xref: /openbmc/linux/drivers/firewire/ohci.c (revision e0d77d0f38aa60ca61b3ce6e60d64fad2aa0853d)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Driver for OHCI 1394 controllers
4   *
5   * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6   */
7  
8  #include <linux/bitops.h>
9  #include <linux/bug.h>
10  #include <linux/compiler.h>
11  #include <linux/delay.h>
12  #include <linux/device.h>
13  #include <linux/dma-mapping.h>
14  #include <linux/firewire.h>
15  #include <linux/firewire-constants.h>
16  #include <linux/init.h>
17  #include <linux/interrupt.h>
18  #include <linux/io.h>
19  #include <linux/kernel.h>
20  #include <linux/list.h>
21  #include <linux/mm.h>
22  #include <linux/module.h>
23  #include <linux/moduleparam.h>
24  #include <linux/mutex.h>
25  #include <linux/pci.h>
26  #include <linux/pci_ids.h>
27  #include <linux/slab.h>
28  #include <linux/spinlock.h>
29  #include <linux/string.h>
30  #include <linux/time.h>
31  #include <linux/vmalloc.h>
32  #include <linux/workqueue.h>
33  
34  #include <asm/byteorder.h>
35  #include <asm/page.h>
36  
37  #ifdef CONFIG_PPC_PMAC
38  #include <asm/pmac_feature.h>
39  #endif
40  
41  #include "core.h"
42  #include "ohci.h"
43  
44  #define ohci_info(ohci, f, args...)	dev_info(ohci->card.device, f, ##args)
45  #define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
46  #define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
47  
48  #define DESCRIPTOR_OUTPUT_MORE		0
49  #define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
50  #define DESCRIPTOR_INPUT_MORE		(2 << 12)
51  #define DESCRIPTOR_INPUT_LAST		(3 << 12)
52  #define DESCRIPTOR_STATUS		(1 << 11)
53  #define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
54  #define DESCRIPTOR_PING			(1 << 7)
55  #define DESCRIPTOR_YY			(1 << 6)
56  #define DESCRIPTOR_NO_IRQ		(0 << 4)
57  #define DESCRIPTOR_IRQ_ERROR		(1 << 4)
58  #define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
59  #define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
60  #define DESCRIPTOR_WAIT			(3 << 0)
61  
62  #define DESCRIPTOR_CMD			(0xf << 12)
63  
64  struct descriptor {
65  	__le16 req_count;
66  	__le16 control;
67  	__le32 data_address;
68  	__le32 branch_address;
69  	__le16 res_count;
70  	__le16 transfer_status;
71  } __attribute__((aligned(16)));
72  
73  #define CONTROL_SET(regs)	(regs)
74  #define CONTROL_CLEAR(regs)	((regs) + 4)
75  #define COMMAND_PTR(regs)	((regs) + 12)
76  #define CONTEXT_MATCH(regs)	((regs) + 16)
77  
78  #define AR_BUFFER_SIZE	(32*1024)
79  #define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
80  /* we need at least two pages for proper list management */
81  #define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
82  
83  #define MAX_ASYNC_PAYLOAD	4096
84  #define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
85  #define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
86  
87  struct ar_context {
88  	struct fw_ohci *ohci;
89  	struct page *pages[AR_BUFFERS];
90  	void *buffer;
91  	struct descriptor *descriptors;
92  	dma_addr_t descriptors_bus;
93  	void *pointer;
94  	unsigned int last_buffer_index;
95  	u32 regs;
96  	struct tasklet_struct tasklet;
97  };
98  
99  struct context;
100  
101  typedef int (*descriptor_callback_t)(struct context *ctx,
102  				     struct descriptor *d,
103  				     struct descriptor *last);
104  
105  /*
106   * A buffer that contains a block of DMA-able coherent memory used for
107   * storing a portion of a DMA descriptor program.
108   */
109  struct descriptor_buffer {
110  	struct list_head list;
111  	dma_addr_t buffer_bus;
112  	size_t buffer_size;
113  	size_t used;
114  	struct descriptor buffer[];
115  };
116  
117  struct context {
118  	struct fw_ohci *ohci;
119  	u32 regs;
120  	int total_allocation;
121  	u32 current_bus;
122  	bool running;
123  	bool flushing;
124  
125  	/*
126  	 * List of page-sized buffers for storing DMA descriptors.
127  	 * Head of list contains buffers in use and tail of list contains
128  	 * free buffers.
129  	 */
130  	struct list_head buffer_list;
131  
132  	/*
133  	 * Pointer to a buffer inside buffer_list that contains the tail
134  	 * end of the current DMA program.
135  	 */
136  	struct descriptor_buffer *buffer_tail;
137  
138  	/*
139  	 * The descriptor containing the branch address of the first
140  	 * descriptor that has not yet been filled by the device.
141  	 */
142  	struct descriptor *last;
143  
144  	/*
145  	 * The last descriptor block in the DMA program. It contains the branch
146  	 * address that must be updated upon appending a new descriptor.
147  	 */
148  	struct descriptor *prev;
149  	int prev_z;
150  
151  	descriptor_callback_t callback;
152  
153  	struct tasklet_struct tasklet;
154  };
155  
156  #define IT_HEADER_SY(v)          ((v) <<  0)
157  #define IT_HEADER_TCODE(v)       ((v) <<  4)
158  #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
159  #define IT_HEADER_TAG(v)         ((v) << 14)
160  #define IT_HEADER_SPEED(v)       ((v) << 16)
161  #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
162  
163  struct iso_context {
164  	struct fw_iso_context base;
165  	struct context context;
166  	void *header;
167  	size_t header_length;
168  	unsigned long flushing_completions;
169  	u32 mc_buffer_bus;
170  	u16 mc_completed;
171  	u16 last_timestamp;
172  	u8 sync;
173  	u8 tags;
174  };
175  
176  #define CONFIG_ROM_SIZE 1024
177  
178  struct fw_ohci {
179  	struct fw_card card;
180  
181  	__iomem char *registers;
182  	int node_id;
183  	int generation;
184  	int request_generation;	/* for timestamping incoming requests */
185  	unsigned quirks;
186  	unsigned int pri_req_max;
187  	u32 bus_time;
188  	bool bus_time_running;
189  	bool is_root;
190  	bool csr_state_setclear_abdicate;
191  	int n_ir;
192  	int n_it;
193  	/*
194  	 * Spinlock for accessing fw_ohci data.  Never call out of
195  	 * this driver with this lock held.
196  	 */
197  	spinlock_t lock;
198  
199  	struct mutex phy_reg_mutex;
200  
201  	void *misc_buffer;
202  	dma_addr_t misc_buffer_bus;
203  
204  	struct ar_context ar_request_ctx;
205  	struct ar_context ar_response_ctx;
206  	struct context at_request_ctx;
207  	struct context at_response_ctx;
208  
209  	u32 it_context_support;
210  	u32 it_context_mask;     /* unoccupied IT contexts */
211  	struct iso_context *it_context_list;
212  	u64 ir_context_channels; /* unoccupied channels */
213  	u32 ir_context_support;
214  	u32 ir_context_mask;     /* unoccupied IR contexts */
215  	struct iso_context *ir_context_list;
216  	u64 mc_channels; /* channels in use by the multichannel IR context */
217  	bool mc_allocated;
218  
219  	__be32    *config_rom;
220  	dma_addr_t config_rom_bus;
221  	__be32    *next_config_rom;
222  	dma_addr_t next_config_rom_bus;
223  	__be32     next_header;
224  
225  	__le32    *self_id;
226  	dma_addr_t self_id_bus;
227  	struct work_struct bus_reset_work;
228  
229  	u32 self_id_buffer[512];
230  };
231  
232  static struct workqueue_struct *selfid_workqueue;
233  
fw_ohci(struct fw_card * card)234  static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235  {
236  	return container_of(card, struct fw_ohci, card);
237  }
238  
239  #define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
240  #define IR_CONTEXT_BUFFER_FILL		0x80000000
241  #define IR_CONTEXT_ISOCH_HEADER		0x40000000
242  #define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
243  #define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
244  #define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
245  
246  #define CONTEXT_RUN	0x8000
247  #define CONTEXT_WAKE	0x1000
248  #define CONTEXT_DEAD	0x0800
249  #define CONTEXT_ACTIVE	0x0400
250  
251  #define OHCI1394_MAX_AT_REQ_RETRIES	0xf
252  #define OHCI1394_MAX_AT_RESP_RETRIES	0x2
253  #define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
254  
255  #define OHCI1394_REGISTER_SIZE		0x800
256  #define OHCI1394_PCI_HCI_Control	0x40
257  #define SELF_ID_BUF_SIZE		0x800
258  #define OHCI_TCODE_PHY_PACKET		0x0e
259  #define OHCI_VERSION_1_1		0x010010
260  
261  static char ohci_driver_name[] = KBUILD_MODNAME;
262  
263  #define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
264  #define PCI_DEVICE_ID_AGERE_FW643	0x5901
265  #define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
266  #define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
267  #define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
268  #define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
269  #define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
270  #define PCI_DEVICE_ID_VIA_VT630X	0x3044
271  #define PCI_REV_ID_VIA_VT6306		0x46
272  #define PCI_DEVICE_ID_VIA_VT6315	0x3403
273  
274  #define QUIRK_CYCLE_TIMER		0x1
275  #define QUIRK_RESET_PACKET		0x2
276  #define QUIRK_BE_HEADERS		0x4
277  #define QUIRK_NO_1394A			0x8
278  #define QUIRK_NO_MSI			0x10
279  #define QUIRK_TI_SLLZ059		0x20
280  #define QUIRK_IR_WAKE			0x40
281  
282  // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
283  // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
284  // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
285  // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
286  // while it is probable due to detection of any type of PCIe error.
287  #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ	0x80000000
288  
289  #if IS_ENABLED(CONFIG_X86)
290  
has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci * ohci)291  static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
292  {
293  	return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
294  }
295  
296  #define PCI_DEVICE_ID_ASMEDIA_ASM108X	0x1080
297  
detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev * pdev)298  static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
299  {
300  	const struct pci_dev *pcie_to_pci_bridge;
301  
302  	// Detect any type of AMD Ryzen machine.
303  	if (!static_cpu_has(X86_FEATURE_ZEN))
304  		return false;
305  
306  	// Detect VIA VT6306/6307/6308.
307  	if (pdev->vendor != PCI_VENDOR_ID_VIA)
308  		return false;
309  	if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
310  		return false;
311  
312  	// Detect Asmedia ASM1083/1085.
313  	pcie_to_pci_bridge = pdev->bus->self;
314  	if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
315  		return false;
316  	if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
317  		return false;
318  
319  	return true;
320  }
321  
322  #else
323  #define has_reboot_by_cycle_timer_read_quirk(ohci) false
324  #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)	false
325  #endif
326  
327  /* In case of multiple matches in ohci_quirks[], only the first one is used. */
328  static const struct {
329  	unsigned short vendor, device, revision, flags;
330  } ohci_quirks[] = {
331  	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
332  		QUIRK_CYCLE_TIMER},
333  
334  	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
335  		QUIRK_BE_HEADERS},
336  
337  	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
338  		QUIRK_NO_MSI},
339  
340  	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
341  		QUIRK_RESET_PACKET},
342  
343  	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
344  		QUIRK_NO_MSI},
345  
346  	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
347  		QUIRK_CYCLE_TIMER},
348  
349  	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
350  		QUIRK_NO_MSI},
351  
352  	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
353  		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
354  
355  	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
356  		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
357  
358  	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
359  		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
360  
361  	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
362  		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
363  
364  	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
365  		QUIRK_RESET_PACKET},
366  
367  	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
368  		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
369  
370  	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
371  		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
372  
373  	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
374  		QUIRK_NO_MSI},
375  
376  	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
377  		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
378  };
379  
380  /* This overrides anything that was found in ohci_quirks[]. */
381  static int param_quirks;
382  module_param_named(quirks, param_quirks, int, 0644);
383  MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
384  	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
385  	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
386  	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
387  	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
388  	", disable MSI = "		__stringify(QUIRK_NO_MSI)
389  	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
390  	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
391  	")");
392  
393  #define OHCI_PARAM_DEBUG_AT_AR		1
394  #define OHCI_PARAM_DEBUG_SELFIDS	2
395  #define OHCI_PARAM_DEBUG_IRQS		4
396  #define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
397  
398  static int param_debug;
399  module_param_named(debug, param_debug, int, 0644);
400  MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
401  	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
402  	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
403  	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
404  	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
405  	", or a combination, or all = -1)");
406  
407  static bool param_remote_dma;
408  module_param_named(remote_dma, param_remote_dma, bool, 0444);
409  MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
410  
log_irqs(struct fw_ohci * ohci,u32 evt)411  static void log_irqs(struct fw_ohci *ohci, u32 evt)
412  {
413  	if (likely(!(param_debug &
414  			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
415  		return;
416  
417  	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
418  	    !(evt & OHCI1394_busReset))
419  		return;
420  
421  	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
422  	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
423  	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
424  	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
425  	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
426  	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
427  	    evt & OHCI1394_isochRx		? " IR"			: "",
428  	    evt & OHCI1394_isochTx		? " IT"			: "",
429  	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
430  	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
431  	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
432  	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
433  	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
434  	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
435  	    evt & OHCI1394_busReset		? " busReset"		: "",
436  	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
437  		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
438  		    OHCI1394_respTxComplete | OHCI1394_isochRx |
439  		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
440  		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
441  		    OHCI1394_cycleInconsistent |
442  		    OHCI1394_regAccessFail | OHCI1394_busReset)
443  						? " ?"			: "");
444  }
445  
446  static const char *speed[] = {
447  	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
448  };
449  static const char *power[] = {
450  	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
451  	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
452  };
453  static const char port[] = { '.', '-', 'p', 'c', };
454  
_p(u32 * s,int shift)455  static char _p(u32 *s, int shift)
456  {
457  	return port[*s >> shift & 3];
458  }
459  
log_selfids(struct fw_ohci * ohci,int generation,int self_id_count)460  static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
461  {
462  	u32 *s;
463  
464  	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
465  		return;
466  
467  	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
468  		    self_id_count, generation, ohci->node_id);
469  
470  	for (s = ohci->self_id_buffer; self_id_count--; ++s)
471  		if ((*s & 1 << 23) == 0)
472  			ohci_notice(ohci,
473  			    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
474  			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
475  			    speed[*s >> 14 & 3], *s >> 16 & 63,
476  			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
477  			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
478  		else
479  			ohci_notice(ohci,
480  			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
481  			    *s, *s >> 24 & 63,
482  			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
483  			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
484  }
485  
486  static const char *evts[] = {
487  	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
488  	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
489  	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
490  	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
491  	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
492  	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
493  	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
494  	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
495  	[0x10] = "-reserved-",		[0x11] = "ack_complete",
496  	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
497  	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
498  	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
499  	[0x18] = "-reserved-",		[0x19] = "-reserved-",
500  	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
501  	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
502  	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
503  	[0x20] = "pending/cancelled",
504  };
505  static const char *tcodes[] = {
506  	[0x0] = "QW req",		[0x1] = "BW req",
507  	[0x2] = "W resp",		[0x3] = "-reserved-",
508  	[0x4] = "QR req",		[0x5] = "BR req",
509  	[0x6] = "QR resp",		[0x7] = "BR resp",
510  	[0x8] = "cycle start",		[0x9] = "Lk req",
511  	[0xa] = "async stream packet",	[0xb] = "Lk resp",
512  	[0xc] = "-reserved-",		[0xd] = "-reserved-",
513  	[0xe] = "link internal",	[0xf] = "-reserved-",
514  };
515  
log_ar_at_event(struct fw_ohci * ohci,char dir,int speed,u32 * header,int evt)516  static void log_ar_at_event(struct fw_ohci *ohci,
517  			    char dir, int speed, u32 *header, int evt)
518  {
519  	int tcode = header[0] >> 4 & 0xf;
520  	char specific[12];
521  
522  	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
523  		return;
524  
525  	if (unlikely(evt >= ARRAY_SIZE(evts)))
526  			evt = 0x1f;
527  
528  	if (evt == OHCI1394_evt_bus_reset) {
529  		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
530  			    dir, (header[2] >> 16) & 0xff);
531  		return;
532  	}
533  
534  	switch (tcode) {
535  	case 0x0: case 0x6: case 0x8:
536  		snprintf(specific, sizeof(specific), " = %08x",
537  			 be32_to_cpu((__force __be32)header[3]));
538  		break;
539  	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
540  		snprintf(specific, sizeof(specific), " %x,%x",
541  			 header[3] >> 16, header[3] & 0xffff);
542  		break;
543  	default:
544  		specific[0] = '\0';
545  	}
546  
547  	switch (tcode) {
548  	case 0xa:
549  		ohci_notice(ohci, "A%c %s, %s\n",
550  			    dir, evts[evt], tcodes[tcode]);
551  		break;
552  	case 0xe:
553  		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
554  			    dir, evts[evt], header[1], header[2]);
555  		break;
556  	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
557  		ohci_notice(ohci,
558  			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
559  			    dir, speed, header[0] >> 10 & 0x3f,
560  			    header[1] >> 16, header[0] >> 16, evts[evt],
561  			    tcodes[tcode], header[1] & 0xffff, header[2], specific);
562  		break;
563  	default:
564  		ohci_notice(ohci,
565  			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
566  			    dir, speed, header[0] >> 10 & 0x3f,
567  			    header[1] >> 16, header[0] >> 16, evts[evt],
568  			    tcodes[tcode], specific);
569  	}
570  }
571  
reg_write(const struct fw_ohci * ohci,int offset,u32 data)572  static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
573  {
574  	writel(data, ohci->registers + offset);
575  }
576  
reg_read(const struct fw_ohci * ohci,int offset)577  static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
578  {
579  	return readl(ohci->registers + offset);
580  }
581  
flush_writes(const struct fw_ohci * ohci)582  static inline void flush_writes(const struct fw_ohci *ohci)
583  {
584  	/* Do a dummy read to flush writes. */
585  	reg_read(ohci, OHCI1394_Version);
586  }
587  
588  /*
589   * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
590   * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
591   * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
592   * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
593   */
read_phy_reg(struct fw_ohci * ohci,int addr)594  static int read_phy_reg(struct fw_ohci *ohci, int addr)
595  {
596  	u32 val;
597  	int i;
598  
599  	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
600  	for (i = 0; i < 3 + 100; i++) {
601  		val = reg_read(ohci, OHCI1394_PhyControl);
602  		if (!~val)
603  			return -ENODEV; /* Card was ejected. */
604  
605  		if (val & OHCI1394_PhyControl_ReadDone)
606  			return OHCI1394_PhyControl_ReadData(val);
607  
608  		/*
609  		 * Try a few times without waiting.  Sleeping is necessary
610  		 * only when the link/PHY interface is busy.
611  		 */
612  		if (i >= 3)
613  			msleep(1);
614  	}
615  	ohci_err(ohci, "failed to read phy reg %d\n", addr);
616  	dump_stack();
617  
618  	return -EBUSY;
619  }
620  
write_phy_reg(const struct fw_ohci * ohci,int addr,u32 val)621  static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
622  {
623  	int i;
624  
625  	reg_write(ohci, OHCI1394_PhyControl,
626  		  OHCI1394_PhyControl_Write(addr, val));
627  	for (i = 0; i < 3 + 100; i++) {
628  		val = reg_read(ohci, OHCI1394_PhyControl);
629  		if (!~val)
630  			return -ENODEV; /* Card was ejected. */
631  
632  		if (!(val & OHCI1394_PhyControl_WritePending))
633  			return 0;
634  
635  		if (i >= 3)
636  			msleep(1);
637  	}
638  	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
639  	dump_stack();
640  
641  	return -EBUSY;
642  }
643  
update_phy_reg(struct fw_ohci * ohci,int addr,int clear_bits,int set_bits)644  static int update_phy_reg(struct fw_ohci *ohci, int addr,
645  			  int clear_bits, int set_bits)
646  {
647  	int ret = read_phy_reg(ohci, addr);
648  	if (ret < 0)
649  		return ret;
650  
651  	/*
652  	 * The interrupt status bits are cleared by writing a one bit.
653  	 * Avoid clearing them unless explicitly requested in set_bits.
654  	 */
655  	if (addr == 5)
656  		clear_bits |= PHY_INT_STATUS_BITS;
657  
658  	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
659  }
660  
read_paged_phy_reg(struct fw_ohci * ohci,int page,int addr)661  static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
662  {
663  	int ret;
664  
665  	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
666  	if (ret < 0)
667  		return ret;
668  
669  	return read_phy_reg(ohci, addr);
670  }
671  
ohci_read_phy_reg(struct fw_card * card,int addr)672  static int ohci_read_phy_reg(struct fw_card *card, int addr)
673  {
674  	struct fw_ohci *ohci = fw_ohci(card);
675  	int ret;
676  
677  	mutex_lock(&ohci->phy_reg_mutex);
678  	ret = read_phy_reg(ohci, addr);
679  	mutex_unlock(&ohci->phy_reg_mutex);
680  
681  	return ret;
682  }
683  
ohci_update_phy_reg(struct fw_card * card,int addr,int clear_bits,int set_bits)684  static int ohci_update_phy_reg(struct fw_card *card, int addr,
685  			       int clear_bits, int set_bits)
686  {
687  	struct fw_ohci *ohci = fw_ohci(card);
688  	int ret;
689  
690  	mutex_lock(&ohci->phy_reg_mutex);
691  	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
692  	mutex_unlock(&ohci->phy_reg_mutex);
693  
694  	return ret;
695  }
696  
ar_buffer_bus(struct ar_context * ctx,unsigned int i)697  static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
698  {
699  	return page_private(ctx->pages[i]);
700  }
701  
ar_context_link_page(struct ar_context * ctx,unsigned int index)702  static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
703  {
704  	struct descriptor *d;
705  
706  	d = &ctx->descriptors[index];
707  	d->branch_address  &= cpu_to_le32(~0xf);
708  	d->res_count       =  cpu_to_le16(PAGE_SIZE);
709  	d->transfer_status =  0;
710  
711  	wmb(); /* finish init of new descriptors before branch_address update */
712  	d = &ctx->descriptors[ctx->last_buffer_index];
713  	d->branch_address  |= cpu_to_le32(1);
714  
715  	ctx->last_buffer_index = index;
716  
717  	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
718  }
719  
ar_context_release(struct ar_context * ctx)720  static void ar_context_release(struct ar_context *ctx)
721  {
722  	struct device *dev = ctx->ohci->card.device;
723  	unsigned int i;
724  
725  	if (!ctx->buffer)
726  		return;
727  
728  	vunmap(ctx->buffer);
729  
730  	for (i = 0; i < AR_BUFFERS; i++) {
731  		if (ctx->pages[i])
732  			dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
733  				       ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
734  	}
735  }
736  
ar_context_abort(struct ar_context * ctx,const char * error_msg)737  static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
738  {
739  	struct fw_ohci *ohci = ctx->ohci;
740  
741  	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
742  		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
743  		flush_writes(ohci);
744  
745  		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
746  	}
747  	/* FIXME: restart? */
748  }
749  
ar_next_buffer_index(unsigned int index)750  static inline unsigned int ar_next_buffer_index(unsigned int index)
751  {
752  	return (index + 1) % AR_BUFFERS;
753  }
754  
ar_first_buffer_index(struct ar_context * ctx)755  static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
756  {
757  	return ar_next_buffer_index(ctx->last_buffer_index);
758  }
759  
760  /*
761   * We search for the buffer that contains the last AR packet DMA data written
762   * by the controller.
763   */
ar_search_last_active_buffer(struct ar_context * ctx,unsigned int * buffer_offset)764  static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
765  						 unsigned int *buffer_offset)
766  {
767  	unsigned int i, next_i, last = ctx->last_buffer_index;
768  	__le16 res_count, next_res_count;
769  
770  	i = ar_first_buffer_index(ctx);
771  	res_count = READ_ONCE(ctx->descriptors[i].res_count);
772  
773  	/* A buffer that is not yet completely filled must be the last one. */
774  	while (i != last && res_count == 0) {
775  
776  		/* Peek at the next descriptor. */
777  		next_i = ar_next_buffer_index(i);
778  		rmb(); /* read descriptors in order */
779  		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
780  		/*
781  		 * If the next descriptor is still empty, we must stop at this
782  		 * descriptor.
783  		 */
784  		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
785  			/*
786  			 * The exception is when the DMA data for one packet is
787  			 * split over three buffers; in this case, the middle
788  			 * buffer's descriptor might be never updated by the
789  			 * controller and look still empty, and we have to peek
790  			 * at the third one.
791  			 */
792  			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
793  				next_i = ar_next_buffer_index(next_i);
794  				rmb();
795  				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
796  				if (next_res_count != cpu_to_le16(PAGE_SIZE))
797  					goto next_buffer_is_active;
798  			}
799  
800  			break;
801  		}
802  
803  next_buffer_is_active:
804  		i = next_i;
805  		res_count = next_res_count;
806  	}
807  
808  	rmb(); /* read res_count before the DMA data */
809  
810  	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
811  	if (*buffer_offset > PAGE_SIZE) {
812  		*buffer_offset = 0;
813  		ar_context_abort(ctx, "corrupted descriptor");
814  	}
815  
816  	return i;
817  }
818  
ar_sync_buffers_for_cpu(struct ar_context * ctx,unsigned int end_buffer_index,unsigned int end_buffer_offset)819  static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
820  				    unsigned int end_buffer_index,
821  				    unsigned int end_buffer_offset)
822  {
823  	unsigned int i;
824  
825  	i = ar_first_buffer_index(ctx);
826  	while (i != end_buffer_index) {
827  		dma_sync_single_for_cpu(ctx->ohci->card.device,
828  					ar_buffer_bus(ctx, i),
829  					PAGE_SIZE, DMA_FROM_DEVICE);
830  		i = ar_next_buffer_index(i);
831  	}
832  	if (end_buffer_offset > 0)
833  		dma_sync_single_for_cpu(ctx->ohci->card.device,
834  					ar_buffer_bus(ctx, i),
835  					end_buffer_offset, DMA_FROM_DEVICE);
836  }
837  
838  #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
839  #define cond_le32_to_cpu(v) \
840  	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
841  #else
842  #define cond_le32_to_cpu(v) le32_to_cpu(v)
843  #endif
844  
handle_ar_packet(struct ar_context * ctx,__le32 * buffer)845  static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
846  {
847  	struct fw_ohci *ohci = ctx->ohci;
848  	struct fw_packet p;
849  	u32 status, length, tcode;
850  	int evt;
851  
852  	p.header[0] = cond_le32_to_cpu(buffer[0]);
853  	p.header[1] = cond_le32_to_cpu(buffer[1]);
854  	p.header[2] = cond_le32_to_cpu(buffer[2]);
855  
856  	tcode = (p.header[0] >> 4) & 0x0f;
857  	switch (tcode) {
858  	case TCODE_WRITE_QUADLET_REQUEST:
859  	case TCODE_READ_QUADLET_RESPONSE:
860  		p.header[3] = (__force __u32) buffer[3];
861  		p.header_length = 16;
862  		p.payload_length = 0;
863  		break;
864  
865  	case TCODE_READ_BLOCK_REQUEST :
866  		p.header[3] = cond_le32_to_cpu(buffer[3]);
867  		p.header_length = 16;
868  		p.payload_length = 0;
869  		break;
870  
871  	case TCODE_WRITE_BLOCK_REQUEST:
872  	case TCODE_READ_BLOCK_RESPONSE:
873  	case TCODE_LOCK_REQUEST:
874  	case TCODE_LOCK_RESPONSE:
875  		p.header[3] = cond_le32_to_cpu(buffer[3]);
876  		p.header_length = 16;
877  		p.payload_length = p.header[3] >> 16;
878  		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
879  			ar_context_abort(ctx, "invalid packet length");
880  			return NULL;
881  		}
882  		break;
883  
884  	case TCODE_WRITE_RESPONSE:
885  	case TCODE_READ_QUADLET_REQUEST:
886  	case OHCI_TCODE_PHY_PACKET:
887  		p.header_length = 12;
888  		p.payload_length = 0;
889  		break;
890  
891  	default:
892  		ar_context_abort(ctx, "invalid tcode");
893  		return NULL;
894  	}
895  
896  	p.payload = (void *) buffer + p.header_length;
897  
898  	/* FIXME: What to do about evt_* errors? */
899  	length = (p.header_length + p.payload_length + 3) / 4;
900  	status = cond_le32_to_cpu(buffer[length]);
901  	evt    = (status >> 16) & 0x1f;
902  
903  	p.ack        = evt - 16;
904  	p.speed      = (status >> 21) & 0x7;
905  	p.timestamp  = status & 0xffff;
906  	p.generation = ohci->request_generation;
907  
908  	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
909  
910  	/*
911  	 * Several controllers, notably from NEC and VIA, forget to
912  	 * write ack_complete status at PHY packet reception.
913  	 */
914  	if (evt == OHCI1394_evt_no_status &&
915  	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
916  		p.ack = ACK_COMPLETE;
917  
918  	/*
919  	 * The OHCI bus reset handler synthesizes a PHY packet with
920  	 * the new generation number when a bus reset happens (see
921  	 * section 8.4.2.3).  This helps us determine when a request
922  	 * was received and make sure we send the response in the same
923  	 * generation.  We only need this for requests; for responses
924  	 * we use the unique tlabel for finding the matching
925  	 * request.
926  	 *
927  	 * Alas some chips sometimes emit bus reset packets with a
928  	 * wrong generation.  We set the correct generation for these
929  	 * at a slightly incorrect time (in bus_reset_work).
930  	 */
931  	if (evt == OHCI1394_evt_bus_reset) {
932  		if (!(ohci->quirks & QUIRK_RESET_PACKET))
933  			ohci->request_generation = (p.header[2] >> 16) & 0xff;
934  	} else if (ctx == &ohci->ar_request_ctx) {
935  		fw_core_handle_request(&ohci->card, &p);
936  	} else {
937  		fw_core_handle_response(&ohci->card, &p);
938  	}
939  
940  	return buffer + length + 1;
941  }
942  
handle_ar_packets(struct ar_context * ctx,void * p,void * end)943  static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
944  {
945  	void *next;
946  
947  	while (p < end) {
948  		next = handle_ar_packet(ctx, p);
949  		if (!next)
950  			return p;
951  		p = next;
952  	}
953  
954  	return p;
955  }
956  
ar_recycle_buffers(struct ar_context * ctx,unsigned int end_buffer)957  static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
958  {
959  	unsigned int i;
960  
961  	i = ar_first_buffer_index(ctx);
962  	while (i != end_buffer) {
963  		dma_sync_single_for_device(ctx->ohci->card.device,
964  					   ar_buffer_bus(ctx, i),
965  					   PAGE_SIZE, DMA_FROM_DEVICE);
966  		ar_context_link_page(ctx, i);
967  		i = ar_next_buffer_index(i);
968  	}
969  }
970  
ar_context_tasklet(unsigned long data)971  static void ar_context_tasklet(unsigned long data)
972  {
973  	struct ar_context *ctx = (struct ar_context *)data;
974  	unsigned int end_buffer_index, end_buffer_offset;
975  	void *p, *end;
976  
977  	p = ctx->pointer;
978  	if (!p)
979  		return;
980  
981  	end_buffer_index = ar_search_last_active_buffer(ctx,
982  							&end_buffer_offset);
983  	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
984  	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
985  
986  	if (end_buffer_index < ar_first_buffer_index(ctx)) {
987  		/*
988  		 * The filled part of the overall buffer wraps around; handle
989  		 * all packets up to the buffer end here.  If the last packet
990  		 * wraps around, its tail will be visible after the buffer end
991  		 * because the buffer start pages are mapped there again.
992  		 */
993  		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
994  		p = handle_ar_packets(ctx, p, buffer_end);
995  		if (p < buffer_end)
996  			goto error;
997  		/* adjust p to point back into the actual buffer */
998  		p -= AR_BUFFERS * PAGE_SIZE;
999  	}
1000  
1001  	p = handle_ar_packets(ctx, p, end);
1002  	if (p != end) {
1003  		if (p > end)
1004  			ar_context_abort(ctx, "inconsistent descriptor");
1005  		goto error;
1006  	}
1007  
1008  	ctx->pointer = p;
1009  	ar_recycle_buffers(ctx, end_buffer_index);
1010  
1011  	return;
1012  
1013  error:
1014  	ctx->pointer = NULL;
1015  }
1016  
ar_context_init(struct ar_context * ctx,struct fw_ohci * ohci,unsigned int descriptors_offset,u32 regs)1017  static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1018  			   unsigned int descriptors_offset, u32 regs)
1019  {
1020  	struct device *dev = ohci->card.device;
1021  	unsigned int i;
1022  	dma_addr_t dma_addr;
1023  	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1024  	struct descriptor *d;
1025  
1026  	ctx->regs        = regs;
1027  	ctx->ohci        = ohci;
1028  	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1029  
1030  	for (i = 0; i < AR_BUFFERS; i++) {
1031  		ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1032  						DMA_FROM_DEVICE, GFP_KERNEL);
1033  		if (!ctx->pages[i])
1034  			goto out_of_memory;
1035  		set_page_private(ctx->pages[i], dma_addr);
1036  		dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1037  					   DMA_FROM_DEVICE);
1038  	}
1039  
1040  	for (i = 0; i < AR_BUFFERS; i++)
1041  		pages[i]              = ctx->pages[i];
1042  	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1043  		pages[AR_BUFFERS + i] = ctx->pages[i];
1044  	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1045  	if (!ctx->buffer)
1046  		goto out_of_memory;
1047  
1048  	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1049  	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1050  
1051  	for (i = 0; i < AR_BUFFERS; i++) {
1052  		d = &ctx->descriptors[i];
1053  		d->req_count      = cpu_to_le16(PAGE_SIZE);
1054  		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1055  						DESCRIPTOR_STATUS |
1056  						DESCRIPTOR_BRANCH_ALWAYS);
1057  		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1058  		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1059  			ar_next_buffer_index(i) * sizeof(struct descriptor));
1060  	}
1061  
1062  	return 0;
1063  
1064  out_of_memory:
1065  	ar_context_release(ctx);
1066  
1067  	return -ENOMEM;
1068  }
1069  
ar_context_run(struct ar_context * ctx)1070  static void ar_context_run(struct ar_context *ctx)
1071  {
1072  	unsigned int i;
1073  
1074  	for (i = 0; i < AR_BUFFERS; i++)
1075  		ar_context_link_page(ctx, i);
1076  
1077  	ctx->pointer = ctx->buffer;
1078  
1079  	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1080  	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1081  }
1082  
find_branch_descriptor(struct descriptor * d,int z)1083  static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1084  {
1085  	__le16 branch;
1086  
1087  	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1088  
1089  	/* figure out which descriptor the branch address goes in */
1090  	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1091  		return d;
1092  	else
1093  		return d + z - 1;
1094  }
1095  
context_tasklet(unsigned long data)1096  static void context_tasklet(unsigned long data)
1097  {
1098  	struct context *ctx = (struct context *) data;
1099  	struct descriptor *d, *last;
1100  	u32 address;
1101  	int z;
1102  	struct descriptor_buffer *desc;
1103  
1104  	desc = list_entry(ctx->buffer_list.next,
1105  			struct descriptor_buffer, list);
1106  	last = ctx->last;
1107  	while (last->branch_address != 0) {
1108  		struct descriptor_buffer *old_desc = desc;
1109  		address = le32_to_cpu(last->branch_address);
1110  		z = address & 0xf;
1111  		address &= ~0xf;
1112  		ctx->current_bus = address;
1113  
1114  		/* If the branch address points to a buffer outside of the
1115  		 * current buffer, advance to the next buffer. */
1116  		if (address < desc->buffer_bus ||
1117  				address >= desc->buffer_bus + desc->used)
1118  			desc = list_entry(desc->list.next,
1119  					struct descriptor_buffer, list);
1120  		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1121  		last = find_branch_descriptor(d, z);
1122  
1123  		if (!ctx->callback(ctx, d, last))
1124  			break;
1125  
1126  		if (old_desc != desc) {
1127  			/* If we've advanced to the next buffer, move the
1128  			 * previous buffer to the free list. */
1129  			unsigned long flags;
1130  			old_desc->used = 0;
1131  			spin_lock_irqsave(&ctx->ohci->lock, flags);
1132  			list_move_tail(&old_desc->list, &ctx->buffer_list);
1133  			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1134  		}
1135  		ctx->last = last;
1136  	}
1137  }
1138  
1139  /*
1140   * Allocate a new buffer and add it to the list of free buffers for this
1141   * context.  Must be called with ohci->lock held.
1142   */
context_add_buffer(struct context * ctx)1143  static int context_add_buffer(struct context *ctx)
1144  {
1145  	struct descriptor_buffer *desc;
1146  	dma_addr_t bus_addr;
1147  	int offset;
1148  
1149  	/*
1150  	 * 16MB of descriptors should be far more than enough for any DMA
1151  	 * program.  This will catch run-away userspace or DoS attacks.
1152  	 */
1153  	if (ctx->total_allocation >= 16*1024*1024)
1154  		return -ENOMEM;
1155  
1156  	desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
1157  	if (!desc)
1158  		return -ENOMEM;
1159  
1160  	offset = (void *)&desc->buffer - (void *)desc;
1161  	/*
1162  	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1163  	 * for descriptors, even 0x10-byte ones. This can cause page faults when
1164  	 * an IOMMU is in use and the oversized read crosses a page boundary.
1165  	 * Work around this by always leaving at least 0x10 bytes of padding.
1166  	 */
1167  	desc->buffer_size = PAGE_SIZE - offset - 0x10;
1168  	desc->buffer_bus = bus_addr + offset;
1169  	desc->used = 0;
1170  
1171  	list_add_tail(&desc->list, &ctx->buffer_list);
1172  	ctx->total_allocation += PAGE_SIZE;
1173  
1174  	return 0;
1175  }
1176  
context_init(struct context * ctx,struct fw_ohci * ohci,u32 regs,descriptor_callback_t callback)1177  static int context_init(struct context *ctx, struct fw_ohci *ohci,
1178  			u32 regs, descriptor_callback_t callback)
1179  {
1180  	ctx->ohci = ohci;
1181  	ctx->regs = regs;
1182  	ctx->total_allocation = 0;
1183  
1184  	INIT_LIST_HEAD(&ctx->buffer_list);
1185  	if (context_add_buffer(ctx) < 0)
1186  		return -ENOMEM;
1187  
1188  	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1189  			struct descriptor_buffer, list);
1190  
1191  	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1192  	ctx->callback = callback;
1193  
1194  	/*
1195  	 * We put a dummy descriptor in the buffer that has a NULL
1196  	 * branch address and looks like it's been sent.  That way we
1197  	 * have a descriptor to append DMA programs to.
1198  	 */
1199  	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1200  	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1201  	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1202  	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1203  	ctx->last = ctx->buffer_tail->buffer;
1204  	ctx->prev = ctx->buffer_tail->buffer;
1205  	ctx->prev_z = 1;
1206  
1207  	return 0;
1208  }
1209  
context_release(struct context * ctx)1210  static void context_release(struct context *ctx)
1211  {
1212  	struct fw_card *card = &ctx->ohci->card;
1213  	struct descriptor_buffer *desc, *tmp;
1214  
1215  	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1216  		dmam_free_coherent(card->device, PAGE_SIZE, desc,
1217  				   desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1218  	}
1219  }
1220  
1221  /* Must be called with ohci->lock held */
context_get_descriptors(struct context * ctx,int z,dma_addr_t * d_bus)1222  static struct descriptor *context_get_descriptors(struct context *ctx,
1223  						  int z, dma_addr_t *d_bus)
1224  {
1225  	struct descriptor *d = NULL;
1226  	struct descriptor_buffer *desc = ctx->buffer_tail;
1227  
1228  	if (z * sizeof(*d) > desc->buffer_size)
1229  		return NULL;
1230  
1231  	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1232  		/* No room for the descriptor in this buffer, so advance to the
1233  		 * next one. */
1234  
1235  		if (desc->list.next == &ctx->buffer_list) {
1236  			/* If there is no free buffer next in the list,
1237  			 * allocate one. */
1238  			if (context_add_buffer(ctx) < 0)
1239  				return NULL;
1240  		}
1241  		desc = list_entry(desc->list.next,
1242  				struct descriptor_buffer, list);
1243  		ctx->buffer_tail = desc;
1244  	}
1245  
1246  	d = desc->buffer + desc->used / sizeof(*d);
1247  	memset(d, 0, z * sizeof(*d));
1248  	*d_bus = desc->buffer_bus + desc->used;
1249  
1250  	return d;
1251  }
1252  
context_run(struct context * ctx,u32 extra)1253  static void context_run(struct context *ctx, u32 extra)
1254  {
1255  	struct fw_ohci *ohci = ctx->ohci;
1256  
1257  	reg_write(ohci, COMMAND_PTR(ctx->regs),
1258  		  le32_to_cpu(ctx->last->branch_address));
1259  	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1260  	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1261  	ctx->running = true;
1262  	flush_writes(ohci);
1263  }
1264  
context_append(struct context * ctx,struct descriptor * d,int z,int extra)1265  static void context_append(struct context *ctx,
1266  			   struct descriptor *d, int z, int extra)
1267  {
1268  	dma_addr_t d_bus;
1269  	struct descriptor_buffer *desc = ctx->buffer_tail;
1270  	struct descriptor *d_branch;
1271  
1272  	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1273  
1274  	desc->used += (z + extra) * sizeof(*d);
1275  
1276  	wmb(); /* finish init of new descriptors before branch_address update */
1277  
1278  	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1279  	d_branch->branch_address = cpu_to_le32(d_bus | z);
1280  
1281  	/*
1282  	 * VT6306 incorrectly checks only the single descriptor at the
1283  	 * CommandPtr when the wake bit is written, so if it's a
1284  	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1285  	 * the branch address in the first descriptor.
1286  	 *
1287  	 * Not doing this for transmit contexts since not sure how it interacts
1288  	 * with skip addresses.
1289  	 */
1290  	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1291  	    d_branch != ctx->prev &&
1292  	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1293  	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1294  		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1295  	}
1296  
1297  	ctx->prev = d;
1298  	ctx->prev_z = z;
1299  }
1300  
context_stop(struct context * ctx)1301  static void context_stop(struct context *ctx)
1302  {
1303  	struct fw_ohci *ohci = ctx->ohci;
1304  	u32 reg;
1305  	int i;
1306  
1307  	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1308  	ctx->running = false;
1309  
1310  	for (i = 0; i < 1000; i++) {
1311  		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1312  		if ((reg & CONTEXT_ACTIVE) == 0)
1313  			return;
1314  
1315  		if (i)
1316  			udelay(10);
1317  	}
1318  	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1319  }
1320  
1321  struct driver_data {
1322  	u8 inline_data[8];
1323  	struct fw_packet *packet;
1324  };
1325  
1326  /*
1327   * This function apppends a packet to the DMA queue for transmission.
1328   * Must always be called with the ochi->lock held to ensure proper
1329   * generation handling and locking around packet queue manipulation.
1330   */
at_context_queue_packet(struct context * ctx,struct fw_packet * packet)1331  static int at_context_queue_packet(struct context *ctx,
1332  				   struct fw_packet *packet)
1333  {
1334  	struct fw_ohci *ohci = ctx->ohci;
1335  	dma_addr_t d_bus, payload_bus;
1336  	struct driver_data *driver_data;
1337  	struct descriptor *d, *last;
1338  	__le32 *header;
1339  	int z, tcode;
1340  
1341  	d = context_get_descriptors(ctx, 4, &d_bus);
1342  	if (d == NULL) {
1343  		packet->ack = RCODE_SEND_ERROR;
1344  		return -1;
1345  	}
1346  
1347  	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1348  	d[0].res_count = cpu_to_le16(packet->timestamp);
1349  
1350  	/*
1351  	 * The DMA format for asynchronous link packets is different
1352  	 * from the IEEE1394 layout, so shift the fields around
1353  	 * accordingly.
1354  	 */
1355  
1356  	tcode = (packet->header[0] >> 4) & 0x0f;
1357  	header = (__le32 *) &d[1];
1358  	switch (tcode) {
1359  	case TCODE_WRITE_QUADLET_REQUEST:
1360  	case TCODE_WRITE_BLOCK_REQUEST:
1361  	case TCODE_WRITE_RESPONSE:
1362  	case TCODE_READ_QUADLET_REQUEST:
1363  	case TCODE_READ_BLOCK_REQUEST:
1364  	case TCODE_READ_QUADLET_RESPONSE:
1365  	case TCODE_READ_BLOCK_RESPONSE:
1366  	case TCODE_LOCK_REQUEST:
1367  	case TCODE_LOCK_RESPONSE:
1368  		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1369  					(packet->speed << 16));
1370  		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1371  					(packet->header[0] & 0xffff0000));
1372  		header[2] = cpu_to_le32(packet->header[2]);
1373  
1374  		if (TCODE_IS_BLOCK_PACKET(tcode))
1375  			header[3] = cpu_to_le32(packet->header[3]);
1376  		else
1377  			header[3] = (__force __le32) packet->header[3];
1378  
1379  		d[0].req_count = cpu_to_le16(packet->header_length);
1380  		break;
1381  
1382  	case TCODE_LINK_INTERNAL:
1383  		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1384  					(packet->speed << 16));
1385  		header[1] = cpu_to_le32(packet->header[1]);
1386  		header[2] = cpu_to_le32(packet->header[2]);
1387  		d[0].req_count = cpu_to_le16(12);
1388  
1389  		if (is_ping_packet(&packet->header[1]))
1390  			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1391  		break;
1392  
1393  	case TCODE_STREAM_DATA:
1394  		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1395  					(packet->speed << 16));
1396  		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1397  		d[0].req_count = cpu_to_le16(8);
1398  		break;
1399  
1400  	default:
1401  		/* BUG(); */
1402  		packet->ack = RCODE_SEND_ERROR;
1403  		return -1;
1404  	}
1405  
1406  	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1407  	driver_data = (struct driver_data *) &d[3];
1408  	driver_data->packet = packet;
1409  	packet->driver_data = driver_data;
1410  
1411  	if (packet->payload_length > 0) {
1412  		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1413  			payload_bus = dma_map_single(ohci->card.device,
1414  						     packet->payload,
1415  						     packet->payload_length,
1416  						     DMA_TO_DEVICE);
1417  			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1418  				packet->ack = RCODE_SEND_ERROR;
1419  				return -1;
1420  			}
1421  			packet->payload_bus	= payload_bus;
1422  			packet->payload_mapped	= true;
1423  		} else {
1424  			memcpy(driver_data->inline_data, packet->payload,
1425  			       packet->payload_length);
1426  			payload_bus = d_bus + 3 * sizeof(*d);
1427  		}
1428  
1429  		d[2].req_count    = cpu_to_le16(packet->payload_length);
1430  		d[2].data_address = cpu_to_le32(payload_bus);
1431  		last = &d[2];
1432  		z = 3;
1433  	} else {
1434  		last = &d[0];
1435  		z = 2;
1436  	}
1437  
1438  	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1439  				     DESCRIPTOR_IRQ_ALWAYS |
1440  				     DESCRIPTOR_BRANCH_ALWAYS);
1441  
1442  	/* FIXME: Document how the locking works. */
1443  	if (ohci->generation != packet->generation) {
1444  		if (packet->payload_mapped)
1445  			dma_unmap_single(ohci->card.device, payload_bus,
1446  					 packet->payload_length, DMA_TO_DEVICE);
1447  		packet->ack = RCODE_GENERATION;
1448  		return -1;
1449  	}
1450  
1451  	context_append(ctx, d, z, 4 - z);
1452  
1453  	if (ctx->running)
1454  		reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1455  	else
1456  		context_run(ctx, 0);
1457  
1458  	return 0;
1459  }
1460  
at_context_flush(struct context * ctx)1461  static void at_context_flush(struct context *ctx)
1462  {
1463  	tasklet_disable(&ctx->tasklet);
1464  
1465  	ctx->flushing = true;
1466  	context_tasklet((unsigned long)ctx);
1467  	ctx->flushing = false;
1468  
1469  	tasklet_enable(&ctx->tasklet);
1470  }
1471  
handle_at_packet(struct context * context,struct descriptor * d,struct descriptor * last)1472  static int handle_at_packet(struct context *context,
1473  			    struct descriptor *d,
1474  			    struct descriptor *last)
1475  {
1476  	struct driver_data *driver_data;
1477  	struct fw_packet *packet;
1478  	struct fw_ohci *ohci = context->ohci;
1479  	int evt;
1480  
1481  	if (last->transfer_status == 0 && !context->flushing)
1482  		/* This descriptor isn't done yet, stop iteration. */
1483  		return 0;
1484  
1485  	driver_data = (struct driver_data *) &d[3];
1486  	packet = driver_data->packet;
1487  	if (packet == NULL)
1488  		/* This packet was cancelled, just continue. */
1489  		return 1;
1490  
1491  	if (packet->payload_mapped)
1492  		dma_unmap_single(ohci->card.device, packet->payload_bus,
1493  				 packet->payload_length, DMA_TO_DEVICE);
1494  
1495  	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1496  	packet->timestamp = le16_to_cpu(last->res_count);
1497  
1498  	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1499  
1500  	switch (evt) {
1501  	case OHCI1394_evt_timeout:
1502  		/* Async response transmit timed out. */
1503  		packet->ack = RCODE_CANCELLED;
1504  		break;
1505  
1506  	case OHCI1394_evt_flushed:
1507  		/*
1508  		 * The packet was flushed should give same error as
1509  		 * when we try to use a stale generation count.
1510  		 */
1511  		packet->ack = RCODE_GENERATION;
1512  		break;
1513  
1514  	case OHCI1394_evt_missing_ack:
1515  		if (context->flushing)
1516  			packet->ack = RCODE_GENERATION;
1517  		else {
1518  			/*
1519  			 * Using a valid (current) generation count, but the
1520  			 * node is not on the bus or not sending acks.
1521  			 */
1522  			packet->ack = RCODE_NO_ACK;
1523  		}
1524  		break;
1525  
1526  	case ACK_COMPLETE + 0x10:
1527  	case ACK_PENDING + 0x10:
1528  	case ACK_BUSY_X + 0x10:
1529  	case ACK_BUSY_A + 0x10:
1530  	case ACK_BUSY_B + 0x10:
1531  	case ACK_DATA_ERROR + 0x10:
1532  	case ACK_TYPE_ERROR + 0x10:
1533  		packet->ack = evt - 0x10;
1534  		break;
1535  
1536  	case OHCI1394_evt_no_status:
1537  		if (context->flushing) {
1538  			packet->ack = RCODE_GENERATION;
1539  			break;
1540  		}
1541  		fallthrough;
1542  
1543  	default:
1544  		packet->ack = RCODE_SEND_ERROR;
1545  		break;
1546  	}
1547  
1548  	packet->callback(packet, &ohci->card, packet->ack);
1549  
1550  	return 1;
1551  }
1552  
1553  #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
1554  #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
1555  #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
1556  #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
1557  #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1558  
1559  static u32 get_cycle_time(struct fw_ohci *ohci);
1560  
handle_local_rom(struct fw_ohci * ohci,struct fw_packet * packet,u32 csr)1561  static void handle_local_rom(struct fw_ohci *ohci,
1562  			     struct fw_packet *packet, u32 csr)
1563  {
1564  	struct fw_packet response;
1565  	int tcode, length, i;
1566  
1567  	tcode = HEADER_GET_TCODE(packet->header[0]);
1568  	if (TCODE_IS_BLOCK_PACKET(tcode))
1569  		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1570  	else
1571  		length = 4;
1572  
1573  	i = csr - CSR_CONFIG_ROM;
1574  	if (i + length > CONFIG_ROM_SIZE) {
1575  		fw_fill_response(&response, packet->header,
1576  				 RCODE_ADDRESS_ERROR, NULL, 0);
1577  	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
1578  		fw_fill_response(&response, packet->header,
1579  				 RCODE_TYPE_ERROR, NULL, 0);
1580  	} else {
1581  		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1582  				 (void *) ohci->config_rom + i, length);
1583  	}
1584  
1585  	// Timestamping on behalf of the hardware.
1586  	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1587  	fw_core_handle_response(&ohci->card, &response);
1588  }
1589  
handle_local_lock(struct fw_ohci * ohci,struct fw_packet * packet,u32 csr)1590  static void handle_local_lock(struct fw_ohci *ohci,
1591  			      struct fw_packet *packet, u32 csr)
1592  {
1593  	struct fw_packet response;
1594  	int tcode, length, ext_tcode, sel, try;
1595  	__be32 *payload, lock_old;
1596  	u32 lock_arg, lock_data;
1597  
1598  	tcode = HEADER_GET_TCODE(packet->header[0]);
1599  	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1600  	payload = packet->payload;
1601  	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1602  
1603  	if (tcode == TCODE_LOCK_REQUEST &&
1604  	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1605  		lock_arg = be32_to_cpu(payload[0]);
1606  		lock_data = be32_to_cpu(payload[1]);
1607  	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1608  		lock_arg = 0;
1609  		lock_data = 0;
1610  	} else {
1611  		fw_fill_response(&response, packet->header,
1612  				 RCODE_TYPE_ERROR, NULL, 0);
1613  		goto out;
1614  	}
1615  
1616  	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1617  	reg_write(ohci, OHCI1394_CSRData, lock_data);
1618  	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1619  	reg_write(ohci, OHCI1394_CSRControl, sel);
1620  
1621  	for (try = 0; try < 20; try++)
1622  		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1623  			lock_old = cpu_to_be32(reg_read(ohci,
1624  							OHCI1394_CSRData));
1625  			fw_fill_response(&response, packet->header,
1626  					 RCODE_COMPLETE,
1627  					 &lock_old, sizeof(lock_old));
1628  			goto out;
1629  		}
1630  
1631  	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1632  	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1633  
1634   out:
1635  	// Timestamping on behalf of the hardware.
1636  	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1637  	fw_core_handle_response(&ohci->card, &response);
1638  }
1639  
handle_local_request(struct context * ctx,struct fw_packet * packet)1640  static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1641  {
1642  	u64 offset, csr;
1643  
1644  	if (ctx == &ctx->ohci->at_request_ctx) {
1645  		packet->ack = ACK_PENDING;
1646  		packet->callback(packet, &ctx->ohci->card, packet->ack);
1647  	}
1648  
1649  	offset =
1650  		((unsigned long long)
1651  		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1652  		packet->header[2];
1653  	csr = offset - CSR_REGISTER_BASE;
1654  
1655  	/* Handle config rom reads. */
1656  	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1657  		handle_local_rom(ctx->ohci, packet, csr);
1658  	else switch (csr) {
1659  	case CSR_BUS_MANAGER_ID:
1660  	case CSR_BANDWIDTH_AVAILABLE:
1661  	case CSR_CHANNELS_AVAILABLE_HI:
1662  	case CSR_CHANNELS_AVAILABLE_LO:
1663  		handle_local_lock(ctx->ohci, packet, csr);
1664  		break;
1665  	default:
1666  		if (ctx == &ctx->ohci->at_request_ctx)
1667  			fw_core_handle_request(&ctx->ohci->card, packet);
1668  		else
1669  			fw_core_handle_response(&ctx->ohci->card, packet);
1670  		break;
1671  	}
1672  
1673  	if (ctx == &ctx->ohci->at_response_ctx) {
1674  		packet->ack = ACK_COMPLETE;
1675  		packet->callback(packet, &ctx->ohci->card, packet->ack);
1676  	}
1677  }
1678  
at_context_transmit(struct context * ctx,struct fw_packet * packet)1679  static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1680  {
1681  	unsigned long flags;
1682  	int ret;
1683  
1684  	spin_lock_irqsave(&ctx->ohci->lock, flags);
1685  
1686  	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1687  	    ctx->ohci->generation == packet->generation) {
1688  		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1689  
1690  		// Timestamping on behalf of the hardware.
1691  		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1692  
1693  		handle_local_request(ctx, packet);
1694  		return;
1695  	}
1696  
1697  	ret = at_context_queue_packet(ctx, packet);
1698  	spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1699  
1700  	if (ret < 0) {
1701  		// Timestamping on behalf of the hardware.
1702  		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1703  
1704  		packet->callback(packet, &ctx->ohci->card, packet->ack);
1705  	}
1706  }
1707  
detect_dead_context(struct fw_ohci * ohci,const char * name,unsigned int regs)1708  static void detect_dead_context(struct fw_ohci *ohci,
1709  				const char *name, unsigned int regs)
1710  {
1711  	u32 ctl;
1712  
1713  	ctl = reg_read(ohci, CONTROL_SET(regs));
1714  	if (ctl & CONTEXT_DEAD)
1715  		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1716  			name, evts[ctl & 0x1f]);
1717  }
1718  
handle_dead_contexts(struct fw_ohci * ohci)1719  static void handle_dead_contexts(struct fw_ohci *ohci)
1720  {
1721  	unsigned int i;
1722  	char name[8];
1723  
1724  	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1725  	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1726  	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1727  	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1728  	for (i = 0; i < 32; ++i) {
1729  		if (!(ohci->it_context_support & (1 << i)))
1730  			continue;
1731  		sprintf(name, "IT%u", i);
1732  		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1733  	}
1734  	for (i = 0; i < 32; ++i) {
1735  		if (!(ohci->ir_context_support & (1 << i)))
1736  			continue;
1737  		sprintf(name, "IR%u", i);
1738  		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1739  	}
1740  	/* TODO: maybe try to flush and restart the dead contexts */
1741  }
1742  
cycle_timer_ticks(u32 cycle_timer)1743  static u32 cycle_timer_ticks(u32 cycle_timer)
1744  {
1745  	u32 ticks;
1746  
1747  	ticks = cycle_timer & 0xfff;
1748  	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1749  	ticks += (3072 * 8000) * (cycle_timer >> 25);
1750  
1751  	return ticks;
1752  }
1753  
1754  /*
1755   * Some controllers exhibit one or more of the following bugs when updating the
1756   * iso cycle timer register:
1757   *  - When the lowest six bits are wrapping around to zero, a read that happens
1758   *    at the same time will return garbage in the lowest ten bits.
1759   *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1760   *    not incremented for about 60 ns.
1761   *  - Occasionally, the entire register reads zero.
1762   *
1763   * To catch these, we read the register three times and ensure that the
1764   * difference between each two consecutive reads is approximately the same, i.e.
1765   * less than twice the other.  Furthermore, any negative difference indicates an
1766   * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1767   * execute, so we have enough precision to compute the ratio of the differences.)
1768   */
get_cycle_time(struct fw_ohci * ohci)1769  static u32 get_cycle_time(struct fw_ohci *ohci)
1770  {
1771  	u32 c0, c1, c2;
1772  	u32 t0, t1, t2;
1773  	s32 diff01, diff12;
1774  	int i;
1775  
1776  	if (has_reboot_by_cycle_timer_read_quirk(ohci))
1777  		return 0;
1778  
1779  	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1780  
1781  	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1782  		i = 0;
1783  		c1 = c2;
1784  		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1785  		do {
1786  			c0 = c1;
1787  			c1 = c2;
1788  			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1789  			t0 = cycle_timer_ticks(c0);
1790  			t1 = cycle_timer_ticks(c1);
1791  			t2 = cycle_timer_ticks(c2);
1792  			diff01 = t1 - t0;
1793  			diff12 = t2 - t1;
1794  		} while ((diff01 <= 0 || diff12 <= 0 ||
1795  			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1796  			 && i++ < 20);
1797  	}
1798  
1799  	return c2;
1800  }
1801  
1802  /*
1803   * This function has to be called at least every 64 seconds.  The bus_time
1804   * field stores not only the upper 25 bits of the BUS_TIME register but also
1805   * the most significant bit of the cycle timer in bit 6 so that we can detect
1806   * changes in this bit.
1807   */
update_bus_time(struct fw_ohci * ohci)1808  static u32 update_bus_time(struct fw_ohci *ohci)
1809  {
1810  	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1811  
1812  	if (unlikely(!ohci->bus_time_running)) {
1813  		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1814  		ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1815  		                 (cycle_time_seconds & 0x40);
1816  		ohci->bus_time_running = true;
1817  	}
1818  
1819  	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1820  		ohci->bus_time += 0x40;
1821  
1822  	return ohci->bus_time | cycle_time_seconds;
1823  }
1824  
get_status_for_port(struct fw_ohci * ohci,int port_index)1825  static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1826  {
1827  	int reg;
1828  
1829  	mutex_lock(&ohci->phy_reg_mutex);
1830  	reg = write_phy_reg(ohci, 7, port_index);
1831  	if (reg >= 0)
1832  		reg = read_phy_reg(ohci, 8);
1833  	mutex_unlock(&ohci->phy_reg_mutex);
1834  	if (reg < 0)
1835  		return reg;
1836  
1837  	switch (reg & 0x0f) {
1838  	case 0x06:
1839  		return 2;	/* is child node (connected to parent node) */
1840  	case 0x0e:
1841  		return 3;	/* is parent node (connected to child node) */
1842  	}
1843  	return 1;		/* not connected */
1844  }
1845  
get_self_id_pos(struct fw_ohci * ohci,u32 self_id,int self_id_count)1846  static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1847  	int self_id_count)
1848  {
1849  	int i;
1850  	u32 entry;
1851  
1852  	for (i = 0; i < self_id_count; i++) {
1853  		entry = ohci->self_id_buffer[i];
1854  		if ((self_id & 0xff000000) == (entry & 0xff000000))
1855  			return -1;
1856  		if ((self_id & 0xff000000) < (entry & 0xff000000))
1857  			return i;
1858  	}
1859  	return i;
1860  }
1861  
initiated_reset(struct fw_ohci * ohci)1862  static int initiated_reset(struct fw_ohci *ohci)
1863  {
1864  	int reg;
1865  	int ret = 0;
1866  
1867  	mutex_lock(&ohci->phy_reg_mutex);
1868  	reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1869  	if (reg >= 0) {
1870  		reg = read_phy_reg(ohci, 8);
1871  		reg |= 0x40;
1872  		reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1873  		if (reg >= 0) {
1874  			reg = read_phy_reg(ohci, 12); /* read register 12 */
1875  			if (reg >= 0) {
1876  				if ((reg & 0x08) == 0x08) {
1877  					/* bit 3 indicates "initiated reset" */
1878  					ret = 0x2;
1879  				}
1880  			}
1881  		}
1882  	}
1883  	mutex_unlock(&ohci->phy_reg_mutex);
1884  	return ret;
1885  }
1886  
1887  /*
1888   * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1889   * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1890   * Construct the selfID from phy register contents.
1891   */
find_and_insert_self_id(struct fw_ohci * ohci,int self_id_count)1892  static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1893  {
1894  	int reg, i, pos, status;
1895  	/* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1896  	u32 self_id = 0x8040c800;
1897  
1898  	reg = reg_read(ohci, OHCI1394_NodeID);
1899  	if (!(reg & OHCI1394_NodeID_idValid)) {
1900  		ohci_notice(ohci,
1901  			    "node ID not valid, new bus reset in progress\n");
1902  		return -EBUSY;
1903  	}
1904  	self_id |= ((reg & 0x3f) << 24); /* phy ID */
1905  
1906  	reg = ohci_read_phy_reg(&ohci->card, 4);
1907  	if (reg < 0)
1908  		return reg;
1909  	self_id |= ((reg & 0x07) << 8); /* power class */
1910  
1911  	reg = ohci_read_phy_reg(&ohci->card, 1);
1912  	if (reg < 0)
1913  		return reg;
1914  	self_id |= ((reg & 0x3f) << 16); /* gap count */
1915  
1916  	for (i = 0; i < 3; i++) {
1917  		status = get_status_for_port(ohci, i);
1918  		if (status < 0)
1919  			return status;
1920  		self_id |= ((status & 0x3) << (6 - (i * 2)));
1921  	}
1922  
1923  	self_id |= initiated_reset(ohci);
1924  
1925  	pos = get_self_id_pos(ohci, self_id, self_id_count);
1926  	if (pos >= 0) {
1927  		memmove(&(ohci->self_id_buffer[pos+1]),
1928  			&(ohci->self_id_buffer[pos]),
1929  			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1930  		ohci->self_id_buffer[pos] = self_id;
1931  		self_id_count++;
1932  	}
1933  	return self_id_count;
1934  }
1935  
bus_reset_work(struct work_struct * work)1936  static void bus_reset_work(struct work_struct *work)
1937  {
1938  	struct fw_ohci *ohci =
1939  		container_of(work, struct fw_ohci, bus_reset_work);
1940  	int self_id_count, generation, new_generation, i, j;
1941  	u32 reg;
1942  	void *free_rom = NULL;
1943  	dma_addr_t free_rom_bus = 0;
1944  	bool is_new_root;
1945  
1946  	reg = reg_read(ohci, OHCI1394_NodeID);
1947  	if (!(reg & OHCI1394_NodeID_idValid)) {
1948  		ohci_notice(ohci,
1949  			    "node ID not valid, new bus reset in progress\n");
1950  		return;
1951  	}
1952  	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1953  		ohci_notice(ohci, "malconfigured bus\n");
1954  		return;
1955  	}
1956  	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1957  			       OHCI1394_NodeID_nodeNumber);
1958  
1959  	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1960  	if (!(ohci->is_root && is_new_root))
1961  		reg_write(ohci, OHCI1394_LinkControlSet,
1962  			  OHCI1394_LinkControl_cycleMaster);
1963  	ohci->is_root = is_new_root;
1964  
1965  	reg = reg_read(ohci, OHCI1394_SelfIDCount);
1966  	if (reg & OHCI1394_SelfIDCount_selfIDError) {
1967  		ohci_notice(ohci, "self ID receive error\n");
1968  		return;
1969  	}
1970  	/*
1971  	 * The count in the SelfIDCount register is the number of
1972  	 * bytes in the self ID receive buffer.  Since we also receive
1973  	 * the inverted quadlets and a header quadlet, we shift one
1974  	 * bit extra to get the actual number of self IDs.
1975  	 */
1976  	self_id_count = (reg >> 3) & 0xff;
1977  
1978  	if (self_id_count > 252) {
1979  		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1980  		return;
1981  	}
1982  
1983  	generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1984  	rmb();
1985  
1986  	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1987  		u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1988  		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1989  
1990  		if (id != ~id2) {
1991  			/*
1992  			 * If the invalid data looks like a cycle start packet,
1993  			 * it's likely to be the result of the cycle master
1994  			 * having a wrong gap count.  In this case, the self IDs
1995  			 * so far are valid and should be processed so that the
1996  			 * bus manager can then correct the gap count.
1997  			 */
1998  			if (id == 0xffff008f) {
1999  				ohci_notice(ohci, "ignoring spurious self IDs\n");
2000  				self_id_count = j;
2001  				break;
2002  			}
2003  
2004  			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2005  				    j, self_id_count, id, id2);
2006  			return;
2007  		}
2008  		ohci->self_id_buffer[j] = id;
2009  	}
2010  
2011  	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2012  		self_id_count = find_and_insert_self_id(ohci, self_id_count);
2013  		if (self_id_count < 0) {
2014  			ohci_notice(ohci,
2015  				    "could not construct local self ID\n");
2016  			return;
2017  		}
2018  	}
2019  
2020  	if (self_id_count == 0) {
2021  		ohci_notice(ohci, "no self IDs\n");
2022  		return;
2023  	}
2024  	rmb();
2025  
2026  	/*
2027  	 * Check the consistency of the self IDs we just read.  The
2028  	 * problem we face is that a new bus reset can start while we
2029  	 * read out the self IDs from the DMA buffer. If this happens,
2030  	 * the DMA buffer will be overwritten with new self IDs and we
2031  	 * will read out inconsistent data.  The OHCI specification
2032  	 * (section 11.2) recommends a technique similar to
2033  	 * linux/seqlock.h, where we remember the generation of the
2034  	 * self IDs in the buffer before reading them out and compare
2035  	 * it to the current generation after reading them out.  If
2036  	 * the two generations match we know we have a consistent set
2037  	 * of self IDs.
2038  	 */
2039  
2040  	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
2041  	if (new_generation != generation) {
2042  		ohci_notice(ohci, "new bus reset, discarding self ids\n");
2043  		return;
2044  	}
2045  
2046  	/* FIXME: Document how the locking works. */
2047  	spin_lock_irq(&ohci->lock);
2048  
2049  	ohci->generation = -1; /* prevent AT packet queueing */
2050  	context_stop(&ohci->at_request_ctx);
2051  	context_stop(&ohci->at_response_ctx);
2052  
2053  	spin_unlock_irq(&ohci->lock);
2054  
2055  	/*
2056  	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2057  	 * packets in the AT queues and software needs to drain them.
2058  	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2059  	 */
2060  	at_context_flush(&ohci->at_request_ctx);
2061  	at_context_flush(&ohci->at_response_ctx);
2062  
2063  	spin_lock_irq(&ohci->lock);
2064  
2065  	ohci->generation = generation;
2066  	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2067  	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2068  		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2069  
2070  	if (ohci->quirks & QUIRK_RESET_PACKET)
2071  		ohci->request_generation = generation;
2072  
2073  	/*
2074  	 * This next bit is unrelated to the AT context stuff but we
2075  	 * have to do it under the spinlock also.  If a new config rom
2076  	 * was set up before this reset, the old one is now no longer
2077  	 * in use and we can free it. Update the config rom pointers
2078  	 * to point to the current config rom and clear the
2079  	 * next_config_rom pointer so a new update can take place.
2080  	 */
2081  
2082  	if (ohci->next_config_rom != NULL) {
2083  		if (ohci->next_config_rom != ohci->config_rom) {
2084  			free_rom      = ohci->config_rom;
2085  			free_rom_bus  = ohci->config_rom_bus;
2086  		}
2087  		ohci->config_rom      = ohci->next_config_rom;
2088  		ohci->config_rom_bus  = ohci->next_config_rom_bus;
2089  		ohci->next_config_rom = NULL;
2090  
2091  		/*
2092  		 * Restore config_rom image and manually update
2093  		 * config_rom registers.  Writing the header quadlet
2094  		 * will indicate that the config rom is ready, so we
2095  		 * do that last.
2096  		 */
2097  		reg_write(ohci, OHCI1394_BusOptions,
2098  			  be32_to_cpu(ohci->config_rom[2]));
2099  		ohci->config_rom[0] = ohci->next_header;
2100  		reg_write(ohci, OHCI1394_ConfigROMhdr,
2101  			  be32_to_cpu(ohci->next_header));
2102  	}
2103  
2104  	if (param_remote_dma) {
2105  		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2106  		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2107  	}
2108  
2109  	spin_unlock_irq(&ohci->lock);
2110  
2111  	if (free_rom)
2112  		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2113  
2114  	log_selfids(ohci, generation, self_id_count);
2115  
2116  	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2117  				 self_id_count, ohci->self_id_buffer,
2118  				 ohci->csr_state_setclear_abdicate);
2119  	ohci->csr_state_setclear_abdicate = false;
2120  }
2121  
irq_handler(int irq,void * data)2122  static irqreturn_t irq_handler(int irq, void *data)
2123  {
2124  	struct fw_ohci *ohci = data;
2125  	u32 event, iso_event;
2126  	int i;
2127  
2128  	event = reg_read(ohci, OHCI1394_IntEventClear);
2129  
2130  	if (!event || !~event)
2131  		return IRQ_NONE;
2132  
2133  	/*
2134  	 * busReset and postedWriteErr events must not be cleared yet
2135  	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2136  	 */
2137  	reg_write(ohci, OHCI1394_IntEventClear,
2138  		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2139  	log_irqs(ohci, event);
2140  	if (event & OHCI1394_busReset)
2141  		reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2142  
2143  	if (event & OHCI1394_selfIDComplete)
2144  		queue_work(selfid_workqueue, &ohci->bus_reset_work);
2145  
2146  	if (event & OHCI1394_RQPkt)
2147  		tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2148  
2149  	if (event & OHCI1394_RSPkt)
2150  		tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2151  
2152  	if (event & OHCI1394_reqTxComplete)
2153  		tasklet_schedule(&ohci->at_request_ctx.tasklet);
2154  
2155  	if (event & OHCI1394_respTxComplete)
2156  		tasklet_schedule(&ohci->at_response_ctx.tasklet);
2157  
2158  	if (event & OHCI1394_isochRx) {
2159  		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2160  		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2161  
2162  		while (iso_event) {
2163  			i = ffs(iso_event) - 1;
2164  			tasklet_schedule(
2165  				&ohci->ir_context_list[i].context.tasklet);
2166  			iso_event &= ~(1 << i);
2167  		}
2168  	}
2169  
2170  	if (event & OHCI1394_isochTx) {
2171  		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2172  		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2173  
2174  		while (iso_event) {
2175  			i = ffs(iso_event) - 1;
2176  			tasklet_schedule(
2177  				&ohci->it_context_list[i].context.tasklet);
2178  			iso_event &= ~(1 << i);
2179  		}
2180  	}
2181  
2182  	if (unlikely(event & OHCI1394_regAccessFail))
2183  		ohci_err(ohci, "register access failure\n");
2184  
2185  	if (unlikely(event & OHCI1394_postedWriteErr)) {
2186  		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2187  		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2188  		reg_write(ohci, OHCI1394_IntEventClear,
2189  			  OHCI1394_postedWriteErr);
2190  		if (printk_ratelimit())
2191  			ohci_err(ohci, "PCI posted write error\n");
2192  	}
2193  
2194  	if (unlikely(event & OHCI1394_cycleTooLong)) {
2195  		if (printk_ratelimit())
2196  			ohci_notice(ohci, "isochronous cycle too long\n");
2197  		reg_write(ohci, OHCI1394_LinkControlSet,
2198  			  OHCI1394_LinkControl_cycleMaster);
2199  	}
2200  
2201  	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2202  		/*
2203  		 * We need to clear this event bit in order to make
2204  		 * cycleMatch isochronous I/O work.  In theory we should
2205  		 * stop active cycleMatch iso contexts now and restart
2206  		 * them at least two cycles later.  (FIXME?)
2207  		 */
2208  		if (printk_ratelimit())
2209  			ohci_notice(ohci, "isochronous cycle inconsistent\n");
2210  	}
2211  
2212  	if (unlikely(event & OHCI1394_unrecoverableError))
2213  		handle_dead_contexts(ohci);
2214  
2215  	if (event & OHCI1394_cycle64Seconds) {
2216  		spin_lock(&ohci->lock);
2217  		update_bus_time(ohci);
2218  		spin_unlock(&ohci->lock);
2219  	} else
2220  		flush_writes(ohci);
2221  
2222  	return IRQ_HANDLED;
2223  }
2224  
software_reset(struct fw_ohci * ohci)2225  static int software_reset(struct fw_ohci *ohci)
2226  {
2227  	u32 val;
2228  	int i;
2229  
2230  	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2231  	for (i = 0; i < 500; i++) {
2232  		val = reg_read(ohci, OHCI1394_HCControlSet);
2233  		if (!~val)
2234  			return -ENODEV; /* Card was ejected. */
2235  
2236  		if (!(val & OHCI1394_HCControl_softReset))
2237  			return 0;
2238  
2239  		msleep(1);
2240  	}
2241  
2242  	return -EBUSY;
2243  }
2244  
copy_config_rom(__be32 * dest,const __be32 * src,size_t length)2245  static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2246  {
2247  	size_t size = length * 4;
2248  
2249  	memcpy(dest, src, size);
2250  	if (size < CONFIG_ROM_SIZE)
2251  		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2252  }
2253  
configure_1394a_enhancements(struct fw_ohci * ohci)2254  static int configure_1394a_enhancements(struct fw_ohci *ohci)
2255  {
2256  	bool enable_1394a;
2257  	int ret, clear, set, offset;
2258  
2259  	/* Check if the driver should configure link and PHY. */
2260  	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2261  	      OHCI1394_HCControl_programPhyEnable))
2262  		return 0;
2263  
2264  	/* Paranoia: check whether the PHY supports 1394a, too. */
2265  	enable_1394a = false;
2266  	ret = read_phy_reg(ohci, 2);
2267  	if (ret < 0)
2268  		return ret;
2269  	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2270  		ret = read_paged_phy_reg(ohci, 1, 8);
2271  		if (ret < 0)
2272  			return ret;
2273  		if (ret >= 1)
2274  			enable_1394a = true;
2275  	}
2276  
2277  	if (ohci->quirks & QUIRK_NO_1394A)
2278  		enable_1394a = false;
2279  
2280  	/* Configure PHY and link consistently. */
2281  	if (enable_1394a) {
2282  		clear = 0;
2283  		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2284  	} else {
2285  		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2286  		set = 0;
2287  	}
2288  	ret = update_phy_reg(ohci, 5, clear, set);
2289  	if (ret < 0)
2290  		return ret;
2291  
2292  	if (enable_1394a)
2293  		offset = OHCI1394_HCControlSet;
2294  	else
2295  		offset = OHCI1394_HCControlClear;
2296  	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2297  
2298  	/* Clean up: configuration has been taken care of. */
2299  	reg_write(ohci, OHCI1394_HCControlClear,
2300  		  OHCI1394_HCControl_programPhyEnable);
2301  
2302  	return 0;
2303  }
2304  
probe_tsb41ba3d(struct fw_ohci * ohci)2305  static int probe_tsb41ba3d(struct fw_ohci *ohci)
2306  {
2307  	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2308  	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2309  	int reg, i;
2310  
2311  	reg = read_phy_reg(ohci, 2);
2312  	if (reg < 0)
2313  		return reg;
2314  	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2315  		return 0;
2316  
2317  	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2318  		reg = read_paged_phy_reg(ohci, 1, i + 10);
2319  		if (reg < 0)
2320  			return reg;
2321  		if (reg != id[i])
2322  			return 0;
2323  	}
2324  	return 1;
2325  }
2326  
ohci_enable(struct fw_card * card,const __be32 * config_rom,size_t length)2327  static int ohci_enable(struct fw_card *card,
2328  		       const __be32 *config_rom, size_t length)
2329  {
2330  	struct fw_ohci *ohci = fw_ohci(card);
2331  	u32 lps, version, irqs;
2332  	int i, ret;
2333  
2334  	ret = software_reset(ohci);
2335  	if (ret < 0) {
2336  		ohci_err(ohci, "failed to reset ohci card\n");
2337  		return ret;
2338  	}
2339  
2340  	/*
2341  	 * Now enable LPS, which we need in order to start accessing
2342  	 * most of the registers.  In fact, on some cards (ALI M5251),
2343  	 * accessing registers in the SClk domain without LPS enabled
2344  	 * will lock up the machine.  Wait 50msec to make sure we have
2345  	 * full link enabled.  However, with some cards (well, at least
2346  	 * a JMicron PCIe card), we have to try again sometimes.
2347  	 *
2348  	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2349  	 * cannot actually use the phy at that time.  These need tens of
2350  	 * millisecods pause between LPS write and first phy access too.
2351  	 */
2352  
2353  	reg_write(ohci, OHCI1394_HCControlSet,
2354  		  OHCI1394_HCControl_LPS |
2355  		  OHCI1394_HCControl_postedWriteEnable);
2356  	flush_writes(ohci);
2357  
2358  	for (lps = 0, i = 0; !lps && i < 3; i++) {
2359  		msleep(50);
2360  		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2361  		      OHCI1394_HCControl_LPS;
2362  	}
2363  
2364  	if (!lps) {
2365  		ohci_err(ohci, "failed to set Link Power Status\n");
2366  		return -EIO;
2367  	}
2368  
2369  	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2370  		ret = probe_tsb41ba3d(ohci);
2371  		if (ret < 0)
2372  			return ret;
2373  		if (ret)
2374  			ohci_notice(ohci, "local TSB41BA3D phy\n");
2375  		else
2376  			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2377  	}
2378  
2379  	reg_write(ohci, OHCI1394_HCControlClear,
2380  		  OHCI1394_HCControl_noByteSwapData);
2381  
2382  	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2383  	reg_write(ohci, OHCI1394_LinkControlSet,
2384  		  OHCI1394_LinkControl_cycleTimerEnable |
2385  		  OHCI1394_LinkControl_cycleMaster);
2386  
2387  	reg_write(ohci, OHCI1394_ATRetries,
2388  		  OHCI1394_MAX_AT_REQ_RETRIES |
2389  		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2390  		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2391  		  (200 << 16));
2392  
2393  	ohci->bus_time_running = false;
2394  
2395  	for (i = 0; i < 32; i++)
2396  		if (ohci->ir_context_support & (1 << i))
2397  			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2398  				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2399  
2400  	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2401  	if (version >= OHCI_VERSION_1_1) {
2402  		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2403  			  0xfffffffe);
2404  		card->broadcast_channel_auto_allocated = true;
2405  	}
2406  
2407  	/* Get implemented bits of the priority arbitration request counter. */
2408  	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2409  	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2410  	reg_write(ohci, OHCI1394_FairnessControl, 0);
2411  	card->priority_budget_implemented = ohci->pri_req_max != 0;
2412  
2413  	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2414  	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2415  	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2416  
2417  	ret = configure_1394a_enhancements(ohci);
2418  	if (ret < 0)
2419  		return ret;
2420  
2421  	/* Activate link_on bit and contender bit in our self ID packets.*/
2422  	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2423  	if (ret < 0)
2424  		return ret;
2425  
2426  	/*
2427  	 * When the link is not yet enabled, the atomic config rom
2428  	 * update mechanism described below in ohci_set_config_rom()
2429  	 * is not active.  We have to update ConfigRomHeader and
2430  	 * BusOptions manually, and the write to ConfigROMmap takes
2431  	 * effect immediately.  We tie this to the enabling of the
2432  	 * link, so we have a valid config rom before enabling - the
2433  	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2434  	 * values before enabling.
2435  	 *
2436  	 * However, when the ConfigROMmap is written, some controllers
2437  	 * always read back quadlets 0 and 2 from the config rom to
2438  	 * the ConfigRomHeader and BusOptions registers on bus reset.
2439  	 * They shouldn't do that in this initial case where the link
2440  	 * isn't enabled.  This means we have to use the same
2441  	 * workaround here, setting the bus header to 0 and then write
2442  	 * the right values in the bus reset tasklet.
2443  	 */
2444  
2445  	if (config_rom) {
2446  		ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2447  							    &ohci->next_config_rom_bus, GFP_KERNEL);
2448  		if (ohci->next_config_rom == NULL)
2449  			return -ENOMEM;
2450  
2451  		copy_config_rom(ohci->next_config_rom, config_rom, length);
2452  	} else {
2453  		/*
2454  		 * In the suspend case, config_rom is NULL, which
2455  		 * means that we just reuse the old config rom.
2456  		 */
2457  		ohci->next_config_rom = ohci->config_rom;
2458  		ohci->next_config_rom_bus = ohci->config_rom_bus;
2459  	}
2460  
2461  	ohci->next_header = ohci->next_config_rom[0];
2462  	ohci->next_config_rom[0] = 0;
2463  	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2464  	reg_write(ohci, OHCI1394_BusOptions,
2465  		  be32_to_cpu(ohci->next_config_rom[2]));
2466  	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2467  
2468  	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2469  
2470  	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2471  		OHCI1394_RQPkt | OHCI1394_RSPkt |
2472  		OHCI1394_isochTx | OHCI1394_isochRx |
2473  		OHCI1394_postedWriteErr |
2474  		OHCI1394_selfIDComplete |
2475  		OHCI1394_regAccessFail |
2476  		OHCI1394_cycleInconsistent |
2477  		OHCI1394_unrecoverableError |
2478  		OHCI1394_cycleTooLong |
2479  		OHCI1394_masterIntEnable;
2480  	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2481  		irqs |= OHCI1394_busReset;
2482  	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2483  
2484  	reg_write(ohci, OHCI1394_HCControlSet,
2485  		  OHCI1394_HCControl_linkEnable |
2486  		  OHCI1394_HCControl_BIBimageValid);
2487  
2488  	reg_write(ohci, OHCI1394_LinkControlSet,
2489  		  OHCI1394_LinkControl_rcvSelfID |
2490  		  OHCI1394_LinkControl_rcvPhyPkt);
2491  
2492  	ar_context_run(&ohci->ar_request_ctx);
2493  	ar_context_run(&ohci->ar_response_ctx);
2494  
2495  	flush_writes(ohci);
2496  
2497  	/* We are ready to go, reset bus to finish initialization. */
2498  	fw_schedule_bus_reset(&ohci->card, false, true);
2499  
2500  	return 0;
2501  }
2502  
ohci_set_config_rom(struct fw_card * card,const __be32 * config_rom,size_t length)2503  static int ohci_set_config_rom(struct fw_card *card,
2504  			       const __be32 *config_rom, size_t length)
2505  {
2506  	struct fw_ohci *ohci;
2507  	__be32 *next_config_rom;
2508  	dma_addr_t next_config_rom_bus;
2509  
2510  	ohci = fw_ohci(card);
2511  
2512  	/*
2513  	 * When the OHCI controller is enabled, the config rom update
2514  	 * mechanism is a bit tricky, but easy enough to use.  See
2515  	 * section 5.5.6 in the OHCI specification.
2516  	 *
2517  	 * The OHCI controller caches the new config rom address in a
2518  	 * shadow register (ConfigROMmapNext) and needs a bus reset
2519  	 * for the changes to take place.  When the bus reset is
2520  	 * detected, the controller loads the new values for the
2521  	 * ConfigRomHeader and BusOptions registers from the specified
2522  	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2523  	 * shadow register. All automatically and atomically.
2524  	 *
2525  	 * Now, there's a twist to this story.  The automatic load of
2526  	 * ConfigRomHeader and BusOptions doesn't honor the
2527  	 * noByteSwapData bit, so with a be32 config rom, the
2528  	 * controller will load be32 values in to these registers
2529  	 * during the atomic update, even on litte endian
2530  	 * architectures.  The workaround we use is to put a 0 in the
2531  	 * header quadlet; 0 is endian agnostic and means that the
2532  	 * config rom isn't ready yet.  In the bus reset tasklet we
2533  	 * then set up the real values for the two registers.
2534  	 *
2535  	 * We use ohci->lock to avoid racing with the code that sets
2536  	 * ohci->next_config_rom to NULL (see bus_reset_work).
2537  	 */
2538  
2539  	next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2540  					      &next_config_rom_bus, GFP_KERNEL);
2541  	if (next_config_rom == NULL)
2542  		return -ENOMEM;
2543  
2544  	spin_lock_irq(&ohci->lock);
2545  
2546  	/*
2547  	 * If there is not an already pending config_rom update,
2548  	 * push our new allocation into the ohci->next_config_rom
2549  	 * and then mark the local variable as null so that we
2550  	 * won't deallocate the new buffer.
2551  	 *
2552  	 * OTOH, if there is a pending config_rom update, just
2553  	 * use that buffer with the new config_rom data, and
2554  	 * let this routine free the unused DMA allocation.
2555  	 */
2556  
2557  	if (ohci->next_config_rom == NULL) {
2558  		ohci->next_config_rom = next_config_rom;
2559  		ohci->next_config_rom_bus = next_config_rom_bus;
2560  		next_config_rom = NULL;
2561  	}
2562  
2563  	copy_config_rom(ohci->next_config_rom, config_rom, length);
2564  
2565  	ohci->next_header = config_rom[0];
2566  	ohci->next_config_rom[0] = 0;
2567  
2568  	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2569  
2570  	spin_unlock_irq(&ohci->lock);
2571  
2572  	/* If we didn't use the DMA allocation, delete it. */
2573  	if (next_config_rom != NULL) {
2574  		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2575  				   next_config_rom_bus);
2576  	}
2577  
2578  	/*
2579  	 * Now initiate a bus reset to have the changes take
2580  	 * effect. We clean up the old config rom memory and DMA
2581  	 * mappings in the bus reset tasklet, since the OHCI
2582  	 * controller could need to access it before the bus reset
2583  	 * takes effect.
2584  	 */
2585  
2586  	fw_schedule_bus_reset(&ohci->card, true, true);
2587  
2588  	return 0;
2589  }
2590  
ohci_send_request(struct fw_card * card,struct fw_packet * packet)2591  static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2592  {
2593  	struct fw_ohci *ohci = fw_ohci(card);
2594  
2595  	at_context_transmit(&ohci->at_request_ctx, packet);
2596  }
2597  
ohci_send_response(struct fw_card * card,struct fw_packet * packet)2598  static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2599  {
2600  	struct fw_ohci *ohci = fw_ohci(card);
2601  
2602  	at_context_transmit(&ohci->at_response_ctx, packet);
2603  }
2604  
ohci_cancel_packet(struct fw_card * card,struct fw_packet * packet)2605  static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2606  {
2607  	struct fw_ohci *ohci = fw_ohci(card);
2608  	struct context *ctx = &ohci->at_request_ctx;
2609  	struct driver_data *driver_data = packet->driver_data;
2610  	int ret = -ENOENT;
2611  
2612  	tasklet_disable_in_atomic(&ctx->tasklet);
2613  
2614  	if (packet->ack != 0)
2615  		goto out;
2616  
2617  	if (packet->payload_mapped)
2618  		dma_unmap_single(ohci->card.device, packet->payload_bus,
2619  				 packet->payload_length, DMA_TO_DEVICE);
2620  
2621  	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2622  	driver_data->packet = NULL;
2623  	packet->ack = RCODE_CANCELLED;
2624  
2625  	// Timestamping on behalf of the hardware.
2626  	packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2627  
2628  	packet->callback(packet, &ohci->card, packet->ack);
2629  	ret = 0;
2630   out:
2631  	tasklet_enable(&ctx->tasklet);
2632  
2633  	return ret;
2634  }
2635  
ohci_enable_phys_dma(struct fw_card * card,int node_id,int generation)2636  static int ohci_enable_phys_dma(struct fw_card *card,
2637  				int node_id, int generation)
2638  {
2639  	struct fw_ohci *ohci = fw_ohci(card);
2640  	unsigned long flags;
2641  	int n, ret = 0;
2642  
2643  	if (param_remote_dma)
2644  		return 0;
2645  
2646  	/*
2647  	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2648  	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2649  	 */
2650  
2651  	spin_lock_irqsave(&ohci->lock, flags);
2652  
2653  	if (ohci->generation != generation) {
2654  		ret = -ESTALE;
2655  		goto out;
2656  	}
2657  
2658  	/*
2659  	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2660  	 * enabled for _all_ nodes on remote buses.
2661  	 */
2662  
2663  	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2664  	if (n < 32)
2665  		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2666  	else
2667  		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2668  
2669  	flush_writes(ohci);
2670   out:
2671  	spin_unlock_irqrestore(&ohci->lock, flags);
2672  
2673  	return ret;
2674  }
2675  
ohci_read_csr(struct fw_card * card,int csr_offset)2676  static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2677  {
2678  	struct fw_ohci *ohci = fw_ohci(card);
2679  	unsigned long flags;
2680  	u32 value;
2681  
2682  	switch (csr_offset) {
2683  	case CSR_STATE_CLEAR:
2684  	case CSR_STATE_SET:
2685  		if (ohci->is_root &&
2686  		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2687  		     OHCI1394_LinkControl_cycleMaster))
2688  			value = CSR_STATE_BIT_CMSTR;
2689  		else
2690  			value = 0;
2691  		if (ohci->csr_state_setclear_abdicate)
2692  			value |= CSR_STATE_BIT_ABDICATE;
2693  
2694  		return value;
2695  
2696  	case CSR_NODE_IDS:
2697  		return reg_read(ohci, OHCI1394_NodeID) << 16;
2698  
2699  	case CSR_CYCLE_TIME:
2700  		return get_cycle_time(ohci);
2701  
2702  	case CSR_BUS_TIME:
2703  		/*
2704  		 * We might be called just after the cycle timer has wrapped
2705  		 * around but just before the cycle64Seconds handler, so we
2706  		 * better check here, too, if the bus time needs to be updated.
2707  		 */
2708  		spin_lock_irqsave(&ohci->lock, flags);
2709  		value = update_bus_time(ohci);
2710  		spin_unlock_irqrestore(&ohci->lock, flags);
2711  		return value;
2712  
2713  	case CSR_BUSY_TIMEOUT:
2714  		value = reg_read(ohci, OHCI1394_ATRetries);
2715  		return (value >> 4) & 0x0ffff00f;
2716  
2717  	case CSR_PRIORITY_BUDGET:
2718  		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2719  			(ohci->pri_req_max << 8);
2720  
2721  	default:
2722  		WARN_ON(1);
2723  		return 0;
2724  	}
2725  }
2726  
ohci_write_csr(struct fw_card * card,int csr_offset,u32 value)2727  static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2728  {
2729  	struct fw_ohci *ohci = fw_ohci(card);
2730  	unsigned long flags;
2731  
2732  	switch (csr_offset) {
2733  	case CSR_STATE_CLEAR:
2734  		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2735  			reg_write(ohci, OHCI1394_LinkControlClear,
2736  				  OHCI1394_LinkControl_cycleMaster);
2737  			flush_writes(ohci);
2738  		}
2739  		if (value & CSR_STATE_BIT_ABDICATE)
2740  			ohci->csr_state_setclear_abdicate = false;
2741  		break;
2742  
2743  	case CSR_STATE_SET:
2744  		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2745  			reg_write(ohci, OHCI1394_LinkControlSet,
2746  				  OHCI1394_LinkControl_cycleMaster);
2747  			flush_writes(ohci);
2748  		}
2749  		if (value & CSR_STATE_BIT_ABDICATE)
2750  			ohci->csr_state_setclear_abdicate = true;
2751  		break;
2752  
2753  	case CSR_NODE_IDS:
2754  		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2755  		flush_writes(ohci);
2756  		break;
2757  
2758  	case CSR_CYCLE_TIME:
2759  		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2760  		reg_write(ohci, OHCI1394_IntEventSet,
2761  			  OHCI1394_cycleInconsistent);
2762  		flush_writes(ohci);
2763  		break;
2764  
2765  	case CSR_BUS_TIME:
2766  		spin_lock_irqsave(&ohci->lock, flags);
2767  		ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2768  		                 (value & ~0x7f);
2769  		spin_unlock_irqrestore(&ohci->lock, flags);
2770  		break;
2771  
2772  	case CSR_BUSY_TIMEOUT:
2773  		value = (value & 0xf) | ((value & 0xf) << 4) |
2774  			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2775  		reg_write(ohci, OHCI1394_ATRetries, value);
2776  		flush_writes(ohci);
2777  		break;
2778  
2779  	case CSR_PRIORITY_BUDGET:
2780  		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2781  		flush_writes(ohci);
2782  		break;
2783  
2784  	default:
2785  		WARN_ON(1);
2786  		break;
2787  	}
2788  }
2789  
flush_iso_completions(struct iso_context * ctx)2790  static void flush_iso_completions(struct iso_context *ctx)
2791  {
2792  	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2793  			      ctx->header_length, ctx->header,
2794  			      ctx->base.callback_data);
2795  	ctx->header_length = 0;
2796  }
2797  
copy_iso_headers(struct iso_context * ctx,const u32 * dma_hdr)2798  static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2799  {
2800  	u32 *ctx_hdr;
2801  
2802  	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2803  		if (ctx->base.drop_overflow_headers)
2804  			return;
2805  		flush_iso_completions(ctx);
2806  	}
2807  
2808  	ctx_hdr = ctx->header + ctx->header_length;
2809  	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2810  
2811  	/*
2812  	 * The two iso header quadlets are byteswapped to little
2813  	 * endian by the controller, but we want to present them
2814  	 * as big endian for consistency with the bus endianness.
2815  	 */
2816  	if (ctx->base.header_size > 0)
2817  		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2818  	if (ctx->base.header_size > 4)
2819  		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2820  	if (ctx->base.header_size > 8)
2821  		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2822  	ctx->header_length += ctx->base.header_size;
2823  }
2824  
handle_ir_packet_per_buffer(struct context * context,struct descriptor * d,struct descriptor * last)2825  static int handle_ir_packet_per_buffer(struct context *context,
2826  				       struct descriptor *d,
2827  				       struct descriptor *last)
2828  {
2829  	struct iso_context *ctx =
2830  		container_of(context, struct iso_context, context);
2831  	struct descriptor *pd;
2832  	u32 buffer_dma;
2833  
2834  	for (pd = d; pd <= last; pd++)
2835  		if (pd->transfer_status)
2836  			break;
2837  	if (pd > last)
2838  		/* Descriptor(s) not done yet, stop iteration */
2839  		return 0;
2840  
2841  	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2842  		d++;
2843  		buffer_dma = le32_to_cpu(d->data_address);
2844  		dma_sync_single_range_for_cpu(context->ohci->card.device,
2845  					      buffer_dma & PAGE_MASK,
2846  					      buffer_dma & ~PAGE_MASK,
2847  					      le16_to_cpu(d->req_count),
2848  					      DMA_FROM_DEVICE);
2849  	}
2850  
2851  	copy_iso_headers(ctx, (u32 *) (last + 1));
2852  
2853  	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2854  		flush_iso_completions(ctx);
2855  
2856  	return 1;
2857  }
2858  
2859  /* d == last because each descriptor block is only a single descriptor. */
handle_ir_buffer_fill(struct context * context,struct descriptor * d,struct descriptor * last)2860  static int handle_ir_buffer_fill(struct context *context,
2861  				 struct descriptor *d,
2862  				 struct descriptor *last)
2863  {
2864  	struct iso_context *ctx =
2865  		container_of(context, struct iso_context, context);
2866  	unsigned int req_count, res_count, completed;
2867  	u32 buffer_dma;
2868  
2869  	req_count = le16_to_cpu(last->req_count);
2870  	res_count = le16_to_cpu(READ_ONCE(last->res_count));
2871  	completed = req_count - res_count;
2872  	buffer_dma = le32_to_cpu(last->data_address);
2873  
2874  	if (completed > 0) {
2875  		ctx->mc_buffer_bus = buffer_dma;
2876  		ctx->mc_completed = completed;
2877  	}
2878  
2879  	if (res_count != 0)
2880  		/* Descriptor(s) not done yet, stop iteration */
2881  		return 0;
2882  
2883  	dma_sync_single_range_for_cpu(context->ohci->card.device,
2884  				      buffer_dma & PAGE_MASK,
2885  				      buffer_dma & ~PAGE_MASK,
2886  				      completed, DMA_FROM_DEVICE);
2887  
2888  	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2889  		ctx->base.callback.mc(&ctx->base,
2890  				      buffer_dma + completed,
2891  				      ctx->base.callback_data);
2892  		ctx->mc_completed = 0;
2893  	}
2894  
2895  	return 1;
2896  }
2897  
flush_ir_buffer_fill(struct iso_context * ctx)2898  static void flush_ir_buffer_fill(struct iso_context *ctx)
2899  {
2900  	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2901  				      ctx->mc_buffer_bus & PAGE_MASK,
2902  				      ctx->mc_buffer_bus & ~PAGE_MASK,
2903  				      ctx->mc_completed, DMA_FROM_DEVICE);
2904  
2905  	ctx->base.callback.mc(&ctx->base,
2906  			      ctx->mc_buffer_bus + ctx->mc_completed,
2907  			      ctx->base.callback_data);
2908  	ctx->mc_completed = 0;
2909  }
2910  
sync_it_packet_for_cpu(struct context * context,struct descriptor * pd)2911  static inline void sync_it_packet_for_cpu(struct context *context,
2912  					  struct descriptor *pd)
2913  {
2914  	__le16 control;
2915  	u32 buffer_dma;
2916  
2917  	/* only packets beginning with OUTPUT_MORE* have data buffers */
2918  	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2919  		return;
2920  
2921  	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2922  	pd += 2;
2923  
2924  	/*
2925  	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2926  	 * data buffer is in the context program's coherent page and must not
2927  	 * be synced.
2928  	 */
2929  	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2930  	    (context->current_bus          & PAGE_MASK)) {
2931  		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2932  			return;
2933  		pd++;
2934  	}
2935  
2936  	do {
2937  		buffer_dma = le32_to_cpu(pd->data_address);
2938  		dma_sync_single_range_for_cpu(context->ohci->card.device,
2939  					      buffer_dma & PAGE_MASK,
2940  					      buffer_dma & ~PAGE_MASK,
2941  					      le16_to_cpu(pd->req_count),
2942  					      DMA_TO_DEVICE);
2943  		control = pd->control;
2944  		pd++;
2945  	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2946  }
2947  
handle_it_packet(struct context * context,struct descriptor * d,struct descriptor * last)2948  static int handle_it_packet(struct context *context,
2949  			    struct descriptor *d,
2950  			    struct descriptor *last)
2951  {
2952  	struct iso_context *ctx =
2953  		container_of(context, struct iso_context, context);
2954  	struct descriptor *pd;
2955  	__be32 *ctx_hdr;
2956  
2957  	for (pd = d; pd <= last; pd++)
2958  		if (pd->transfer_status)
2959  			break;
2960  	if (pd > last)
2961  		/* Descriptor(s) not done yet, stop iteration */
2962  		return 0;
2963  
2964  	sync_it_packet_for_cpu(context, d);
2965  
2966  	if (ctx->header_length + 4 > PAGE_SIZE) {
2967  		if (ctx->base.drop_overflow_headers)
2968  			return 1;
2969  		flush_iso_completions(ctx);
2970  	}
2971  
2972  	ctx_hdr = ctx->header + ctx->header_length;
2973  	ctx->last_timestamp = le16_to_cpu(last->res_count);
2974  	/* Present this value as big-endian to match the receive code */
2975  	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2976  			       le16_to_cpu(pd->res_count));
2977  	ctx->header_length += 4;
2978  
2979  	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2980  		flush_iso_completions(ctx);
2981  
2982  	return 1;
2983  }
2984  
set_multichannel_mask(struct fw_ohci * ohci,u64 channels)2985  static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2986  {
2987  	u32 hi = channels >> 32, lo = channels;
2988  
2989  	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2990  	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2991  	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2992  	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2993  	ohci->mc_channels = channels;
2994  }
2995  
ohci_allocate_iso_context(struct fw_card * card,int type,int channel,size_t header_size)2996  static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2997  				int type, int channel, size_t header_size)
2998  {
2999  	struct fw_ohci *ohci = fw_ohci(card);
3000  	struct iso_context *ctx;
3001  	descriptor_callback_t callback;
3002  	u64 *channels;
3003  	u32 *mask, regs;
3004  	int index, ret = -EBUSY;
3005  
3006  	spin_lock_irq(&ohci->lock);
3007  
3008  	switch (type) {
3009  	case FW_ISO_CONTEXT_TRANSMIT:
3010  		mask     = &ohci->it_context_mask;
3011  		callback = handle_it_packet;
3012  		index    = ffs(*mask) - 1;
3013  		if (index >= 0) {
3014  			*mask &= ~(1 << index);
3015  			regs = OHCI1394_IsoXmitContextBase(index);
3016  			ctx  = &ohci->it_context_list[index];
3017  		}
3018  		break;
3019  
3020  	case FW_ISO_CONTEXT_RECEIVE:
3021  		channels = &ohci->ir_context_channels;
3022  		mask     = &ohci->ir_context_mask;
3023  		callback = handle_ir_packet_per_buffer;
3024  		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3025  		if (index >= 0) {
3026  			*channels &= ~(1ULL << channel);
3027  			*mask     &= ~(1 << index);
3028  			regs = OHCI1394_IsoRcvContextBase(index);
3029  			ctx  = &ohci->ir_context_list[index];
3030  		}
3031  		break;
3032  
3033  	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3034  		mask     = &ohci->ir_context_mask;
3035  		callback = handle_ir_buffer_fill;
3036  		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3037  		if (index >= 0) {
3038  			ohci->mc_allocated = true;
3039  			*mask &= ~(1 << index);
3040  			regs = OHCI1394_IsoRcvContextBase(index);
3041  			ctx  = &ohci->ir_context_list[index];
3042  		}
3043  		break;
3044  
3045  	default:
3046  		index = -1;
3047  		ret = -ENOSYS;
3048  	}
3049  
3050  	spin_unlock_irq(&ohci->lock);
3051  
3052  	if (index < 0)
3053  		return ERR_PTR(ret);
3054  
3055  	memset(ctx, 0, sizeof(*ctx));
3056  	ctx->header_length = 0;
3057  	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3058  	if (ctx->header == NULL) {
3059  		ret = -ENOMEM;
3060  		goto out;
3061  	}
3062  	ret = context_init(&ctx->context, ohci, regs, callback);
3063  	if (ret < 0)
3064  		goto out_with_header;
3065  
3066  	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3067  		set_multichannel_mask(ohci, 0);
3068  		ctx->mc_completed = 0;
3069  	}
3070  
3071  	return &ctx->base;
3072  
3073   out_with_header:
3074  	free_page((unsigned long)ctx->header);
3075   out:
3076  	spin_lock_irq(&ohci->lock);
3077  
3078  	switch (type) {
3079  	case FW_ISO_CONTEXT_RECEIVE:
3080  		*channels |= 1ULL << channel;
3081  		break;
3082  
3083  	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3084  		ohci->mc_allocated = false;
3085  		break;
3086  	}
3087  	*mask |= 1 << index;
3088  
3089  	spin_unlock_irq(&ohci->lock);
3090  
3091  	return ERR_PTR(ret);
3092  }
3093  
ohci_start_iso(struct fw_iso_context * base,s32 cycle,u32 sync,u32 tags)3094  static int ohci_start_iso(struct fw_iso_context *base,
3095  			  s32 cycle, u32 sync, u32 tags)
3096  {
3097  	struct iso_context *ctx = container_of(base, struct iso_context, base);
3098  	struct fw_ohci *ohci = ctx->context.ohci;
3099  	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3100  	int index;
3101  
3102  	/* the controller cannot start without any queued packets */
3103  	if (ctx->context.last->branch_address == 0)
3104  		return -ENODATA;
3105  
3106  	switch (ctx->base.type) {
3107  	case FW_ISO_CONTEXT_TRANSMIT:
3108  		index = ctx - ohci->it_context_list;
3109  		match = 0;
3110  		if (cycle >= 0)
3111  			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3112  				(cycle & 0x7fff) << 16;
3113  
3114  		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3115  		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3116  		context_run(&ctx->context, match);
3117  		break;
3118  
3119  	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3120  		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3121  		fallthrough;
3122  	case FW_ISO_CONTEXT_RECEIVE:
3123  		index = ctx - ohci->ir_context_list;
3124  		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3125  		if (cycle >= 0) {
3126  			match |= (cycle & 0x07fff) << 12;
3127  			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3128  		}
3129  
3130  		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3131  		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3132  		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3133  		context_run(&ctx->context, control);
3134  
3135  		ctx->sync = sync;
3136  		ctx->tags = tags;
3137  
3138  		break;
3139  	}
3140  
3141  	return 0;
3142  }
3143  
ohci_stop_iso(struct fw_iso_context * base)3144  static int ohci_stop_iso(struct fw_iso_context *base)
3145  {
3146  	struct fw_ohci *ohci = fw_ohci(base->card);
3147  	struct iso_context *ctx = container_of(base, struct iso_context, base);
3148  	int index;
3149  
3150  	switch (ctx->base.type) {
3151  	case FW_ISO_CONTEXT_TRANSMIT:
3152  		index = ctx - ohci->it_context_list;
3153  		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3154  		break;
3155  
3156  	case FW_ISO_CONTEXT_RECEIVE:
3157  	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3158  		index = ctx - ohci->ir_context_list;
3159  		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3160  		break;
3161  	}
3162  	flush_writes(ohci);
3163  	context_stop(&ctx->context);
3164  	tasklet_kill(&ctx->context.tasklet);
3165  
3166  	return 0;
3167  }
3168  
ohci_free_iso_context(struct fw_iso_context * base)3169  static void ohci_free_iso_context(struct fw_iso_context *base)
3170  {
3171  	struct fw_ohci *ohci = fw_ohci(base->card);
3172  	struct iso_context *ctx = container_of(base, struct iso_context, base);
3173  	unsigned long flags;
3174  	int index;
3175  
3176  	ohci_stop_iso(base);
3177  	context_release(&ctx->context);
3178  	free_page((unsigned long)ctx->header);
3179  
3180  	spin_lock_irqsave(&ohci->lock, flags);
3181  
3182  	switch (base->type) {
3183  	case FW_ISO_CONTEXT_TRANSMIT:
3184  		index = ctx - ohci->it_context_list;
3185  		ohci->it_context_mask |= 1 << index;
3186  		break;
3187  
3188  	case FW_ISO_CONTEXT_RECEIVE:
3189  		index = ctx - ohci->ir_context_list;
3190  		ohci->ir_context_mask |= 1 << index;
3191  		ohci->ir_context_channels |= 1ULL << base->channel;
3192  		break;
3193  
3194  	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3195  		index = ctx - ohci->ir_context_list;
3196  		ohci->ir_context_mask |= 1 << index;
3197  		ohci->ir_context_channels |= ohci->mc_channels;
3198  		ohci->mc_channels = 0;
3199  		ohci->mc_allocated = false;
3200  		break;
3201  	}
3202  
3203  	spin_unlock_irqrestore(&ohci->lock, flags);
3204  }
3205  
ohci_set_iso_channels(struct fw_iso_context * base,u64 * channels)3206  static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3207  {
3208  	struct fw_ohci *ohci = fw_ohci(base->card);
3209  	unsigned long flags;
3210  	int ret;
3211  
3212  	switch (base->type) {
3213  	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3214  
3215  		spin_lock_irqsave(&ohci->lock, flags);
3216  
3217  		/* Don't allow multichannel to grab other contexts' channels. */
3218  		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3219  			*channels = ohci->ir_context_channels;
3220  			ret = -EBUSY;
3221  		} else {
3222  			set_multichannel_mask(ohci, *channels);
3223  			ret = 0;
3224  		}
3225  
3226  		spin_unlock_irqrestore(&ohci->lock, flags);
3227  
3228  		break;
3229  	default:
3230  		ret = -EINVAL;
3231  	}
3232  
3233  	return ret;
3234  }
3235  
3236  #ifdef CONFIG_PM
ohci_resume_iso_dma(struct fw_ohci * ohci)3237  static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3238  {
3239  	int i;
3240  	struct iso_context *ctx;
3241  
3242  	for (i = 0 ; i < ohci->n_ir ; i++) {
3243  		ctx = &ohci->ir_context_list[i];
3244  		if (ctx->context.running)
3245  			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3246  	}
3247  
3248  	for (i = 0 ; i < ohci->n_it ; i++) {
3249  		ctx = &ohci->it_context_list[i];
3250  		if (ctx->context.running)
3251  			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3252  	}
3253  }
3254  #endif
3255  
queue_iso_transmit(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3256  static int queue_iso_transmit(struct iso_context *ctx,
3257  			      struct fw_iso_packet *packet,
3258  			      struct fw_iso_buffer *buffer,
3259  			      unsigned long payload)
3260  {
3261  	struct descriptor *d, *last, *pd;
3262  	struct fw_iso_packet *p;
3263  	__le32 *header;
3264  	dma_addr_t d_bus, page_bus;
3265  	u32 z, header_z, payload_z, irq;
3266  	u32 payload_index, payload_end_index, next_page_index;
3267  	int page, end_page, i, length, offset;
3268  
3269  	p = packet;
3270  	payload_index = payload;
3271  
3272  	if (p->skip)
3273  		z = 1;
3274  	else
3275  		z = 2;
3276  	if (p->header_length > 0)
3277  		z++;
3278  
3279  	/* Determine the first page the payload isn't contained in. */
3280  	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3281  	if (p->payload_length > 0)
3282  		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3283  	else
3284  		payload_z = 0;
3285  
3286  	z += payload_z;
3287  
3288  	/* Get header size in number of descriptors. */
3289  	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3290  
3291  	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3292  	if (d == NULL)
3293  		return -ENOMEM;
3294  
3295  	if (!p->skip) {
3296  		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3297  		d[0].req_count = cpu_to_le16(8);
3298  		/*
3299  		 * Link the skip address to this descriptor itself.  This causes
3300  		 * a context to skip a cycle whenever lost cycles or FIFO
3301  		 * overruns occur, without dropping the data.  The application
3302  		 * should then decide whether this is an error condition or not.
3303  		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3304  		 */
3305  		d[0].branch_address = cpu_to_le32(d_bus | z);
3306  
3307  		header = (__le32 *) &d[1];
3308  		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3309  					IT_HEADER_TAG(p->tag) |
3310  					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3311  					IT_HEADER_CHANNEL(ctx->base.channel) |
3312  					IT_HEADER_SPEED(ctx->base.speed));
3313  		header[1] =
3314  			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3315  							  p->payload_length));
3316  	}
3317  
3318  	if (p->header_length > 0) {
3319  		d[2].req_count    = cpu_to_le16(p->header_length);
3320  		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3321  		memcpy(&d[z], p->header, p->header_length);
3322  	}
3323  
3324  	pd = d + z - payload_z;
3325  	payload_end_index = payload_index + p->payload_length;
3326  	for (i = 0; i < payload_z; i++) {
3327  		page               = payload_index >> PAGE_SHIFT;
3328  		offset             = payload_index & ~PAGE_MASK;
3329  		next_page_index    = (page + 1) << PAGE_SHIFT;
3330  		length             =
3331  			min(next_page_index, payload_end_index) - payload_index;
3332  		pd[i].req_count    = cpu_to_le16(length);
3333  
3334  		page_bus = page_private(buffer->pages[page]);
3335  		pd[i].data_address = cpu_to_le32(page_bus + offset);
3336  
3337  		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3338  						 page_bus, offset, length,
3339  						 DMA_TO_DEVICE);
3340  
3341  		payload_index += length;
3342  	}
3343  
3344  	if (p->interrupt)
3345  		irq = DESCRIPTOR_IRQ_ALWAYS;
3346  	else
3347  		irq = DESCRIPTOR_NO_IRQ;
3348  
3349  	last = z == 2 ? d : d + z - 1;
3350  	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3351  				     DESCRIPTOR_STATUS |
3352  				     DESCRIPTOR_BRANCH_ALWAYS |
3353  				     irq);
3354  
3355  	context_append(&ctx->context, d, z, header_z);
3356  
3357  	return 0;
3358  }
3359  
queue_iso_packet_per_buffer(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3360  static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3361  				       struct fw_iso_packet *packet,
3362  				       struct fw_iso_buffer *buffer,
3363  				       unsigned long payload)
3364  {
3365  	struct device *device = ctx->context.ohci->card.device;
3366  	struct descriptor *d, *pd;
3367  	dma_addr_t d_bus, page_bus;
3368  	u32 z, header_z, rest;
3369  	int i, j, length;
3370  	int page, offset, packet_count, header_size, payload_per_buffer;
3371  
3372  	/*
3373  	 * The OHCI controller puts the isochronous header and trailer in the
3374  	 * buffer, so we need at least 8 bytes.
3375  	 */
3376  	packet_count = packet->header_length / ctx->base.header_size;
3377  	header_size  = max(ctx->base.header_size, (size_t)8);
3378  
3379  	/* Get header size in number of descriptors. */
3380  	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3381  	page     = payload >> PAGE_SHIFT;
3382  	offset   = payload & ~PAGE_MASK;
3383  	payload_per_buffer = packet->payload_length / packet_count;
3384  
3385  	for (i = 0; i < packet_count; i++) {
3386  		/* d points to the header descriptor */
3387  		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3388  		d = context_get_descriptors(&ctx->context,
3389  				z + header_z, &d_bus);
3390  		if (d == NULL)
3391  			return -ENOMEM;
3392  
3393  		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3394  					      DESCRIPTOR_INPUT_MORE);
3395  		if (packet->skip && i == 0)
3396  			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3397  		d->req_count    = cpu_to_le16(header_size);
3398  		d->res_count    = d->req_count;
3399  		d->transfer_status = 0;
3400  		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3401  
3402  		rest = payload_per_buffer;
3403  		pd = d;
3404  		for (j = 1; j < z; j++) {
3405  			pd++;
3406  			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3407  						  DESCRIPTOR_INPUT_MORE);
3408  
3409  			if (offset + rest < PAGE_SIZE)
3410  				length = rest;
3411  			else
3412  				length = PAGE_SIZE - offset;
3413  			pd->req_count = cpu_to_le16(length);
3414  			pd->res_count = pd->req_count;
3415  			pd->transfer_status = 0;
3416  
3417  			page_bus = page_private(buffer->pages[page]);
3418  			pd->data_address = cpu_to_le32(page_bus + offset);
3419  
3420  			dma_sync_single_range_for_device(device, page_bus,
3421  							 offset, length,
3422  							 DMA_FROM_DEVICE);
3423  
3424  			offset = (offset + length) & ~PAGE_MASK;
3425  			rest -= length;
3426  			if (offset == 0)
3427  				page++;
3428  		}
3429  		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3430  					  DESCRIPTOR_INPUT_LAST |
3431  					  DESCRIPTOR_BRANCH_ALWAYS);
3432  		if (packet->interrupt && i == packet_count - 1)
3433  			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3434  
3435  		context_append(&ctx->context, d, z, header_z);
3436  	}
3437  
3438  	return 0;
3439  }
3440  
queue_iso_buffer_fill(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3441  static int queue_iso_buffer_fill(struct iso_context *ctx,
3442  				 struct fw_iso_packet *packet,
3443  				 struct fw_iso_buffer *buffer,
3444  				 unsigned long payload)
3445  {
3446  	struct descriptor *d;
3447  	dma_addr_t d_bus, page_bus;
3448  	int page, offset, rest, z, i, length;
3449  
3450  	page   = payload >> PAGE_SHIFT;
3451  	offset = payload & ~PAGE_MASK;
3452  	rest   = packet->payload_length;
3453  
3454  	/* We need one descriptor for each page in the buffer. */
3455  	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3456  
3457  	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3458  		return -EFAULT;
3459  
3460  	for (i = 0; i < z; i++) {
3461  		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3462  		if (d == NULL)
3463  			return -ENOMEM;
3464  
3465  		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3466  					 DESCRIPTOR_BRANCH_ALWAYS);
3467  		if (packet->skip && i == 0)
3468  			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3469  		if (packet->interrupt && i == z - 1)
3470  			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3471  
3472  		if (offset + rest < PAGE_SIZE)
3473  			length = rest;
3474  		else
3475  			length = PAGE_SIZE - offset;
3476  		d->req_count = cpu_to_le16(length);
3477  		d->res_count = d->req_count;
3478  		d->transfer_status = 0;
3479  
3480  		page_bus = page_private(buffer->pages[page]);
3481  		d->data_address = cpu_to_le32(page_bus + offset);
3482  
3483  		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3484  						 page_bus, offset, length,
3485  						 DMA_FROM_DEVICE);
3486  
3487  		rest -= length;
3488  		offset = 0;
3489  		page++;
3490  
3491  		context_append(&ctx->context, d, 1, 0);
3492  	}
3493  
3494  	return 0;
3495  }
3496  
ohci_queue_iso(struct fw_iso_context * base,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3497  static int ohci_queue_iso(struct fw_iso_context *base,
3498  			  struct fw_iso_packet *packet,
3499  			  struct fw_iso_buffer *buffer,
3500  			  unsigned long payload)
3501  {
3502  	struct iso_context *ctx = container_of(base, struct iso_context, base);
3503  	unsigned long flags;
3504  	int ret = -ENOSYS;
3505  
3506  	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3507  	switch (base->type) {
3508  	case FW_ISO_CONTEXT_TRANSMIT:
3509  		ret = queue_iso_transmit(ctx, packet, buffer, payload);
3510  		break;
3511  	case FW_ISO_CONTEXT_RECEIVE:
3512  		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3513  		break;
3514  	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3515  		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3516  		break;
3517  	}
3518  	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3519  
3520  	return ret;
3521  }
3522  
ohci_flush_queue_iso(struct fw_iso_context * base)3523  static void ohci_flush_queue_iso(struct fw_iso_context *base)
3524  {
3525  	struct context *ctx =
3526  			&container_of(base, struct iso_context, base)->context;
3527  
3528  	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3529  }
3530  
ohci_flush_iso_completions(struct fw_iso_context * base)3531  static int ohci_flush_iso_completions(struct fw_iso_context *base)
3532  {
3533  	struct iso_context *ctx = container_of(base, struct iso_context, base);
3534  	int ret = 0;
3535  
3536  	tasklet_disable_in_atomic(&ctx->context.tasklet);
3537  
3538  	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3539  		context_tasklet((unsigned long)&ctx->context);
3540  
3541  		switch (base->type) {
3542  		case FW_ISO_CONTEXT_TRANSMIT:
3543  		case FW_ISO_CONTEXT_RECEIVE:
3544  			if (ctx->header_length != 0)
3545  				flush_iso_completions(ctx);
3546  			break;
3547  		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3548  			if (ctx->mc_completed != 0)
3549  				flush_ir_buffer_fill(ctx);
3550  			break;
3551  		default:
3552  			ret = -ENOSYS;
3553  		}
3554  
3555  		clear_bit_unlock(0, &ctx->flushing_completions);
3556  		smp_mb__after_atomic();
3557  	}
3558  
3559  	tasklet_enable(&ctx->context.tasklet);
3560  
3561  	return ret;
3562  }
3563  
3564  static const struct fw_card_driver ohci_driver = {
3565  	.enable			= ohci_enable,
3566  	.read_phy_reg		= ohci_read_phy_reg,
3567  	.update_phy_reg		= ohci_update_phy_reg,
3568  	.set_config_rom		= ohci_set_config_rom,
3569  	.send_request		= ohci_send_request,
3570  	.send_response		= ohci_send_response,
3571  	.cancel_packet		= ohci_cancel_packet,
3572  	.enable_phys_dma	= ohci_enable_phys_dma,
3573  	.read_csr		= ohci_read_csr,
3574  	.write_csr		= ohci_write_csr,
3575  
3576  	.allocate_iso_context	= ohci_allocate_iso_context,
3577  	.free_iso_context	= ohci_free_iso_context,
3578  	.set_iso_channels	= ohci_set_iso_channels,
3579  	.queue_iso		= ohci_queue_iso,
3580  	.flush_queue_iso	= ohci_flush_queue_iso,
3581  	.flush_iso_completions	= ohci_flush_iso_completions,
3582  	.start_iso		= ohci_start_iso,
3583  	.stop_iso		= ohci_stop_iso,
3584  };
3585  
3586  #ifdef CONFIG_PPC_PMAC
pmac_ohci_on(struct pci_dev * dev)3587  static void pmac_ohci_on(struct pci_dev *dev)
3588  {
3589  	if (machine_is(powermac)) {
3590  		struct device_node *ofn = pci_device_to_OF_node(dev);
3591  
3592  		if (ofn) {
3593  			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3594  			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3595  		}
3596  	}
3597  }
3598  
pmac_ohci_off(struct pci_dev * dev)3599  static void pmac_ohci_off(struct pci_dev *dev)
3600  {
3601  	if (machine_is(powermac)) {
3602  		struct device_node *ofn = pci_device_to_OF_node(dev);
3603  
3604  		if (ofn) {
3605  			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3606  			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3607  		}
3608  	}
3609  }
3610  #else
pmac_ohci_on(struct pci_dev * dev)3611  static inline void pmac_ohci_on(struct pci_dev *dev) {}
pmac_ohci_off(struct pci_dev * dev)3612  static inline void pmac_ohci_off(struct pci_dev *dev) {}
3613  #endif /* CONFIG_PPC_PMAC */
3614  
release_ohci(struct device * dev,void * data)3615  static void release_ohci(struct device *dev, void *data)
3616  {
3617  	struct pci_dev *pdev = to_pci_dev(dev);
3618  	struct fw_ohci *ohci = pci_get_drvdata(pdev);
3619  
3620  	pmac_ohci_off(pdev);
3621  
3622  	ar_context_release(&ohci->ar_response_ctx);
3623  	ar_context_release(&ohci->ar_request_ctx);
3624  
3625  	dev_notice(dev, "removed fw-ohci device\n");
3626  }
3627  
pci_probe(struct pci_dev * dev,const struct pci_device_id * ent)3628  static int pci_probe(struct pci_dev *dev,
3629  			       const struct pci_device_id *ent)
3630  {
3631  	struct fw_ohci *ohci;
3632  	u32 bus_options, max_receive, link_speed, version;
3633  	u64 guid;
3634  	int i, err;
3635  	size_t size;
3636  
3637  	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3638  		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3639  		return -ENOSYS;
3640  	}
3641  
3642  	ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3643  	if (ohci == NULL)
3644  		return -ENOMEM;
3645  	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3646  	pci_set_drvdata(dev, ohci);
3647  	pmac_ohci_on(dev);
3648  	devres_add(&dev->dev, ohci);
3649  
3650  	err = pcim_enable_device(dev);
3651  	if (err) {
3652  		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3653  		return err;
3654  	}
3655  
3656  	pci_set_master(dev);
3657  	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3658  
3659  	spin_lock_init(&ohci->lock);
3660  	mutex_init(&ohci->phy_reg_mutex);
3661  
3662  	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3663  
3664  	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3665  	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3666  		ohci_err(ohci, "invalid MMIO resource\n");
3667  		return -ENXIO;
3668  	}
3669  
3670  	err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name);
3671  	if (err) {
3672  		ohci_err(ohci, "request and map MMIO resource unavailable\n");
3673  		return -ENXIO;
3674  	}
3675  	ohci->registers = pcim_iomap_table(dev)[0];
3676  
3677  	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3678  		if ((ohci_quirks[i].vendor == dev->vendor) &&
3679  		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3680  		     ohci_quirks[i].device == dev->device) &&
3681  		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3682  		     ohci_quirks[i].revision >= dev->revision)) {
3683  			ohci->quirks = ohci_quirks[i].flags;
3684  			break;
3685  		}
3686  	if (param_quirks)
3687  		ohci->quirks = param_quirks;
3688  
3689  	if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3690  		ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3691  
3692  	/*
3693  	 * Because dma_alloc_coherent() allocates at least one page,
3694  	 * we save space by using a common buffer for the AR request/
3695  	 * response descriptors and the self IDs buffer.
3696  	 */
3697  	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3698  	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3699  	ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3700  						GFP_KERNEL);
3701  	if (!ohci->misc_buffer)
3702  		return -ENOMEM;
3703  
3704  	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3705  			      OHCI1394_AsReqRcvContextControlSet);
3706  	if (err < 0)
3707  		return err;
3708  
3709  	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3710  			      OHCI1394_AsRspRcvContextControlSet);
3711  	if (err < 0)
3712  		return err;
3713  
3714  	err = context_init(&ohci->at_request_ctx, ohci,
3715  			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3716  	if (err < 0)
3717  		return err;
3718  
3719  	err = context_init(&ohci->at_response_ctx, ohci,
3720  			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3721  	if (err < 0)
3722  		return err;
3723  
3724  	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3725  	ohci->ir_context_channels = ~0ULL;
3726  	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3727  	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3728  	ohci->ir_context_mask = ohci->ir_context_support;
3729  	ohci->n_ir = hweight32(ohci->ir_context_mask);
3730  	size = sizeof(struct iso_context) * ohci->n_ir;
3731  	ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3732  	if (!ohci->ir_context_list)
3733  		return -ENOMEM;
3734  
3735  	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3736  	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3737  	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3738  	if (!ohci->it_context_support) {
3739  		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3740  		ohci->it_context_support = 0xf;
3741  	}
3742  	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3743  	ohci->it_context_mask = ohci->it_context_support;
3744  	ohci->n_it = hweight32(ohci->it_context_mask);
3745  	size = sizeof(struct iso_context) * ohci->n_it;
3746  	ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3747  	if (!ohci->it_context_list)
3748  		return -ENOMEM;
3749  
3750  	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3751  	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3752  
3753  	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3754  	max_receive = (bus_options >> 12) & 0xf;
3755  	link_speed = bus_options & 0x7;
3756  	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3757  		reg_read(ohci, OHCI1394_GUIDLo);
3758  
3759  	if (!(ohci->quirks & QUIRK_NO_MSI))
3760  		pci_enable_msi(dev);
3761  	err = devm_request_irq(&dev->dev, dev->irq, irq_handler,
3762  			       pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name, ohci);
3763  	if (err < 0) {
3764  		ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3765  		goto fail_msi;
3766  	}
3767  
3768  	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3769  	if (err)
3770  		goto fail_msi;
3771  
3772  	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3773  	ohci_notice(ohci,
3774  		    "added OHCI v%x.%x device as card %d, "
3775  		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3776  		    version >> 16, version & 0xff, ohci->card.index,
3777  		    ohci->n_ir, ohci->n_it, ohci->quirks,
3778  		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3779  			", physUB" : "");
3780  
3781  	return 0;
3782  
3783   fail_msi:
3784  	devm_free_irq(&dev->dev, dev->irq, ohci);
3785  	pci_disable_msi(dev);
3786  
3787  	return err;
3788  }
3789  
pci_remove(struct pci_dev * dev)3790  static void pci_remove(struct pci_dev *dev)
3791  {
3792  	struct fw_ohci *ohci = pci_get_drvdata(dev);
3793  
3794  	/*
3795  	 * If the removal is happening from the suspend state, LPS won't be
3796  	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3797  	 */
3798  	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3799  		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3800  		flush_writes(ohci);
3801  	}
3802  	cancel_work_sync(&ohci->bus_reset_work);
3803  	fw_core_remove_card(&ohci->card);
3804  
3805  	/*
3806  	 * FIXME: Fail all pending packets here, now that the upper
3807  	 * layers can't queue any more.
3808  	 */
3809  
3810  	software_reset(ohci);
3811  
3812  	devm_free_irq(&dev->dev, dev->irq, ohci);
3813  	pci_disable_msi(dev);
3814  
3815  	dev_notice(&dev->dev, "removing fw-ohci device\n");
3816  }
3817  
3818  #ifdef CONFIG_PM
pci_suspend(struct pci_dev * dev,pm_message_t state)3819  static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3820  {
3821  	struct fw_ohci *ohci = pci_get_drvdata(dev);
3822  	int err;
3823  
3824  	software_reset(ohci);
3825  	err = pci_save_state(dev);
3826  	if (err) {
3827  		ohci_err(ohci, "pci_save_state failed\n");
3828  		return err;
3829  	}
3830  	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3831  	if (err)
3832  		ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3833  	pmac_ohci_off(dev);
3834  
3835  	return 0;
3836  }
3837  
pci_resume(struct pci_dev * dev)3838  static int pci_resume(struct pci_dev *dev)
3839  {
3840  	struct fw_ohci *ohci = pci_get_drvdata(dev);
3841  	int err;
3842  
3843  	pmac_ohci_on(dev);
3844  	pci_set_power_state(dev, PCI_D0);
3845  	pci_restore_state(dev);
3846  	err = pci_enable_device(dev);
3847  	if (err) {
3848  		ohci_err(ohci, "pci_enable_device failed\n");
3849  		return err;
3850  	}
3851  
3852  	/* Some systems don't setup GUID register on resume from ram  */
3853  	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3854  					!reg_read(ohci, OHCI1394_GUIDHi)) {
3855  		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3856  		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3857  	}
3858  
3859  	err = ohci_enable(&ohci->card, NULL, 0);
3860  	if (err)
3861  		return err;
3862  
3863  	ohci_resume_iso_dma(ohci);
3864  
3865  	return 0;
3866  }
3867  #endif
3868  
3869  static const struct pci_device_id pci_table[] = {
3870  	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3871  	{ }
3872  };
3873  
3874  MODULE_DEVICE_TABLE(pci, pci_table);
3875  
3876  static struct pci_driver fw_ohci_pci_driver = {
3877  	.name		= ohci_driver_name,
3878  	.id_table	= pci_table,
3879  	.probe		= pci_probe,
3880  	.remove		= pci_remove,
3881  #ifdef CONFIG_PM
3882  	.resume		= pci_resume,
3883  	.suspend	= pci_suspend,
3884  #endif
3885  };
3886  
fw_ohci_init(void)3887  static int __init fw_ohci_init(void)
3888  {
3889  	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3890  	if (!selfid_workqueue)
3891  		return -ENOMEM;
3892  
3893  	return pci_register_driver(&fw_ohci_pci_driver);
3894  }
3895  
fw_ohci_cleanup(void)3896  static void __exit fw_ohci_cleanup(void)
3897  {
3898  	pci_unregister_driver(&fw_ohci_pci_driver);
3899  	destroy_workqueue(selfid_workqueue);
3900  }
3901  
3902  module_init(fw_ohci_init);
3903  module_exit(fw_ohci_cleanup);
3904  
3905  MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3906  MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3907  MODULE_LICENSE("GPL");
3908  
3909  /* Provide a module alias so root-on-sbp2 initrds don't break. */
3910  MODULE_ALIAS("ohci1394");
3911