1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * nosy - Snoop mode driver for TI PCILynx 1394 controllers 4 * Copyright (C) 2002-2007 Kristian Høgsberg 5 */ 6 7 #include <linux/device.h> 8 #include <linux/errno.h> 9 #include <linux/fs.h> 10 #include <linux/init.h> 11 #include <linux/interrupt.h> 12 #include <linux/io.h> 13 #include <linux/kernel.h> 14 #include <linux/kref.h> 15 #include <linux/miscdevice.h> 16 #include <linux/module.h> 17 #include <linux/mutex.h> 18 #include <linux/pci.h> 19 #include <linux/poll.h> 20 #include <linux/sched.h> /* required for linux/wait.h */ 21 #include <linux/slab.h> 22 #include <linux/spinlock.h> 23 #include <linux/time64.h> 24 #include <linux/timex.h> 25 #include <linux/uaccess.h> 26 #include <linux/wait.h> 27 #include <linux/dma-mapping.h> 28 #include <linux/atomic.h> 29 #include <asm/byteorder.h> 30 31 #include "nosy.h" 32 #include "nosy-user.h" 33 34 #define TCODE_PHY_PACKET 0x10 35 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 36 37 static char driver_name[] = KBUILD_MODNAME; 38 39 /* this is the physical layout of a PCL, its size is 128 bytes */ 40 struct pcl { 41 __le32 next; 42 __le32 async_error_next; 43 u32 user_data; 44 __le32 pcl_status; 45 __le32 remaining_transfer_count; 46 __le32 next_data_buffer; 47 struct { 48 __le32 control; 49 __le32 pointer; 50 } buffer[13]; 51 }; 52 53 struct packet { 54 unsigned int length; 55 char data[]; 56 }; 57 58 struct packet_buffer { 59 char *data; 60 size_t capacity; 61 long total_packet_count, lost_packet_count; 62 atomic_t size; 63 struct packet *head, *tail; 64 wait_queue_head_t wait; 65 }; 66 67 struct pcilynx { 68 struct pci_dev *pci_device; 69 __iomem char *registers; 70 71 struct pcl *rcv_start_pcl, *rcv_pcl; 72 __le32 *rcv_buffer; 73 74 dma_addr_t rcv_start_pcl_bus, rcv_pcl_bus, rcv_buffer_bus; 75 76 spinlock_t client_list_lock; 77 struct list_head client_list; 78 79 struct miscdevice misc; 80 struct list_head link; 81 struct kref kref; 82 }; 83 84 static inline struct pcilynx * 85 lynx_get(struct pcilynx *lynx) 86 { 87 kref_get(&lynx->kref); 88 89 return lynx; 90 } 91 92 static void 93 lynx_release(struct kref *kref) 94 { 95 kfree(container_of(kref, struct pcilynx, kref)); 96 } 97 98 static inline void 99 lynx_put(struct pcilynx *lynx) 100 { 101 kref_put(&lynx->kref, lynx_release); 102 } 103 104 struct client { 105 struct pcilynx *lynx; 106 u32 tcode_mask; 107 struct packet_buffer buffer; 108 struct list_head link; 109 }; 110 111 static DEFINE_MUTEX(card_mutex); 112 static LIST_HEAD(card_list); 113 114 static int 115 packet_buffer_init(struct packet_buffer *buffer, size_t capacity) 116 { 117 buffer->data = kmalloc(capacity, GFP_KERNEL); 118 if (buffer->data == NULL) 119 return -ENOMEM; 120 buffer->head = (struct packet *) buffer->data; 121 buffer->tail = (struct packet *) buffer->data; 122 buffer->capacity = capacity; 123 buffer->lost_packet_count = 0; 124 atomic_set(&buffer->size, 0); 125 init_waitqueue_head(&buffer->wait); 126 127 return 0; 128 } 129 130 static void 131 packet_buffer_destroy(struct packet_buffer *buffer) 132 { 133 kfree(buffer->data); 134 } 135 136 static int 137 packet_buffer_get(struct client *client, char __user *data, size_t user_length) 138 { 139 struct packet_buffer *buffer = &client->buffer; 140 size_t length; 141 char *end; 142 143 if (wait_event_interruptible(buffer->wait, 144 atomic_read(&buffer->size) > 0) || 145 list_empty(&client->lynx->link)) 146 return -ERESTARTSYS; 147 148 if (atomic_read(&buffer->size) == 0) 149 return -ENODEV; 150 151 length = buffer->head->length; 152 153 if (length > user_length) 154 return 0; 155 156 end = buffer->data + buffer->capacity; 157 158 if (&buffer->head->data[length] < end) { 159 if (copy_to_user(data, buffer->head->data, length)) 160 return -EFAULT; 161 buffer->head = (struct packet *) &buffer->head->data[length]; 162 } else { 163 size_t split = end - buffer->head->data; 164 165 if (copy_to_user(data, buffer->head->data, split)) 166 return -EFAULT; 167 if (copy_to_user(data + split, buffer->data, length - split)) 168 return -EFAULT; 169 buffer->head = (struct packet *) &buffer->data[length - split]; 170 } 171 172 /* 173 * Decrease buffer->size as the last thing, since this is what 174 * keeps the interrupt from overwriting the packet we are 175 * retrieving from the buffer. 176 */ 177 atomic_sub(sizeof(struct packet) + length, &buffer->size); 178 179 return length; 180 } 181 182 static void 183 packet_buffer_put(struct packet_buffer *buffer, void *data, size_t length) 184 { 185 char *end; 186 187 buffer->total_packet_count++; 188 189 if (buffer->capacity < 190 atomic_read(&buffer->size) + sizeof(struct packet) + length) { 191 buffer->lost_packet_count++; 192 return; 193 } 194 195 end = buffer->data + buffer->capacity; 196 buffer->tail->length = length; 197 198 if (&buffer->tail->data[length] < end) { 199 memcpy(buffer->tail->data, data, length); 200 buffer->tail = (struct packet *) &buffer->tail->data[length]; 201 } else { 202 size_t split = end - buffer->tail->data; 203 204 memcpy(buffer->tail->data, data, split); 205 memcpy(buffer->data, data + split, length - split); 206 buffer->tail = (struct packet *) &buffer->data[length - split]; 207 } 208 209 /* Finally, adjust buffer size and wake up userspace reader. */ 210 211 atomic_add(sizeof(struct packet) + length, &buffer->size); 212 wake_up_interruptible(&buffer->wait); 213 } 214 215 static inline void 216 reg_write(struct pcilynx *lynx, int offset, u32 data) 217 { 218 writel(data, lynx->registers + offset); 219 } 220 221 static inline u32 222 reg_read(struct pcilynx *lynx, int offset) 223 { 224 return readl(lynx->registers + offset); 225 } 226 227 static inline void 228 reg_set_bits(struct pcilynx *lynx, int offset, u32 mask) 229 { 230 reg_write(lynx, offset, (reg_read(lynx, offset) | mask)); 231 } 232 233 /* 234 * Maybe the pcl programs could be set up to just append data instead 235 * of using a whole packet. 236 */ 237 static inline void 238 run_pcl(struct pcilynx *lynx, dma_addr_t pcl_bus, 239 int dmachan) 240 { 241 reg_write(lynx, DMA0_CURRENT_PCL + dmachan * 0x20, pcl_bus); 242 reg_write(lynx, DMA0_CHAN_CTRL + dmachan * 0x20, 243 DMA_CHAN_CTRL_ENABLE | DMA_CHAN_CTRL_LINK); 244 } 245 246 static int 247 set_phy_reg(struct pcilynx *lynx, int addr, int val) 248 { 249 if (addr > 15) { 250 dev_err(&lynx->pci_device->dev, 251 "PHY register address %d out of range\n", addr); 252 return -1; 253 } 254 if (val > 0xff) { 255 dev_err(&lynx->pci_device->dev, 256 "PHY register value %d out of range\n", val); 257 return -1; 258 } 259 reg_write(lynx, LINK_PHY, LINK_PHY_WRITE | 260 LINK_PHY_ADDR(addr) | LINK_PHY_WDATA(val)); 261 262 return 0; 263 } 264 265 static int 266 nosy_open(struct inode *inode, struct file *file) 267 { 268 int minor = iminor(inode); 269 struct client *client; 270 struct pcilynx *tmp, *lynx = NULL; 271 272 mutex_lock(&card_mutex); 273 list_for_each_entry(tmp, &card_list, link) 274 if (tmp->misc.minor == minor) { 275 lynx = lynx_get(tmp); 276 break; 277 } 278 mutex_unlock(&card_mutex); 279 if (lynx == NULL) 280 return -ENODEV; 281 282 client = kmalloc(sizeof *client, GFP_KERNEL); 283 if (client == NULL) 284 goto fail; 285 286 client->tcode_mask = ~0; 287 client->lynx = lynx; 288 INIT_LIST_HEAD(&client->link); 289 290 if (packet_buffer_init(&client->buffer, 128 * 1024) < 0) 291 goto fail; 292 293 file->private_data = client; 294 295 return stream_open(inode, file); 296 fail: 297 kfree(client); 298 lynx_put(lynx); 299 300 return -ENOMEM; 301 } 302 303 static int 304 nosy_release(struct inode *inode, struct file *file) 305 { 306 struct client *client = file->private_data; 307 struct pcilynx *lynx = client->lynx; 308 309 spin_lock_irq(&lynx->client_list_lock); 310 list_del_init(&client->link); 311 spin_unlock_irq(&lynx->client_list_lock); 312 313 packet_buffer_destroy(&client->buffer); 314 kfree(client); 315 lynx_put(lynx); 316 317 return 0; 318 } 319 320 static __poll_t 321 nosy_poll(struct file *file, poll_table *pt) 322 { 323 struct client *client = file->private_data; 324 __poll_t ret = 0; 325 326 poll_wait(file, &client->buffer.wait, pt); 327 328 if (atomic_read(&client->buffer.size) > 0) 329 ret = EPOLLIN | EPOLLRDNORM; 330 331 if (list_empty(&client->lynx->link)) 332 ret |= EPOLLHUP; 333 334 return ret; 335 } 336 337 static ssize_t 338 nosy_read(struct file *file, char __user *buffer, size_t count, loff_t *offset) 339 { 340 struct client *client = file->private_data; 341 342 return packet_buffer_get(client, buffer, count); 343 } 344 345 static long 346 nosy_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 347 { 348 struct client *client = file->private_data; 349 spinlock_t *client_list_lock = &client->lynx->client_list_lock; 350 struct nosy_stats stats; 351 int ret; 352 353 switch (cmd) { 354 case NOSY_IOC_GET_STATS: 355 spin_lock_irq(client_list_lock); 356 stats.total_packet_count = client->buffer.total_packet_count; 357 stats.lost_packet_count = client->buffer.lost_packet_count; 358 spin_unlock_irq(client_list_lock); 359 360 if (copy_to_user((void __user *) arg, &stats, sizeof stats)) 361 return -EFAULT; 362 else 363 return 0; 364 365 case NOSY_IOC_START: 366 ret = -EBUSY; 367 spin_lock_irq(client_list_lock); 368 if (list_empty(&client->link)) { 369 list_add_tail(&client->link, &client->lynx->client_list); 370 ret = 0; 371 } 372 spin_unlock_irq(client_list_lock); 373 374 return ret; 375 376 case NOSY_IOC_STOP: 377 spin_lock_irq(client_list_lock); 378 list_del_init(&client->link); 379 spin_unlock_irq(client_list_lock); 380 381 return 0; 382 383 case NOSY_IOC_FILTER: 384 spin_lock_irq(client_list_lock); 385 client->tcode_mask = arg; 386 spin_unlock_irq(client_list_lock); 387 388 return 0; 389 390 default: 391 return -EINVAL; 392 /* Flush buffer, configure filter. */ 393 } 394 } 395 396 static const struct file_operations nosy_ops = { 397 .owner = THIS_MODULE, 398 .read = nosy_read, 399 .unlocked_ioctl = nosy_ioctl, 400 .poll = nosy_poll, 401 .open = nosy_open, 402 .release = nosy_release, 403 }; 404 405 #define PHY_PACKET_SIZE 12 /* 1 payload, 1 inverse, 1 ack = 3 quadlets */ 406 407 static void 408 packet_irq_handler(struct pcilynx *lynx) 409 { 410 struct client *client; 411 u32 tcode_mask, tcode, timestamp; 412 size_t length; 413 struct timespec64 ts64; 414 415 /* FIXME: Also report rcv_speed. */ 416 417 length = __le32_to_cpu(lynx->rcv_pcl->pcl_status) & 0x00001fff; 418 tcode = __le32_to_cpu(lynx->rcv_buffer[1]) >> 4 & 0xf; 419 420 ktime_get_real_ts64(&ts64); 421 timestamp = ts64.tv_nsec / NSEC_PER_USEC; 422 lynx->rcv_buffer[0] = (__force __le32)timestamp; 423 424 if (length == PHY_PACKET_SIZE) 425 tcode_mask = 1 << TCODE_PHY_PACKET; 426 else 427 tcode_mask = 1 << tcode; 428 429 spin_lock(&lynx->client_list_lock); 430 431 list_for_each_entry(client, &lynx->client_list, link) 432 if (client->tcode_mask & tcode_mask) 433 packet_buffer_put(&client->buffer, 434 lynx->rcv_buffer, length + 4); 435 436 spin_unlock(&lynx->client_list_lock); 437 } 438 439 static void 440 bus_reset_irq_handler(struct pcilynx *lynx) 441 { 442 struct client *client; 443 struct timespec64 ts64; 444 u32 timestamp; 445 446 ktime_get_real_ts64(&ts64); 447 timestamp = ts64.tv_nsec / NSEC_PER_USEC; 448 449 spin_lock(&lynx->client_list_lock); 450 451 list_for_each_entry(client, &lynx->client_list, link) 452 packet_buffer_put(&client->buffer, ×tamp, 4); 453 454 spin_unlock(&lynx->client_list_lock); 455 } 456 457 static irqreturn_t 458 irq_handler(int irq, void *device) 459 { 460 struct pcilynx *lynx = device; 461 u32 pci_int_status; 462 463 pci_int_status = reg_read(lynx, PCI_INT_STATUS); 464 465 if (pci_int_status == ~0) 466 /* Card was ejected. */ 467 return IRQ_NONE; 468 469 if ((pci_int_status & PCI_INT_INT_PEND) == 0) 470 /* Not our interrupt, bail out quickly. */ 471 return IRQ_NONE; 472 473 if ((pci_int_status & PCI_INT_P1394_INT) != 0) { 474 u32 link_int_status; 475 476 link_int_status = reg_read(lynx, LINK_INT_STATUS); 477 reg_write(lynx, LINK_INT_STATUS, link_int_status); 478 479 if ((link_int_status & LINK_INT_PHY_BUSRESET) > 0) 480 bus_reset_irq_handler(lynx); 481 } 482 483 /* Clear the PCI_INT_STATUS register only after clearing the 484 * LINK_INT_STATUS register; otherwise the PCI_INT_P1394 will 485 * be set again immediately. */ 486 487 reg_write(lynx, PCI_INT_STATUS, pci_int_status); 488 489 if ((pci_int_status & PCI_INT_DMA0_HLT) > 0) { 490 packet_irq_handler(lynx); 491 run_pcl(lynx, lynx->rcv_start_pcl_bus, 0); 492 } 493 494 return IRQ_HANDLED; 495 } 496 497 static void 498 remove_card(struct pci_dev *dev) 499 { 500 struct pcilynx *lynx = pci_get_drvdata(dev); 501 struct client *client; 502 503 mutex_lock(&card_mutex); 504 list_del_init(&lynx->link); 505 misc_deregister(&lynx->misc); 506 mutex_unlock(&card_mutex); 507 508 reg_write(lynx, PCI_INT_ENABLE, 0); 509 free_irq(lynx->pci_device->irq, lynx); 510 511 spin_lock_irq(&lynx->client_list_lock); 512 list_for_each_entry(client, &lynx->client_list, link) 513 wake_up_interruptible(&client->buffer.wait); 514 spin_unlock_irq(&lynx->client_list_lock); 515 516 dma_free_coherent(&lynx->pci_device->dev, sizeof(struct pcl), 517 lynx->rcv_start_pcl, lynx->rcv_start_pcl_bus); 518 dma_free_coherent(&lynx->pci_device->dev, sizeof(struct pcl), 519 lynx->rcv_pcl, lynx->rcv_pcl_bus); 520 dma_free_coherent(&lynx->pci_device->dev, PAGE_SIZE, lynx->rcv_buffer, 521 lynx->rcv_buffer_bus); 522 523 iounmap(lynx->registers); 524 pci_disable_device(dev); 525 lynx_put(lynx); 526 } 527 528 #define RCV_BUFFER_SIZE (16 * 1024) 529 530 static int 531 add_card(struct pci_dev *dev, const struct pci_device_id *unused) 532 { 533 struct pcilynx *lynx; 534 u32 p, end; 535 int ret, i; 536 537 if (dma_set_mask(&dev->dev, DMA_BIT_MASK(32))) { 538 dev_err(&dev->dev, 539 "DMA address limits not supported for PCILynx hardware\n"); 540 return -ENXIO; 541 } 542 if (pci_enable_device(dev)) { 543 dev_err(&dev->dev, "Failed to enable PCILynx hardware\n"); 544 return -ENXIO; 545 } 546 pci_set_master(dev); 547 548 lynx = kzalloc(sizeof *lynx, GFP_KERNEL); 549 if (lynx == NULL) { 550 dev_err(&dev->dev, "Failed to allocate control structure\n"); 551 ret = -ENOMEM; 552 goto fail_disable; 553 } 554 lynx->pci_device = dev; 555 pci_set_drvdata(dev, lynx); 556 557 spin_lock_init(&lynx->client_list_lock); 558 INIT_LIST_HEAD(&lynx->client_list); 559 kref_init(&lynx->kref); 560 561 lynx->registers = ioremap(pci_resource_start(dev, 0), 562 PCILYNX_MAX_REGISTER); 563 if (lynx->registers == NULL) { 564 dev_err(&dev->dev, "Failed to map registers\n"); 565 ret = -ENOMEM; 566 goto fail_deallocate_lynx; 567 } 568 569 lynx->rcv_start_pcl = dma_alloc_coherent(&lynx->pci_device->dev, 570 sizeof(struct pcl), 571 &lynx->rcv_start_pcl_bus, 572 GFP_KERNEL); 573 lynx->rcv_pcl = dma_alloc_coherent(&lynx->pci_device->dev, 574 sizeof(struct pcl), 575 &lynx->rcv_pcl_bus, GFP_KERNEL); 576 lynx->rcv_buffer = dma_alloc_coherent(&lynx->pci_device->dev, 577 RCV_BUFFER_SIZE, 578 &lynx->rcv_buffer_bus, GFP_KERNEL); 579 if (lynx->rcv_start_pcl == NULL || 580 lynx->rcv_pcl == NULL || 581 lynx->rcv_buffer == NULL) { 582 dev_err(&dev->dev, "Failed to allocate receive buffer\n"); 583 ret = -ENOMEM; 584 goto fail_deallocate_buffers; 585 } 586 lynx->rcv_start_pcl->next = cpu_to_le32(lynx->rcv_pcl_bus); 587 lynx->rcv_pcl->next = cpu_to_le32(PCL_NEXT_INVALID); 588 lynx->rcv_pcl->async_error_next = cpu_to_le32(PCL_NEXT_INVALID); 589 590 lynx->rcv_pcl->buffer[0].control = 591 cpu_to_le32(PCL_CMD_RCV | PCL_BIGENDIAN | 2044); 592 lynx->rcv_pcl->buffer[0].pointer = 593 cpu_to_le32(lynx->rcv_buffer_bus + 4); 594 p = lynx->rcv_buffer_bus + 2048; 595 end = lynx->rcv_buffer_bus + RCV_BUFFER_SIZE; 596 for (i = 1; p < end; i++, p += 2048) { 597 lynx->rcv_pcl->buffer[i].control = 598 cpu_to_le32(PCL_CMD_RCV | PCL_BIGENDIAN | 2048); 599 lynx->rcv_pcl->buffer[i].pointer = cpu_to_le32(p); 600 } 601 lynx->rcv_pcl->buffer[i - 1].control |= cpu_to_le32(PCL_LAST_BUFF); 602 603 reg_set_bits(lynx, MISC_CONTROL, MISC_CONTROL_SWRESET); 604 /* Fix buggy cards with autoboot pin not tied low: */ 605 reg_write(lynx, DMA0_CHAN_CTRL, 0); 606 reg_write(lynx, DMA_GLOBAL_REGISTER, 0x00 << 24); 607 608 #if 0 609 /* now, looking for PHY register set */ 610 if ((get_phy_reg(lynx, 2) & 0xe0) == 0xe0) { 611 lynx->phyic.reg_1394a = 1; 612 PRINT(KERN_INFO, lynx->id, 613 "found 1394a conform PHY (using extended register set)"); 614 lynx->phyic.vendor = get_phy_vendorid(lynx); 615 lynx->phyic.product = get_phy_productid(lynx); 616 } else { 617 lynx->phyic.reg_1394a = 0; 618 PRINT(KERN_INFO, lynx->id, "found old 1394 PHY"); 619 } 620 #endif 621 622 /* Setup the general receive FIFO max size. */ 623 reg_write(lynx, FIFO_SIZES, 255); 624 625 reg_set_bits(lynx, PCI_INT_ENABLE, PCI_INT_DMA_ALL); 626 627 reg_write(lynx, LINK_INT_ENABLE, 628 LINK_INT_PHY_TIME_OUT | LINK_INT_PHY_REG_RCVD | 629 LINK_INT_PHY_BUSRESET | LINK_INT_IT_STUCK | 630 LINK_INT_AT_STUCK | LINK_INT_SNTRJ | 631 LINK_INT_TC_ERR | LINK_INT_GRF_OVER_FLOW | 632 LINK_INT_ITF_UNDER_FLOW | LINK_INT_ATF_UNDER_FLOW); 633 634 /* Disable the L flag in self ID packets. */ 635 set_phy_reg(lynx, 4, 0); 636 637 /* Put this baby into snoop mode */ 638 reg_set_bits(lynx, LINK_CONTROL, LINK_CONTROL_SNOOP_ENABLE); 639 640 run_pcl(lynx, lynx->rcv_start_pcl_bus, 0); 641 642 if (request_irq(dev->irq, irq_handler, IRQF_SHARED, 643 driver_name, lynx)) { 644 dev_err(&dev->dev, 645 "Failed to allocate shared interrupt %d\n", dev->irq); 646 ret = -EIO; 647 goto fail_deallocate_buffers; 648 } 649 650 lynx->misc.parent = &dev->dev; 651 lynx->misc.minor = MISC_DYNAMIC_MINOR; 652 lynx->misc.name = "nosy"; 653 lynx->misc.fops = &nosy_ops; 654 655 mutex_lock(&card_mutex); 656 ret = misc_register(&lynx->misc); 657 if (ret) { 658 dev_err(&dev->dev, "Failed to register misc char device\n"); 659 mutex_unlock(&card_mutex); 660 goto fail_free_irq; 661 } 662 list_add_tail(&lynx->link, &card_list); 663 mutex_unlock(&card_mutex); 664 665 dev_info(&dev->dev, 666 "Initialized PCILynx IEEE1394 card, irq=%d\n", dev->irq); 667 668 return 0; 669 670 fail_free_irq: 671 reg_write(lynx, PCI_INT_ENABLE, 0); 672 free_irq(lynx->pci_device->irq, lynx); 673 674 fail_deallocate_buffers: 675 if (lynx->rcv_start_pcl) 676 dma_free_coherent(&lynx->pci_device->dev, sizeof(struct pcl), 677 lynx->rcv_start_pcl, 678 lynx->rcv_start_pcl_bus); 679 if (lynx->rcv_pcl) 680 dma_free_coherent(&lynx->pci_device->dev, sizeof(struct pcl), 681 lynx->rcv_pcl, lynx->rcv_pcl_bus); 682 if (lynx->rcv_buffer) 683 dma_free_coherent(&lynx->pci_device->dev, PAGE_SIZE, 684 lynx->rcv_buffer, lynx->rcv_buffer_bus); 685 iounmap(lynx->registers); 686 687 fail_deallocate_lynx: 688 kfree(lynx); 689 690 fail_disable: 691 pci_disable_device(dev); 692 693 return ret; 694 } 695 696 static struct pci_device_id pci_table[] = { 697 { 698 .vendor = PCI_VENDOR_ID_TI, 699 .device = PCI_DEVICE_ID_TI_PCILYNX, 700 .subvendor = PCI_ANY_ID, 701 .subdevice = PCI_ANY_ID, 702 }, 703 { } /* Terminating entry */ 704 }; 705 706 MODULE_DEVICE_TABLE(pci, pci_table); 707 708 static struct pci_driver lynx_pci_driver = { 709 .name = driver_name, 710 .id_table = pci_table, 711 .probe = add_card, 712 .remove = remove_card, 713 }; 714 715 module_pci_driver(lynx_pci_driver); 716 717 MODULE_AUTHOR("Kristian Hoegsberg"); 718 MODULE_DESCRIPTION("Snoop mode driver for TI pcilynx 1394 controllers"); 719 MODULE_LICENSE("GPL"); 720