus = d_bus + 3 * sizeof(*d);
1427 		}
1428 
1429 		d[2].req_count    = cpu_to_le16(packet->payload_length);
1430 		d[2].data_address = cpu_to_le32(payload_bus);
1431 		last = &d[2];
1432 		z = 3;
1433 	} else {
1434 		last = &d[0];
1435 		z = 2;
1436 	}
1437 
1438 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1439 				     DESCRIPTOR_IRQ_ALWAYS |
1440 				     DESCRIPTOR_BRANCH_ALWAYS);
1441 
1442 	/* FIXME: Document how the locking works. */
1443 	if (ohci->generation != packet->generation) {
1444 		if (packet->payload_mapped)
1445 			dma_unmap_single(ohci->card.device, payload_bus,
1446 					 packet->payload_length, DMA_TO_DEVICE);
1447 		packet->ack = RCODE_GENERATION;
1448 		return -1;
1449 	}
1450 
1451 	context_append(ctx, d, z, 4 - z);
1452 
1453 	if (ctx->running)
1454 		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1455 	else
1456 		context_run(ctx, 0);
1457 
1458 	return 0;
1459 }
1460 
1461 static void at_context_flush(struct context *ctx)
1462 {
1463 	tasklet_disable(&ctx->tasklet);
1464 
1465 	ctx->flushing = true;
1466 	context_tasklet((unsigned long)ctx);
1467 	ctx->flushing = false;
1468 
1469 	tasklet_enable(&ctx->tasklet);
1470 }
1471 
1472 static int handle_at_packet(struct context *context,
1473 			    struct descriptor *d,
1474 			    struct descriptor *last)
1475 {
1476 	struct driver_data *driver_data;
1477 	struct fw_packet *packet;
1478 	struct fw_ohci *ohci = context->ohci;
1479 	int evt;
1480 
1481 	if (last->transfer_status == 0 && !context->flushing)
1482 		/* This descriptor isn't done yet, stop iteration. */
1483 		return 0;
1484 
1485 	driver_data = (struct driver_data *) &d[3];
1486 	packet = driver_data->packet;
1487 	if (packet == NULL)
1488 		/* This packet was cancelled, just continue. */
1489 		return 1;
1490 
1491 	if (packet->payload_mapped)
1492 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1493 				 packet->payload_length, DMA_TO_DEVICE);
1494 
1495 	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1496 	packet->timestamp = le16_to_cpu(last->res_count);
1497 
1498 	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1499 
1500 	switch (evt) {
1501 	case OHCI1394_evt_timeout:
1502 		/* Async response transmit timed out. */
1503 		packet->ack = RCODE_CANCELLED;
1504 		break;
1505 
1506 	case OHCI1394_evt_flushed:
1507 		/*
1508 		 * The packet was flushed should give same error as
1509 		 * when we try to use a stale generation count.
1510 		 */
1511 		packet->ack = RCODE_GENERATION;
1512 		break;
1513 
1514 	case OHCI1394_evt_missing_ack:
1515 		if (context->flushing)
1516 			packet->ack = RCODE_GENERATION;
1517 		else {
1518 			/*
1519 			 * Using a valid (current) generation count, but the
1520 			 * node is not on the bus or not sending acks.
1521 			 */
1522 			packet->ack = RCODE_NO_ACK;
1523 		}
1524 		break;
1525 
1526 	case ACK_COMPLETE + 0x10:
1527 	case ACK_PENDING + 0x10:
1528 	case ACK_BUSY_X + 0x10:
1529 	case ACK_BUSY_A + 0x10:
1530 	case ACK_BUSY_B + 0x10:
1531 	case ACK_DATA_ERROR + 0x10:
1532 	case ACK_TYPE_ERROR + 0x10:
1533 		packet->ack = evt - 0x10;
1534 		break;
1535 
1536 	case OHCI1394_evt_no_status:
1537 		if (context->flushing) {
1538 			packet->ack = RCODE_GENERATION;
1539 			break;
1540 		}
1541 		fallthrough;
1542 
1543 	default:
1544 		packet->ack = RCODE_SEND_ERROR;
1545 		break;
1546 	}
1547 
1548 	packet->callback(packet, &ohci->card, packet->ack);
1549 
1550 	return 1;
1551 }
1552 
1553 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1554 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1555 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1556 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1557 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1558 
1559 static u32 get_cycle_time(struct fw_ohci *ohci);
1560 
1561 static void handle_local_rom(struct fw_ohci *ohci,
1562 			     struct fw_packet *packet, u32 csr)
1563 {
1564 	struct fw_packet response;
1565 	int tcode, length, i;
1566 
1567 	tcode = HEADER_GET_TCODE(packet->header[0]);
1568 	if (TCODE_IS_BLOCK_PACKET(tcode))
1569 		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1570 	else
1571 		length = 4;
1572 
1573 	i = csr - CSR_CONFIG_ROM;
1574 	if (i + length > CONFIG_ROM_SIZE) {
1575 		fw_fill_response(&response, packet->header,
1576 				 RCODE_ADDRESS_ERROR, NULL, 0);
1577 	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1578 		fw_fill_response(&response, packet->header,
1579 				 RCODE_TYPE_ERROR, NULL, 0);
1580 	} else {
1581 		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1582 				 (void *) ohci->config_rom + i, length);
1583 	}
1584 
1585 	// Timestamping on behalf of the hardware.
1586 	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1587 	fw_core_handle_response(&ohci->card, &response);
1588 }
1589 
1590 static void handle_local_lock(struct fw_ohci *ohci,
1591 			      struct fw_packet *packet, u32 csr)
1592 {
1593 	struct fw_packet response;
1594 	int tcode, length, ext_tcode, sel, try;
1595 	__be32 *payload, lock_old;
1596 	u32 lock_arg, lock_data;
1597 
1598 	tcode = HEADER_GET_TCODE(packet->header[0]);
1599 	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1600 	payload = packet->payload;
1601 	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1602 
1603 	if (tcode == TCODE_LOCK_REQUEST &&
1604 	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1605 		lock_arg = be32_to_cpu(payload[0]);
1606 		lock_data = be32_to_cpu(payload[1]);
1607 	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1608 		lock_arg = 0;
1609 		lock_data = 0;
1610 	} else {
1611 		fw_fill_response(&response, packet->header,
1612 				 RCODE_TYPE_ERROR, NULL, 0);
1613 		goto out;
1614 	}
1615 
1616 	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1617 	reg_write(ohci, OHCI1394_CSRData, lock_data);
1618 	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1619 	reg_write(ohci, OHCI1394_CSRControl, sel);
1620 
1621 	for (try = 0; try < 20; try++)
1622 		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1623 			lock_old = cpu_to_be32(reg_read(ohci,
1624 							OHCI1394_CSRData));
1625 			fw_fill_response(&response, packet->header,
1626 					 RCODE_COMPLETE,
1627 					 &lock_old, sizeof(lock_old));
1628 			goto out;
1629 		}
1630 
1631 	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1632 	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1633 
1634  out:
1635 	// Timestamping on behalf of the hardware.
1636 	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1637 	fw_core_handle_response(&ohci->card, &response);
1638 }
1639 
1640 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1641 {
1642 	u64 offset, csr;
1643 
1644 	if (ctx == &ctx->ohci->at_request_ctx) {
1645 		packet->ack = ACK_PENDING;
1646 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1647 	}
1648 
1649 	offset =
1650 		((unsigned long long)
1651 		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1652 		packet->header[2];
1653 	csr = offset - CSR_REGISTER_BASE;
1654 
1655 	/* Handle config rom reads. */
1656 	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1657 		handle_local_rom(ctx->ohci, packet, csr);
1658 	else switch (csr) {
1659 	case CSR_BUS_MANAGER_ID:
1660 	case CSR_BANDWIDTH_AVAILABLE:
1661 	case CSR_CHANNELS_AVAILABLE_HI:
1662 	case CSR_CHANNELS_AVAILABLE_LO:
1663 		handle_local_lock(ctx->ohci, packet, csr);
1664 		break;
1665 	default:
1666 		if (ctx == &ctx->ohci->at_request_ctx)
1667 			fw_core_handle_request(&ctx->ohci->card, packet);
1668 		else
1669 			fw_core_handle_response(&ctx->ohci->card, packet);
1670 		break;
1671 	}
1672 
1673 	if (ctx == &ctx->ohci->at_response_ctx) {
1674 		packet->ack = ACK_COMPLETE;
1675 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1676 	}
1677 }
1678 
1679 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1680 {
1681 	unsigned long flags;
1682 	int ret;
1683 
1684 	spin_lock_irqsave(&ctx->ohci->lock, flags);
1685 
1686 	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1687 	    ctx->ohci->generation == packet->generation) {
1688 		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1689 
1690 		// Timestamping on behalf of the hardware.
1691 		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1692 
1693 		handle_local_request(ctx, packet);
1694 		return;
1695 	}
1696 
1697 	ret = at_context_queue_packet(ctx, packet);
1698 	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1699 
1700 	if (ret < 0) {
1701 		// Timestamping on behalf of the hardware.
1702 		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1703 
1704 		packet->callback(packet, &ctx->ohci->card, packet->ack);
1705 	}
1706 }
1707 
1708 static void detect_dead_context(struct fw_ohci *ohci,
1709 				const char *name, unsigned int regs)
1710 {
1711 	u32 ctl;
1712 
1713 	ctl = reg_read(ohci, CONTROL_SET(regs));
1714 	if (ctl & CONTEXT_DEAD)
1715 		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1716 			name, evts[ctl & 0x1f]);
1717 }
1718 
1719 static void handle_dead_contexts(struct fw_ohci *ohci)
1720 {
1721 	unsigned int i;
1722 	char name[8];
1723 
1724 	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1725 	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1726 	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1727 	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1728 	for (i = 0; i < 32; ++i) {
1729 		if (!(ohci->it_context_support & (1 << i)))
1730 			continue;
1731 		sprintf(name, "IT%u", i);
1732 		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1733 	}
1734 	for (i = 0; i < 32; ++i) {
1735 		if (!(ohci->ir_context_support & (1 << i)))
1736 			continue;
1737 		sprintf(name, "IR%u", i);
1738 		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1739 	}
1740 	/* TODO: maybe try to flush and restart the dead contexts */
1741 }
1742 
1743 static u32 cycle_timer_ticks(u32 cycle_timer)
1744 {
1745 	u32 ticks;
1746 
1747 	ticks = cycle_timer & 0xfff;
1748 	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1749 	ticks += (3072 * 8000) * (cycle_timer >> 25);
1750 
1751 	return ticks;
1752 }
1753 
1754 /*
1755  * Some controllers exhibit one or more of the following bugs when updating the
1756  * iso cycle timer register:
1757  *  - When the lowest six bits are wrapping around to zero, a read that happens
1758  *    at the same time will return garbage in the lowest ten bits.
1759  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1760  *    not incremented for about 60 ns.
1761  *  - Occasionally, the entire register reads zero.
1762  *
1763  * To catch these, we read the register three times and ensure that the
1764  * difference between each two consecutive reads is approximately the same, i.e.
1765  * less than twice the other.  Furthermore, any negative difference indicates an
1766  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1767  * execute, so we have enough precision to compute the ratio of the differences.)
1768  */
1769 static u32 get_cycle_time(struct fw_ohci *ohci)
1770 {
1771 	u32 c0, c1, c2;
1772 	u32 t0, t1, t2;
1773 	s32 diff01, diff12;
1774 	int i;
1775 
1776 	if (has_reboot_by_cycle_timer_read_quirk(ohci))
1777 		return 0;
1778 
1779 	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1780 
1781 	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1782 		i = 0;
1783 		c1 = c2;
1784 		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1785 		do {
1786 			c0 = c1;
1787 			c1 = c2;
1788 			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1789 			t0 = cycle_timer_ticks(c0);
1790 			t1 = cycle_timer_ticks(c1);
1791 			t2 = cycle_timer_ticks(c2);
1792 			diff01 = t1 - t0;
1793 			diff12 = t2 - t1;
1794 		} while ((diff01 <= 0 || diff12 <= 0 ||
1795 			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1796 			 && i++ < 20);
1797 	}
1798 
1799 	return c2;
1800 }
1801 
1802 /*
1803  * This function has to be called at least every 64 seconds.  The bus_time
1804  * field stores not only the upper 25 bits of the BUS_TIME register but also
1805  * the most significant bit of the cycle timer in bit 6 so that we can detect
1806  * changes in this bit.
1807  */
1808 static u32 update_bus_time(struct fw_ohci *ohci)
1809 {
1810 	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1811 
1812 	if (unlikely(!ohci->bus_time_running)) {
1813 		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1814 		ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1815 		                 (cycle_time_seconds & 0x40);
1816 		ohci->bus_time_running = true;
1817 	}
1818 
1819 	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1820 		ohci->bus_time += 0x40;
1821 
1822 	return ohci->bus_time | cycle_time_seconds;
1823 }
1824 
1825 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1826 {
1827 	int reg;
1828 
1829 	mutex_lock(&ohci->phy_reg_mutex);
1830 	reg = write_phy_reg(ohci, 7, port_index);
1831 	if (reg >= 0)
1832 		reg = read_phy_reg(ohci, 8);
1833 	mutex_unlock(&ohci->phy_reg_mutex);
1834 	if (reg < 0)
1835 		return reg;
1836 
1837 	switch (reg & 0x0f) {
1838 	case 0x06:
1839 		return 2;	/* is child node (connected to parent node) */
1840 	case 0x0e:
1841 		return 3;	/* is parent node (connected to child node) */
1842 	}
1843 	return 1;		/* not connected */
1844 }
1845 
1846 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1847 	int self_id_count)
1848 {
1849 	int i;
1850 	u32 entry;
1851 
1852 	for (i = 0; i < self_id_count; i++) {
1853 		entry = ohci->self_id_buffer[i];
1854 		if ((self_id & 0xff000000) == (entry & 0xff000000))
1855 			return -1;
1856 		if ((self_id & 0xff000000) < (entry & 0xff000000))
1857 			return i;
1858 	}
1859 	return i;
1860 }
1861 
1862 static int initiated_reset(struct fw_ohci *ohci)
1863 {
1864 	int reg;
1865 	int ret = 0;
1866 
1867 	mutex_lock(&ohci->phy_reg_mutex);
1868 	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1869 	if (reg >= 0) {
1870 		reg = read_phy_reg(ohci, 8);
1871 		reg |= 0x40;
1872 		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1873 		if (reg >= 0) {
1874 			reg = read_phy_reg(ohci, 12); /* read register 12 */
1875 			if (reg >= 0) {
1876 				if ((reg & 0x08) == 0x08) {
1877 					/* bit 3 indicates "initiated reset" */
1878 					ret = 0x2;
1879 				}
1880 			}
1881 		}
1882 	}
1883 	mutex_unlock(&ohci->phy_reg_mutex);
1884 	return ret;
1885 }
1886 
1887 /*
1888  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1889  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1890  * Construct the selfID from phy register contents.
1891  */
1892 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1893 {
1894 	int reg, i, pos, status;
1895 	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1896 	u32 self_id = 0x8040c800;
1897 
1898 	reg = reg_read(ohci, OHCI1394_NodeID);
1899 	if (!(reg & OHCI1394_NodeID_idValid)) {
1900 		ohci_notice(ohci,
1901 			    "node ID not valid, new bus reset in progress\n");
1902 		return -EBUSY;
1903 	}
1904 	self_id |= ((reg & 0x3f) << 24); /* phy ID */
1905 
1906 	reg = ohci_read_phy_reg(&ohci->card, 4);
1907 	if (reg < 0)
1908 		return reg;
1909 	self_id |= ((reg & 0x07) << 8); /* power class */
1910 
1911 	reg = ohci_read_phy_reg(&ohci->card, 1);
1912 	if (reg < 0)
1913 		return reg;
1914 	self_id |= ((reg & 0x3f) << 16); /* gap count */
1915 
1916 	for (i = 0; i < 3; i++) {
1917 		status = get_status_for_port(ohci, i);
1918 		if (status < 0)
1919 			return status;
1920 		self_id |= ((status & 0x3) << (6 - (i * 2)));
1921 	}
1922 
1923 	self_id |= initiated_reset(ohci);
1924 
1925 	pos = get_self_id_pos(ohci, self_id, self_id_count);
1926 	if (pos >= 0) {
1927 		memmove(&(ohci->self_id_buffer[pos+1]),
1928 			&(ohci->self_id_buffer[pos]),
1929 			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1930 		ohci->self_id_buffer[pos] = self_id;
1931 		self_id_count++;
1932 	}
1933 	return self_id_count;
1934 }
1935 
1936 static void bus_reset_work(struct work_struct *work)
1937 {
1938 	struct fw_ohci *ohci =
1939 		container_of(work, struct fw_ohci, bus_reset_work);
1940 	int self_id_count, generation, new_generation, i, j;
1941 	u32 reg;
1942 	void *free_rom = NULL;
1943 	dma_addr_t free_rom_bus = 0;
1944 	bool is_new_root;
1945 
1946 	reg = reg_read(ohci, OHCI1394_NodeID);
1947 	if (!(reg & OHCI1394_NodeID_idValid)) {
1948 		ohci_notice(ohci,
1949 			    "node ID not valid, new bus reset in progress\n");
1950 		return;
1951 	}
1952 	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1953 		ohci_notice(ohci, "malconfigured bus\n");
1954 		return;
1955 	}
1956 	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1957 			       OHCI1394_NodeID_nodeNumber);
1958 
1959 	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1960 	if (!(ohci->is_root && is_new_root))
1961 		reg_write(ohci, OHCI1394_LinkControlSet,
1962 			  OHCI1394_LinkControl_cycleMaster);
1963 	ohci->is_root = is_new_root;
1964 
1965 	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1966 	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1967 		ohci_notice(ohci, "self ID receive error\n");
1968 		return;
1969 	}
1970 	/*
1971 	 * The count in the SelfIDCount register is the number of
1972 	 * bytes in the self ID receive buffer.  Since we also receive
1973 	 * the inverted quadlets and a header quadlet, we shift one
1974 	 * bit extra to get the actual number of self IDs.
1975 	 */
1976 	self_id_count = (reg >> 3) & 0xff;
1977 
1978 	if (self_id_count > 252) {
1979 		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1980 		return;
1981 	}
1982 
1983 	generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1984 	rmb();
1985 
1986 	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1987 		u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1988 		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1989 
1990 		if (id != ~id2) {
1991 			/*
1992 			 * If the invalid data looks like a cycle start packet,
1993 			 * it's likely to be the result of the cycle master
1994 			 * having a wrong gap count.  In this case, the self IDs
1995 			 * so far are valid and should be processed so that the
1996 			 * bus manager can then correct the gap count.
1997 			 */
1998 			if (id == 0xffff008f) {
1999 				ohci_notice(ohci, "ignoring spurious self IDs\n");
2000 				self_id_count = j;
2001 				break;
2002 			}
2003 
2004 			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2005 				    j, self_id_count, id, id2);
2006 			return;
2007 		}
2008 		ohci->self_id_buffer[j] = id;
2009 	}
2010 
2011 	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2012 		self_id_count = find_and_insert_self_id(ohci, self_id_count);
2013 		if (self_id_count < 0) {
2014 			ohci_notice(ohci,
2015 				    "could not construct local self ID\n");
2016 			return;
2017 		}
2018 	}
2019 
2020 	if (self_id_count == 0) {
2021 		ohci_notice(ohci, "no self IDs\n");
2022 		return;
2023 	}
2024 	rmb();
2025 
2026 	/*
2027 	 * Check the consistency of the self IDs we just read.  The
2028 	 * problem we face is that a new bus reset can start while we
2029 	 * read out the self IDs from the DMA buffer. If this happens,
2030 	 * the DMA buffer will be overwritten with new self IDs and we
2031 	 * will read out inconsistent data.  The OHCI specification
2032 	 * (section 11.2) recommends a technique similar to
2033 	 * linux/seqlock.h, where we remember the generation of the
2034 	 * self IDs in the buffer before reading them out and compare
2035 	 * it to the current generation after reading them out.  If
2036 	 * the two generations match we know we have a consistent set
2037 	 * of self IDs.
2038 	 */
2039 
2040 	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
2041 	if (new_generation != generation) {
2042 		ohci_notice(ohci, "new bus reset, discarding self ids\n");
2043 		return;
2044 	}
2045 
2046 	/* FIXME: Document how the locking works. */
2047 	spin_lock_irq(&ohci->lock);
2048 
2049 	ohci->generation = -1; /* prevent AT packet queueing */
2050 	context_stop(&ohci->at_request_ctx);
2051 	context_stop(&ohci->at_response_ctx);
2052 
2053 	spin_unlock_irq(&ohci->lock);
2054 
2055 	/*
2056 	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2057 	 * packets in the AT queues and software needs to drain them.
2058 	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2059 	 */
2060 	at_context_flush(&ohci->at_request_ctx);
2061 	at_context_flush(&ohci->at_response_ctx);
2062 
2063 	spin_lock_irq(&ohci->lock);
2064 
2065 	ohci->generation = generation;
2066 	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2067 	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2068 		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2069 
2070 	if (ohci->quirks & QUIRK_RESET_PACKET)
2071 		ohci->request_generation = generation;
2072 
2073 	/*
2074 	 * This next bit is unrelated to the AT context stuff but we
2075 	 * have to do it under the spinlock also.  If a new config rom
2076 	 * was set up before this reset, the old one is now no longer
2077 	 * in use and we can free it. Update the config rom pointers
2078 	 * to point to the current config rom and clear the
2079 	 * next_config_rom pointer so a new update can take place.
2080 	 */
2081 
2082 	if (ohci->next_config_rom != NULL) {
2083 		if (ohci->next_config_rom != ohci->config_rom) {
2084 			free_rom      = ohci->config_rom;
2085 			free_rom_bus  = ohci->config_rom_bus;
2086 		}
2087 		ohci->config_rom      = ohci->next_config_rom;
2088 		ohci->config_rom_bus  = ohci->next_config_rom_bus;
2089 		ohci->next_config_rom = NULL;
2090 
2091 		/*
2092 		 * Restore config_rom image and manually update
2093 		 * config_rom registers.  Writing the header quadlet
2094 		 * will indicate that the config rom is ready, so we
2095 		 * do that last.
2096 		 */
2097 		reg_write(ohci, OHCI1394_BusOptions,
2098 			  be32_to_cpu(ohci->config_rom[2]));
2099 		ohci->config_rom[0] = ohci->next_header;
2100 		reg_write(ohci, OHCI1394_ConfigROMhdr,
2101 			  be32_to_cpu(ohci->next_header));
2102 	}
2103 
2104 	if (param_remote_dma) {
2105 		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2106 		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2107 	}
2108 
2109 	spin_unlock_irq(&ohci->lock);
2110 
2111 	if (free_rom)
2112 		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2113 
2114 	log_selfids(ohci, generation, self_id_count);
2115 
2116 	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2117 				 self_id_count, ohci->self_id_buffer,
2118 				 ohci->csr_state_setclear_abdicate);
2119 	ohci->csr_state_setclear_abdicate = false;
2120 }
2121 
2122 static irqreturn_t irq_handler(int irq, void *data)
2123 {
2124 	struct fw_ohci *ohci = data;
2125 	u32 event, iso_event;
2126 	int i;
2127 
2128 	event = reg_read(ohci, OHCI1394_IntEventClear);
2129 
2130 	if (!event || !~event)
2131 		return IRQ_NONE;
2132 
2133 	/*
2134 	 * busReset and postedWriteErr events must not be cleared yet
2135 	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2136 	 */
2137 	reg_write(ohci, OHCI1394_IntEventClear,
2138 		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2139 	log_irqs(ohci, event);
2140 	if (event & OHCI1394_busReset)
2141 		reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2142 
2143 	if (event & OHCI1394_selfIDComplete)
2144 		queue_work(selfid_workqueue, &ohci->bus_reset_work);
2145 
2146 	if (event & OHCI1394_RQPkt)
2147 		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2148 
2149 	if (event & OHCI1394_RSPkt)
2150 		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2151 
2152 	if (event & OHCI1394_reqTxComplete)
2153 		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2154 
2155 	if (event & OHCI1394_respTxComplete)
2156 		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2157 
2158 	if (event & OHCI1394_isochRx) {
2159 		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2160 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2161 
2162 		while (iso_event) {
2163 			i = ffs(iso_event) - 1;
2164 			tasklet_schedule(
2165 				&ohci->ir_context_list[i].context.tasklet);
2166 			iso_event &= ~(1 << i);
2167 		}
2168 	}
2169 
2170 	if (event & OHCI1394_isochTx) {
2171 		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2172 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2173 
2174 		while (iso_event) {
2175 			i = ffs(iso_event) - 1;
2176 			tasklet_schedule(
2177 				&ohci->it_context_list[i].context.tasklet);
2178 			iso_event &= ~(1 << i);
2179 		}
2180 	}
2181 
2182 	if (unlikely(event & OHCI1394_regAccessFail))
2183 		ohci_err(ohci, "register access failure\n");
2184 
2185 	if (unlikely(event & OHCI1394_postedWriteErr)) {
2186 		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2187 		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2188 		reg_write(ohci, OHCI1394_IntEventClear,
2189 			  OHCI1394_postedWriteErr);
2190 		if (printk_ratelimit())
2191 			ohci_err(ohci, "PCI posted write error\n");
2192 	}
2193 
2194 	if (unlikely(event & OHCI1394_cycleTooLong)) {
2195 		if (printk_ratelimit())
2196 			ohci_notice(ohci, "isochronous cycle too long\n");
2197 		reg_write(ohci, OHCI1394_LinkControlSet,
2198 			  OHCI1394_LinkControl_cycleMaster);
2199 	}
2200 
2201 	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2202 		/*
2203 		 * We need to clear this event bit in order to make
2204 		 * cycleMatch isochronous I/O work.  In theory we should
2205 		 * stop active cycleMatch iso contexts now and restart
2206 		 * them at least two cycles later.  (FIXME?)
2207 		 */
2208 		if (printk_ratelimit())
2209 			ohci_notice(ohci, "isochronous cycle inconsistent\n");
2210 	}
2211 
2212 	if (unlikely(event & OHCI1394_unrecoverableError))
2213 		handle_dead_contexts(ohci);
2214 
2215 	if (event & OHCI1394_cycle64Seconds) {
2216 		spin_lock(&ohci->lock);
2217 		update_bus_time(ohci);
2218 		spin_unlock(&ohci->lock);
2219 	} else
2220 		flush_writes(ohci);
2221 
2222 	return IRQ_HANDLED;
2223 }
2224 
2225 static int software_reset(struct fw_ohci *ohci)
2226 {
2227 	u32 val;
2228 	int i;
2229 
2230 	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2231 	for (i = 0; i < 500; i++) {
2232 		val = reg_read(ohci, OHCI1394_HCControlSet);
2233 		if (!~val)
2234 			return -ENODEV; /* Card was ejected. */
2235 
2236 		if (!(val & OHCI1394_HCControl_softReset))
2237 			return 0;
2238 
2239 		msleep(1);
2240 	}
2241 
2242 	return -EBUSY;
2243 }
2244 
2245 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2246 {
2247 	size_t size = length * 4;
2248 
2249 	memcpy(dest, src, size);
2250 	if (size < CONFIG_ROM_SIZE)
2251 		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2252 }
2253 
2254 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2255 {
2256 	bool enable_1394a;
2257 	int ret, clear, set, offset;
2258 
2259 	/* Check if the driver should configure link and PHY. */
2260 	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2261 	      OHCI1394_HCControl_programPhyEnable))
2262 		return 0;
2263 
2264 	/* Paranoia: check whether the PHY supports 1394a, too. */
2265 	enable_1394a = false;
2266 	ret = read_phy_reg(ohci, 2);
2267 	if (ret < 0)
2268 		return ret;
2269 	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2270 		ret = read_paged_phy_reg(ohci, 1, 8);
2271 		if (ret < 0)
2272 			return ret;
2273 		if (ret >= 1)
2274 			enable_1394a = true;
2275 	}
2276 
2277 	if (ohci->quirks & QUIRK_NO_1394A)
2278 		enable_1394a = false;
2279 
2280 	/* Configure PHY and link consistently. */
2281 	if (enable_1394a) {
2282 		clear = 0;
2283 		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2284 	} else {
2285 		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2286 		set = 0;
2287 	}
2288 	ret = update_phy_reg(ohci, 5, clear, set);
2289 	if (ret < 0)
2290 		return ret;
2291 
2292 	if (enable_1394a)
2293 		offset = OHCI1394_HCControlSet;
2294 	else
2295 		offset = OHCI1394_HCControlClear;
2296 	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2297 
2298 	/* Clean up: configuration has been taken care of. */
2299 	reg_write(ohci, OHCI1394_HCControlClear,
2300 		  OHCI1394_HCControl_programPhyEnable);
2301 
2302 	return 0;
2303 }
2304 
2305 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2306 {
2307 	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2308 	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2309 	int reg, i;
2310 
2311 	reg = read_phy_reg(ohci, 2);
2312 	if (reg < 0)
2313 		return reg;
2314 	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2315 		return 0;
2316 
2317 	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2318 		reg = read_paged_phy_reg(ohci, 1, i + 10);
2319 		if (reg < 0)
2320 			return reg;
2321 		if (reg != id[i])
2322 			return 0;
2323 	}
2324 	return 1;
2325 }
2326 
2327 static int ohci_enable(struct fw_card *card,
2328 		       const __be32 *config_rom, size_t length)
2329 {
2330 	struct fw_ohci *ohci = fw_ohci(card);
2331 	u32 lps, version, irqs;
2332 	int i, ret;
2333 
2334 	ret = software_reset(ohci);
2335 	if (ret < 0) {
2336 		ohci_err(ohci, "failed to reset ohci card\n");
2337 		return ret;
2338 	}
2339 
2340 	/*
2341 	 * Now enable LPS, which we need in order to start accessing
2342 	 * most of the registers.  In fact, on some cards (ALI M5251),
2343 	 * accessing registers in the SClk domain without LPS enabled
2344 	 * will lock up the machine.  Wait 50msec to make sure we have
2345 	 * full link enabled.  However, with some cards (well, at least
2346 	 * a JMicron PCIe card), we have to try again sometimes.
2347 	 *
2348 	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2349 	 * cannot actually use the phy at that time.  These need tens of
2350 	 * millisecods pause between LPS write and first phy access too.
2351 	 */
2352 
2353 	reg_write(ohci, OHCI1394_HCControlSet,
2354 		  OHCI1394_HCControl_LPS |
2355 		  OHCI1394_HCControl_postedWriteEnable);
2356 	flush_writes(ohci);
2357 
2358 	for (lps = 0, i = 0; !lps && i < 3; i++) {
2359 		msleep(50);
2360 		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2361 		      OHCI1394_HCControl_LPS;
2362 	}
2363 
2364 	if (!lps) {
2365 		ohci_err(ohci, "failed to set Link Power Status\n");
2366 		return -EIO;
2367 	}
2368 
2369 	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2370 		ret = probe_tsb41ba3d(ohci);
2371 		if (ret < 0)
2372 			return ret;
2373 		if (ret)
2374 			ohci_notice(ohci, "local TSB41BA3D phy\n");
2375 		else
2376 			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2377 	}
2378 
2379 	reg_write(ohci, OHCI1394_HCControlClear,
2380 		  OHCI1394_HCControl_noByteSwapData);
2381 
2382 	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2383 	reg_write(ohci, OHCI1394_LinkControlSet,
2384 		  OHCI1394_LinkControl_cycleTimerEnable |
2385 		  OHCI1394_LinkControl_cycleMaster);
2386 
2387 	reg_write(ohci, OHCI1394_ATRetries,
2388 		  OHCI1394_MAX_AT_REQ_RETRIES |
2389 		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2390 		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2391 		  (200 << 16));
2392 
2393 	ohci->bus_time_running = false;
2394 
2395 	for (i = 0; i < 32; i++)
2396 		if (ohci->ir_context_support & (1 << i))
2397 			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2398 				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2399 
2400 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2401 	if (version >= OHCI_VERSION_1_1) {
2402 		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2403 			  0xfffffffe);
2404 		card->broadcast_channel_auto_allocated = true;
2405 	}
2406 
2407 	/* Get implemented bits of the priority arbitration request counter. */
2408 	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2409 	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2410 	reg_write(ohci, OHCI1394_FairnessControl, 0);
2411 	card->priority_budget_implemented = ohci->pri_req_max != 0;
2412 
2413 	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2414 	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2415 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2416 
2417 	ret = configure_1394a_enhancements(ohci);
2418 	if (ret < 0)
2419 		return ret;
2420 
2421 	/* Activate link_on bit and contender bit in our self ID packets.*/
2422 	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2423 	if (ret < 0)
2424 		return ret;
2425 
2426 	/*
2427 	 * When the link is not yet enabled, the atomic config rom
2428 	 * update mechanism described below in ohci_set_config_rom()
2429 	 * is not active.  We have to update ConfigRomHeader and
2430 	 * BusOptions manually, and the write to ConfigROMmap takes
2431 	 * effect immediately.  We tie this to the enabling of the
2432 	 * link, so we have a valid config rom before enabling - the
2433 	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2434 	 * values before enabling.
2435 	 *
2436 	 * However, when the ConfigROMmap is written, some controllers
2437 	 * always read back quadlets 0 and 2 from the config rom to
2438 	 * the ConfigRomHeader and BusOptions registers on bus reset.
2439 	 * They shouldn't do that in this initial case where the link
2440 	 * isn't enabled.  This means we have to use the same
2441 	 * workaround here, setting the bus header to 0 and then write
2442 	 * the right values in the bus reset tasklet.
2443 	 */
2444 
2445 	if (config_rom) {
2446 		ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2447 							    &ohci->next_config_rom_bus, GFP_KERNEL);
2448 		if (ohci->next_config_rom == NULL)
2449 			return -ENOMEM;
2450 
2451 		copy_config_rom(ohci->next_config_rom, config_rom, length);
2452 	} else {
2453 		/*
2454 		 * In the suspend case, config_rom is NULL, which
2455 		 * means that we just reuse the old config rom.
2456 		 */
2457 		ohci->next_config_rom = ohci->config_rom;
2458 		ohci->next_config_rom_bus = ohci->config_rom_bus;
2459 	}
2460 
2461 	ohci->next_header = ohci->next_config_rom[0];
2462 	ohci->next_config_rom[0] = 0;
2463 	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2464 	reg_write(ohci, OHCI1394_BusOptions,
2465 		  be32_to_cpu(ohci->next_config_rom[2]));
2466 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2467 
2468 	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2469 
2470 	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2471 		OHCI1394_RQPkt | OHCI1394_RSPkt |
2472 		OHCI1394_isochTx | OHCI1394_isochRx |
2473 		OHCI1394_postedWriteErr |
2474 		OHCI1394_selfIDComplete |
2475 		OHCI1394_regAccessFail |
2476 		OHCI1394_cycleInconsistent |
2477 		OHCI1394_unrecoverableError |
2478 		OHCI1394_cycleTooLong |
2479 		OHCI1394_masterIntEnable;
2480 	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2481 		irqs |= OHCI1394_busReset;
2482 	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2483 
2484 	reg_write(ohci, OHCI1394_HCControlSet,
2485 		  OHCI1394_HCControl_linkEnable |
2486 		  OHCI1394_HCControl_BIBimageValid);
2487 
2488 	reg_write(ohci, OHCI1394_LinkControlSet,
2489 		  OHCI1394_LinkControl_rcvSelfID |
2490 		  OHCI1394_LinkControl_rcvPhyPkt);
2491 
2492 	ar_context_run(&ohci->ar_request_ctx);
2493 	ar_context_run(&ohci->ar_response_ctx);
2494 
2495 	flush_writes(ohci);
2496 
2497 	/* We are ready to go, reset bus to finish initialization. */
2498 	fw_schedule_bus_reset(&ohci->card, false, true);
2499 
2500 	return 0;
2501 }
2502 
2503 static int ohci_set_config_rom(struct fw_card *card,
2504 			       const __be32 *config_rom, size_t length)
2505 {
2506 	struct fw_ohci *ohci;
2507 	__be32 *next_config_rom;
2508 	dma_addr_t next_config_rom_bus;
2509 
2510 	ohci = fw_ohci(card);
2511 
2512 	/*
2513 	 * When the OHCI controller is enabled, the config rom update
2514 	 * mechanism is a bit tricky, but easy enough to use.  See
2515 	 * section 5.5.6 in the OHCI specification.
2516 	 *
2517 	 * The OHCI controller caches the new config rom address in a
2518 	 * shadow register (ConfigROMmapNext) and needs a bus reset
2519 	 * for the changes to take place.  When the bus reset is
2520 	 * detected, the controller loads the new values for the
2521 	 * ConfigRomHeader and BusOptions registers from the specified
2522 	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2523 	 * shadow register. All automatically and atomically.
2524 	 *
2525 	 * Now, there's a twist to this story.  The automatic load of
2526 	 * ConfigRomHeader and BusOptions doesn't honor the
2527 	 * noByteSwapData bit, so with a be32 config rom, the
2528 	 * controller will load be32 values in to these registers
2529 	 * during the atomic update, even on litte endian
2530 	 * architectures.  The workaround we use is to put a 0 in the
2531 	 * header quadlet; 0 is endian agnostic and means that the
2532 	 * config rom isn't ready yet.  In the bus reset tasklet we
2533 	 * then set up the real values for the two registers.
2534 	 *
2535 	 * We use ohci->lock to avoid racing with the code that sets
2536 	 * ohci->next_config_rom to NULL (see bus_reset_work).
2537 	 */
2538 
2539 	next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2540 					      &next_config_rom_bus, GFP_KERNEL);
2541 	if (next_config_rom == NULL)
2542 		return -ENOMEM;
2543 
2544 	spin_lock_irq(&ohci->lock);
2545 
2546 	/*
2547 	 * If there is not an already pending config_rom update,
2548 	 * push our new allocation into the ohci->next_config_rom
2549 	 * and then mark the local variable as null so that we
2550 	 * won't deallocate the new buffer.
2551 	 *
2552 	 * OTOH, if there is a pending config_rom update, just
2553 	 * use that buffer with the new config_rom data, and
2554 	 * let this routine free the unused DMA allocation.
2555 	 */
2556 
2557 	if (ohci->next_config_rom == NULL) {
2558 		ohci->next_config_rom = next_config_rom;
2559 		ohci->next_config_rom_bus = next_config_rom_bus;
2560 		next_config_rom = NULL;
2561 	}
2562 
2563 	copy_config_rom(ohci->next_config_rom, config_rom, length);
2564 
2565 	ohci->next_header = config_rom[0];
2566 	ohci->next_config_rom[0] = 0;
2567 
2568 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2569 
2570 	spin_unlock_irq(&ohci->lock);
2571 
2572 	/* If we didn't use the DMA allocation, delete it. */
2573 	if (next_config_rom != NULL) {
2574 		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2575 				   next_config_rom_bus);
2576 	}
2577 
2578 	/*
2579 	 * Now initiate a bus reset to have the changes take
2580 	 * effect. We clean up the old config rom memory and DMA
2581 	 * mappings in the bus reset tasklet, since the OHCI
2582 	 * controller could need to access it before the bus reset
2583 	 * takes effect.
2584 	 */
2585 
2586 	fw_schedule_bus_reset(&ohci->card, true, true);
2587 
2588 	return 0;
2589 }
2590 
2591 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2592 {
2593 	struct fw_ohci *ohci = fw_ohci(card);
2594 
2595 	at_context_transmit(&ohci->at_request_ctx, packet);
2596 }
2597 
2598 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2599 {
2600 	struct fw_ohci *ohci = fw_ohci(card);
2601 
2602 	at_context_transmit(&ohci->at_response_ctx, packet);
2603 }
2604 
2605 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2606 {
2607 	struct fw_ohci *ohci = fw_ohci(card);
2608 	struct context *ctx = &ohci->at_request_ctx;
2609 	struct driver_data *driver_data = packet->driver_data;
2610 	int ret = -ENOENT;
2611 
2612 	tasklet_disable_in_atomic(&ctx->tasklet);
2613 
2614 	if (packet->ack != 0)
2615 		goto out;
2616 
2617 	if (packet->payload_mapped)
2618 		dma_unmap_single(ohci->card.device, packet->payload_bus,
2619 				 packet->payload_length, DMA_TO_DEVICE);
2620 
2621 	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2622 	driver_data->packet = NULL;
2623 	packet->ack = RCODE_CANCELLED;
2624 
2625 	// Timestamping on behalf of the hardware.
2626 	packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2627 
2628 	packet->callback(packet, &ohci->card, packet->ack);
2629 	ret = 0;
2630  out:
2631 	tasklet_enable(&ctx->tasklet);
2632 
2633 	return ret;
2634 }
2635 
2636 static int ohci_enable_phys_dma(struct fw_card *card,
2637 				int node_id, int generation)
2638 {
2639 	struct fw_ohci *ohci = fw_ohci(card);
2640 	unsigned long flags;
2641 	int n, ret = 0;
2642 
2643 	if (param_remote_dma)
2644 		return 0;
2645 
2646 	/*
2647 	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2648 	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2649 	 */
2650 
2651 	spin_lock_irqsave(&ohci->lock, flags);
2652 
2653 	if (ohci->generation != generation) {
2654 		ret = -ESTALE;
2655 		goto out;
2656 	}
2657 
2658 	/*
2659 	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2660 	 * enabled for _all_ nodes on remote buses.
2661 	 */
2662 
2663 	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2664 	if (n < 32)
2665 		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2666 	else
2667 		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2668 
2669 	flush_writes(ohci);
2670  out:
2671 	spin_unlock_irqrestore(&ohci->lock, flags);
2672 
2673 	return ret;
2674 }
2675 
2676 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2677 {
2678 	struct fw_ohci *ohci = fw_ohci(card);
2679 	unsigned long flags;
2680 	u32 value;
2681 
2682 	switch (csr_offset) {
2683 	case CSR_STATE_CLEAR:
2684 	case CSR_STATE_SET:
2685 		if (ohci->is_root &&
2686 		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2687 		     OHCI1394_LinkControl_cycleMaster))
2688 			value = CSR_STATE_BIT_CMSTR;
2689 		else
2690 			value = 0;
2691 		if (ohci->csr_state_setclear_abdicate)
2692 			value |= CSR_STATE_BIT_ABDICATE;
2693 
2694 		return value;
2695 
2696 	case CSR_NODE_IDS:
2697 		return reg_read(ohci, OHCI1394_NodeID) << 16;
2698 
2699 	case CSR_CYCLE_TIME:
2700 		return get_cycle_time(ohci);
2701 
2702 	case CSR_BUS_TIME:
2703 		/*
2704 		 * We might be called just after the cycle timer has wrapped
2705 		 * around but just before the cycle64Seconds handler, so we
2706 		 * better check here, too, if the bus time needs to be updated.
2707 		 */
2708 		spin_lock_irqsave(&ohci->lock, flags);
2709 		value = update_bus_time(ohci);
2710 		spin_unlock_irqrestore(&ohci->lock, flags);
2711 		return value;
2712 
2713 	case CSR_BUSY_TIMEOUT:
2714 		value = reg_read(ohci, OHCI1394_ATRetries);
2715 		return (value >> 4) & 0x0ffff00f;
2716 
2717 	case CSR_PRIORITY_BUDGET:
2718 		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2719 			(ohci->pri_req_max << 8);
2720 
2721 	default:
2722 		WARN_ON(1);
2723 		return 0;
2724 	}
2725 }
2726 
2727 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2728 {
2729 	struct fw_ohci *ohci = fw_ohci(card);
2730 	unsigned long flags;
2731 
2732 	switch (csr_offset) {
2733 	case CSR_STATE_CLEAR:
2734 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2735 			reg_write(ohci, OHCI1394_LinkControlClear,
2736 				  OHCI1394_LinkControl_cycleMaster);
2737 			flush_writes(ohci);
2738 		}
2739 		if (value & CSR_STATE_BIT_ABDICATE)
2740 			ohci->csr_state_setclear_abdicate = false;
2741 		break;
2742 
2743 	case CSR_STATE_SET:
2744 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2745 			reg_write(ohci, OHCI1394_LinkControlSet,
2746 				  OHCI1394_LinkControl_cycleMaster);
2747 			flush_writes(ohci);
2748 		}
2749 		if (value & CSR_STATE_BIT_ABDICATE)
2750 			ohci->csr_state_setclear_abdicate = true;
2751 		break;
2752 
2753 	case CSR_NODE_IDS:
2754 		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2755 		flush_writes(ohci);
2756 		break;
2757 
2758 	case CSR_CYCLE_TIME:
2759 		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2760 		reg_write(ohci, OHCI1394_IntEventSet,
2761 			  OHCI1394_cycleInconsistent);
2762 		flush_writes(ohci);
2763 		break;
2764 
2765 	case CSR_BUS_TIME:
2766 		spin_lock_irqsave(&ohci->lock, flags);
2767 		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2768 		                 (value & ~0x7f);
2769 		spin_unlock_irqrestore(&ohci->lock, flags);
2770 		break;
2771 
2772 	case CSR_BUSY_TIMEOUT:
2773 		value = (value & 0xf) | ((value & 0xf) << 4) |
2774 			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2775 		reg_write(ohci, OHCI1394_ATRetries, value);
2776 		flush_writes(ohci);
2777 		break;
2778 
2779 	case CSR_PRIORITY_BUDGET:
2780 		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2781 		flush_writes(ohci);
2782 		break;
2783 
2784 	default:
2785 		WARN_ON(1);
2786 		break;
2787 	}
2788 }
2789 
2790 static void flush_iso_completions(struct iso_context *ctx)
2791 {
2792 	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2793 			      ctx->header_length, ctx->header,
2794 			      ctx->base.callback_data);
2795 	ctx->header_length = 0;
2796 }
2797 
2798 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2799 {
2800 	u32 *ctx_hdr;
2801 
2802 	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2803 		if (ctx->base.drop_overflow_headers)
2804 			return;
2805 		flush_iso_completions(ctx);
2806 	}
2807 
2808 	ctx_hdr = ctx->header + ctx->header_length;
2809 	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2810 
2811 	/*
2812 	 * The two iso header quadlets are byteswapped to little
2813 	 * endian by the controller, but we want to present them
2814 	 * as big endian for consistency with the bus endianness.
2815 	 */
2816 	if (ctx->base.header_size > 0)
2817 		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2818 	if (ctx->base.header_size > 4)
2819 		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2820 	if (ctx->base.header_size > 8)
2821 		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2822 	ctx->header_length += ctx->base.header_size;
2823 }
2824 
2825 static int handle_ir_packet_per_buffer(struct context *context,
2826 				       struct descriptor *d,
2827 				       struct descriptor *last)
2828 {
2829 	struct iso_context *ctx =
2830 		container_of(context, struct iso_context, context);
2831 	struct descriptor *pd;
2832 	u32 buffer_dma;
2833 
2834 	for (pd = d; pd <= last; pd++)
2835 		if (pd->transfer_status)
2836 			break;
2837 	if (pd > last)
2838 		/* Descriptor(s) not done yet, stop iteration */
2839 		return 0;
2840 
2841 	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2842 		d++;
2843 		buffer_dma = le32_to_cpu(d->data_address);
2844 		dma_sync_single_range_for_cpu(context->ohci->card.device,
2845 					      buffer_dma & PAGE_MASK,
2846 					      buffer_dma & ~PAGE_MASK,
2847 					      le16_to_cpu(d->req_count),
2848 					      DMA_FROM_DEVICE);
2849 	}
2850 
2851 	copy_iso_headers(ctx, (u32 *) (last + 1));
2852 
2853 	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2854 		flush_iso_completions(ctx);
2855 
2856 	return 1;
2857 }
2858 
2859 /* d == last because each descriptor block is only a single descriptor. */
2860 static int handle_ir_buffer_fill(struct context *context,
2861 				 struct descriptor *d,
2862 				 struct descriptor *last)
2863 {
2864 	struct iso_context *ctx =
2865 		container_of(context, struct iso_context, context);
2866 	unsigned int req_count, res_count, completed;
2867 	u32 buffer_dma;
2868 
2869 	req_count = le16_to_cpu(last->req_count);
2870 	res_count = le16_to_cpu(READ_ONCE(last->res_count));
2871 	completed = req_count - res_count;
2872 	buffer_dma = le32_to_cpu(last->data_address);
2873 
2874 	if (completed > 0) {
2875 		ctx->mc_buffer_bus = buffer_dma;
2876 		ctx->mc_completed = completed;
2877 	}
2878 
2879 	if (res_count != 0)
2880 		/* Descriptor(s) not done yet, stop iteration */
2881 		return 0;
2882 
2883 	dma_sync_single_range_for_cpu(context->ohci->card.device,
2884 				      buffer_dma & PAGE_MASK,
2885 				      buffer_dma & ~PAGE_MASK,
2886 				      completed, DMA_FROM_DEVICE);
2887 
2888 	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2889 		ctx->base.callback.mc(&ctx->base,
2890 				      buffer_dma + completed,
2891 				      ctx->base.callback_data);
2892 		ctx->mc_completed = 0;
2893 	}
2894 
2895 	return 1;
2896 }
2897 
2898 static void flush_ir_buffer_fill(struct iso_context *ctx)
2899 {
2900 	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2901 				      ctx->mc_buffer_bus & PAGE_MASK,
2902 				      ctx->mc_buffer_bus & ~PAGE_MASK,
2903 				      ctx->mc_completed, DMA_FROM_DEVICE);
2904 
2905 	ctx->base.callback.mc(&ctx->base,
2906 			      ctx->mc_buffer_bus + ctx->mc_completed,
2907 			      ctx->base.callback_data);
2908 	ctx->mc_completed = 0;
2909 }
2910 
2911 static inline void sync_it_packet_for_cpu(struct context *context,
2912 					  struct descriptor *pd)
2913 {
2914 	__le16 control;
2915 	u32 buffer_dma;
2916 
2917 	/* only packets beginning with OUTPUT_MORE* have data buffers */
2918 	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2919 		return;
2920 
2921 	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2922 	pd += 2;
2923 
2924 	/*
2925 	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2926 	 * data buffer is in the context program's coherent page and must not
2927 	 * be synced.
2928 	 */
2929 	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2930 	    (context->current_bus          & PAGE_MASK)) {
2931 		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2932 			return;
2933 		pd++;
2934 	}
2935 
2936 	do {
2937 		buffer_dma = le32_to_cpu(pd->data_address);
2938 		dma_sync_single_range_for_cpu(context->ohci->card.device,
2939 					      buffer_dma & PAGE_MASK,
2940 					      buffer_dma & ~PAGE_MASK,
2941 					      le16_to_cpu(pd->req_count),
2942 					      DMA_TO_DEVICE);
2943 		control = pd->control;
2944 		pd++;
2945 	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2946 }
2947 
2948 static int handle_it_packet(struct context *context,
2949 			    struct descriptor *d,
2950 			    struct descriptor *last)
2951 {
2952 	struct iso_context *ctx =
2953 		container_of(context, struct iso_context, context);
2954 	struct descriptor *pd;
2955 	__be32 *ctx_hdr;
2956 
2957 	for (pd = d; pd <= last; pd++)
2958 		if (pd->transfer_status)
2959 			break;
2960 	if (pd > last)
2961 		/* Descriptor(s) not done yet, stop iteration */
2962 		return 0;
2963 
2964 	sync_it_packet_for_cpu(context, d);
2965 
2966 	if (ctx->header_length + 4 > PAGE_SIZE) {
2967 		if (ctx->base.drop_overflow_headers)
2968 			return 1;
2969 		flush_iso_completions(ctx);
2970 	}
2971 
2972 	ctx_hdr = ctx->header + ctx->header_length;
2973 	ctx->last_timestamp = le16_to_cpu(last->res_count);
2974 	/* Present this value as big-endian to match the receive code */
2975 	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2976 			       le16_to_cpu(pd->res_count));
2977 	ctx->header_length += 4;
2978 
2979 	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2980 		flush_iso_completions(ctx);
2981 
2982 	return 1;
2983 }
2984 
2985 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2986 {
2987 	u32 hi = channels >> 32, lo = channels;
2988 
2989 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2990 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2991 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2992 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2993 	ohci->mc_channels = channels;
2994 }
2995 
2996 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2997 				int type, int channel, size_t header_size)
2998 {
2999 	struct fw_ohci *ohci = fw_ohci(card);
3000 	struct iso_context *ctx;
3001 	descriptor_callback_t callback;
3002 	u64 *channels;
3003 	u32 *mask, regs;
3004 	int index, ret = -EBUSY;
3005 
3006 	spin_lock_irq(&ohci->lock);
3007 
3008 	switch (type) {
3009 	case FW_ISO_CONTEXT_TRANSMIT:
3010 		mask     = &ohci->it_context_mask;
3011 		callback = handle_it_packet;
3012 		index    = ffs(*mask) - 1;
3013 		if (index >= 0) {
3014 			*mask &= ~(1 << index);
3015 			regs = OHCI1394_IsoXmitContextBase(index);
3016 			ctx  = &ohci->it_context_list[index];
3017 		}
3018 		break;
3019 
3020 	case FW_ISO_CONTEXT_RECEIVE:
3021 		channels = &ohci->ir_context_channels;
3022 		mask     = &ohci->ir_context_mask;
3023 		callback = handle_ir_packet_per_buffer;
3024 		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3025 		if (index >= 0) {
3026 			*channels &= ~(1ULL << channel);
3027 			*mask     &= ~(1 << index);
3028 			regs = OHCI1394_IsoRcvContextBase(index);
3029 			ctx  = &ohci->ir_context_list[index];
3030 		}
3031 		break;
3032 
3033 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3034 		mask     = &ohci->ir_context_mask;
3035 		callback = handle_ir_buffer_fill;
3036 		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3037 		if (index >= 0) {
3038 			ohci->mc_allocated = true;
3039 			*mask &= ~(1 << index);
3040 			regs = OHCI1394_IsoRcvContextBase(index);
3041 			ctx  = &ohci->ir_context_list[index];
3042 		}
3043 		break;
3044 
3045 	default:
3046 		index = -1;
3047 		ret = -ENOSYS;
3048 	}
3049 
3050 	spin_unlock_irq(&ohci->lock);
3051 
3052 	if (index < 0)
3053 		return ERR_PTR(ret);
3054 
3055 	memset(ctx, 0, sizeof(*ctx));
3056 	ctx->header_length = 0;
3057 	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3058 	if (ctx->header == NULL) {
3059 		ret = -ENOMEM;
3060 		goto out;
3061 	}
3062 	ret = context_init(&ctx->context, ohci, regs, callback);
3063 	if (ret < 0)
3064 		goto out_with_header;
3065 
3066 	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3067 		set_multichannel_mask(ohci, 0);
3068 		ctx->mc_completed = 0;
3069 	}
3070 
3071 	return &ctx->base;
3072 
3073  out_with_header:
3074 	free_page((unsigned long)ctx->header);
3075  out:
3076 	spin_lock_irq(&ohci->lock);
3077 
3078 	switch (type) {
3079 	case FW_ISO_CONTEXT_RECEIVE:
3080 		*channels |= 1ULL << channel;
3081 		break;
3082 
3083 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3084 		ohci->mc_allocated = false;
3085 		break;
3086 	}
3087 	*mask |= 1 << index;
3088 
3089 	spin_unlock_irq(&ohci->lock);
3090 
3091 	return ERR_PTR(ret);
3092 }
3093 
3094 static int ohci_start_iso(struct fw_iso_context *base,
3095 			  s32 cycle, u32 sync, u32 tags)
3096 {
3097 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3098 	struct fw_ohci *ohci = ctx->context.ohci;
3099 	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3100 	int index;
3101 
3102 	/* the controller cannot start without any queued packets */
3103 	if (ctx->context.last->branch_address == 0)
3104 		return -ENODATA;
3105 
3106 	switch (ctx->base.type) {
3107 	case FW_ISO_CONTEXT_TRANSMIT:
3108 		index = ctx - ohci->it_context_list;
3109 		match = 0;
3110 		if (cycle >= 0)
3111 			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3112 				(cycle & 0x7fff) << 16;
3113 
3114 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3115 		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3116 		context_run(&ctx->context, match);
3117 		break;
3118 
3119 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3120 		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3121 		fallthrough;
3122 	case FW_ISO_CONTEXT_RECEIVE:
3123 		index = ctx - ohci->ir_context_list;
3124 		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3125 		if (cycle >= 0) {
3126 			match |= (cycle & 0x07fff) << 12;
3127 			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3128 		}
3129 
3130 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3131 		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3132 		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3133 		context_run(&ctx->context, control);
3134 
3135 		ctx->sync = sync;
3136 		ctx->tags = tags;
3137 
3138 		break;
3139 	}
3140 
3141 	return 0;
3142 }
3143 
3144 static int ohci_stop_iso(struct fw_iso_context *base)
3145 {
3146 	struct fw_ohci *ohci = fw_ohci(base->card);
3147 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3148 	int index;
3149 
3150 	switch (ctx->base.type) {
3151 	case FW_ISO_CONTEXT_TRANSMIT:
3152 		index = ctx - ohci->it_context_list;
3153 		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3154 		break;
3155 
3156 	case FW_ISO_CONTEXT_RECEIVE:
3157 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3158 		index = ctx - ohci->ir_context_list;
3159 		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3160 		break;
3161 	}
3162 	flush_writes(ohci);
3163 	context_stop(&ctx->context);
3164 	tasklet_kill(&ctx->context.tasklet);
3165 
3166 	return 0;
3167 }
3168 
3169 static void ohci_free_iso_context(struct fw_iso_context *base)
3170 {
3171 	struct fw_ohci *ohci = fw_ohci(base->card);
3172 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3173 	unsigned long flags;
3174 	int index;
3175 
3176 	ohci_stop_iso(base);
3177 	context_release(&ctx->context);
3178 	free_page((unsigned long)ctx->header);
3179 
3180 	spin_lock_irqsave(&ohci->lock, flags);
3181 
3182 	switch (base->type) {
3183 	case FW_ISO_CONTEXT_TRANSMIT:
3184 		index = ctx - ohci->it_context_list;
3185 		ohci->it_context_mask |= 1 << index;
3186 		break;
3187 
3188 	case FW_ISO_CONTEXT_RECEIVE:
3189 		index = ctx - ohci->ir_context_list;
3190 		ohci->ir_context_mask |= 1 << index;
3191 		ohci->ir_context_channels |= 1ULL << base->channel;
3192 		break;
3193 
3194 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3195 		index = ctx - ohci->ir_context_list;
3196 		ohci->ir_context_mask |= 1 << index;
3197 		ohci->ir_context_channels |= ohci->mc_channels;
3198 		ohci->mc_channels = 0;
3199 		ohci->mc_allocated = false;
3200 		break;
3201 	}
3202 
3203 	spin_unlock_irqrestore(&ohci->lock, flags);
3204 }
3205 
3206 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3207 {
3208 	struct fw_ohci *ohci = fw_ohci(base->card);
3209 	unsigned long flags;
3210 	int ret;
3211 
3212 	switch (base->type) {
3213 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3214 
3215 		spin_lock_irqsave(&ohci->lock, flags);
3216 
3217 		/* Don't allow multichannel to grab other contexts' channels. */
3218 		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3219 			*channels = ohci->ir_context_channels;
3220 			ret = -EBUSY;
3221 		} else {
3222 			set_multichannel_mask(ohci, *channels);
3223 			ret = 0;
3224 		}
3225 
3226 		spin_unlock_irqrestore(&ohci->lock, flags);
3227 
3228 		break;
3229 	default:
3230 		ret = -EINVAL;
3231 	}
3232 
3233 	return ret;
3234 }
3235 
3236 #ifdef CONFIG_PM
3237 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3238 {
3239 	int i;
3240 	struct iso_context *ctx;
3241 
3242 	for (i = 0 ; i < ohci->n_ir ; i++) {
3243 		ctx = &ohci->ir_context_list[i];
3244 		if (ctx->context.running)
3245 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3246 	}
3247 
3248 	for (i = 0 ; i < ohci->n_it ; i++) {
3249 		ctx = &ohci->it_context_list[i];
3250 		if (ctx->context.running)
3251 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3252 	}
3253 }
3254 #endif
3255 
3256 static int queue_iso_transmit(struct iso_context *ctx,
3257 			      struct fw_iso_packet *packet,
3258 			      struct fw_iso_buffer *buffer,
3259 			      unsigned long payload)
3260 {
3261 	struct descriptor *d, *last, *pd;
3262 	struct fw_iso_packet *p;
3263 	__le32 *header;
3264 	dma_addr_t d_bus, page_bus;
3265 	u32 z, header_z, payload_z, irq;
3266 	u32 payload_index, payload_end_index, next_page_index;
3267 	int page, end_page, i, length, offset;
3268 
3269 	p = packet;
3270 	payload_index = payload;
3271 
3272 	if (p->skip)
3273 		z = 1;
3274 	else
3275 		z = 2;
3276 	if (p->header_length > 0)
3277 		z++;
3278 
3279 	/* Determine the first page the payload isn't contained in. */
3280 	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3281 	if (p->payload_length > 0)
3282 		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3283 	else
3284 		payload_z = 0;
3285 
3286 	z += payload_z;
3287 
3288 	/* Get header size in number of descriptors. */
3289 	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3290 
3291 	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3292 	if (d == NULL)
3293 		return -ENOMEM;
3294 
3295 	if (!p->skip) {
3296 		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3297 		d[0].req_count = cpu_to_le16(8);
3298 		/*
3299 		 * Link the skip address to this descriptor itself.  This causes
3300 		 * a context to skip a cycle whenever lost cycles or FIFO
3301 		 * overruns occur, without dropping the data.  The application
3302 		 * should then decide whether this is an error condition or not.
3303 		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3304 		 */
3305 		d[0].branch_address = cpu_to_le32(d_bus | z);
3306 
3307 		header = (__le32 *) &d[1];
3308 		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3309 					IT_HEADER_TAG(p->tag) |
3310 					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3311 					IT_HEADER_CHANNEL(ctx->base.channel) |
3312 					IT_HEADER_SPEED(ctx->base.speed));
3313 		header[1] =
3314 			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3315 							  p->payload_length));
3316 	}
3317 
3318 	if (p->header_length > 0) {
3319 		d[2].req_count    = cpu_to_le16(p->header_length);
3320 		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3321 		memcpy(&d[z], p->header, p->header_length);
3322 	}
3323 
3324 	pd = d + z - payload_z;
3325 	payload_end_index = payload_index + p->payload_length;
3326 	for (i = 0; i < payload_z; i++) {
3327 		page               = payload_index >> PAGE_SHIFT;
3328 		offset             = payload_index & ~PAGE_MASK;
3329 		next_page_index    = (page + 1) << PAGE_SHIFT;
3330 		length             =
3331 			min(next_page_index, payload_end_index) - payload_index;
3332 		pd[i].req_count    = cpu_to_le16(length);
3333 
3334 		page_bus = page_private(buffer->pages[page]);
3335 		pd[i].data_address = cpu_to_le32(page_bus + offset);
3336 
3337 		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3338 						 page_bus, offset, length,
3339 						 DMA_TO_DEVICE);
3340 
3341 		payload_index += length;
3342 	}
3343 
3344 	if (p->interrupt)
3345 		irq = DESCRIPTOR_IRQ_ALWAYS;
3346 	else
3347 		irq = DESCRIPTOR_NO_IRQ;
3348 
3349 	last = z == 2 ? d : d + z - 1;
3350 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3351 				     DESCRIPTOR_STATUS |
3352 				     DESCRIPTOR_BRANCH_ALWAYS |
3353 				     irq);
3354 
3355 	context_append(&ctx->context, d, z, header_z);
3356 
3357 	return 0;
3358 }
3359 
3360 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3361 				       struct fw_iso_packet *packet,
3362 				       struct fw_iso_buffer *buffer,
3363 				       unsigned long payload)
3364 {
3365 	struct device *device = ctx->context.ohci->card.device;
3366 	struct descriptor *d, *pd;
3367 	dma_addr_t d_bus, page_bus;
3368 	u32 z, header_z, rest;
3369 	int i, j, length;
3370 	int page, offset, packet_count, header_size, payload_per_buffer;
3371 
3372 	/*
3373 	 * The OHCI controller puts the isochronous header and trailer in the
3374 	 * buffer, so we need at least 8 bytes.
3375 	 */
3376 	packet_count = packet->header_length / ctx->base.header_size;
3377 	header_size  = max(ctx->base.header_size, (size_t)8);
3378 
3379 	/* Get header size in number of descriptors. */
3380 	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3381 	page     = payload >> PAGE_SHIFT;
3382 	offset   = payload & ~PAGE_MASK;
3383 	payload_per_buffer = packet->payload_length / packet_count;
3384 
3385 	for (i = 0; i < packet_count; i++) {
3386 		/* d points to the header descriptor */
3387 		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3388 		d = context_get_descriptors(&ctx->context,
3389 				z + header_z, &d_bus);
3390 		if (d == NULL)
3391 			return -ENOMEM;
3392 
3393 		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3394 					      DESCRIPTOR_INPUT_MORE);
3395 		if (packet->skip && i == 0)
3396 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3397 		d->req_count    = cpu_to_le16(header_size);
3398 		d->res_count    = d->req_count;
3399 		d->transfer_status = 0;
3400 		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3401 
3402 		rest = payload_per_buffer;
3403 		pd = d;
3404 		for (j = 1; j < z; j++) {
3405 			pd++;
3406 			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3407 						  DESCRIPTOR_INPUT_MORE);
3408 
3409 			if (offset + rest < PAGE_SIZE)
3410 				length = rest;
3411 			else
3412 				length = PAGE_SIZE - offset;
3413 			pd->req_count = cpu_to_le16(length);
3414 			pd->res_count = pd->req_count;
3415 			pd->transfer_status = 0;
3416 
3417 			page_bus = page_private(buffer->pages[page]);
3418 			pd->data_address = cpu_to_le32(page_bus + offset);
3419 
3420 			dma_sync_single_range_for_device(device, page_bus,
3421 							 offset, length,
3422 							 DMA_FROM_DEVICE);
3423 
3424 			offset = (offset + length) & ~PAGE_MASK;
3425 			rest -= length;
3426 			if (offset == 0)
3427 				page++;
3428 		}
3429 		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3430 					  DESCRIPTOR_INPUT_LAST |
3431 					  DESCRIPTOR_BRANCH_ALWAYS);
3432 		if (packet->interrupt && i == packet_count - 1)
3433 			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3434 
3435 		context_append(&ctx->context, d, z, header_z);
3436 	}
3437 
3438 	return 0;
3439 }
3440 
3441 static int queue_iso_buffer_fill(struct iso_context *ctx,
3442 				 struct fw_iso_packet *packet,
3443 				 struct fw_iso_buffer *buffer,
3444 				 unsigned long payload)
3445 {
3446 	struct descriptor *d;
3447 	dma_addr_t d_bus, page_bus;
3448 	int page, offset, rest, z, i, length;
3449 
3450 	page   = payload >> PAGE_SHIFT;
3451 	offset = payload & ~PAGE_MASK;
3452 	rest   = packet->payload_length;
3453 
3454 	/* We need one descriptor for each page in the buffer. */
3455 	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3456 
3457 	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3458 		return -EFAULT;
3459 
3460 	for (i = 0; i < z; i++) {
3461 		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3462 		if (d == NULL)
3463 			return -ENOMEM;
3464 
3465 		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3466 					 DESCRIPTOR_BRANCH_ALWAYS);
3467 		if (packet->skip && i == 0)
3468 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3469 		if (packet->interrupt && i == z - 1)
3470 			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3471 
3472 		if (offset + rest < PAGE_SIZE)
3473 			length = rest;
3474 		else
3475 			length = PAGE_SIZE - offset;
3476 		d->req_count = cpu_to_le16(length);
3477 		d->res_count = d->req_count;
3478 		d->transfer_status = 0;
3479 
3480 		page_bus = page_private(buffer->pages[page]);
3481 		d->data_address = cpu_to_le32(page_bus + offset);
3482 
3483 		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3484 						 page_bus, offset, length,
3485 						 DMA_FROM_DEVICE);
3486 
3487 		rest -= length;
3488 		offset = 0;
3489 		page++;
3490 
3491 		context_append(&ctx->context, d, 1, 0);
3492 	}
3493 
3494 	return 0;
3495 }
3496 
3497 static int ohci_queue_iso(struct fw_iso_context *base,
3498 			  struct fw_iso_packet *packet,
3499 			  struct fw_iso_buffer *buffer,
3500 			  unsigned long payload)
3501 {
3502 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3503 	unsigned long flags;
3504 	int ret = -ENOSYS;
3505 
3506 	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3507 	switch (base->type) {
3508 	case FW_ISO_CONTEXT_TRANSMIT:
3509 		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3510 		break;
3511 	case FW_ISO_CONTEXT_RECEIVE:
3512 		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3513 		break;
3514 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3515 		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3516 		break;
3517 	}
3518 	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3519 
3520 	return ret;
3521 }
3522 
3523 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3524 {
3525 	struct context *ctx =
3526 			&container_of(base, struct iso_context, base)->context;
3527 
3528 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3529 }
3530 
3531 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3532 {
3533 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3534 	int ret = 0;
3535 
3536 	tasklet_disable_in_atomic(&ctx->context.tasklet);
3537 
3538 	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3539 		context_tasklet((unsigned long)&ctx->context);
3540 
3541 		switch (base->type) {
3542 		case FW_ISO_CONTEXT_TRANSMIT:
3543 		case FW_ISO_CONTEXT_RECEIVE:
3544 			if (ctx->header_length != 0)
3545 				flush_iso_completions(ctx);
3546 			break;
3547 		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3548 			if (ctx->mc_completed != 0)
3549 				flush_ir_buffer_fill(ctx);
3550 			break;
3551 		default:
3552 			ret = -ENOSYS;
3553 		}
3554 
3555 		clear_bit_unlock(0, &ctx->flushing_completions);
3556 		smp_mb__after_atomic();
3557 	}
3558 
3559 	tasklet_enable(&ctx->context.tasklet);
3560 
3561 	return ret;
3562 }
3563 
3564 static const struct fw_card_driver ohci_driver = {
3565 	.enable			= ohci_enable,
3566 	.read_phy_reg		= ohci_read_phy_reg,
3567 	.update_phy_reg		= ohci_update_phy_reg,
3568 	.set_config_rom		= ohci_set_config_rom,
3569 	.send_request		= ohci_send_request,
3570 	.send_response		= ohci_send_response,
3571 	.cancel_packet		= ohci_cancel_packet,
3572 	.enable_phys_dma	= ohci_enable_phys_dma,
3573 	.read_csr		= ohci_read_csr,
3574 	.write_csr		= ohci_write_csr,
3575 
3576 	.allocate_iso_context	= ohci_allocate_iso_context,
3577 	.free_iso_context	= ohci_free_iso_context,
3578 	.set_iso_channels	= ohci_set_iso_channels,
3579 	.queue_iso		= ohci_queue_iso,
3580 	.flush_queue_iso	= ohci_flush_queue_iso,
3581 	.flush_iso_completions	= ohci_flush_iso_completions,
3582 	.start_iso		= ohci_start_iso,
3583 	.stop_iso		= ohci_stop_iso,
3584 };
3585 
3586 #ifdef CONFIG_PPC_PMAC
3587 static void pmac_ohci_on(struct pci_dev *dev)
3588 {
3589 	if (machine_is(powermac)) {
3590 		struct device_node *ofn = pci_device_to_OF_node(dev);
3591 
3592 		if (ofn) {
3593 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3594 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3595 		}
3596 	}
3597 }
3598 
3599 static void pmac_ohci_off(struct pci_dev *dev)
3600 {
3601 	if (machine_is(powermac)) {
3602 		struct device_node *ofn = pci_device_to_OF_node(dev);
3603 
3604 		if (ofn) {
3605 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3606 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3607 		}
3608 	}
3609 }
3610 #else
3611 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3612 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3613 #endif /* CONFIG_PPC_PMAC */
3614 
3615 static void release_ohci(struct device *dev, void *data)
3616 {
3617 	struct pci_dev *pdev = to_pci_dev(dev);
3618 	struct fw_ohci *ohci = pci_get_drvdata(pdev);
3619 
3620 	pmac_ohci_off(pdev);
3621 
3622 	ar_context_release(&ohci->ar_response_ctx);
3623 	ar_context_release(&ohci->ar_request_ctx);
3624 
3625 	dev_notice(dev, "removed fw-ohci device\n");
3626 }
3627 
3628 static int pci_probe(struct pci_dev *dev,
3629 			       const struct pci_device_id *ent)
3630 {
3631 	struct fw_ohci *ohci;
3632 	u32 bus_options, max_receive, link_speed, version;
3633 	u64 guid;
3634 	int i, err;
3635 	size_t size;
3636 
3637 	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3638 		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3639 		return -ENOSYS;
3640 	}
3641 
3642 	ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3643 	if (ohci == NULL)
3644 		return -ENOMEM;
3645 	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3646 	pci_set_drvdata(dev, ohci);
3647 	pmac_ohci_on(dev);
3648 	devres_add(&dev->dev, ohci);
3649 
3650 	err = pcim_enable_device(dev);
3651 	if (err) {
3652 		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3653 		return err;
3654 	}
3655 
3656 	pci_set_master(dev);
3657 	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3658 
3659 	spin_lock_init(&ohci->lock);
3660 	mutex_init(&ohci->phy_reg_mutex);
3661 
3662 	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3663 
3664 	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3665 	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3666 		ohci_err(ohci, "invalid MMIO resource\n");
3667 		return -ENXIO;
3668 	}
3669 
3670 	err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name);
3671 	if (err) {
3672 		ohci_err(ohci, "request and map MMIO resource unavailable\n");
3673 		return -ENXIO;
3674 	}
3675 	ohci->registers = pcim_iomap_table(dev)[0];
3676 
3677 	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3678 		if ((ohci_quirks[i].vendor == dev->vendor) &&
3679 		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3680 		     ohci_quirks[i].device == dev->device) &&
3681 		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3682 		     ohci_quirks[i].revision >= dev->revision)) {
3683 			ohci->quirks = ohci_quirks[i].flags;
3684 			break;
3685 		}
3686 	if (param_quirks)
3687 		ohci->quirks = param_quirks;
3688 
3689 	if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3690 		ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3691 
3692 	/*
3693 	 * Because dma_alloc_coherent() allocates at least one page,
3694 	 * we save space by using a common buffer for the AR request/
3695 	 * response descriptors and the self IDs buffer.
3696 	 */
3697 	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3698 	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3699 	ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3700 						GFP_KERNEL);
3701 	if (!ohci->misc_buffer)
3702 		return -ENOMEM;
3703 
3704 	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3705 			      OHCI1394_AsReqRcvContextControlSet);
3706 	if (err < 0)
3707 		return err;
3708 
3709 	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3710 			      OHCI1394_AsRspRcvContextControlSet);
3711 	if (err < 0)
3712 		return err;
3713 
3714 	err = context_init(&ohci->at_request_ctx, ohci,
3715 			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3716 	if (err < 0)
3717 		return err;
3718 
3719 	err = context_init(&ohci->at_response_ctx, ohci,
3720 			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3721 	if (err < 0)
3722 		return err;
3723 
3724 	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3725 	ohci->ir_context_channels = ~0ULL;
3726 	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3727 	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3728 	ohci->ir_context_mask = ohci->ir_context_support;
3729 	ohci->n_ir = hweight32(ohci->ir_context_mask);
3730 	size = sizeof(struct iso_context) * ohci->n_ir;
3731 	ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3732 	if (!ohci->ir_context_list)
3733 		return -ENOMEM;
3734 
3735 	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3736 	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3737 	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3738 	if (!ohci->it_context_support) {
3739 		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3740 		ohci->it_context_support = 0xf;
3741 	}
3742 	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3743 	ohci->it_context_mask = ohci->it_context_support;
3744 	ohci->n_it = hweight32(ohci->it_context_mask);
3745 	size = sizeof(struct iso_context) * ohci->n_it;
3746 	ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3747 	if (!ohci->it_context_list)
3748 		return -ENOMEM;
3749 
3750 	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3751 	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3752 
3753 	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3754 	max_receive = (bus_options >> 12) & 0xf;
3755 	link_speed = bus_options & 0x7;
3756 	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3757 		reg_read(ohci, OHCI1394_GUIDLo);
3758 
3759 	if (!(ohci->quirks & QUIRK_NO_MSI))
3760 		pci_enable_msi(dev);
3761 	err = devm_request_irq(&dev->dev, dev->irq, irq_handler,
3762 			       pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name, ohci);
3763 	if (err < 0) {
3764 		ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3765 		goto fail_msi;
3766 	}
3767 
3768 	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3769 	if (err)
3770 		goto fail_msi;
3771 
3772 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3773 	ohci_notice(ohci,
3774 		    "added OHCI v%x.%x device as card %d, "
3775 		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3776 		    version >> 16, version & 0xff, ohci->card.index,
3777 		    ohci->n_ir, ohci->n_it, ohci->quirks,
3778 		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3779 			", physUB" : "");
3780 
3781 	return 0;
3782 
3783  fail_msi:
3784 	devm_free_irq(&dev->dev, dev->irq, ohci);
3785 	pci_disable_msi(dev);
3786 
3787 	return err;
3788 }
3789 
3790 static void pci_remove(struct pci_dev *dev)
3791 {
3792 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3793 
3794 	/*
3795 	 * If the removal is happening from the suspend state, LPS won't be
3796 	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3797 	 */
3798 	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3799 		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3800 		flush_writes(ohci);
3801 	}
3802 	cancel_work_sync(&ohci->bus_reset_work);
3803 	fw_core_remove_card(&ohci->card);
3804 
3805 	/*
3806 	 * FIXME: Fail all pending packets here, now that the upper
3807 	 * layers can't queue any more.
3808 	 */
3809 
3810 	software_reset(ohci);
3811 
3812 	devm_free_irq(&dev->dev, dev->irq, ohci);
3813 	pci_disable_msi(dev);
3814 
3815 	dev_notice(&dev->dev, "removing fw-ohci device\n");
3816 }
3817 
3818 #ifdef CONFIG_PM
3819 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3820 {
3821 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3822 	int err;
3823 
3824 	software_reset(ohci);
3825 	err = pci_save_state(dev);
3826 	if (err) {
3827 		ohci_err(ohci, "pci_save_state failed\n");
3828 		return err;
3829 	}
3830 	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3831 	if (err)
3832 		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3833 	pmac_ohci_off(dev);
3834 
3835 	return 0;
3836 }
3837 
3838 static int pci_resume(struct pci_dev *dev)
3839 {
3840 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3841 	int err;
3842 
3843 	pmac_ohci_on(dev);
3844 	pci_set_power_state(dev, PCI_D0);
3845 	pci_restore_state(dev);
3846 	err = pci_enable_device(dev);
3847 	if (err) {
3848 		ohci_err(ohci, "pci_enable_device failed\n");
3849 		return err;
3850 	}
3851 
3852 	/* Some systems don't setup GUID register on resume from ram  */
3853 	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3854 					!reg_read(ohci, OHCI1394_GUIDHi)) {
3855 		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3856 		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3857 	}
3858 
3859 	err = ohci_enable(&ohci->card, NULL, 0);
3860 	if (err)
3861 		return err;
3862 
3863 	ohci_resume_iso_dma(ohci);
3864 
3865 	return 0;
3866 }
3867 #endif
3868 
3869 static const struct pci_device_id pci_table[] = {
3870 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3871 	{ }
3872 };
3873 
3874 MODULE_DEVICE_TABLE(pci, pci_table);
3875 
3876 static struct pci_driver fw_ohci_pci_driver = {
3877 	.name		= ohci_driver_name,
3878 	.id_table	= pci_table,
3879 	.probe		= pci_probe,
3880 	.remove		= pci_remove,
3881 #ifdef CONFIG_PM
3882 	.resume		= pci_resume,
3883 	.suspend	= pci_suspend,
3884 #endif
3885 };
3886 
3887 static int __init fw_ohci_init(void)
3888 {
3889 	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3890 	if (!selfid_workqueue)
3891 		return -ENOMEM;
3892 
3893 	return pci_register_driver(&fw_ohci_pci_driver);
3894 }
3895 
3896 static void __exit fw_ohci_cleanup(void)
3897 {
3898 	pci_unregister_driver(&fw_ohci_pci_driver);
3899 	destroy_workqueue(selfid_workqueue);
3900 }
3901 
3902 module_init(fw_ohci_init);
3903 module_exit(fw_ohci_cleanup);
3904 
3905 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3906 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3907 MODULE_LICENSE("GPL");
3908 
3909 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3910 MODULE_ALIAS("ohci1394");
3911