1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for OHCI 1394 controllers
4 *
5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
33
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "core.h"
42 #include "ohci.h"
43
44 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args)
45 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
46 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
47
48 #define DESCRIPTOR_OUTPUT_MORE 0
49 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
50 #define DESCRIPTOR_INPUT_MORE (2 << 12)
51 #define DESCRIPTOR_INPUT_LAST (3 << 12)
52 #define DESCRIPTOR_STATUS (1 << 11)
53 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
54 #define DESCRIPTOR_PING (1 << 7)
55 #define DESCRIPTOR_YY (1 << 6)
56 #define DESCRIPTOR_NO_IRQ (0 << 4)
57 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
58 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
59 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
60 #define DESCRIPTOR_WAIT (3 << 0)
61
62 #define DESCRIPTOR_CMD (0xf << 12)
63
64 struct descriptor {
65 __le16 req_count;
66 __le16 control;
67 __le32 data_address;
68 __le32 branch_address;
69 __le16 res_count;
70 __le16 transfer_status;
71 } __attribute__((aligned(16)));
72
73 #define CONTROL_SET(regs) (regs)
74 #define CONTROL_CLEAR(regs) ((regs) + 4)
75 #define COMMAND_PTR(regs) ((regs) + 12)
76 #define CONTEXT_MATCH(regs) ((regs) + 16)
77
78 #define AR_BUFFER_SIZE (32*1024)
79 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
80 /* we need at least two pages for proper list management */
81 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
82
83 #define MAX_ASYNC_PAYLOAD 4096
84 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
85 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
86
87 struct ar_context {
88 struct fw_ohci *ohci;
89 struct page *pages[AR_BUFFERS];
90 void *buffer;
91 struct descriptor *descriptors;
92 dma_addr_t descriptors_bus;
93 void *pointer;
94 unsigned int last_buffer_index;
95 u32 regs;
96 struct tasklet_struct tasklet;
97 };
98
99 struct context;
100
101 typedef int (*descriptor_callback_t)(struct context *ctx,
102 struct descriptor *d,
103 struct descriptor *last);
104
105 /*
106 * A buffer that contains a block of DMA-able coherent memory used for
107 * storing a portion of a DMA descriptor program.
108 */
109 struct descriptor_buffer {
110 struct list_head list;
111 dma_addr_t buffer_bus;
112 size_t buffer_size;
113 size_t used;
114 struct descriptor buffer[];
115 };
116
117 struct context {
118 struct fw_ohci *ohci;
119 u32 regs;
120 int total_allocation;
121 u32 current_bus;
122 bool running;
123 bool flushing;
124
125 /*
126 * List of page-sized buffers for storing DMA descriptors.
127 * Head of list contains buffers in use and tail of list contains
128 * free buffers.
129 */
130 struct list_head buffer_list;
131
132 /*
133 * Pointer to a buffer inside buffer_list that contains the tail
134 * end of the current DMA program.
135 */
136 struct descriptor_buffer *buffer_tail;
137
138 /*
139 * The descriptor containing the branch address of the first
140 * descriptor that has not yet been filled by the device.
141 */
142 struct descriptor *last;
143
144 /*
145 * The last descriptor block in the DMA program. It contains the branch
146 * address that must be updated upon appending a new descriptor.
147 */
148 struct descriptor *prev;
149 int prev_z;
150
151 descriptor_callback_t callback;
152
153 struct tasklet_struct tasklet;
154 };
155
156 #define IT_HEADER_SY(v) ((v) << 0)
157 #define IT_HEADER_TCODE(v) ((v) << 4)
158 #define IT_HEADER_CHANNEL(v) ((v) << 8)
159 #define IT_HEADER_TAG(v) ((v) << 14)
160 #define IT_HEADER_SPEED(v) ((v) << 16)
161 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
162
163 struct iso_context {
164 struct fw_iso_context base;
165 struct context context;
166 void *header;
167 size_t header_length;
168 unsigned long flushing_completions;
169 u32 mc_buffer_bus;
170 u16 mc_completed;
171 u16 last_timestamp;
172 u8 sync;
173 u8 tags;
174 };
175
176 #define CONFIG_ROM_SIZE 1024
177
178 struct fw_ohci {
179 struct fw_card card;
180
181 __iomem char *registers;
182 int node_id;
183 int generation;
184 int request_generation; /* for timestamping incoming requests */
185 unsigned quirks;
186 unsigned int pri_req_max;
187 u32 bus_time;
188 bool bus_time_running;
189 bool is_root;
190 bool csr_state_setclear_abdicate;
191 int n_ir;
192 int n_it;
193 /*
194 * Spinlock for accessing fw_ohci data. Never call out of
195 * this driver with this lock held.
196 */
197 spinlock_t lock;
198
199 struct mutex phy_reg_mutex;
200
201 void *misc_buffer;
202 dma_addr_t misc_buffer_bus;
203
204 struct ar_context ar_request_ctx;
205 struct ar_context ar_response_ctx;
206 struct context at_request_ctx;
207 struct context at_response_ctx;
208
209 u32 it_context_support;
210 u32 it_context_mask; /* unoccupied IT contexts */
211 struct iso_context *it_context_list;
212 u64 ir_context_channels; /* unoccupied channels */
213 u32 ir_context_support;
214 u32 ir_context_mask; /* unoccupied IR contexts */
215 struct iso_context *ir_context_list;
216 u64 mc_channels; /* channels in use by the multichannel IR context */
217 bool mc_allocated;
218
219 __be32 *config_rom;
220 dma_addr_t config_rom_bus;
221 __be32 *next_config_rom;
222 dma_addr_t next_config_rom_bus;
223 __be32 next_header;
224
225 __le32 *self_id;
226 dma_addr_t self_id_bus;
227 struct work_struct bus_reset_work;
228
229 u32 self_id_buffer[512];
230 };
231
232 static struct workqueue_struct *selfid_workqueue;
233
fw_ohci(struct fw_card * card)234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 {
236 return container_of(card, struct fw_ohci, card);
237 }
238
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
240 #define IR_CONTEXT_BUFFER_FILL 0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
245
246 #define CONTEXT_RUN 0x8000
247 #define CONTEXT_WAKE 0x1000
248 #define CONTEXT_DEAD 0x0800
249 #define CONTEXT_ACTIVE 0x0400
250
251 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
254
255 #define OHCI1394_REGISTER_SIZE 0x800
256 #define OHCI1394_PCI_HCI_Control 0x40
257 #define SELF_ID_BUF_SIZE 0x800
258 #define OHCI_TCODE_PHY_PACKET 0x0e
259 #define OHCI_VERSION_1_1 0x010010
260
261 static char ohci_driver_name[] = KBUILD_MODNAME;
262
263 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
264 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
265 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
268 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
269 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
270 #define PCI_DEVICE_ID_VIA_VT630X 0x3044
271 #define PCI_REV_ID_VIA_VT6306 0x46
272 #define PCI_DEVICE_ID_VIA_VT6315 0x3403
273
274 #define QUIRK_CYCLE_TIMER 0x1
275 #define QUIRK_RESET_PACKET 0x2
276 #define QUIRK_BE_HEADERS 0x4
277 #define QUIRK_NO_1394A 0x8
278 #define QUIRK_NO_MSI 0x10
279 #define QUIRK_TI_SLLZ059 0x20
280 #define QUIRK_IR_WAKE 0x40
281
282 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
283 // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
284 // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
285 // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
286 // while it is probable due to detection of any type of PCIe error.
287 #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ 0x80000000
288
289 #if IS_ENABLED(CONFIG_X86)
290
has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci * ohci)291 static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
292 {
293 return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
294 }
295
296 #define PCI_DEVICE_ID_ASMEDIA_ASM108X 0x1080
297
detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev * pdev)298 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
299 {
300 const struct pci_dev *pcie_to_pci_bridge;
301
302 // Detect any type of AMD Ryzen machine.
303 if (!static_cpu_has(X86_FEATURE_ZEN))
304 return false;
305
306 // Detect VIA VT6306/6307/6308.
307 if (pdev->vendor != PCI_VENDOR_ID_VIA)
308 return false;
309 if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
310 return false;
311
312 // Detect Asmedia ASM1083/1085.
313 pcie_to_pci_bridge = pdev->bus->self;
314 if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
315 return false;
316 if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
317 return false;
318
319 return true;
320 }
321
322 #else
323 #define has_reboot_by_cycle_timer_read_quirk(ohci) false
324 #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev) false
325 #endif
326
327 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
328 static const struct {
329 unsigned short vendor, device, revision, flags;
330 } ohci_quirks[] = {
331 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
332 QUIRK_CYCLE_TIMER},
333
334 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
335 QUIRK_BE_HEADERS},
336
337 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
338 QUIRK_NO_MSI},
339
340 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
341 QUIRK_RESET_PACKET},
342
343 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
344 QUIRK_NO_MSI},
345
346 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
347 QUIRK_CYCLE_TIMER},
348
349 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
350 QUIRK_NO_MSI},
351
352 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
353 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
354
355 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
356 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
357
358 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
359 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
360
361 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
362 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
363
364 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
365 QUIRK_RESET_PACKET},
366
367 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
368 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
369
370 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
371 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
372
373 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
374 QUIRK_NO_MSI},
375
376 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
377 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
378 };
379
380 /* This overrides anything that was found in ohci_quirks[]. */
381 static int param_quirks;
382 module_param_named(quirks, param_quirks, int, 0644);
383 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
384 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
385 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
386 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
387 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
388 ", disable MSI = " __stringify(QUIRK_NO_MSI)
389 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
390 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE)
391 ")");
392
393 #define OHCI_PARAM_DEBUG_AT_AR 1
394 #define OHCI_PARAM_DEBUG_SELFIDS 2
395 #define OHCI_PARAM_DEBUG_IRQS 4
396 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
397
398 static int param_debug;
399 module_param_named(debug, param_debug, int, 0644);
400 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
401 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
402 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
403 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
404 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
405 ", or a combination, or all = -1)");
406
407 static bool param_remote_dma;
408 module_param_named(remote_dma, param_remote_dma, bool, 0444);
409 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
410
log_irqs(struct fw_ohci * ohci,u32 evt)411 static void log_irqs(struct fw_ohci *ohci, u32 evt)
412 {
413 if (likely(!(param_debug &
414 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
415 return;
416
417 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
418 !(evt & OHCI1394_busReset))
419 return;
420
421 ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
422 evt & OHCI1394_selfIDComplete ? " selfID" : "",
423 evt & OHCI1394_RQPkt ? " AR_req" : "",
424 evt & OHCI1394_RSPkt ? " AR_resp" : "",
425 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
426 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
427 evt & OHCI1394_isochRx ? " IR" : "",
428 evt & OHCI1394_isochTx ? " IT" : "",
429 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
430 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
431 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
432 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
433 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
434 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
435 evt & OHCI1394_busReset ? " busReset" : "",
436 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
437 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
438 OHCI1394_respTxComplete | OHCI1394_isochRx |
439 OHCI1394_isochTx | OHCI1394_postedWriteErr |
440 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
441 OHCI1394_cycleInconsistent |
442 OHCI1394_regAccessFail | OHCI1394_busReset)
443 ? " ?" : "");
444 }
445
446 static const char *speed[] = {
447 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
448 };
449 static const char *power[] = {
450 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
451 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
452 };
453 static const char port[] = { '.', '-', 'p', 'c', };
454
_p(u32 * s,int shift)455 static char _p(u32 *s, int shift)
456 {
457 return port[*s >> shift & 3];
458 }
459
log_selfids(struct fw_ohci * ohci,int generation,int self_id_count)460 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
461 {
462 u32 *s;
463
464 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
465 return;
466
467 ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
468 self_id_count, generation, ohci->node_id);
469
470 for (s = ohci->self_id_buffer; self_id_count--; ++s)
471 if ((*s & 1 << 23) == 0)
472 ohci_notice(ohci,
473 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
474 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
475 speed[*s >> 14 & 3], *s >> 16 & 63,
476 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
477 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
478 else
479 ohci_notice(ohci,
480 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
481 *s, *s >> 24 & 63,
482 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
483 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
484 }
485
486 static const char *evts[] = {
487 [0x00] = "evt_no_status", [0x01] = "-reserved-",
488 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
489 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
490 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
491 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
492 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
493 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
494 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
495 [0x10] = "-reserved-", [0x11] = "ack_complete",
496 [0x12] = "ack_pending ", [0x13] = "-reserved-",
497 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
498 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
499 [0x18] = "-reserved-", [0x19] = "-reserved-",
500 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
501 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
502 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
503 [0x20] = "pending/cancelled",
504 };
505 static const char *tcodes[] = {
506 [0x0] = "QW req", [0x1] = "BW req",
507 [0x2] = "W resp", [0x3] = "-reserved-",
508 [0x4] = "QR req", [0x5] = "BR req",
509 [0x6] = "QR resp", [0x7] = "BR resp",
510 [0x8] = "cycle start", [0x9] = "Lk req",
511 [0xa] = "async stream packet", [0xb] = "Lk resp",
512 [0xc] = "-reserved-", [0xd] = "-reserved-",
513 [0xe] = "link internal", [0xf] = "-reserved-",
514 };
515
log_ar_at_event(struct fw_ohci * ohci,char dir,int speed,u32 * header,int evt)516 static void log_ar_at_event(struct fw_ohci *ohci,
517 char dir, int speed, u32 *header, int evt)
518 {
519 int tcode = header[0] >> 4 & 0xf;
520 char specific[12];
521
522 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
523 return;
524
525 if (unlikely(evt >= ARRAY_SIZE(evts)))
526 evt = 0x1f;
527
528 if (evt == OHCI1394_evt_bus_reset) {
529 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
530 dir, (header[2] >> 16) & 0xff);
531 return;
532 }
533
534 switch (tcode) {
535 case 0x0: case 0x6: case 0x8:
536 snprintf(specific, sizeof(specific), " = %08x",
537 be32_to_cpu((__force __be32)header[3]));
538 break;
539 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
540 snprintf(specific, sizeof(specific), " %x,%x",
541 header[3] >> 16, header[3] & 0xffff);
542 break;
543 default:
544 specific[0] = '\0';
545 }
546
547 switch (tcode) {
548 case 0xa:
549 ohci_notice(ohci, "A%c %s, %s\n",
550 dir, evts[evt], tcodes[tcode]);
551 break;
552 case 0xe:
553 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
554 dir, evts[evt], header[1], header[2]);
555 break;
556 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
557 ohci_notice(ohci,
558 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
559 dir, speed, header[0] >> 10 & 0x3f,
560 header[1] >> 16, header[0] >> 16, evts[evt],
561 tcodes[tcode], header[1] & 0xffff, header[2], specific);
562 break;
563 default:
564 ohci_notice(ohci,
565 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
566 dir, speed, header[0] >> 10 & 0x3f,
567 header[1] >> 16, header[0] >> 16, evts[evt],
568 tcodes[tcode], specific);
569 }
570 }
571
reg_write(const struct fw_ohci * ohci,int offset,u32 data)572 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
573 {
574 writel(data, ohci->registers + offset);
575 }
576
reg_read(const struct fw_ohci * ohci,int offset)577 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
578 {
579 return readl(ohci->registers + offset);
580 }
581
flush_writes(const struct fw_ohci * ohci)582 static inline void flush_writes(const struct fw_ohci *ohci)
583 {
584 /* Do a dummy read to flush writes. */
585 reg_read(ohci, OHCI1394_Version);
586 }
587
588 /*
589 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
590 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
591 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
592 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
593 */
read_phy_reg(struct fw_ohci * ohci,int addr)594 static int read_phy_reg(struct fw_ohci *ohci, int addr)
595 {
596 u32 val;
597 int i;
598
599 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
600 for (i = 0; i < 3 + 100; i++) {
601 val = reg_read(ohci, OHCI1394_PhyControl);
602 if (!~val)
603 return -ENODEV; /* Card was ejected. */
604
605 if (val & OHCI1394_PhyControl_ReadDone)
606 return OHCI1394_PhyControl_ReadData(val);
607
608 /*
609 * Try a few times without waiting. Sleeping is necessary
610 * only when the link/PHY interface is busy.
611 */
612 if (i >= 3)
613 msleep(1);
614 }
615 ohci_err(ohci, "failed to read phy reg %d\n", addr);
616 dump_stack();
617
618 return -EBUSY;
619 }
620
write_phy_reg(const struct fw_ohci * ohci,int addr,u32 val)621 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
622 {
623 int i;
624
625 reg_write(ohci, OHCI1394_PhyControl,
626 OHCI1394_PhyControl_Write(addr, val));
627 for (i = 0; i < 3 + 100; i++) {
628 val = reg_read(ohci, OHCI1394_PhyControl);
629 if (!~val)
630 return -ENODEV; /* Card was ejected. */
631
632 if (!(val & OHCI1394_PhyControl_WritePending))
633 return 0;
634
635 if (i >= 3)
636 msleep(1);
637 }
638 ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
639 dump_stack();
640
641 return -EBUSY;
642 }
643
update_phy_reg(struct fw_ohci * ohci,int addr,int clear_bits,int set_bits)644 static int update_phy_reg(struct fw_ohci *ohci, int addr,
645 int clear_bits, int set_bits)
646 {
647 int ret = read_phy_reg(ohci, addr);
648 if (ret < 0)
649 return ret;
650
651 /*
652 * The interrupt status bits are cleared by writing a one bit.
653 * Avoid clearing them unless explicitly requested in set_bits.
654 */
655 if (addr == 5)
656 clear_bits |= PHY_INT_STATUS_BITS;
657
658 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
659 }
660
read_paged_phy_reg(struct fw_ohci * ohci,int page,int addr)661 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
662 {
663 int ret;
664
665 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
666 if (ret < 0)
667 return ret;
668
669 return read_phy_reg(ohci, addr);
670 }
671
ohci_read_phy_reg(struct fw_card * card,int addr)672 static int ohci_read_phy_reg(struct fw_card *card, int addr)
673 {
674 struct fw_ohci *ohci = fw_ohci(card);
675 int ret;
676
677 mutex_lock(&ohci->phy_reg_mutex);
678 ret = read_phy_reg(ohci, addr);
679 mutex_unlock(&ohci->phy_reg_mutex);
680
681 return ret;
682 }
683
ohci_update_phy_reg(struct fw_card * card,int addr,int clear_bits,int set_bits)684 static int ohci_update_phy_reg(struct fw_card *card, int addr,
685 int clear_bits, int set_bits)
686 {
687 struct fw_ohci *ohci = fw_ohci(card);
688 int ret;
689
690 mutex_lock(&ohci->phy_reg_mutex);
691 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
692 mutex_unlock(&ohci->phy_reg_mutex);
693
694 return ret;
695 }
696
ar_buffer_bus(struct ar_context * ctx,unsigned int i)697 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
698 {
699 return page_private(ctx->pages[i]);
700 }
701
ar_context_link_page(struct ar_context * ctx,unsigned int index)702 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
703 {
704 struct descriptor *d;
705
706 d = &ctx->descriptors[index];
707 d->branch_address &= cpu_to_le32(~0xf);
708 d->res_count = cpu_to_le16(PAGE_SIZE);
709 d->transfer_status = 0;
710
711 wmb(); /* finish init of new descriptors before branch_address update */
712 d = &ctx->descriptors[ctx->last_buffer_index];
713 d->branch_address |= cpu_to_le32(1);
714
715 ctx->last_buffer_index = index;
716
717 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
718 }
719
ar_context_release(struct ar_context * ctx)720 static void ar_context_release(struct ar_context *ctx)
721 {
722 struct device *dev = ctx->ohci->card.device;
723 unsigned int i;
724
725 if (!ctx->buffer)
726 return;
727
728 vunmap(ctx->buffer);
729
730 for (i = 0; i < AR_BUFFERS; i++) {
731 if (ctx->pages[i])
732 dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
733 ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
734 }
735 }
736
ar_context_abort(struct ar_context * ctx,const char * error_msg)737 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
738 {
739 struct fw_ohci *ohci = ctx->ohci;
740
741 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
742 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
743 flush_writes(ohci);
744
745 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
746 }
747 /* FIXME: restart? */
748 }
749
ar_next_buffer_index(unsigned int index)750 static inline unsigned int ar_next_buffer_index(unsigned int index)
751 {
752 return (index + 1) % AR_BUFFERS;
753 }
754
ar_first_buffer_index(struct ar_context * ctx)755 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
756 {
757 return ar_next_buffer_index(ctx->last_buffer_index);
758 }
759
760 /*
761 * We search for the buffer that contains the last AR packet DMA data written
762 * by the controller.
763 */
ar_search_last_active_buffer(struct ar_context * ctx,unsigned int * buffer_offset)764 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
765 unsigned int *buffer_offset)
766 {
767 unsigned int i, next_i, last = ctx->last_buffer_index;
768 __le16 res_count, next_res_count;
769
770 i = ar_first_buffer_index(ctx);
771 res_count = READ_ONCE(ctx->descriptors[i].res_count);
772
773 /* A buffer that is not yet completely filled must be the last one. */
774 while (i != last && res_count == 0) {
775
776 /* Peek at the next descriptor. */
777 next_i = ar_next_buffer_index(i);
778 rmb(); /* read descriptors in order */
779 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
780 /*
781 * If the next descriptor is still empty, we must stop at this
782 * descriptor.
783 */
784 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
785 /*
786 * The exception is when the DMA data for one packet is
787 * split over three buffers; in this case, the middle
788 * buffer's descriptor might be never updated by the
789 * controller and look still empty, and we have to peek
790 * at the third one.
791 */
792 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
793 next_i = ar_next_buffer_index(next_i);
794 rmb();
795 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
796 if (next_res_count != cpu_to_le16(PAGE_SIZE))
797 goto next_buffer_is_active;
798 }
799
800 break;
801 }
802
803 next_buffer_is_active:
804 i = next_i;
805 res_count = next_res_count;
806 }
807
808 rmb(); /* read res_count before the DMA data */
809
810 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
811 if (*buffer_offset > PAGE_SIZE) {
812 *buffer_offset = 0;
813 ar_context_abort(ctx, "corrupted descriptor");
814 }
815
816 return i;
817 }
818
ar_sync_buffers_for_cpu(struct ar_context * ctx,unsigned int end_buffer_index,unsigned int end_buffer_offset)819 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
820 unsigned int end_buffer_index,
821 unsigned int end_buffer_offset)
822 {
823 unsigned int i;
824
825 i = ar_first_buffer_index(ctx);
826 while (i != end_buffer_index) {
827 dma_sync_single_for_cpu(ctx->ohci->card.device,
828 ar_buffer_bus(ctx, i),
829 PAGE_SIZE, DMA_FROM_DEVICE);
830 i = ar_next_buffer_index(i);
831 }
832 if (end_buffer_offset > 0)
833 dma_sync_single_for_cpu(ctx->ohci->card.device,
834 ar_buffer_bus(ctx, i),
835 end_buffer_offset, DMA_FROM_DEVICE);
836 }
837
838 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
839 #define cond_le32_to_cpu(v) \
840 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
841 #else
842 #define cond_le32_to_cpu(v) le32_to_cpu(v)
843 #endif
844
handle_ar_packet(struct ar_context * ctx,__le32 * buffer)845 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
846 {
847 struct fw_ohci *ohci = ctx->ohci;
848 struct fw_packet p;
849 u32 status, length, tcode;
850 int evt;
851
852 p.header[0] = cond_le32_to_cpu(buffer[0]);
853 p.header[1] = cond_le32_to_cpu(buffer[1]);
854 p.header[2] = cond_le32_to_cpu(buffer[2]);
855
856 tcode = (p.header[0] >> 4) & 0x0f;
857 switch (tcode) {
858 case TCODE_WRITE_QUADLET_REQUEST:
859 case TCODE_READ_QUADLET_RESPONSE:
860 p.header[3] = (__force __u32) buffer[3];
861 p.header_length = 16;
862 p.payload_length = 0;
863 break;
864
865 case TCODE_READ_BLOCK_REQUEST :
866 p.header[3] = cond_le32_to_cpu(buffer[3]);
867 p.header_length = 16;
868 p.payload_length = 0;
869 break;
870
871 case TCODE_WRITE_BLOCK_REQUEST:
872 case TCODE_READ_BLOCK_RESPONSE:
873 case TCODE_LOCK_REQUEST:
874 case TCODE_LOCK_RESPONSE:
875 p.header[3] = cond_le32_to_cpu(buffer[3]);
876 p.header_length = 16;
877 p.payload_length = p.header[3] >> 16;
878 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
879 ar_context_abort(ctx, "invalid packet length");
880 return NULL;
881 }
882 break;
883
884 case TCODE_WRITE_RESPONSE:
885 case TCODE_READ_QUADLET_REQUEST:
886 case OHCI_TCODE_PHY_PACKET:
887 p.header_length = 12;
888 p.payload_length = 0;
889 break;
890
891 default:
892 ar_context_abort(ctx, "invalid tcode");
893 return NULL;
894 }
895
896 p.payload = (void *) buffer + p.header_length;
897
898 /* FIXME: What to do about evt_* errors? */
899 length = (p.header_length + p.payload_length + 3) / 4;
900 status = cond_le32_to_cpu(buffer[length]);
901 evt = (status >> 16) & 0x1f;
902
903 p.ack = evt - 16;
904 p.speed = (status >> 21) & 0x7;
905 p.timestamp = status & 0xffff;
906 p.generation = ohci->request_generation;
907
908 log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
909
910 /*
911 * Several controllers, notably from NEC and VIA, forget to
912 * write ack_complete status at PHY packet reception.
913 */
914 if (evt == OHCI1394_evt_no_status &&
915 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
916 p.ack = ACK_COMPLETE;
917
918 /*
919 * The OHCI bus reset handler synthesizes a PHY packet with
920 * the new generation number when a bus reset happens (see
921 * section 8.4.2.3). This helps us determine when a request
922 * was received and make sure we send the response in the same
923 * generation. We only need this for requests; for responses
924 * we use the unique tlabel for finding the matching
925 * request.
926 *
927 * Alas some chips sometimes emit bus reset packets with a
928 * wrong generation. We set the correct generation for these
929 * at a slightly incorrect time (in bus_reset_work).
930 */
931 if (evt == OHCI1394_evt_bus_reset) {
932 if (!(ohci->quirks & QUIRK_RESET_PACKET))
933 ohci->request_generation = (p.header[2] >> 16) & 0xff;
934 } else if (ctx == &ohci->ar_request_ctx) {
935 fw_core_handle_request(&ohci->card, &p);
936 } else {
937 fw_core_handle_response(&ohci->card, &p);
938 }
939
940 return buffer + length + 1;
941 }
942
handle_ar_packets(struct ar_context * ctx,void * p,void * end)943 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
944 {
945 void *next;
946
947 while (p < end) {
948 next = handle_ar_packet(ctx, p);
949 if (!next)
950 return p;
951 p = next;
952 }
953
954 return p;
955 }
956
ar_recycle_buffers(struct ar_context * ctx,unsigned int end_buffer)957 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
958 {
959 unsigned int i;
960
961 i = ar_first_buffer_index(ctx);
962 while (i != end_buffer) {
963 dma_sync_single_for_device(ctx->ohci->card.device,
964 ar_buffer_bus(ctx, i),
965 PAGE_SIZE, DMA_FROM_DEVICE);
966 ar_context_link_page(ctx, i);
967 i = ar_next_buffer_index(i);
968 }
969 }
970
ar_context_tasklet(unsigned long data)971 static void ar_context_tasklet(unsigned long data)
972 {
973 struct ar_context *ctx = (struct ar_context *)data;
974 unsigned int end_buffer_index, end_buffer_offset;
975 void *p, *end;
976
977 p = ctx->pointer;
978 if (!p)
979 return;
980
981 end_buffer_index = ar_search_last_active_buffer(ctx,
982 &end_buffer_offset);
983 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
984 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
985
986 if (end_buffer_index < ar_first_buffer_index(ctx)) {
987 /*
988 * The filled part of the overall buffer wraps around; handle
989 * all packets up to the buffer end here. If the last packet
990 * wraps around, its tail will be visible after the buffer end
991 * because the buffer start pages are mapped there again.
992 */
993 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
994 p = handle_ar_packets(ctx, p, buffer_end);
995 if (p < buffer_end)
996 goto error;
997 /* adjust p to point back into the actual buffer */
998 p -= AR_BUFFERS * PAGE_SIZE;
999 }
1000
1001 p = handle_ar_packets(ctx, p, end);
1002 if (p != end) {
1003 if (p > end)
1004 ar_context_abort(ctx, "inconsistent descriptor");
1005 goto error;
1006 }
1007
1008 ctx->pointer = p;
1009 ar_recycle_buffers(ctx, end_buffer_index);
1010
1011 return;
1012
1013 error:
1014 ctx->pointer = NULL;
1015 }
1016
ar_context_init(struct ar_context * ctx,struct fw_ohci * ohci,unsigned int descriptors_offset,u32 regs)1017 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1018 unsigned int descriptors_offset, u32 regs)
1019 {
1020 struct device *dev = ohci->card.device;
1021 unsigned int i;
1022 dma_addr_t dma_addr;
1023 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1024 struct descriptor *d;
1025
1026 ctx->regs = regs;
1027 ctx->ohci = ohci;
1028 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
1029
1030 for (i = 0; i < AR_BUFFERS; i++) {
1031 ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1032 DMA_FROM_DEVICE, GFP_KERNEL);
1033 if (!ctx->pages[i])
1034 goto out_of_memory;
1035 set_page_private(ctx->pages[i], dma_addr);
1036 dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1037 DMA_FROM_DEVICE);
1038 }
1039
1040 for (i = 0; i < AR_BUFFERS; i++)
1041 pages[i] = ctx->pages[i];
1042 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1043 pages[AR_BUFFERS + i] = ctx->pages[i];
1044 ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1045 if (!ctx->buffer)
1046 goto out_of_memory;
1047
1048 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1049 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1050
1051 for (i = 0; i < AR_BUFFERS; i++) {
1052 d = &ctx->descriptors[i];
1053 d->req_count = cpu_to_le16(PAGE_SIZE);
1054 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1055 DESCRIPTOR_STATUS |
1056 DESCRIPTOR_BRANCH_ALWAYS);
1057 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1058 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1059 ar_next_buffer_index(i) * sizeof(struct descriptor));
1060 }
1061
1062 return 0;
1063
1064 out_of_memory:
1065 ar_context_release(ctx);
1066
1067 return -ENOMEM;
1068 }
1069
ar_context_run(struct ar_context * ctx)1070 static void ar_context_run(struct ar_context *ctx)
1071 {
1072 unsigned int i;
1073
1074 for (i = 0; i < AR_BUFFERS; i++)
1075 ar_context_link_page(ctx, i);
1076
1077 ctx->pointer = ctx->buffer;
1078
1079 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1080 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1081 }
1082
find_branch_descriptor(struct descriptor * d,int z)1083 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1084 {
1085 __le16 branch;
1086
1087 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1088
1089 /* figure out which descriptor the branch address goes in */
1090 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1091 return d;
1092 else
1093 return d + z - 1;
1094 }
1095
context_tasklet(unsigned long data)1096 static void context_tasklet(unsigned long data)
1097 {
1098 struct context *ctx = (struct context *) data;
1099 struct descriptor *d, *last;
1100 u32 address;
1101 int z;
1102 struct descriptor_buffer *desc;
1103
1104 desc = list_entry(ctx->buffer_list.next,
1105 struct descriptor_buffer, list);
1106 last = ctx->last;
1107 while (last->branch_address != 0) {
1108 struct descriptor_buffer *old_desc = desc;
1109 address = le32_to_cpu(last->branch_address);
1110 z = address & 0xf;
1111 address &= ~0xf;
1112 ctx->current_bus = address;
1113
1114 /* If the branch address points to a buffer outside of the
1115 * current buffer, advance to the next buffer. */
1116 if (address < desc->buffer_bus ||
1117 address >= desc->buffer_bus + desc->used)
1118 desc = list_entry(desc->list.next,
1119 struct descriptor_buffer, list);
1120 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1121 last = find_branch_descriptor(d, z);
1122
1123 if (!ctx->callback(ctx, d, last))
1124 break;
1125
1126 if (old_desc != desc) {
1127 /* If we've advanced to the next buffer, move the
1128 * previous buffer to the free list. */
1129 unsigned long flags;
1130 old_desc->used = 0;
1131 spin_lock_irqsave(&ctx->ohci->lock, flags);
1132 list_move_tail(&old_desc->list, &ctx->buffer_list);
1133 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1134 }
1135 ctx->last = last;
1136 }
1137 }
1138
1139 /*
1140 * Allocate a new buffer and add it to the list of free buffers for this
1141 * context. Must be called with ohci->lock held.
1142 */
context_add_buffer(struct context * ctx)1143 static int context_add_buffer(struct context *ctx)
1144 {
1145 struct descriptor_buffer *desc;
1146 dma_addr_t bus_addr;
1147 int offset;
1148
1149 /*
1150 * 16MB of descriptors should be far more than enough for any DMA
1151 * program. This will catch run-away userspace or DoS attacks.
1152 */
1153 if (ctx->total_allocation >= 16*1024*1024)
1154 return -ENOMEM;
1155
1156 desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
1157 if (!desc)
1158 return -ENOMEM;
1159
1160 offset = (void *)&desc->buffer - (void *)desc;
1161 /*
1162 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1163 * for descriptors, even 0x10-byte ones. This can cause page faults when
1164 * an IOMMU is in use and the oversized read crosses a page boundary.
1165 * Work around this by always leaving at least 0x10 bytes of padding.
1166 */
1167 desc->buffer_size = PAGE_SIZE - offset - 0x10;
1168 desc->buffer_bus = bus_addr + offset;
1169 desc->used = 0;
1170
1171 list_add_tail(&desc->list, &ctx->buffer_list);
1172 ctx->total_allocation += PAGE_SIZE;
1173
1174 return 0;
1175 }
1176
context_init(struct context * ctx,struct fw_ohci * ohci,u32 regs,descriptor_callback_t callback)1177 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1178 u32 regs, descriptor_callback_t callback)
1179 {
1180 ctx->ohci = ohci;
1181 ctx->regs = regs;
1182 ctx->total_allocation = 0;
1183
1184 INIT_LIST_HEAD(&ctx->buffer_list);
1185 if (context_add_buffer(ctx) < 0)
1186 return -ENOMEM;
1187
1188 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1189 struct descriptor_buffer, list);
1190
1191 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1192 ctx->callback = callback;
1193
1194 /*
1195 * We put a dummy descriptor in the buffer that has a NULL
1196 * branch address and looks like it's been sent. That way we
1197 * have a descriptor to append DMA programs to.
1198 */
1199 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1200 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1201 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1202 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1203 ctx->last = ctx->buffer_tail->buffer;
1204 ctx->prev = ctx->buffer_tail->buffer;
1205 ctx->prev_z = 1;
1206
1207 return 0;
1208 }
1209
context_release(struct context * ctx)1210 static void context_release(struct context *ctx)
1211 {
1212 struct fw_card *card = &ctx->ohci->card;
1213 struct descriptor_buffer *desc, *tmp;
1214
1215 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1216 dmam_free_coherent(card->device, PAGE_SIZE, desc,
1217 desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1218 }
1219 }
1220
1221 /* Must be called with ohci->lock held */
context_get_descriptors(struct context * ctx,int z,dma_addr_t * d_bus)1222 static struct descriptor *context_get_descriptors(struct context *ctx,
1223 int z, dma_addr_t *d_bus)
1224 {
1225 struct descriptor *d = NULL;
1226 struct descriptor_buffer *desc = ctx->buffer_tail;
1227
1228 if (z * sizeof(*d) > desc->buffer_size)
1229 return NULL;
1230
1231 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1232 /* No room for the descriptor in this buffer, so advance to the
1233 * next one. */
1234
1235 if (desc->list.next == &ctx->buffer_list) {
1236 /* If there is no free buffer next in the list,
1237 * allocate one. */
1238 if (context_add_buffer(ctx) < 0)
1239 return NULL;
1240 }
1241 desc = list_entry(desc->list.next,
1242 struct descriptor_buffer, list);
1243 ctx->buffer_tail = desc;
1244 }
1245
1246 d = desc->buffer + desc->used / sizeof(*d);
1247 memset(d, 0, z * sizeof(*d));
1248 *d_bus = desc->buffer_bus + desc->used;
1249
1250 return d;
1251 }
1252
context_run(struct context * ctx,u32 extra)1253 static void context_run(struct context *ctx, u32 extra)
1254 {
1255 struct fw_ohci *ohci = ctx->ohci;
1256
1257 reg_write(ohci, COMMAND_PTR(ctx->regs),
1258 le32_to_cpu(ctx->last->branch_address));
1259 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1260 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1261 ctx->running = true;
1262 flush_writes(ohci);
1263 }
1264
context_append(struct context * ctx,struct descriptor * d,int z,int extra)1265 static void context_append(struct context *ctx,
1266 struct descriptor *d, int z, int extra)
1267 {
1268 dma_addr_t d_bus;
1269 struct descriptor_buffer *desc = ctx->buffer_tail;
1270 struct descriptor *d_branch;
1271
1272 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1273
1274 desc->used += (z + extra) * sizeof(*d);
1275
1276 wmb(); /* finish init of new descriptors before branch_address update */
1277
1278 d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1279 d_branch->branch_address = cpu_to_le32(d_bus | z);
1280
1281 /*
1282 * VT6306 incorrectly checks only the single descriptor at the
1283 * CommandPtr when the wake bit is written, so if it's a
1284 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1285 * the branch address in the first descriptor.
1286 *
1287 * Not doing this for transmit contexts since not sure how it interacts
1288 * with skip addresses.
1289 */
1290 if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1291 d_branch != ctx->prev &&
1292 (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1293 cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1294 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1295 }
1296
1297 ctx->prev = d;
1298 ctx->prev_z = z;
1299 }
1300
context_stop(struct context * ctx)1301 static void context_stop(struct context *ctx)
1302 {
1303 struct fw_ohci *ohci = ctx->ohci;
1304 u32 reg;
1305 int i;
1306
1307 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1308 ctx->running = false;
1309
1310 for (i = 0; i < 1000; i++) {
1311 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1312 if ((reg & CONTEXT_ACTIVE) == 0)
1313 return;
1314
1315 if (i)
1316 udelay(10);
1317 }
1318 ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1319 }
1320
1321 struct driver_data {
1322 u8 inline_data[8];
1323 struct fw_packet *packet;
1324 };
1325
1326 /*
1327 * This function apppends a packet to the DMA queue for transmission.
1328 * Must always be called with the ochi->lock held to ensure proper
1329 * generation handling and locking around packet queue manipulation.
1330 */
at_context_queue_packet(struct context * ctx,struct fw_packet * packet)1331 static int at_context_queue_packet(struct context *ctx,
1332 struct fw_packet *packet)
1333 {
1334 struct fw_ohci *ohci = ctx->ohci;
1335 dma_addr_t d_bus, payload_bus;
1336 struct driver_data *driver_data;
1337 struct descriptor *d, *last;
1338 __le32 *header;
1339 int z, tcode;
1340
1341 d = context_get_descriptors(ctx, 4, &d_bus);
1342 if (d == NULL) {
1343 packet->ack = RCODE_SEND_ERROR;
1344 return -1;
1345 }
1346
1347 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1348 d[0].res_count = cpu_to_le16(packet->timestamp);
1349
1350 /*
1351 * The DMA format for asynchronous link packets is different
1352 * from the IEEE1394 layout, so shift the fields around
1353 * accordingly.
1354 */
1355
1356 tcode = (packet->header[0] >> 4) & 0x0f;
1357 header = (__le32 *) &d[1];
1358 switch (tcode) {
1359 case TCODE_WRITE_QUADLET_REQUEST:
1360 case TCODE_WRITE_BLOCK_REQUEST:
1361 case TCODE_WRITE_RESPONSE:
1362 case TCODE_READ_QUADLET_REQUEST:
1363 case TCODE_READ_BLOCK_REQUEST:
1364 case TCODE_READ_QUADLET_RESPONSE:
1365 case TCODE_READ_BLOCK_RESPONSE:
1366 case TCODE_LOCK_REQUEST:
1367 case TCODE_LOCK_RESPONSE:
1368 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1369 (packet->speed << 16));
1370 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1371 (packet->header[0] & 0xffff0000));
1372 header[2] = cpu_to_le32(packet->header[2]);
1373
1374 if (TCODE_IS_BLOCK_PACKET(tcode))
1375 header[3] = cpu_to_le32(packet->header[3]);
1376 else
1377 header[3] = (__force __le32) packet->header[3];
1378
1379 d[0].req_count = cpu_to_le16(packet->header_length);
1380 break;
1381
1382 case TCODE_LINK_INTERNAL:
1383 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1384 (packet->speed << 16));
1385 header[1] = cpu_to_le32(packet->header[1]);
1386 header[2] = cpu_to_le32(packet->header[2]);
1387 d[0].req_count = cpu_to_le16(12);
1388
1389 if (is_ping_packet(&packet->header[1]))
1390 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1391 break;
1392
1393 case TCODE_STREAM_DATA:
1394 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1395 (packet->speed << 16));
1396 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1397 d[0].req_count = cpu_to_le16(8);
1398 break;
1399
1400 default:
1401 /* BUG(); */
1402 packet->ack = RCODE_SEND_ERROR;
1403 return -1;
1404 }
1405
1406 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1407 driver_data = (struct driver_data *) &d[3];
1408 driver_data->packet = packet;
1409 packet->driver_data = driver_data;
1410
1411 if (packet->payload_length > 0) {
1412 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1413 payload_bus = dma_map_single(ohci->card.device,
1414 packet->payload,
1415 packet->payload_length,
1416 DMA_TO_DEVICE);
1417 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1418 packet->ack = RCODE_SEND_ERROR;
1419 return -1;
1420 }
1421 packet->payload_bus = payload_bus;
1422 packet->payload_mapped = true;
1423 } else {
1424 memcpy(driver_data->inline_data, packet->payload,
1425 packet->payload_length);
1426 payload_bus = d_bus + 3 * sizeof(*d);
1427 }
1428
1429 d[2].req_count = cpu_to_le16(packet->payload_length);
1430 d[2].data_address = cpu_to_le32(payload_bus);
1431 last = &d[2];
1432 z = 3;
1433 } else {
1434 last = &d[0];
1435 z = 2;
1436 }
1437
1438 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1439 DESCRIPTOR_IRQ_ALWAYS |
1440 DESCRIPTOR_BRANCH_ALWAYS);
1441
1442 /* FIXME: Document how the locking works. */
1443 if (ohci->generation != packet->generation) {
1444 if (packet->payload_mapped)
1445 dma_unmap_single(ohci->card.device, payload_bus,
1446 packet->payload_length, DMA_TO_DEVICE);
1447 packet->ack = RCODE_GENERATION;
1448 return -1;
1449 }
1450
1451 context_append(ctx, d, z, 4 - z);
1452
1453 if (ctx->running)
1454 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1455 else
1456 context_run(ctx, 0);
1457
1458 return 0;
1459 }
1460
at_context_flush(struct context * ctx)1461 static void at_context_flush(struct context *ctx)
1462 {
1463 tasklet_disable(&ctx->tasklet);
1464
1465 ctx->flushing = true;
1466 context_tasklet((unsigned long)ctx);
1467 ctx->flushing = false;
1468
1469 tasklet_enable(&ctx->tasklet);
1470 }
1471
handle_at_packet(struct context * context,struct descriptor * d,struct descriptor * last)1472 static int handle_at_packet(struct context *context,
1473 struct descriptor *d,
1474 struct descriptor *last)
1475 {
1476 struct driver_data *driver_data;
1477 struct fw_packet *packet;
1478 struct fw_ohci *ohci = context->ohci;
1479 int evt;
1480
1481 if (last->transfer_status == 0 && !context->flushing)
1482 /* This descriptor isn't done yet, stop iteration. */
1483 return 0;
1484
1485 driver_data = (struct driver_data *) &d[3];
1486 packet = driver_data->packet;
1487 if (packet == NULL)
1488 /* This packet was cancelled, just continue. */
1489 return 1;
1490
1491 if (packet->payload_mapped)
1492 dma_unmap_single(ohci->card.device, packet->payload_bus,
1493 packet->payload_length, DMA_TO_DEVICE);
1494
1495 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1496 packet->timestamp = le16_to_cpu(last->res_count);
1497
1498 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1499
1500 switch (evt) {
1501 case OHCI1394_evt_timeout:
1502 /* Async response transmit timed out. */
1503 packet->ack = RCODE_CANCELLED;
1504 break;
1505
1506 case OHCI1394_evt_flushed:
1507 /*
1508 * The packet was flushed should give same error as
1509 * when we try to use a stale generation count.
1510 */
1511 packet->ack = RCODE_GENERATION;
1512 break;
1513
1514 case OHCI1394_evt_missing_ack:
1515 if (context->flushing)
1516 packet->ack = RCODE_GENERATION;
1517 else {
1518 /*
1519 * Using a valid (current) generation count, but the
1520 * node is not on the bus or not sending acks.
1521 */
1522 packet->ack = RCODE_NO_ACK;
1523 }
1524 break;
1525
1526 case ACK_COMPLETE + 0x10:
1527 case ACK_PENDING + 0x10:
1528 case ACK_BUSY_X + 0x10:
1529 case ACK_BUSY_A + 0x10:
1530 case ACK_BUSY_B + 0x10:
1531 case ACK_DATA_ERROR + 0x10:
1532 case ACK_TYPE_ERROR + 0x10:
1533 packet->ack = evt - 0x10;
1534 break;
1535
1536 case OHCI1394_evt_no_status:
1537 if (context->flushing) {
1538 packet->ack = RCODE_GENERATION;
1539 break;
1540 }
1541 fallthrough;
1542
1543 default:
1544 packet->ack = RCODE_SEND_ERROR;
1545 break;
1546 }
1547
1548 packet->callback(packet, &ohci->card, packet->ack);
1549
1550 return 1;
1551 }
1552
1553 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1554 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1555 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1556 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1557 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1558
1559 static u32 get_cycle_time(struct fw_ohci *ohci);
1560
handle_local_rom(struct fw_ohci * ohci,struct fw_packet * packet,u32 csr)1561 static void handle_local_rom(struct fw_ohci *ohci,
1562 struct fw_packet *packet, u32 csr)
1563 {
1564 struct fw_packet response;
1565 int tcode, length, i;
1566
1567 tcode = HEADER_GET_TCODE(packet->header[0]);
1568 if (TCODE_IS_BLOCK_PACKET(tcode))
1569 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1570 else
1571 length = 4;
1572
1573 i = csr - CSR_CONFIG_ROM;
1574 if (i + length > CONFIG_ROM_SIZE) {
1575 fw_fill_response(&response, packet->header,
1576 RCODE_ADDRESS_ERROR, NULL, 0);
1577 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1578 fw_fill_response(&response, packet->header,
1579 RCODE_TYPE_ERROR, NULL, 0);
1580 } else {
1581 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1582 (void *) ohci->config_rom + i, length);
1583 }
1584
1585 // Timestamping on behalf of the hardware.
1586 response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1587 fw_core_handle_response(&ohci->card, &response);
1588 }
1589
handle_local_lock(struct fw_ohci * ohci,struct fw_packet * packet,u32 csr)1590 static void handle_local_lock(struct fw_ohci *ohci,
1591 struct fw_packet *packet, u32 csr)
1592 {
1593 struct fw_packet response;
1594 int tcode, length, ext_tcode, sel, try;
1595 __be32 *payload, lock_old;
1596 u32 lock_arg, lock_data;
1597
1598 tcode = HEADER_GET_TCODE(packet->header[0]);
1599 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1600 payload = packet->payload;
1601 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1602
1603 if (tcode == TCODE_LOCK_REQUEST &&
1604 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1605 lock_arg = be32_to_cpu(payload[0]);
1606 lock_data = be32_to_cpu(payload[1]);
1607 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1608 lock_arg = 0;
1609 lock_data = 0;
1610 } else {
1611 fw_fill_response(&response, packet->header,
1612 RCODE_TYPE_ERROR, NULL, 0);
1613 goto out;
1614 }
1615
1616 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1617 reg_write(ohci, OHCI1394_CSRData, lock_data);
1618 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1619 reg_write(ohci, OHCI1394_CSRControl, sel);
1620
1621 for (try = 0; try < 20; try++)
1622 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1623 lock_old = cpu_to_be32(reg_read(ohci,
1624 OHCI1394_CSRData));
1625 fw_fill_response(&response, packet->header,
1626 RCODE_COMPLETE,
1627 &lock_old, sizeof(lock_old));
1628 goto out;
1629 }
1630
1631 ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1632 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1633
1634 out:
1635 // Timestamping on behalf of the hardware.
1636 response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1637 fw_core_handle_response(&ohci->card, &response);
1638 }
1639
handle_local_request(struct context * ctx,struct fw_packet * packet)1640 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1641 {
1642 u64 offset, csr;
1643
1644 if (ctx == &ctx->ohci->at_request_ctx) {
1645 packet->ack = ACK_PENDING;
1646 packet->callback(packet, &ctx->ohci->card, packet->ack);
1647 }
1648
1649 offset =
1650 ((unsigned long long)
1651 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1652 packet->header[2];
1653 csr = offset - CSR_REGISTER_BASE;
1654
1655 /* Handle config rom reads. */
1656 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1657 handle_local_rom(ctx->ohci, packet, csr);
1658 else switch (csr) {
1659 case CSR_BUS_MANAGER_ID:
1660 case CSR_BANDWIDTH_AVAILABLE:
1661 case CSR_CHANNELS_AVAILABLE_HI:
1662 case CSR_CHANNELS_AVAILABLE_LO:
1663 handle_local_lock(ctx->ohci, packet, csr);
1664 break;
1665 default:
1666 if (ctx == &ctx->ohci->at_request_ctx)
1667 fw_core_handle_request(&ctx->ohci->card, packet);
1668 else
1669 fw_core_handle_response(&ctx->ohci->card, packet);
1670 break;
1671 }
1672
1673 if (ctx == &ctx->ohci->at_response_ctx) {
1674 packet->ack = ACK_COMPLETE;
1675 packet->callback(packet, &ctx->ohci->card, packet->ack);
1676 }
1677 }
1678
at_context_transmit(struct context * ctx,struct fw_packet * packet)1679 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1680 {
1681 unsigned long flags;
1682 int ret;
1683
1684 spin_lock_irqsave(&ctx->ohci->lock, flags);
1685
1686 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1687 ctx->ohci->generation == packet->generation) {
1688 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1689
1690 // Timestamping on behalf of the hardware.
1691 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1692
1693 handle_local_request(ctx, packet);
1694 return;
1695 }
1696
1697 ret = at_context_queue_packet(ctx, packet);
1698 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1699
1700 if (ret < 0) {
1701 // Timestamping on behalf of the hardware.
1702 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ctx->ohci));
1703
1704 packet->callback(packet, &ctx->ohci->card, packet->ack);
1705 }
1706 }
1707
detect_dead_context(struct fw_ohci * ohci,const char * name,unsigned int regs)1708 static void detect_dead_context(struct fw_ohci *ohci,
1709 const char *name, unsigned int regs)
1710 {
1711 u32 ctl;
1712
1713 ctl = reg_read(ohci, CONTROL_SET(regs));
1714 if (ctl & CONTEXT_DEAD)
1715 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1716 name, evts[ctl & 0x1f]);
1717 }
1718
handle_dead_contexts(struct fw_ohci * ohci)1719 static void handle_dead_contexts(struct fw_ohci *ohci)
1720 {
1721 unsigned int i;
1722 char name[8];
1723
1724 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1725 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1726 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1727 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1728 for (i = 0; i < 32; ++i) {
1729 if (!(ohci->it_context_support & (1 << i)))
1730 continue;
1731 sprintf(name, "IT%u", i);
1732 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1733 }
1734 for (i = 0; i < 32; ++i) {
1735 if (!(ohci->ir_context_support & (1 << i)))
1736 continue;
1737 sprintf(name, "IR%u", i);
1738 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1739 }
1740 /* TODO: maybe try to flush and restart the dead contexts */
1741 }
1742
cycle_timer_ticks(u32 cycle_timer)1743 static u32 cycle_timer_ticks(u32 cycle_timer)
1744 {
1745 u32 ticks;
1746
1747 ticks = cycle_timer & 0xfff;
1748 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1749 ticks += (3072 * 8000) * (cycle_timer >> 25);
1750
1751 return ticks;
1752 }
1753
1754 /*
1755 * Some controllers exhibit one or more of the following bugs when updating the
1756 * iso cycle timer register:
1757 * - When the lowest six bits are wrapping around to zero, a read that happens
1758 * at the same time will return garbage in the lowest ten bits.
1759 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1760 * not incremented for about 60 ns.
1761 * - Occasionally, the entire register reads zero.
1762 *
1763 * To catch these, we read the register three times and ensure that the
1764 * difference between each two consecutive reads is approximately the same, i.e.
1765 * less than twice the other. Furthermore, any negative difference indicates an
1766 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1767 * execute, so we have enough precision to compute the ratio of the differences.)
1768 */
get_cycle_time(struct fw_ohci * ohci)1769 static u32 get_cycle_time(struct fw_ohci *ohci)
1770 {
1771 u32 c0, c1, c2;
1772 u32 t0, t1, t2;
1773 s32 diff01, diff12;
1774 int i;
1775
1776 if (has_reboot_by_cycle_timer_read_quirk(ohci))
1777 return 0;
1778
1779 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1780
1781 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1782 i = 0;
1783 c1 = c2;
1784 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1785 do {
1786 c0 = c1;
1787 c1 = c2;
1788 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1789 t0 = cycle_timer_ticks(c0);
1790 t1 = cycle_timer_ticks(c1);
1791 t2 = cycle_timer_ticks(c2);
1792 diff01 = t1 - t0;
1793 diff12 = t2 - t1;
1794 } while ((diff01 <= 0 || diff12 <= 0 ||
1795 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1796 && i++ < 20);
1797 }
1798
1799 return c2;
1800 }
1801
1802 /*
1803 * This function has to be called at least every 64 seconds. The bus_time
1804 * field stores not only the upper 25 bits of the BUS_TIME register but also
1805 * the most significant bit of the cycle timer in bit 6 so that we can detect
1806 * changes in this bit.
1807 */
update_bus_time(struct fw_ohci * ohci)1808 static u32 update_bus_time(struct fw_ohci *ohci)
1809 {
1810 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1811
1812 if (unlikely(!ohci->bus_time_running)) {
1813 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1814 ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1815 (cycle_time_seconds & 0x40);
1816 ohci->bus_time_running = true;
1817 }
1818
1819 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1820 ohci->bus_time += 0x40;
1821
1822 return ohci->bus_time | cycle_time_seconds;
1823 }
1824
get_status_for_port(struct fw_ohci * ohci,int port_index)1825 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1826 {
1827 int reg;
1828
1829 mutex_lock(&ohci->phy_reg_mutex);
1830 reg = write_phy_reg(ohci, 7, port_index);
1831 if (reg >= 0)
1832 reg = read_phy_reg(ohci, 8);
1833 mutex_unlock(&ohci->phy_reg_mutex);
1834 if (reg < 0)
1835 return reg;
1836
1837 switch (reg & 0x0f) {
1838 case 0x06:
1839 return 2; /* is child node (connected to parent node) */
1840 case 0x0e:
1841 return 3; /* is parent node (connected to child node) */
1842 }
1843 return 1; /* not connected */
1844 }
1845
get_self_id_pos(struct fw_ohci * ohci,u32 self_id,int self_id_count)1846 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1847 int self_id_count)
1848 {
1849 int i;
1850 u32 entry;
1851
1852 for (i = 0; i < self_id_count; i++) {
1853 entry = ohci->self_id_buffer[i];
1854 if ((self_id & 0xff000000) == (entry & 0xff000000))
1855 return -1;
1856 if ((self_id & 0xff000000) < (entry & 0xff000000))
1857 return i;
1858 }
1859 return i;
1860 }
1861
initiated_reset(struct fw_ohci * ohci)1862 static int initiated_reset(struct fw_ohci *ohci)
1863 {
1864 int reg;
1865 int ret = 0;
1866
1867 mutex_lock(&ohci->phy_reg_mutex);
1868 reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1869 if (reg >= 0) {
1870 reg = read_phy_reg(ohci, 8);
1871 reg |= 0x40;
1872 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1873 if (reg >= 0) {
1874 reg = read_phy_reg(ohci, 12); /* read register 12 */
1875 if (reg >= 0) {
1876 if ((reg & 0x08) == 0x08) {
1877 /* bit 3 indicates "initiated reset" */
1878 ret = 0x2;
1879 }
1880 }
1881 }
1882 }
1883 mutex_unlock(&ohci->phy_reg_mutex);
1884 return ret;
1885 }
1886
1887 /*
1888 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1889 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1890 * Construct the selfID from phy register contents.
1891 */
find_and_insert_self_id(struct fw_ohci * ohci,int self_id_count)1892 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1893 {
1894 int reg, i, pos, status;
1895 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1896 u32 self_id = 0x8040c800;
1897
1898 reg = reg_read(ohci, OHCI1394_NodeID);
1899 if (!(reg & OHCI1394_NodeID_idValid)) {
1900 ohci_notice(ohci,
1901 "node ID not valid, new bus reset in progress\n");
1902 return -EBUSY;
1903 }
1904 self_id |= ((reg & 0x3f) << 24); /* phy ID */
1905
1906 reg = ohci_read_phy_reg(&ohci->card, 4);
1907 if (reg < 0)
1908 return reg;
1909 self_id |= ((reg & 0x07) << 8); /* power class */
1910
1911 reg = ohci_read_phy_reg(&ohci->card, 1);
1912 if (reg < 0)
1913 return reg;
1914 self_id |= ((reg & 0x3f) << 16); /* gap count */
1915
1916 for (i = 0; i < 3; i++) {
1917 status = get_status_for_port(ohci, i);
1918 if (status < 0)
1919 return status;
1920 self_id |= ((status & 0x3) << (6 - (i * 2)));
1921 }
1922
1923 self_id |= initiated_reset(ohci);
1924
1925 pos = get_self_id_pos(ohci, self_id, self_id_count);
1926 if (pos >= 0) {
1927 memmove(&(ohci->self_id_buffer[pos+1]),
1928 &(ohci->self_id_buffer[pos]),
1929 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1930 ohci->self_id_buffer[pos] = self_id;
1931 self_id_count++;
1932 }
1933 return self_id_count;
1934 }
1935
bus_reset_work(struct work_struct * work)1936 static void bus_reset_work(struct work_struct *work)
1937 {
1938 struct fw_ohci *ohci =
1939 container_of(work, struct fw_ohci, bus_reset_work);
1940 int self_id_count, generation, new_generation, i, j;
1941 u32 reg;
1942 void *free_rom = NULL;
1943 dma_addr_t free_rom_bus = 0;
1944 bool is_new_root;
1945
1946 reg = reg_read(ohci, OHCI1394_NodeID);
1947 if (!(reg & OHCI1394_NodeID_idValid)) {
1948 ohci_notice(ohci,
1949 "node ID not valid, new bus reset in progress\n");
1950 return;
1951 }
1952 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1953 ohci_notice(ohci, "malconfigured bus\n");
1954 return;
1955 }
1956 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1957 OHCI1394_NodeID_nodeNumber);
1958
1959 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1960 if (!(ohci->is_root && is_new_root))
1961 reg_write(ohci, OHCI1394_LinkControlSet,
1962 OHCI1394_LinkControl_cycleMaster);
1963 ohci->is_root = is_new_root;
1964
1965 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1966 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1967 ohci_notice(ohci, "self ID receive error\n");
1968 return;
1969 }
1970 /*
1971 * The count in the SelfIDCount register is the number of
1972 * bytes in the self ID receive buffer. Since we also receive
1973 * the inverted quadlets and a header quadlet, we shift one
1974 * bit extra to get the actual number of self IDs.
1975 */
1976 self_id_count = (reg >> 3) & 0xff;
1977
1978 if (self_id_count > 252) {
1979 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1980 return;
1981 }
1982
1983 generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1984 rmb();
1985
1986 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1987 u32 id = cond_le32_to_cpu(ohci->self_id[i]);
1988 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1989
1990 if (id != ~id2) {
1991 /*
1992 * If the invalid data looks like a cycle start packet,
1993 * it's likely to be the result of the cycle master
1994 * having a wrong gap count. In this case, the self IDs
1995 * so far are valid and should be processed so that the
1996 * bus manager can then correct the gap count.
1997 */
1998 if (id == 0xffff008f) {
1999 ohci_notice(ohci, "ignoring spurious self IDs\n");
2000 self_id_count = j;
2001 break;
2002 }
2003
2004 ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2005 j, self_id_count, id, id2);
2006 return;
2007 }
2008 ohci->self_id_buffer[j] = id;
2009 }
2010
2011 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2012 self_id_count = find_and_insert_self_id(ohci, self_id_count);
2013 if (self_id_count < 0) {
2014 ohci_notice(ohci,
2015 "could not construct local self ID\n");
2016 return;
2017 }
2018 }
2019
2020 if (self_id_count == 0) {
2021 ohci_notice(ohci, "no self IDs\n");
2022 return;
2023 }
2024 rmb();
2025
2026 /*
2027 * Check the consistency of the self IDs we just read. The
2028 * problem we face is that a new bus reset can start while we
2029 * read out the self IDs from the DMA buffer. If this happens,
2030 * the DMA buffer will be overwritten with new self IDs and we
2031 * will read out inconsistent data. The OHCI specification
2032 * (section 11.2) recommends a technique similar to
2033 * linux/seqlock.h, where we remember the generation of the
2034 * self IDs in the buffer before reading them out and compare
2035 * it to the current generation after reading them out. If
2036 * the two generations match we know we have a consistent set
2037 * of self IDs.
2038 */
2039
2040 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
2041 if (new_generation != generation) {
2042 ohci_notice(ohci, "new bus reset, discarding self ids\n");
2043 return;
2044 }
2045
2046 /* FIXME: Document how the locking works. */
2047 spin_lock_irq(&ohci->lock);
2048
2049 ohci->generation = -1; /* prevent AT packet queueing */
2050 context_stop(&ohci->at_request_ctx);
2051 context_stop(&ohci->at_response_ctx);
2052
2053 spin_unlock_irq(&ohci->lock);
2054
2055 /*
2056 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2057 * packets in the AT queues and software needs to drain them.
2058 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2059 */
2060 at_context_flush(&ohci->at_request_ctx);
2061 at_context_flush(&ohci->at_response_ctx);
2062
2063 spin_lock_irq(&ohci->lock);
2064
2065 ohci->generation = generation;
2066 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2067 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2068 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2069
2070 if (ohci->quirks & QUIRK_RESET_PACKET)
2071 ohci->request_generation = generation;
2072
2073 /*
2074 * This next bit is unrelated to the AT context stuff but we
2075 * have to do it under the spinlock also. If a new config rom
2076 * was set up before this reset, the old one is now no longer
2077 * in use and we can free it. Update the config rom pointers
2078 * to point to the current config rom and clear the
2079 * next_config_rom pointer so a new update can take place.
2080 */
2081
2082 if (ohci->next_config_rom != NULL) {
2083 if (ohci->next_config_rom != ohci->config_rom) {
2084 free_rom = ohci->config_rom;
2085 free_rom_bus = ohci->config_rom_bus;
2086 }
2087 ohci->config_rom = ohci->next_config_rom;
2088 ohci->config_rom_bus = ohci->next_config_rom_bus;
2089 ohci->next_config_rom = NULL;
2090
2091 /*
2092 * Restore config_rom image and manually update
2093 * config_rom registers. Writing the header quadlet
2094 * will indicate that the config rom is ready, so we
2095 * do that last.
2096 */
2097 reg_write(ohci, OHCI1394_BusOptions,
2098 be32_to_cpu(ohci->config_rom[2]));
2099 ohci->config_rom[0] = ohci->next_header;
2100 reg_write(ohci, OHCI1394_ConfigROMhdr,
2101 be32_to_cpu(ohci->next_header));
2102 }
2103
2104 if (param_remote_dma) {
2105 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2106 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2107 }
2108
2109 spin_unlock_irq(&ohci->lock);
2110
2111 if (free_rom)
2112 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2113
2114 log_selfids(ohci, generation, self_id_count);
2115
2116 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2117 self_id_count, ohci->self_id_buffer,
2118 ohci->csr_state_setclear_abdicate);
2119 ohci->csr_state_setclear_abdicate = false;
2120 }
2121
irq_handler(int irq,void * data)2122 static irqreturn_t irq_handler(int irq, void *data)
2123 {
2124 struct fw_ohci *ohci = data;
2125 u32 event, iso_event;
2126 int i;
2127
2128 event = reg_read(ohci, OHCI1394_IntEventClear);
2129
2130 if (!event || !~event)
2131 return IRQ_NONE;
2132
2133 /*
2134 * busReset and postedWriteErr events must not be cleared yet
2135 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2136 */
2137 reg_write(ohci, OHCI1394_IntEventClear,
2138 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2139 log_irqs(ohci, event);
2140 if (event & OHCI1394_busReset)
2141 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2142
2143 if (event & OHCI1394_selfIDComplete)
2144 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2145
2146 if (event & OHCI1394_RQPkt)
2147 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2148
2149 if (event & OHCI1394_RSPkt)
2150 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2151
2152 if (event & OHCI1394_reqTxComplete)
2153 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2154
2155 if (event & OHCI1394_respTxComplete)
2156 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2157
2158 if (event & OHCI1394_isochRx) {
2159 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2160 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2161
2162 while (iso_event) {
2163 i = ffs(iso_event) - 1;
2164 tasklet_schedule(
2165 &ohci->ir_context_list[i].context.tasklet);
2166 iso_event &= ~(1 << i);
2167 }
2168 }
2169
2170 if (event & OHCI1394_isochTx) {
2171 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2172 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2173
2174 while (iso_event) {
2175 i = ffs(iso_event) - 1;
2176 tasklet_schedule(
2177 &ohci->it_context_list[i].context.tasklet);
2178 iso_event &= ~(1 << i);
2179 }
2180 }
2181
2182 if (unlikely(event & OHCI1394_regAccessFail))
2183 ohci_err(ohci, "register access failure\n");
2184
2185 if (unlikely(event & OHCI1394_postedWriteErr)) {
2186 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2187 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2188 reg_write(ohci, OHCI1394_IntEventClear,
2189 OHCI1394_postedWriteErr);
2190 if (printk_ratelimit())
2191 ohci_err(ohci, "PCI posted write error\n");
2192 }
2193
2194 if (unlikely(event & OHCI1394_cycleTooLong)) {
2195 if (printk_ratelimit())
2196 ohci_notice(ohci, "isochronous cycle too long\n");
2197 reg_write(ohci, OHCI1394_LinkControlSet,
2198 OHCI1394_LinkControl_cycleMaster);
2199 }
2200
2201 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2202 /*
2203 * We need to clear this event bit in order to make
2204 * cycleMatch isochronous I/O work. In theory we should
2205 * stop active cycleMatch iso contexts now and restart
2206 * them at least two cycles later. (FIXME?)
2207 */
2208 if (printk_ratelimit())
2209 ohci_notice(ohci, "isochronous cycle inconsistent\n");
2210 }
2211
2212 if (unlikely(event & OHCI1394_unrecoverableError))
2213 handle_dead_contexts(ohci);
2214
2215 if (event & OHCI1394_cycle64Seconds) {
2216 spin_lock(&ohci->lock);
2217 update_bus_time(ohci);
2218 spin_unlock(&ohci->lock);
2219 } else
2220 flush_writes(ohci);
2221
2222 return IRQ_HANDLED;
2223 }
2224
software_reset(struct fw_ohci * ohci)2225 static int software_reset(struct fw_ohci *ohci)
2226 {
2227 u32 val;
2228 int i;
2229
2230 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2231 for (i = 0; i < 500; i++) {
2232 val = reg_read(ohci, OHCI1394_HCControlSet);
2233 if (!~val)
2234 return -ENODEV; /* Card was ejected. */
2235
2236 if (!(val & OHCI1394_HCControl_softReset))
2237 return 0;
2238
2239 msleep(1);
2240 }
2241
2242 return -EBUSY;
2243 }
2244
copy_config_rom(__be32 * dest,const __be32 * src,size_t length)2245 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2246 {
2247 size_t size = length * 4;
2248
2249 memcpy(dest, src, size);
2250 if (size < CONFIG_ROM_SIZE)
2251 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2252 }
2253
configure_1394a_enhancements(struct fw_ohci * ohci)2254 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2255 {
2256 bool enable_1394a;
2257 int ret, clear, set, offset;
2258
2259 /* Check if the driver should configure link and PHY. */
2260 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2261 OHCI1394_HCControl_programPhyEnable))
2262 return 0;
2263
2264 /* Paranoia: check whether the PHY supports 1394a, too. */
2265 enable_1394a = false;
2266 ret = read_phy_reg(ohci, 2);
2267 if (ret < 0)
2268 return ret;
2269 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2270 ret = read_paged_phy_reg(ohci, 1, 8);
2271 if (ret < 0)
2272 return ret;
2273 if (ret >= 1)
2274 enable_1394a = true;
2275 }
2276
2277 if (ohci->quirks & QUIRK_NO_1394A)
2278 enable_1394a = false;
2279
2280 /* Configure PHY and link consistently. */
2281 if (enable_1394a) {
2282 clear = 0;
2283 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2284 } else {
2285 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2286 set = 0;
2287 }
2288 ret = update_phy_reg(ohci, 5, clear, set);
2289 if (ret < 0)
2290 return ret;
2291
2292 if (enable_1394a)
2293 offset = OHCI1394_HCControlSet;
2294 else
2295 offset = OHCI1394_HCControlClear;
2296 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2297
2298 /* Clean up: configuration has been taken care of. */
2299 reg_write(ohci, OHCI1394_HCControlClear,
2300 OHCI1394_HCControl_programPhyEnable);
2301
2302 return 0;
2303 }
2304
probe_tsb41ba3d(struct fw_ohci * ohci)2305 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2306 {
2307 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2308 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2309 int reg, i;
2310
2311 reg = read_phy_reg(ohci, 2);
2312 if (reg < 0)
2313 return reg;
2314 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2315 return 0;
2316
2317 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2318 reg = read_paged_phy_reg(ohci, 1, i + 10);
2319 if (reg < 0)
2320 return reg;
2321 if (reg != id[i])
2322 return 0;
2323 }
2324 return 1;
2325 }
2326
ohci_enable(struct fw_card * card,const __be32 * config_rom,size_t length)2327 static int ohci_enable(struct fw_card *card,
2328 const __be32 *config_rom, size_t length)
2329 {
2330 struct fw_ohci *ohci = fw_ohci(card);
2331 u32 lps, version, irqs;
2332 int i, ret;
2333
2334 ret = software_reset(ohci);
2335 if (ret < 0) {
2336 ohci_err(ohci, "failed to reset ohci card\n");
2337 return ret;
2338 }
2339
2340 /*
2341 * Now enable LPS, which we need in order to start accessing
2342 * most of the registers. In fact, on some cards (ALI M5251),
2343 * accessing registers in the SClk domain without LPS enabled
2344 * will lock up the machine. Wait 50msec to make sure we have
2345 * full link enabled. However, with some cards (well, at least
2346 * a JMicron PCIe card), we have to try again sometimes.
2347 *
2348 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2349 * cannot actually use the phy at that time. These need tens of
2350 * millisecods pause between LPS write and first phy access too.
2351 */
2352
2353 reg_write(ohci, OHCI1394_HCControlSet,
2354 OHCI1394_HCControl_LPS |
2355 OHCI1394_HCControl_postedWriteEnable);
2356 flush_writes(ohci);
2357
2358 for (lps = 0, i = 0; !lps && i < 3; i++) {
2359 msleep(50);
2360 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2361 OHCI1394_HCControl_LPS;
2362 }
2363
2364 if (!lps) {
2365 ohci_err(ohci, "failed to set Link Power Status\n");
2366 return -EIO;
2367 }
2368
2369 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2370 ret = probe_tsb41ba3d(ohci);
2371 if (ret < 0)
2372 return ret;
2373 if (ret)
2374 ohci_notice(ohci, "local TSB41BA3D phy\n");
2375 else
2376 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2377 }
2378
2379 reg_write(ohci, OHCI1394_HCControlClear,
2380 OHCI1394_HCControl_noByteSwapData);
2381
2382 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2383 reg_write(ohci, OHCI1394_LinkControlSet,
2384 OHCI1394_LinkControl_cycleTimerEnable |
2385 OHCI1394_LinkControl_cycleMaster);
2386
2387 reg_write(ohci, OHCI1394_ATRetries,
2388 OHCI1394_MAX_AT_REQ_RETRIES |
2389 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2390 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2391 (200 << 16));
2392
2393 ohci->bus_time_running = false;
2394
2395 for (i = 0; i < 32; i++)
2396 if (ohci->ir_context_support & (1 << i))
2397 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2398 IR_CONTEXT_MULTI_CHANNEL_MODE);
2399
2400 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2401 if (version >= OHCI_VERSION_1_1) {
2402 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2403 0xfffffffe);
2404 card->broadcast_channel_auto_allocated = true;
2405 }
2406
2407 /* Get implemented bits of the priority arbitration request counter. */
2408 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2409 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2410 reg_write(ohci, OHCI1394_FairnessControl, 0);
2411 card->priority_budget_implemented = ohci->pri_req_max != 0;
2412
2413 reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2414 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2415 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2416
2417 ret = configure_1394a_enhancements(ohci);
2418 if (ret < 0)
2419 return ret;
2420
2421 /* Activate link_on bit and contender bit in our self ID packets.*/
2422 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2423 if (ret < 0)
2424 return ret;
2425
2426 /*
2427 * When the link is not yet enabled, the atomic config rom
2428 * update mechanism described below in ohci_set_config_rom()
2429 * is not active. We have to update ConfigRomHeader and
2430 * BusOptions manually, and the write to ConfigROMmap takes
2431 * effect immediately. We tie this to the enabling of the
2432 * link, so we have a valid config rom before enabling - the
2433 * OHCI requires that ConfigROMhdr and BusOptions have valid
2434 * values before enabling.
2435 *
2436 * However, when the ConfigROMmap is written, some controllers
2437 * always read back quadlets 0 and 2 from the config rom to
2438 * the ConfigRomHeader and BusOptions registers on bus reset.
2439 * They shouldn't do that in this initial case where the link
2440 * isn't enabled. This means we have to use the same
2441 * workaround here, setting the bus header to 0 and then write
2442 * the right values in the bus reset tasklet.
2443 */
2444
2445 if (config_rom) {
2446 ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2447 &ohci->next_config_rom_bus, GFP_KERNEL);
2448 if (ohci->next_config_rom == NULL)
2449 return -ENOMEM;
2450
2451 copy_config_rom(ohci->next_config_rom, config_rom, length);
2452 } else {
2453 /*
2454 * In the suspend case, config_rom is NULL, which
2455 * means that we just reuse the old config rom.
2456 */
2457 ohci->next_config_rom = ohci->config_rom;
2458 ohci->next_config_rom_bus = ohci->config_rom_bus;
2459 }
2460
2461 ohci->next_header = ohci->next_config_rom[0];
2462 ohci->next_config_rom[0] = 0;
2463 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2464 reg_write(ohci, OHCI1394_BusOptions,
2465 be32_to_cpu(ohci->next_config_rom[2]));
2466 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2467
2468 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2469
2470 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2471 OHCI1394_RQPkt | OHCI1394_RSPkt |
2472 OHCI1394_isochTx | OHCI1394_isochRx |
2473 OHCI1394_postedWriteErr |
2474 OHCI1394_selfIDComplete |
2475 OHCI1394_regAccessFail |
2476 OHCI1394_cycleInconsistent |
2477 OHCI1394_unrecoverableError |
2478 OHCI1394_cycleTooLong |
2479 OHCI1394_masterIntEnable;
2480 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2481 irqs |= OHCI1394_busReset;
2482 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2483
2484 reg_write(ohci, OHCI1394_HCControlSet,
2485 OHCI1394_HCControl_linkEnable |
2486 OHCI1394_HCControl_BIBimageValid);
2487
2488 reg_write(ohci, OHCI1394_LinkControlSet,
2489 OHCI1394_LinkControl_rcvSelfID |
2490 OHCI1394_LinkControl_rcvPhyPkt);
2491
2492 ar_context_run(&ohci->ar_request_ctx);
2493 ar_context_run(&ohci->ar_response_ctx);
2494
2495 flush_writes(ohci);
2496
2497 /* We are ready to go, reset bus to finish initialization. */
2498 fw_schedule_bus_reset(&ohci->card, false, true);
2499
2500 return 0;
2501 }
2502
ohci_set_config_rom(struct fw_card * card,const __be32 * config_rom,size_t length)2503 static int ohci_set_config_rom(struct fw_card *card,
2504 const __be32 *config_rom, size_t length)
2505 {
2506 struct fw_ohci *ohci;
2507 __be32 *next_config_rom;
2508 dma_addr_t next_config_rom_bus;
2509
2510 ohci = fw_ohci(card);
2511
2512 /*
2513 * When the OHCI controller is enabled, the config rom update
2514 * mechanism is a bit tricky, but easy enough to use. See
2515 * section 5.5.6 in the OHCI specification.
2516 *
2517 * The OHCI controller caches the new config rom address in a
2518 * shadow register (ConfigROMmapNext) and needs a bus reset
2519 * for the changes to take place. When the bus reset is
2520 * detected, the controller loads the new values for the
2521 * ConfigRomHeader and BusOptions registers from the specified
2522 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2523 * shadow register. All automatically and atomically.
2524 *
2525 * Now, there's a twist to this story. The automatic load of
2526 * ConfigRomHeader and BusOptions doesn't honor the
2527 * noByteSwapData bit, so with a be32 config rom, the
2528 * controller will load be32 values in to these registers
2529 * during the atomic update, even on litte endian
2530 * architectures. The workaround we use is to put a 0 in the
2531 * header quadlet; 0 is endian agnostic and means that the
2532 * config rom isn't ready yet. In the bus reset tasklet we
2533 * then set up the real values for the two registers.
2534 *
2535 * We use ohci->lock to avoid racing with the code that sets
2536 * ohci->next_config_rom to NULL (see bus_reset_work).
2537 */
2538
2539 next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2540 &next_config_rom_bus, GFP_KERNEL);
2541 if (next_config_rom == NULL)
2542 return -ENOMEM;
2543
2544 spin_lock_irq(&ohci->lock);
2545
2546 /*
2547 * If there is not an already pending config_rom update,
2548 * push our new allocation into the ohci->next_config_rom
2549 * and then mark the local variable as null so that we
2550 * won't deallocate the new buffer.
2551 *
2552 * OTOH, if there is a pending config_rom update, just
2553 * use that buffer with the new config_rom data, and
2554 * let this routine free the unused DMA allocation.
2555 */
2556
2557 if (ohci->next_config_rom == NULL) {
2558 ohci->next_config_rom = next_config_rom;
2559 ohci->next_config_rom_bus = next_config_rom_bus;
2560 next_config_rom = NULL;
2561 }
2562
2563 copy_config_rom(ohci->next_config_rom, config_rom, length);
2564
2565 ohci->next_header = config_rom[0];
2566 ohci->next_config_rom[0] = 0;
2567
2568 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2569
2570 spin_unlock_irq(&ohci->lock);
2571
2572 /* If we didn't use the DMA allocation, delete it. */
2573 if (next_config_rom != NULL) {
2574 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2575 next_config_rom_bus);
2576 }
2577
2578 /*
2579 * Now initiate a bus reset to have the changes take
2580 * effect. We clean up the old config rom memory and DMA
2581 * mappings in the bus reset tasklet, since the OHCI
2582 * controller could need to access it before the bus reset
2583 * takes effect.
2584 */
2585
2586 fw_schedule_bus_reset(&ohci->card, true, true);
2587
2588 return 0;
2589 }
2590
ohci_send_request(struct fw_card * card,struct fw_packet * packet)2591 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2592 {
2593 struct fw_ohci *ohci = fw_ohci(card);
2594
2595 at_context_transmit(&ohci->at_request_ctx, packet);
2596 }
2597
ohci_send_response(struct fw_card * card,struct fw_packet * packet)2598 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2599 {
2600 struct fw_ohci *ohci = fw_ohci(card);
2601
2602 at_context_transmit(&ohci->at_response_ctx, packet);
2603 }
2604
ohci_cancel_packet(struct fw_card * card,struct fw_packet * packet)2605 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2606 {
2607 struct fw_ohci *ohci = fw_ohci(card);
2608 struct context *ctx = &ohci->at_request_ctx;
2609 struct driver_data *driver_data = packet->driver_data;
2610 int ret = -ENOENT;
2611
2612 tasklet_disable_in_atomic(&ctx->tasklet);
2613
2614 if (packet->ack != 0)
2615 goto out;
2616
2617 if (packet->payload_mapped)
2618 dma_unmap_single(ohci->card.device, packet->payload_bus,
2619 packet->payload_length, DMA_TO_DEVICE);
2620
2621 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2622 driver_data->packet = NULL;
2623 packet->ack = RCODE_CANCELLED;
2624
2625 // Timestamping on behalf of the hardware.
2626 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2627
2628 packet->callback(packet, &ohci->card, packet->ack);
2629 ret = 0;
2630 out:
2631 tasklet_enable(&ctx->tasklet);
2632
2633 return ret;
2634 }
2635
ohci_enable_phys_dma(struct fw_card * card,int node_id,int generation)2636 static int ohci_enable_phys_dma(struct fw_card *card,
2637 int node_id, int generation)
2638 {
2639 struct fw_ohci *ohci = fw_ohci(card);
2640 unsigned long flags;
2641 int n, ret = 0;
2642
2643 if (param_remote_dma)
2644 return 0;
2645
2646 /*
2647 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2648 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2649 */
2650
2651 spin_lock_irqsave(&ohci->lock, flags);
2652
2653 if (ohci->generation != generation) {
2654 ret = -ESTALE;
2655 goto out;
2656 }
2657
2658 /*
2659 * Note, if the node ID contains a non-local bus ID, physical DMA is
2660 * enabled for _all_ nodes on remote buses.
2661 */
2662
2663 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2664 if (n < 32)
2665 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2666 else
2667 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2668
2669 flush_writes(ohci);
2670 out:
2671 spin_unlock_irqrestore(&ohci->lock, flags);
2672
2673 return ret;
2674 }
2675
ohci_read_csr(struct fw_card * card,int csr_offset)2676 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2677 {
2678 struct fw_ohci *ohci = fw_ohci(card);
2679 unsigned long flags;
2680 u32 value;
2681
2682 switch (csr_offset) {
2683 case CSR_STATE_CLEAR:
2684 case CSR_STATE_SET:
2685 if (ohci->is_root &&
2686 (reg_read(ohci, OHCI1394_LinkControlSet) &
2687 OHCI1394_LinkControl_cycleMaster))
2688 value = CSR_STATE_BIT_CMSTR;
2689 else
2690 value = 0;
2691 if (ohci->csr_state_setclear_abdicate)
2692 value |= CSR_STATE_BIT_ABDICATE;
2693
2694 return value;
2695
2696 case CSR_NODE_IDS:
2697 return reg_read(ohci, OHCI1394_NodeID) << 16;
2698
2699 case CSR_CYCLE_TIME:
2700 return get_cycle_time(ohci);
2701
2702 case CSR_BUS_TIME:
2703 /*
2704 * We might be called just after the cycle timer has wrapped
2705 * around but just before the cycle64Seconds handler, so we
2706 * better check here, too, if the bus time needs to be updated.
2707 */
2708 spin_lock_irqsave(&ohci->lock, flags);
2709 value = update_bus_time(ohci);
2710 spin_unlock_irqrestore(&ohci->lock, flags);
2711 return value;
2712
2713 case CSR_BUSY_TIMEOUT:
2714 value = reg_read(ohci, OHCI1394_ATRetries);
2715 return (value >> 4) & 0x0ffff00f;
2716
2717 case CSR_PRIORITY_BUDGET:
2718 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2719 (ohci->pri_req_max << 8);
2720
2721 default:
2722 WARN_ON(1);
2723 return 0;
2724 }
2725 }
2726
ohci_write_csr(struct fw_card * card,int csr_offset,u32 value)2727 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2728 {
2729 struct fw_ohci *ohci = fw_ohci(card);
2730 unsigned long flags;
2731
2732 switch (csr_offset) {
2733 case CSR_STATE_CLEAR:
2734 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2735 reg_write(ohci, OHCI1394_LinkControlClear,
2736 OHCI1394_LinkControl_cycleMaster);
2737 flush_writes(ohci);
2738 }
2739 if (value & CSR_STATE_BIT_ABDICATE)
2740 ohci->csr_state_setclear_abdicate = false;
2741 break;
2742
2743 case CSR_STATE_SET:
2744 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2745 reg_write(ohci, OHCI1394_LinkControlSet,
2746 OHCI1394_LinkControl_cycleMaster);
2747 flush_writes(ohci);
2748 }
2749 if (value & CSR_STATE_BIT_ABDICATE)
2750 ohci->csr_state_setclear_abdicate = true;
2751 break;
2752
2753 case CSR_NODE_IDS:
2754 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2755 flush_writes(ohci);
2756 break;
2757
2758 case CSR_CYCLE_TIME:
2759 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2760 reg_write(ohci, OHCI1394_IntEventSet,
2761 OHCI1394_cycleInconsistent);
2762 flush_writes(ohci);
2763 break;
2764
2765 case CSR_BUS_TIME:
2766 spin_lock_irqsave(&ohci->lock, flags);
2767 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2768 (value & ~0x7f);
2769 spin_unlock_irqrestore(&ohci->lock, flags);
2770 break;
2771
2772 case CSR_BUSY_TIMEOUT:
2773 value = (value & 0xf) | ((value & 0xf) << 4) |
2774 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2775 reg_write(ohci, OHCI1394_ATRetries, value);
2776 flush_writes(ohci);
2777 break;
2778
2779 case CSR_PRIORITY_BUDGET:
2780 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2781 flush_writes(ohci);
2782 break;
2783
2784 default:
2785 WARN_ON(1);
2786 break;
2787 }
2788 }
2789
flush_iso_completions(struct iso_context * ctx)2790 static void flush_iso_completions(struct iso_context *ctx)
2791 {
2792 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2793 ctx->header_length, ctx->header,
2794 ctx->base.callback_data);
2795 ctx->header_length = 0;
2796 }
2797
copy_iso_headers(struct iso_context * ctx,const u32 * dma_hdr)2798 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2799 {
2800 u32 *ctx_hdr;
2801
2802 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2803 if (ctx->base.drop_overflow_headers)
2804 return;
2805 flush_iso_completions(ctx);
2806 }
2807
2808 ctx_hdr = ctx->header + ctx->header_length;
2809 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2810
2811 /*
2812 * The two iso header quadlets are byteswapped to little
2813 * endian by the controller, but we want to present them
2814 * as big endian for consistency with the bus endianness.
2815 */
2816 if (ctx->base.header_size > 0)
2817 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2818 if (ctx->base.header_size > 4)
2819 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2820 if (ctx->base.header_size > 8)
2821 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2822 ctx->header_length += ctx->base.header_size;
2823 }
2824
handle_ir_packet_per_buffer(struct context * context,struct descriptor * d,struct descriptor * last)2825 static int handle_ir_packet_per_buffer(struct context *context,
2826 struct descriptor *d,
2827 struct descriptor *last)
2828 {
2829 struct iso_context *ctx =
2830 container_of(context, struct iso_context, context);
2831 struct descriptor *pd;
2832 u32 buffer_dma;
2833
2834 for (pd = d; pd <= last; pd++)
2835 if (pd->transfer_status)
2836 break;
2837 if (pd > last)
2838 /* Descriptor(s) not done yet, stop iteration */
2839 return 0;
2840
2841 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2842 d++;
2843 buffer_dma = le32_to_cpu(d->data_address);
2844 dma_sync_single_range_for_cpu(context->ohci->card.device,
2845 buffer_dma & PAGE_MASK,
2846 buffer_dma & ~PAGE_MASK,
2847 le16_to_cpu(d->req_count),
2848 DMA_FROM_DEVICE);
2849 }
2850
2851 copy_iso_headers(ctx, (u32 *) (last + 1));
2852
2853 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2854 flush_iso_completions(ctx);
2855
2856 return 1;
2857 }
2858
2859 /* d == last because each descriptor block is only a single descriptor. */
handle_ir_buffer_fill(struct context * context,struct descriptor * d,struct descriptor * last)2860 static int handle_ir_buffer_fill(struct context *context,
2861 struct descriptor *d,
2862 struct descriptor *last)
2863 {
2864 struct iso_context *ctx =
2865 container_of(context, struct iso_context, context);
2866 unsigned int req_count, res_count, completed;
2867 u32 buffer_dma;
2868
2869 req_count = le16_to_cpu(last->req_count);
2870 res_count = le16_to_cpu(READ_ONCE(last->res_count));
2871 completed = req_count - res_count;
2872 buffer_dma = le32_to_cpu(last->data_address);
2873
2874 if (completed > 0) {
2875 ctx->mc_buffer_bus = buffer_dma;
2876 ctx->mc_completed = completed;
2877 }
2878
2879 if (res_count != 0)
2880 /* Descriptor(s) not done yet, stop iteration */
2881 return 0;
2882
2883 dma_sync_single_range_for_cpu(context->ohci->card.device,
2884 buffer_dma & PAGE_MASK,
2885 buffer_dma & ~PAGE_MASK,
2886 completed, DMA_FROM_DEVICE);
2887
2888 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2889 ctx->base.callback.mc(&ctx->base,
2890 buffer_dma + completed,
2891 ctx->base.callback_data);
2892 ctx->mc_completed = 0;
2893 }
2894
2895 return 1;
2896 }
2897
flush_ir_buffer_fill(struct iso_context * ctx)2898 static void flush_ir_buffer_fill(struct iso_context *ctx)
2899 {
2900 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2901 ctx->mc_buffer_bus & PAGE_MASK,
2902 ctx->mc_buffer_bus & ~PAGE_MASK,
2903 ctx->mc_completed, DMA_FROM_DEVICE);
2904
2905 ctx->base.callback.mc(&ctx->base,
2906 ctx->mc_buffer_bus + ctx->mc_completed,
2907 ctx->base.callback_data);
2908 ctx->mc_completed = 0;
2909 }
2910
sync_it_packet_for_cpu(struct context * context,struct descriptor * pd)2911 static inline void sync_it_packet_for_cpu(struct context *context,
2912 struct descriptor *pd)
2913 {
2914 __le16 control;
2915 u32 buffer_dma;
2916
2917 /* only packets beginning with OUTPUT_MORE* have data buffers */
2918 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2919 return;
2920
2921 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2922 pd += 2;
2923
2924 /*
2925 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2926 * data buffer is in the context program's coherent page and must not
2927 * be synced.
2928 */
2929 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2930 (context->current_bus & PAGE_MASK)) {
2931 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2932 return;
2933 pd++;
2934 }
2935
2936 do {
2937 buffer_dma = le32_to_cpu(pd->data_address);
2938 dma_sync_single_range_for_cpu(context->ohci->card.device,
2939 buffer_dma & PAGE_MASK,
2940 buffer_dma & ~PAGE_MASK,
2941 le16_to_cpu(pd->req_count),
2942 DMA_TO_DEVICE);
2943 control = pd->control;
2944 pd++;
2945 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2946 }
2947
handle_it_packet(struct context * context,struct descriptor * d,struct descriptor * last)2948 static int handle_it_packet(struct context *context,
2949 struct descriptor *d,
2950 struct descriptor *last)
2951 {
2952 struct iso_context *ctx =
2953 container_of(context, struct iso_context, context);
2954 struct descriptor *pd;
2955 __be32 *ctx_hdr;
2956
2957 for (pd = d; pd <= last; pd++)
2958 if (pd->transfer_status)
2959 break;
2960 if (pd > last)
2961 /* Descriptor(s) not done yet, stop iteration */
2962 return 0;
2963
2964 sync_it_packet_for_cpu(context, d);
2965
2966 if (ctx->header_length + 4 > PAGE_SIZE) {
2967 if (ctx->base.drop_overflow_headers)
2968 return 1;
2969 flush_iso_completions(ctx);
2970 }
2971
2972 ctx_hdr = ctx->header + ctx->header_length;
2973 ctx->last_timestamp = le16_to_cpu(last->res_count);
2974 /* Present this value as big-endian to match the receive code */
2975 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2976 le16_to_cpu(pd->res_count));
2977 ctx->header_length += 4;
2978
2979 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2980 flush_iso_completions(ctx);
2981
2982 return 1;
2983 }
2984
set_multichannel_mask(struct fw_ohci * ohci,u64 channels)2985 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2986 {
2987 u32 hi = channels >> 32, lo = channels;
2988
2989 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2990 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2991 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2992 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2993 ohci->mc_channels = channels;
2994 }
2995
ohci_allocate_iso_context(struct fw_card * card,int type,int channel,size_t header_size)2996 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2997 int type, int channel, size_t header_size)
2998 {
2999 struct fw_ohci *ohci = fw_ohci(card);
3000 struct iso_context *ctx;
3001 descriptor_callback_t callback;
3002 u64 *channels;
3003 u32 *mask, regs;
3004 int index, ret = -EBUSY;
3005
3006 spin_lock_irq(&ohci->lock);
3007
3008 switch (type) {
3009 case FW_ISO_CONTEXT_TRANSMIT:
3010 mask = &ohci->it_context_mask;
3011 callback = handle_it_packet;
3012 index = ffs(*mask) - 1;
3013 if (index >= 0) {
3014 *mask &= ~(1 << index);
3015 regs = OHCI1394_IsoXmitContextBase(index);
3016 ctx = &ohci->it_context_list[index];
3017 }
3018 break;
3019
3020 case FW_ISO_CONTEXT_RECEIVE:
3021 channels = &ohci->ir_context_channels;
3022 mask = &ohci->ir_context_mask;
3023 callback = handle_ir_packet_per_buffer;
3024 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3025 if (index >= 0) {
3026 *channels &= ~(1ULL << channel);
3027 *mask &= ~(1 << index);
3028 regs = OHCI1394_IsoRcvContextBase(index);
3029 ctx = &ohci->ir_context_list[index];
3030 }
3031 break;
3032
3033 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3034 mask = &ohci->ir_context_mask;
3035 callback = handle_ir_buffer_fill;
3036 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3037 if (index >= 0) {
3038 ohci->mc_allocated = true;
3039 *mask &= ~(1 << index);
3040 regs = OHCI1394_IsoRcvContextBase(index);
3041 ctx = &ohci->ir_context_list[index];
3042 }
3043 break;
3044
3045 default:
3046 index = -1;
3047 ret = -ENOSYS;
3048 }
3049
3050 spin_unlock_irq(&ohci->lock);
3051
3052 if (index < 0)
3053 return ERR_PTR(ret);
3054
3055 memset(ctx, 0, sizeof(*ctx));
3056 ctx->header_length = 0;
3057 ctx->header = (void *) __get_free_page(GFP_KERNEL);
3058 if (ctx->header == NULL) {
3059 ret = -ENOMEM;
3060 goto out;
3061 }
3062 ret = context_init(&ctx->context, ohci, regs, callback);
3063 if (ret < 0)
3064 goto out_with_header;
3065
3066 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3067 set_multichannel_mask(ohci, 0);
3068 ctx->mc_completed = 0;
3069 }
3070
3071 return &ctx->base;
3072
3073 out_with_header:
3074 free_page((unsigned long)ctx->header);
3075 out:
3076 spin_lock_irq(&ohci->lock);
3077
3078 switch (type) {
3079 case FW_ISO_CONTEXT_RECEIVE:
3080 *channels |= 1ULL << channel;
3081 break;
3082
3083 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3084 ohci->mc_allocated = false;
3085 break;
3086 }
3087 *mask |= 1 << index;
3088
3089 spin_unlock_irq(&ohci->lock);
3090
3091 return ERR_PTR(ret);
3092 }
3093
ohci_start_iso(struct fw_iso_context * base,s32 cycle,u32 sync,u32 tags)3094 static int ohci_start_iso(struct fw_iso_context *base,
3095 s32 cycle, u32 sync, u32 tags)
3096 {
3097 struct iso_context *ctx = container_of(base, struct iso_context, base);
3098 struct fw_ohci *ohci = ctx->context.ohci;
3099 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3100 int index;
3101
3102 /* the controller cannot start without any queued packets */
3103 if (ctx->context.last->branch_address == 0)
3104 return -ENODATA;
3105
3106 switch (ctx->base.type) {
3107 case FW_ISO_CONTEXT_TRANSMIT:
3108 index = ctx - ohci->it_context_list;
3109 match = 0;
3110 if (cycle >= 0)
3111 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3112 (cycle & 0x7fff) << 16;
3113
3114 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3115 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3116 context_run(&ctx->context, match);
3117 break;
3118
3119 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3120 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3121 fallthrough;
3122 case FW_ISO_CONTEXT_RECEIVE:
3123 index = ctx - ohci->ir_context_list;
3124 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3125 if (cycle >= 0) {
3126 match |= (cycle & 0x07fff) << 12;
3127 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3128 }
3129
3130 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3131 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3132 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3133 context_run(&ctx->context, control);
3134
3135 ctx->sync = sync;
3136 ctx->tags = tags;
3137
3138 break;
3139 }
3140
3141 return 0;
3142 }
3143
ohci_stop_iso(struct fw_iso_context * base)3144 static int ohci_stop_iso(struct fw_iso_context *base)
3145 {
3146 struct fw_ohci *ohci = fw_ohci(base->card);
3147 struct iso_context *ctx = container_of(base, struct iso_context, base);
3148 int index;
3149
3150 switch (ctx->base.type) {
3151 case FW_ISO_CONTEXT_TRANSMIT:
3152 index = ctx - ohci->it_context_list;
3153 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3154 break;
3155
3156 case FW_ISO_CONTEXT_RECEIVE:
3157 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3158 index = ctx - ohci->ir_context_list;
3159 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3160 break;
3161 }
3162 flush_writes(ohci);
3163 context_stop(&ctx->context);
3164 tasklet_kill(&ctx->context.tasklet);
3165
3166 return 0;
3167 }
3168
ohci_free_iso_context(struct fw_iso_context * base)3169 static void ohci_free_iso_context(struct fw_iso_context *base)
3170 {
3171 struct fw_ohci *ohci = fw_ohci(base->card);
3172 struct iso_context *ctx = container_of(base, struct iso_context, base);
3173 unsigned long flags;
3174 int index;
3175
3176 ohci_stop_iso(base);
3177 context_release(&ctx->context);
3178 free_page((unsigned long)ctx->header);
3179
3180 spin_lock_irqsave(&ohci->lock, flags);
3181
3182 switch (base->type) {
3183 case FW_ISO_CONTEXT_TRANSMIT:
3184 index = ctx - ohci->it_context_list;
3185 ohci->it_context_mask |= 1 << index;
3186 break;
3187
3188 case FW_ISO_CONTEXT_RECEIVE:
3189 index = ctx - ohci->ir_context_list;
3190 ohci->ir_context_mask |= 1 << index;
3191 ohci->ir_context_channels |= 1ULL << base->channel;
3192 break;
3193
3194 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3195 index = ctx - ohci->ir_context_list;
3196 ohci->ir_context_mask |= 1 << index;
3197 ohci->ir_context_channels |= ohci->mc_channels;
3198 ohci->mc_channels = 0;
3199 ohci->mc_allocated = false;
3200 break;
3201 }
3202
3203 spin_unlock_irqrestore(&ohci->lock, flags);
3204 }
3205
ohci_set_iso_channels(struct fw_iso_context * base,u64 * channels)3206 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3207 {
3208 struct fw_ohci *ohci = fw_ohci(base->card);
3209 unsigned long flags;
3210 int ret;
3211
3212 switch (base->type) {
3213 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3214
3215 spin_lock_irqsave(&ohci->lock, flags);
3216
3217 /* Don't allow multichannel to grab other contexts' channels. */
3218 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3219 *channels = ohci->ir_context_channels;
3220 ret = -EBUSY;
3221 } else {
3222 set_multichannel_mask(ohci, *channels);
3223 ret = 0;
3224 }
3225
3226 spin_unlock_irqrestore(&ohci->lock, flags);
3227
3228 break;
3229 default:
3230 ret = -EINVAL;
3231 }
3232
3233 return ret;
3234 }
3235
3236 #ifdef CONFIG_PM
ohci_resume_iso_dma(struct fw_ohci * ohci)3237 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3238 {
3239 int i;
3240 struct iso_context *ctx;
3241
3242 for (i = 0 ; i < ohci->n_ir ; i++) {
3243 ctx = &ohci->ir_context_list[i];
3244 if (ctx->context.running)
3245 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3246 }
3247
3248 for (i = 0 ; i < ohci->n_it ; i++) {
3249 ctx = &ohci->it_context_list[i];
3250 if (ctx->context.running)
3251 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3252 }
3253 }
3254 #endif
3255
queue_iso_transmit(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3256 static int queue_iso_transmit(struct iso_context *ctx,
3257 struct fw_iso_packet *packet,
3258 struct fw_iso_buffer *buffer,
3259 unsigned long payload)
3260 {
3261 struct descriptor *d, *last, *pd;
3262 struct fw_iso_packet *p;
3263 __le32 *header;
3264 dma_addr_t d_bus, page_bus;
3265 u32 z, header_z, payload_z, irq;
3266 u32 payload_index, payload_end_index, next_page_index;
3267 int page, end_page, i, length, offset;
3268
3269 p = packet;
3270 payload_index = payload;
3271
3272 if (p->skip)
3273 z = 1;
3274 else
3275 z = 2;
3276 if (p->header_length > 0)
3277 z++;
3278
3279 /* Determine the first page the payload isn't contained in. */
3280 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3281 if (p->payload_length > 0)
3282 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3283 else
3284 payload_z = 0;
3285
3286 z += payload_z;
3287
3288 /* Get header size in number of descriptors. */
3289 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3290
3291 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3292 if (d == NULL)
3293 return -ENOMEM;
3294
3295 if (!p->skip) {
3296 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3297 d[0].req_count = cpu_to_le16(8);
3298 /*
3299 * Link the skip address to this descriptor itself. This causes
3300 * a context to skip a cycle whenever lost cycles or FIFO
3301 * overruns occur, without dropping the data. The application
3302 * should then decide whether this is an error condition or not.
3303 * FIXME: Make the context's cycle-lost behaviour configurable?
3304 */
3305 d[0].branch_address = cpu_to_le32(d_bus | z);
3306
3307 header = (__le32 *) &d[1];
3308 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3309 IT_HEADER_TAG(p->tag) |
3310 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3311 IT_HEADER_CHANNEL(ctx->base.channel) |
3312 IT_HEADER_SPEED(ctx->base.speed));
3313 header[1] =
3314 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3315 p->payload_length));
3316 }
3317
3318 if (p->header_length > 0) {
3319 d[2].req_count = cpu_to_le16(p->header_length);
3320 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3321 memcpy(&d[z], p->header, p->header_length);
3322 }
3323
3324 pd = d + z - payload_z;
3325 payload_end_index = payload_index + p->payload_length;
3326 for (i = 0; i < payload_z; i++) {
3327 page = payload_index >> PAGE_SHIFT;
3328 offset = payload_index & ~PAGE_MASK;
3329 next_page_index = (page + 1) << PAGE_SHIFT;
3330 length =
3331 min(next_page_index, payload_end_index) - payload_index;
3332 pd[i].req_count = cpu_to_le16(length);
3333
3334 page_bus = page_private(buffer->pages[page]);
3335 pd[i].data_address = cpu_to_le32(page_bus + offset);
3336
3337 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3338 page_bus, offset, length,
3339 DMA_TO_DEVICE);
3340
3341 payload_index += length;
3342 }
3343
3344 if (p->interrupt)
3345 irq = DESCRIPTOR_IRQ_ALWAYS;
3346 else
3347 irq = DESCRIPTOR_NO_IRQ;
3348
3349 last = z == 2 ? d : d + z - 1;
3350 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3351 DESCRIPTOR_STATUS |
3352 DESCRIPTOR_BRANCH_ALWAYS |
3353 irq);
3354
3355 context_append(&ctx->context, d, z, header_z);
3356
3357 return 0;
3358 }
3359
queue_iso_packet_per_buffer(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3360 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3361 struct fw_iso_packet *packet,
3362 struct fw_iso_buffer *buffer,
3363 unsigned long payload)
3364 {
3365 struct device *device = ctx->context.ohci->card.device;
3366 struct descriptor *d, *pd;
3367 dma_addr_t d_bus, page_bus;
3368 u32 z, header_z, rest;
3369 int i, j, length;
3370 int page, offset, packet_count, header_size, payload_per_buffer;
3371
3372 /*
3373 * The OHCI controller puts the isochronous header and trailer in the
3374 * buffer, so we need at least 8 bytes.
3375 */
3376 packet_count = packet->header_length / ctx->base.header_size;
3377 header_size = max(ctx->base.header_size, (size_t)8);
3378
3379 /* Get header size in number of descriptors. */
3380 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3381 page = payload >> PAGE_SHIFT;
3382 offset = payload & ~PAGE_MASK;
3383 payload_per_buffer = packet->payload_length / packet_count;
3384
3385 for (i = 0; i < packet_count; i++) {
3386 /* d points to the header descriptor */
3387 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3388 d = context_get_descriptors(&ctx->context,
3389 z + header_z, &d_bus);
3390 if (d == NULL)
3391 return -ENOMEM;
3392
3393 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3394 DESCRIPTOR_INPUT_MORE);
3395 if (packet->skip && i == 0)
3396 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3397 d->req_count = cpu_to_le16(header_size);
3398 d->res_count = d->req_count;
3399 d->transfer_status = 0;
3400 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3401
3402 rest = payload_per_buffer;
3403 pd = d;
3404 for (j = 1; j < z; j++) {
3405 pd++;
3406 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3407 DESCRIPTOR_INPUT_MORE);
3408
3409 if (offset + rest < PAGE_SIZE)
3410 length = rest;
3411 else
3412 length = PAGE_SIZE - offset;
3413 pd->req_count = cpu_to_le16(length);
3414 pd->res_count = pd->req_count;
3415 pd->transfer_status = 0;
3416
3417 page_bus = page_private(buffer->pages[page]);
3418 pd->data_address = cpu_to_le32(page_bus + offset);
3419
3420 dma_sync_single_range_for_device(device, page_bus,
3421 offset, length,
3422 DMA_FROM_DEVICE);
3423
3424 offset = (offset + length) & ~PAGE_MASK;
3425 rest -= length;
3426 if (offset == 0)
3427 page++;
3428 }
3429 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3430 DESCRIPTOR_INPUT_LAST |
3431 DESCRIPTOR_BRANCH_ALWAYS);
3432 if (packet->interrupt && i == packet_count - 1)
3433 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3434
3435 context_append(&ctx->context, d, z, header_z);
3436 }
3437
3438 return 0;
3439 }
3440
queue_iso_buffer_fill(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3441 static int queue_iso_buffer_fill(struct iso_context *ctx,
3442 struct fw_iso_packet *packet,
3443 struct fw_iso_buffer *buffer,
3444 unsigned long payload)
3445 {
3446 struct descriptor *d;
3447 dma_addr_t d_bus, page_bus;
3448 int page, offset, rest, z, i, length;
3449
3450 page = payload >> PAGE_SHIFT;
3451 offset = payload & ~PAGE_MASK;
3452 rest = packet->payload_length;
3453
3454 /* We need one descriptor for each page in the buffer. */
3455 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3456
3457 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3458 return -EFAULT;
3459
3460 for (i = 0; i < z; i++) {
3461 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3462 if (d == NULL)
3463 return -ENOMEM;
3464
3465 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3466 DESCRIPTOR_BRANCH_ALWAYS);
3467 if (packet->skip && i == 0)
3468 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3469 if (packet->interrupt && i == z - 1)
3470 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3471
3472 if (offset + rest < PAGE_SIZE)
3473 length = rest;
3474 else
3475 length = PAGE_SIZE - offset;
3476 d->req_count = cpu_to_le16(length);
3477 d->res_count = d->req_count;
3478 d->transfer_status = 0;
3479
3480 page_bus = page_private(buffer->pages[page]);
3481 d->data_address = cpu_to_le32(page_bus + offset);
3482
3483 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3484 page_bus, offset, length,
3485 DMA_FROM_DEVICE);
3486
3487 rest -= length;
3488 offset = 0;
3489 page++;
3490
3491 context_append(&ctx->context, d, 1, 0);
3492 }
3493
3494 return 0;
3495 }
3496
ohci_queue_iso(struct fw_iso_context * base,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3497 static int ohci_queue_iso(struct fw_iso_context *base,
3498 struct fw_iso_packet *packet,
3499 struct fw_iso_buffer *buffer,
3500 unsigned long payload)
3501 {
3502 struct iso_context *ctx = container_of(base, struct iso_context, base);
3503 unsigned long flags;
3504 int ret = -ENOSYS;
3505
3506 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3507 switch (base->type) {
3508 case FW_ISO_CONTEXT_TRANSMIT:
3509 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3510 break;
3511 case FW_ISO_CONTEXT_RECEIVE:
3512 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3513 break;
3514 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3515 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3516 break;
3517 }
3518 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3519
3520 return ret;
3521 }
3522
ohci_flush_queue_iso(struct fw_iso_context * base)3523 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3524 {
3525 struct context *ctx =
3526 &container_of(base, struct iso_context, base)->context;
3527
3528 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3529 }
3530
ohci_flush_iso_completions(struct fw_iso_context * base)3531 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3532 {
3533 struct iso_context *ctx = container_of(base, struct iso_context, base);
3534 int ret = 0;
3535
3536 tasklet_disable_in_atomic(&ctx->context.tasklet);
3537
3538 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3539 context_tasklet((unsigned long)&ctx->context);
3540
3541 switch (base->type) {
3542 case FW_ISO_CONTEXT_TRANSMIT:
3543 case FW_ISO_CONTEXT_RECEIVE:
3544 if (ctx->header_length != 0)
3545 flush_iso_completions(ctx);
3546 break;
3547 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3548 if (ctx->mc_completed != 0)
3549 flush_ir_buffer_fill(ctx);
3550 break;
3551 default:
3552 ret = -ENOSYS;
3553 }
3554
3555 clear_bit_unlock(0, &ctx->flushing_completions);
3556 smp_mb__after_atomic();
3557 }
3558
3559 tasklet_enable(&ctx->context.tasklet);
3560
3561 return ret;
3562 }
3563
3564 static const struct fw_card_driver ohci_driver = {
3565 .enable = ohci_enable,
3566 .read_phy_reg = ohci_read_phy_reg,
3567 .update_phy_reg = ohci_update_phy_reg,
3568 .set_config_rom = ohci_set_config_rom,
3569 .send_request = ohci_send_request,
3570 .send_response = ohci_send_response,
3571 .cancel_packet = ohci_cancel_packet,
3572 .enable_phys_dma = ohci_enable_phys_dma,
3573 .read_csr = ohci_read_csr,
3574 .write_csr = ohci_write_csr,
3575
3576 .allocate_iso_context = ohci_allocate_iso_context,
3577 .free_iso_context = ohci_free_iso_context,
3578 .set_iso_channels = ohci_set_iso_channels,
3579 .queue_iso = ohci_queue_iso,
3580 .flush_queue_iso = ohci_flush_queue_iso,
3581 .flush_iso_completions = ohci_flush_iso_completions,
3582 .start_iso = ohci_start_iso,
3583 .stop_iso = ohci_stop_iso,
3584 };
3585
3586 #ifdef CONFIG_PPC_PMAC
pmac_ohci_on(struct pci_dev * dev)3587 static void pmac_ohci_on(struct pci_dev *dev)
3588 {
3589 if (machine_is(powermac)) {
3590 struct device_node *ofn = pci_device_to_OF_node(dev);
3591
3592 if (ofn) {
3593 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3594 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3595 }
3596 }
3597 }
3598
pmac_ohci_off(struct pci_dev * dev)3599 static void pmac_ohci_off(struct pci_dev *dev)
3600 {
3601 if (machine_is(powermac)) {
3602 struct device_node *ofn = pci_device_to_OF_node(dev);
3603
3604 if (ofn) {
3605 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3606 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3607 }
3608 }
3609 }
3610 #else
pmac_ohci_on(struct pci_dev * dev)3611 static inline void pmac_ohci_on(struct pci_dev *dev) {}
pmac_ohci_off(struct pci_dev * dev)3612 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3613 #endif /* CONFIG_PPC_PMAC */
3614
release_ohci(struct device * dev,void * data)3615 static void release_ohci(struct device *dev, void *data)
3616 {
3617 struct pci_dev *pdev = to_pci_dev(dev);
3618 struct fw_ohci *ohci = pci_get_drvdata(pdev);
3619
3620 pmac_ohci_off(pdev);
3621
3622 ar_context_release(&ohci->ar_response_ctx);
3623 ar_context_release(&ohci->ar_request_ctx);
3624
3625 dev_notice(dev, "removed fw-ohci device\n");
3626 }
3627
pci_probe(struct pci_dev * dev,const struct pci_device_id * ent)3628 static int pci_probe(struct pci_dev *dev,
3629 const struct pci_device_id *ent)
3630 {
3631 struct fw_ohci *ohci;
3632 u32 bus_options, max_receive, link_speed, version;
3633 u64 guid;
3634 int i, err;
3635 size_t size;
3636
3637 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3638 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3639 return -ENOSYS;
3640 }
3641
3642 ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3643 if (ohci == NULL)
3644 return -ENOMEM;
3645 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3646 pci_set_drvdata(dev, ohci);
3647 pmac_ohci_on(dev);
3648 devres_add(&dev->dev, ohci);
3649
3650 err = pcim_enable_device(dev);
3651 if (err) {
3652 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3653 return err;
3654 }
3655
3656 pci_set_master(dev);
3657 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3658
3659 spin_lock_init(&ohci->lock);
3660 mutex_init(&ohci->phy_reg_mutex);
3661
3662 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3663
3664 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3665 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3666 ohci_err(ohci, "invalid MMIO resource\n");
3667 return -ENXIO;
3668 }
3669
3670 err = pcim_iomap_regions(dev, 1 << 0, ohci_driver_name);
3671 if (err) {
3672 ohci_err(ohci, "request and map MMIO resource unavailable\n");
3673 return -ENXIO;
3674 }
3675 ohci->registers = pcim_iomap_table(dev)[0];
3676
3677 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3678 if ((ohci_quirks[i].vendor == dev->vendor) &&
3679 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3680 ohci_quirks[i].device == dev->device) &&
3681 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3682 ohci_quirks[i].revision >= dev->revision)) {
3683 ohci->quirks = ohci_quirks[i].flags;
3684 break;
3685 }
3686 if (param_quirks)
3687 ohci->quirks = param_quirks;
3688
3689 if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3690 ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3691
3692 /*
3693 * Because dma_alloc_coherent() allocates at least one page,
3694 * we save space by using a common buffer for the AR request/
3695 * response descriptors and the self IDs buffer.
3696 */
3697 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3698 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3699 ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3700 GFP_KERNEL);
3701 if (!ohci->misc_buffer)
3702 return -ENOMEM;
3703
3704 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3705 OHCI1394_AsReqRcvContextControlSet);
3706 if (err < 0)
3707 return err;
3708
3709 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3710 OHCI1394_AsRspRcvContextControlSet);
3711 if (err < 0)
3712 return err;
3713
3714 err = context_init(&ohci->at_request_ctx, ohci,
3715 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3716 if (err < 0)
3717 return err;
3718
3719 err = context_init(&ohci->at_response_ctx, ohci,
3720 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3721 if (err < 0)
3722 return err;
3723
3724 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3725 ohci->ir_context_channels = ~0ULL;
3726 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3727 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3728 ohci->ir_context_mask = ohci->ir_context_support;
3729 ohci->n_ir = hweight32(ohci->ir_context_mask);
3730 size = sizeof(struct iso_context) * ohci->n_ir;
3731 ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3732 if (!ohci->ir_context_list)
3733 return -ENOMEM;
3734
3735 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3736 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3737 /* JMicron JMB38x often shows 0 at first read, just ignore it */
3738 if (!ohci->it_context_support) {
3739 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3740 ohci->it_context_support = 0xf;
3741 }
3742 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3743 ohci->it_context_mask = ohci->it_context_support;
3744 ohci->n_it = hweight32(ohci->it_context_mask);
3745 size = sizeof(struct iso_context) * ohci->n_it;
3746 ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3747 if (!ohci->it_context_list)
3748 return -ENOMEM;
3749
3750 ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2;
3751 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3752
3753 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3754 max_receive = (bus_options >> 12) & 0xf;
3755 link_speed = bus_options & 0x7;
3756 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3757 reg_read(ohci, OHCI1394_GUIDLo);
3758
3759 if (!(ohci->quirks & QUIRK_NO_MSI))
3760 pci_enable_msi(dev);
3761 err = devm_request_irq(&dev->dev, dev->irq, irq_handler,
3762 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name, ohci);
3763 if (err < 0) {
3764 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3765 goto fail_msi;
3766 }
3767
3768 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3769 if (err)
3770 goto fail_msi;
3771
3772 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3773 ohci_notice(ohci,
3774 "added OHCI v%x.%x device as card %d, "
3775 "%d IR + %d IT contexts, quirks 0x%x%s\n",
3776 version >> 16, version & 0xff, ohci->card.index,
3777 ohci->n_ir, ohci->n_it, ohci->quirks,
3778 reg_read(ohci, OHCI1394_PhyUpperBound) ?
3779 ", physUB" : "");
3780
3781 return 0;
3782
3783 fail_msi:
3784 devm_free_irq(&dev->dev, dev->irq, ohci);
3785 pci_disable_msi(dev);
3786
3787 return err;
3788 }
3789
pci_remove(struct pci_dev * dev)3790 static void pci_remove(struct pci_dev *dev)
3791 {
3792 struct fw_ohci *ohci = pci_get_drvdata(dev);
3793
3794 /*
3795 * If the removal is happening from the suspend state, LPS won't be
3796 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3797 */
3798 if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3799 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3800 flush_writes(ohci);
3801 }
3802 cancel_work_sync(&ohci->bus_reset_work);
3803 fw_core_remove_card(&ohci->card);
3804
3805 /*
3806 * FIXME: Fail all pending packets here, now that the upper
3807 * layers can't queue any more.
3808 */
3809
3810 software_reset(ohci);
3811
3812 devm_free_irq(&dev->dev, dev->irq, ohci);
3813 pci_disable_msi(dev);
3814
3815 dev_notice(&dev->dev, "removing fw-ohci device\n");
3816 }
3817
3818 #ifdef CONFIG_PM
pci_suspend(struct pci_dev * dev,pm_message_t state)3819 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3820 {
3821 struct fw_ohci *ohci = pci_get_drvdata(dev);
3822 int err;
3823
3824 software_reset(ohci);
3825 err = pci_save_state(dev);
3826 if (err) {
3827 ohci_err(ohci, "pci_save_state failed\n");
3828 return err;
3829 }
3830 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3831 if (err)
3832 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3833 pmac_ohci_off(dev);
3834
3835 return 0;
3836 }
3837
pci_resume(struct pci_dev * dev)3838 static int pci_resume(struct pci_dev *dev)
3839 {
3840 struct fw_ohci *ohci = pci_get_drvdata(dev);
3841 int err;
3842
3843 pmac_ohci_on(dev);
3844 pci_set_power_state(dev, PCI_D0);
3845 pci_restore_state(dev);
3846 err = pci_enable_device(dev);
3847 if (err) {
3848 ohci_err(ohci, "pci_enable_device failed\n");
3849 return err;
3850 }
3851
3852 /* Some systems don't setup GUID register on resume from ram */
3853 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3854 !reg_read(ohci, OHCI1394_GUIDHi)) {
3855 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3856 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3857 }
3858
3859 err = ohci_enable(&ohci->card, NULL, 0);
3860 if (err)
3861 return err;
3862
3863 ohci_resume_iso_dma(ohci);
3864
3865 return 0;
3866 }
3867 #endif
3868
3869 static const struct pci_device_id pci_table[] = {
3870 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3871 { }
3872 };
3873
3874 MODULE_DEVICE_TABLE(pci, pci_table);
3875
3876 static struct pci_driver fw_ohci_pci_driver = {
3877 .name = ohci_driver_name,
3878 .id_table = pci_table,
3879 .probe = pci_probe,
3880 .remove = pci_remove,
3881 #ifdef CONFIG_PM
3882 .resume = pci_resume,
3883 .suspend = pci_suspend,
3884 #endif
3885 };
3886
fw_ohci_init(void)3887 static int __init fw_ohci_init(void)
3888 {
3889 selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3890 if (!selfid_workqueue)
3891 return -ENOMEM;
3892
3893 return pci_register_driver(&fw_ohci_pci_driver);
3894 }
3895
fw_ohci_cleanup(void)3896 static void __exit fw_ohci_cleanup(void)
3897 {
3898 pci_unregister_driver(&fw_ohci_pci_driver);
3899 destroy_workqueue(selfid_workqueue);
3900 }
3901
3902 module_init(fw_ohci_init);
3903 module_exit(fw_ohci_cleanup);
3904
3905 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3906 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3907 MODULE_LICENSE("GPL");
3908
3909 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3910 MODULE_ALIAS("ohci1394");
3911