1 /* 2 * IPv4 over IEEE 1394, per RFC 2734 3 * 4 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com> 5 * 6 * based on eth1394 by Ben Collins et al 7 */ 8 9 #include <linux/bug.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/ethtool.h> 13 #include <linux/firewire.h> 14 #include <linux/firewire-constants.h> 15 #include <linux/highmem.h> 16 #include <linux/in.h> 17 #include <linux/ip.h> 18 #include <linux/jiffies.h> 19 #include <linux/mod_devicetable.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mutex.h> 23 #include <linux/netdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/slab.h> 26 #include <linux/spinlock.h> 27 28 #include <asm/unaligned.h> 29 #include <net/arp.h> 30 31 /* rx limits */ 32 #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */ 33 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2) 34 35 /* tx limits */ 36 #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */ 37 #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */ 38 #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */ 39 40 #define IEEE1394_BROADCAST_CHANNEL 31 41 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f) 42 #define IEEE1394_MAX_PAYLOAD_S100 512 43 #define FWNET_NO_FIFO_ADDR (~0ULL) 44 45 #define IANA_SPECIFIER_ID 0x00005eU 46 #define RFC2734_SW_VERSION 0x000001U 47 48 #define IEEE1394_GASP_HDR_SIZE 8 49 50 #define RFC2374_UNFRAG_HDR_SIZE 4 51 #define RFC2374_FRAG_HDR_SIZE 8 52 #define RFC2374_FRAG_OVERHEAD 4 53 54 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */ 55 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */ 56 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */ 57 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */ 58 59 #define RFC2734_HW_ADDR_LEN 16 60 61 struct rfc2734_arp { 62 __be16 hw_type; /* 0x0018 */ 63 __be16 proto_type; /* 0x0806 */ 64 u8 hw_addr_len; /* 16 */ 65 u8 ip_addr_len; /* 4 */ 66 __be16 opcode; /* ARP Opcode */ 67 /* Above is exactly the same format as struct arphdr */ 68 69 __be64 s_uniq_id; /* Sender's 64bit EUI */ 70 u8 max_rec; /* Sender's max packet size */ 71 u8 sspd; /* Sender's max speed */ 72 __be16 fifo_hi; /* hi 16bits of sender's FIFO addr */ 73 __be32 fifo_lo; /* lo 32bits of sender's FIFO addr */ 74 __be32 sip; /* Sender's IP Address */ 75 __be32 tip; /* IP Address of requested hw addr */ 76 } __attribute__((packed)); 77 78 /* This header format is specific to this driver implementation. */ 79 #define FWNET_ALEN 8 80 #define FWNET_HLEN 10 81 struct fwnet_header { 82 u8 h_dest[FWNET_ALEN]; /* destination address */ 83 __be16 h_proto; /* packet type ID field */ 84 } __attribute__((packed)); 85 86 /* IPv4 and IPv6 encapsulation header */ 87 struct rfc2734_header { 88 u32 w0; 89 u32 w1; 90 }; 91 92 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30) 93 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff)) 94 #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16) 95 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff)) 96 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16) 97 98 #define fwnet_set_hdr_lf(lf) ((lf) << 30) 99 #define fwnet_set_hdr_ether_type(et) (et) 100 #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16) 101 #define fwnet_set_hdr_fg_off(fgo) (fgo) 102 103 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16) 104 105 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr, 106 unsigned ether_type) 107 { 108 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG) 109 | fwnet_set_hdr_ether_type(ether_type); 110 } 111 112 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr, 113 unsigned ether_type, unsigned dg_size, unsigned dgl) 114 { 115 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG) 116 | fwnet_set_hdr_dg_size(dg_size) 117 | fwnet_set_hdr_ether_type(ether_type); 118 hdr->w1 = fwnet_set_hdr_dgl(dgl); 119 } 120 121 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr, 122 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl) 123 { 124 hdr->w0 = fwnet_set_hdr_lf(lf) 125 | fwnet_set_hdr_dg_size(dg_size) 126 | fwnet_set_hdr_fg_off(fg_off); 127 hdr->w1 = fwnet_set_hdr_dgl(dgl); 128 } 129 130 /* This list keeps track of what parts of the datagram have been filled in */ 131 struct fwnet_fragment_info { 132 struct list_head fi_link; 133 u16 offset; 134 u16 len; 135 }; 136 137 struct fwnet_partial_datagram { 138 struct list_head pd_link; 139 struct list_head fi_list; 140 struct sk_buff *skb; 141 /* FIXME Why not use skb->data? */ 142 char *pbuf; 143 u16 datagram_label; 144 u16 ether_type; 145 u16 datagram_size; 146 }; 147 148 static DEFINE_MUTEX(fwnet_device_mutex); 149 static LIST_HEAD(fwnet_device_list); 150 151 struct fwnet_device { 152 struct list_head dev_link; 153 spinlock_t lock; 154 enum { 155 FWNET_BROADCAST_ERROR, 156 FWNET_BROADCAST_RUNNING, 157 FWNET_BROADCAST_STOPPED, 158 } broadcast_state; 159 struct fw_iso_context *broadcast_rcv_context; 160 struct fw_iso_buffer broadcast_rcv_buffer; 161 void **broadcast_rcv_buffer_ptrs; 162 unsigned broadcast_rcv_next_ptr; 163 unsigned num_broadcast_rcv_ptrs; 164 unsigned rcv_buffer_size; 165 /* 166 * This value is the maximum unfragmented datagram size that can be 167 * sent by the hardware. It already has the GASP overhead and the 168 * unfragmented datagram header overhead calculated into it. 169 */ 170 unsigned broadcast_xmt_max_payload; 171 u16 broadcast_xmt_datagramlabel; 172 173 /* 174 * The CSR address that remote nodes must send datagrams to for us to 175 * receive them. 176 */ 177 struct fw_address_handler handler; 178 u64 local_fifo; 179 180 /* Number of tx datagrams that have been queued but not yet acked */ 181 int queued_datagrams; 182 183 int peer_count; 184 struct list_head peer_list; 185 struct fw_card *card; 186 struct net_device *netdev; 187 }; 188 189 struct fwnet_peer { 190 struct list_head peer_link; 191 struct fwnet_device *dev; 192 u64 guid; 193 u64 fifo; 194 __be32 ip; 195 196 /* guarded by dev->lock */ 197 struct list_head pd_list; /* received partial datagrams */ 198 unsigned pdg_size; /* pd_list size */ 199 200 u16 datagram_label; /* outgoing datagram label */ 201 u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */ 202 int node_id; 203 int generation; 204 unsigned speed; 205 }; 206 207 /* This is our task struct. It's used for the packet complete callback. */ 208 struct fwnet_packet_task { 209 struct fw_transaction transaction; 210 struct rfc2734_header hdr; 211 struct sk_buff *skb; 212 struct fwnet_device *dev; 213 214 int outstanding_pkts; 215 u64 fifo_addr; 216 u16 dest_node; 217 u16 max_payload; 218 u8 generation; 219 u8 speed; 220 u8 enqueued; 221 }; 222 223 /* 224 * saddr == NULL means use device source address. 225 * daddr == NULL means leave destination address (eg unresolved arp). 226 */ 227 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net, 228 unsigned short type, const void *daddr, 229 const void *saddr, unsigned len) 230 { 231 struct fwnet_header *h; 232 233 h = (struct fwnet_header *)skb_push(skb, sizeof(*h)); 234 put_unaligned_be16(type, &h->h_proto); 235 236 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) { 237 memset(h->h_dest, 0, net->addr_len); 238 239 return net->hard_header_len; 240 } 241 242 if (daddr) { 243 memcpy(h->h_dest, daddr, net->addr_len); 244 245 return net->hard_header_len; 246 } 247 248 return -net->hard_header_len; 249 } 250 251 static int fwnet_header_rebuild(struct sk_buff *skb) 252 { 253 struct fwnet_header *h = (struct fwnet_header *)skb->data; 254 255 if (get_unaligned_be16(&h->h_proto) == ETH_P_IP) 256 return arp_find((unsigned char *)&h->h_dest, skb); 257 258 fw_notify("%s: unable to resolve type %04x addresses\n", 259 skb->dev->name, be16_to_cpu(h->h_proto)); 260 return 0; 261 } 262 263 static int fwnet_header_cache(const struct neighbour *neigh, 264 struct hh_cache *hh) 265 { 266 struct net_device *net; 267 struct fwnet_header *h; 268 269 if (hh->hh_type == cpu_to_be16(ETH_P_802_3)) 270 return -1; 271 net = neigh->dev; 272 h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h)); 273 h->h_proto = hh->hh_type; 274 memcpy(h->h_dest, neigh->ha, net->addr_len); 275 hh->hh_len = FWNET_HLEN; 276 277 return 0; 278 } 279 280 /* Called by Address Resolution module to notify changes in address. */ 281 static void fwnet_header_cache_update(struct hh_cache *hh, 282 const struct net_device *net, const unsigned char *haddr) 283 { 284 memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len); 285 } 286 287 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr) 288 { 289 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN); 290 291 return FWNET_ALEN; 292 } 293 294 static const struct header_ops fwnet_header_ops = { 295 .create = fwnet_header_create, 296 .rebuild = fwnet_header_rebuild, 297 .cache = fwnet_header_cache, 298 .cache_update = fwnet_header_cache_update, 299 .parse = fwnet_header_parse, 300 }; 301 302 /* FIXME: is this correct for all cases? */ 303 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd, 304 unsigned offset, unsigned len) 305 { 306 struct fwnet_fragment_info *fi; 307 unsigned end = offset + len; 308 309 list_for_each_entry(fi, &pd->fi_list, fi_link) 310 if (offset < fi->offset + fi->len && end > fi->offset) 311 return true; 312 313 return false; 314 } 315 316 /* Assumes that new fragment does not overlap any existing fragments */ 317 static struct fwnet_fragment_info *fwnet_frag_new( 318 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len) 319 { 320 struct fwnet_fragment_info *fi, *fi2, *new; 321 struct list_head *list; 322 323 list = &pd->fi_list; 324 list_for_each_entry(fi, &pd->fi_list, fi_link) { 325 if (fi->offset + fi->len == offset) { 326 /* The new fragment can be tacked on to the end */ 327 /* Did the new fragment plug a hole? */ 328 fi2 = list_entry(fi->fi_link.next, 329 struct fwnet_fragment_info, fi_link); 330 if (fi->offset + fi->len == fi2->offset) { 331 /* glue fragments together */ 332 fi->len += len + fi2->len; 333 list_del(&fi2->fi_link); 334 kfree(fi2); 335 } else { 336 fi->len += len; 337 } 338 339 return fi; 340 } 341 if (offset + len == fi->offset) { 342 /* The new fragment can be tacked on to the beginning */ 343 /* Did the new fragment plug a hole? */ 344 fi2 = list_entry(fi->fi_link.prev, 345 struct fwnet_fragment_info, fi_link); 346 if (fi2->offset + fi2->len == fi->offset) { 347 /* glue fragments together */ 348 fi2->len += fi->len + len; 349 list_del(&fi->fi_link); 350 kfree(fi); 351 352 return fi2; 353 } 354 fi->offset = offset; 355 fi->len += len; 356 357 return fi; 358 } 359 if (offset > fi->offset + fi->len) { 360 list = &fi->fi_link; 361 break; 362 } 363 if (offset + len < fi->offset) { 364 list = fi->fi_link.prev; 365 break; 366 } 367 } 368 369 new = kmalloc(sizeof(*new), GFP_ATOMIC); 370 if (!new) { 371 fw_error("out of memory\n"); 372 return NULL; 373 } 374 375 new->offset = offset; 376 new->len = len; 377 list_add(&new->fi_link, list); 378 379 return new; 380 } 381 382 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net, 383 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size, 384 void *frag_buf, unsigned frag_off, unsigned frag_len) 385 { 386 struct fwnet_partial_datagram *new; 387 struct fwnet_fragment_info *fi; 388 389 new = kmalloc(sizeof(*new), GFP_ATOMIC); 390 if (!new) 391 goto fail; 392 393 INIT_LIST_HEAD(&new->fi_list); 394 fi = fwnet_frag_new(new, frag_off, frag_len); 395 if (fi == NULL) 396 goto fail_w_new; 397 398 new->datagram_label = datagram_label; 399 new->datagram_size = dg_size; 400 new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15); 401 if (new->skb == NULL) 402 goto fail_w_fi; 403 404 skb_reserve(new->skb, (net->hard_header_len + 15) & ~15); 405 new->pbuf = skb_put(new->skb, dg_size); 406 memcpy(new->pbuf + frag_off, frag_buf, frag_len); 407 list_add_tail(&new->pd_link, &peer->pd_list); 408 409 return new; 410 411 fail_w_fi: 412 kfree(fi); 413 fail_w_new: 414 kfree(new); 415 fail: 416 fw_error("out of memory\n"); 417 418 return NULL; 419 } 420 421 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer, 422 u16 datagram_label) 423 { 424 struct fwnet_partial_datagram *pd; 425 426 list_for_each_entry(pd, &peer->pd_list, pd_link) 427 if (pd->datagram_label == datagram_label) 428 return pd; 429 430 return NULL; 431 } 432 433 434 static void fwnet_pd_delete(struct fwnet_partial_datagram *old) 435 { 436 struct fwnet_fragment_info *fi, *n; 437 438 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link) 439 kfree(fi); 440 441 list_del(&old->pd_link); 442 dev_kfree_skb_any(old->skb); 443 kfree(old); 444 } 445 446 static bool fwnet_pd_update(struct fwnet_peer *peer, 447 struct fwnet_partial_datagram *pd, void *frag_buf, 448 unsigned frag_off, unsigned frag_len) 449 { 450 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL) 451 return false; 452 453 memcpy(pd->pbuf + frag_off, frag_buf, frag_len); 454 455 /* 456 * Move list entry to beginnig of list so that oldest partial 457 * datagrams percolate to the end of the list 458 */ 459 list_move_tail(&pd->pd_link, &peer->pd_list); 460 461 return true; 462 } 463 464 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd) 465 { 466 struct fwnet_fragment_info *fi; 467 468 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link); 469 470 return fi->len == pd->datagram_size; 471 } 472 473 /* caller must hold dev->lock */ 474 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev, 475 u64 guid) 476 { 477 struct fwnet_peer *peer; 478 479 list_for_each_entry(peer, &dev->peer_list, peer_link) 480 if (peer->guid == guid) 481 return peer; 482 483 return NULL; 484 } 485 486 /* caller must hold dev->lock */ 487 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev, 488 int node_id, int generation) 489 { 490 struct fwnet_peer *peer; 491 492 list_for_each_entry(peer, &dev->peer_list, peer_link) 493 if (peer->node_id == node_id && 494 peer->generation == generation) 495 return peer; 496 497 return NULL; 498 } 499 500 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */ 501 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed) 502 { 503 max_rec = min(max_rec, speed + 8); 504 max_rec = min(max_rec, 0xbU); /* <= 4096 */ 505 if (max_rec < 8) { 506 fw_notify("max_rec %x out of range\n", max_rec); 507 max_rec = 8; 508 } 509 510 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE; 511 } 512 513 514 static int fwnet_finish_incoming_packet(struct net_device *net, 515 struct sk_buff *skb, u16 source_node_id, 516 bool is_broadcast, u16 ether_type) 517 { 518 struct fwnet_device *dev; 519 static const __be64 broadcast_hw = cpu_to_be64(~0ULL); 520 int status; 521 __be64 guid; 522 523 dev = netdev_priv(net); 524 /* Write metadata, and then pass to the receive level */ 525 skb->dev = net; 526 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */ 527 528 /* 529 * Parse the encapsulation header. This actually does the job of 530 * converting to an ethernet frame header, as well as arp 531 * conversion if needed. ARP conversion is easier in this 532 * direction, since we are using ethernet as our backend. 533 */ 534 /* 535 * If this is an ARP packet, convert it. First, we want to make 536 * use of some of the fields, since they tell us a little bit 537 * about the sending machine. 538 */ 539 if (ether_type == ETH_P_ARP) { 540 struct rfc2734_arp *arp1394; 541 struct arphdr *arp; 542 unsigned char *arp_ptr; 543 u64 fifo_addr; 544 u64 peer_guid; 545 unsigned sspd; 546 u16 max_payload; 547 struct fwnet_peer *peer; 548 unsigned long flags; 549 550 arp1394 = (struct rfc2734_arp *)skb->data; 551 arp = (struct arphdr *)skb->data; 552 arp_ptr = (unsigned char *)(arp + 1); 553 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id); 554 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32 555 | get_unaligned_be32(&arp1394->fifo_lo); 556 557 sspd = arp1394->sspd; 558 /* Sanity check. OS X 10.3 PPC reportedly sends 131. */ 559 if (sspd > SCODE_3200) { 560 fw_notify("sspd %x out of range\n", sspd); 561 sspd = SCODE_3200; 562 } 563 max_payload = fwnet_max_payload(arp1394->max_rec, sspd); 564 565 spin_lock_irqsave(&dev->lock, flags); 566 peer = fwnet_peer_find_by_guid(dev, peer_guid); 567 if (peer) { 568 peer->fifo = fifo_addr; 569 570 if (peer->speed > sspd) 571 peer->speed = sspd; 572 if (peer->max_payload > max_payload) 573 peer->max_payload = max_payload; 574 575 peer->ip = arp1394->sip; 576 } 577 spin_unlock_irqrestore(&dev->lock, flags); 578 579 if (!peer) { 580 fw_notify("No peer for ARP packet from %016llx\n", 581 (unsigned long long)peer_guid); 582 goto no_peer; 583 } 584 585 /* 586 * Now that we're done with the 1394 specific stuff, we'll 587 * need to alter some of the data. Believe it or not, all 588 * that needs to be done is sender_IP_address needs to be 589 * moved, the destination hardware address get stuffed 590 * in and the hardware address length set to 8. 591 * 592 * IMPORTANT: The code below overwrites 1394 specific data 593 * needed above so keep the munging of the data for the 594 * higher level IP stack last. 595 */ 596 597 arp->ar_hln = 8; 598 /* skip over sender unique id */ 599 arp_ptr += arp->ar_hln; 600 /* move sender IP addr */ 601 put_unaligned(arp1394->sip, (u32 *)arp_ptr); 602 /* skip over sender IP addr */ 603 arp_ptr += arp->ar_pln; 604 605 if (arp->ar_op == htons(ARPOP_REQUEST)) 606 memset(arp_ptr, 0, sizeof(u64)); 607 else 608 memcpy(arp_ptr, net->dev_addr, sizeof(u64)); 609 } 610 611 /* Now add the ethernet header. */ 612 guid = cpu_to_be64(dev->card->guid); 613 if (dev_hard_header(skb, net, ether_type, 614 is_broadcast ? &broadcast_hw : &guid, 615 NULL, skb->len) >= 0) { 616 struct fwnet_header *eth; 617 u16 *rawp; 618 __be16 protocol; 619 620 skb_reset_mac_header(skb); 621 skb_pull(skb, sizeof(*eth)); 622 eth = (struct fwnet_header *)skb_mac_header(skb); 623 if (*eth->h_dest & 1) { 624 if (memcmp(eth->h_dest, net->broadcast, 625 net->addr_len) == 0) 626 skb->pkt_type = PACKET_BROADCAST; 627 #if 0 628 else 629 skb->pkt_type = PACKET_MULTICAST; 630 #endif 631 } else { 632 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len)) 633 skb->pkt_type = PACKET_OTHERHOST; 634 } 635 if (ntohs(eth->h_proto) >= 1536) { 636 protocol = eth->h_proto; 637 } else { 638 rawp = (u16 *)skb->data; 639 if (*rawp == 0xffff) 640 protocol = htons(ETH_P_802_3); 641 else 642 protocol = htons(ETH_P_802_2); 643 } 644 skb->protocol = protocol; 645 } 646 status = netif_rx(skb); 647 if (status == NET_RX_DROP) { 648 net->stats.rx_errors++; 649 net->stats.rx_dropped++; 650 } else { 651 net->stats.rx_packets++; 652 net->stats.rx_bytes += skb->len; 653 } 654 655 return 0; 656 657 no_peer: 658 net->stats.rx_errors++; 659 net->stats.rx_dropped++; 660 661 dev_kfree_skb_any(skb); 662 663 return -ENOENT; 664 } 665 666 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len, 667 int source_node_id, int generation, 668 bool is_broadcast) 669 { 670 struct sk_buff *skb; 671 struct net_device *net = dev->netdev; 672 struct rfc2734_header hdr; 673 unsigned lf; 674 unsigned long flags; 675 struct fwnet_peer *peer; 676 struct fwnet_partial_datagram *pd; 677 int fg_off; 678 int dg_size; 679 u16 datagram_label; 680 int retval; 681 u16 ether_type; 682 683 hdr.w0 = be32_to_cpu(buf[0]); 684 lf = fwnet_get_hdr_lf(&hdr); 685 if (lf == RFC2374_HDR_UNFRAG) { 686 /* 687 * An unfragmented datagram has been received by the ieee1394 688 * bus. Build an skbuff around it so we can pass it to the 689 * high level network layer. 690 */ 691 ether_type = fwnet_get_hdr_ether_type(&hdr); 692 buf++; 693 len -= RFC2374_UNFRAG_HDR_SIZE; 694 695 skb = dev_alloc_skb(len + net->hard_header_len + 15); 696 if (unlikely(!skb)) { 697 fw_error("out of memory\n"); 698 net->stats.rx_dropped++; 699 700 return -ENOMEM; 701 } 702 skb_reserve(skb, (net->hard_header_len + 15) & ~15); 703 memcpy(skb_put(skb, len), buf, len); 704 705 return fwnet_finish_incoming_packet(net, skb, source_node_id, 706 is_broadcast, ether_type); 707 } 708 /* A datagram fragment has been received, now the fun begins. */ 709 hdr.w1 = ntohl(buf[1]); 710 buf += 2; 711 len -= RFC2374_FRAG_HDR_SIZE; 712 if (lf == RFC2374_HDR_FIRSTFRAG) { 713 ether_type = fwnet_get_hdr_ether_type(&hdr); 714 fg_off = 0; 715 } else { 716 ether_type = 0; 717 fg_off = fwnet_get_hdr_fg_off(&hdr); 718 } 719 datagram_label = fwnet_get_hdr_dgl(&hdr); 720 dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */ 721 722 spin_lock_irqsave(&dev->lock, flags); 723 724 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation); 725 if (!peer) { 726 retval = -ENOENT; 727 goto fail; 728 } 729 730 pd = fwnet_pd_find(peer, datagram_label); 731 if (pd == NULL) { 732 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) { 733 /* remove the oldest */ 734 fwnet_pd_delete(list_first_entry(&peer->pd_list, 735 struct fwnet_partial_datagram, pd_link)); 736 peer->pdg_size--; 737 } 738 pd = fwnet_pd_new(net, peer, datagram_label, 739 dg_size, buf, fg_off, len); 740 if (pd == NULL) { 741 retval = -ENOMEM; 742 goto fail; 743 } 744 peer->pdg_size++; 745 } else { 746 if (fwnet_frag_overlap(pd, fg_off, len) || 747 pd->datagram_size != dg_size) { 748 /* 749 * Differing datagram sizes or overlapping fragments, 750 * discard old datagram and start a new one. 751 */ 752 fwnet_pd_delete(pd); 753 pd = fwnet_pd_new(net, peer, datagram_label, 754 dg_size, buf, fg_off, len); 755 if (pd == NULL) { 756 peer->pdg_size--; 757 retval = -ENOMEM; 758 goto fail; 759 } 760 } else { 761 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) { 762 /* 763 * Couldn't save off fragment anyway 764 * so might as well obliterate the 765 * datagram now. 766 */ 767 fwnet_pd_delete(pd); 768 peer->pdg_size--; 769 retval = -ENOMEM; 770 goto fail; 771 } 772 } 773 } /* new datagram or add to existing one */ 774 775 if (lf == RFC2374_HDR_FIRSTFRAG) 776 pd->ether_type = ether_type; 777 778 if (fwnet_pd_is_complete(pd)) { 779 ether_type = pd->ether_type; 780 peer->pdg_size--; 781 skb = skb_get(pd->skb); 782 fwnet_pd_delete(pd); 783 784 spin_unlock_irqrestore(&dev->lock, flags); 785 786 return fwnet_finish_incoming_packet(net, skb, source_node_id, 787 false, ether_type); 788 } 789 /* 790 * Datagram is not complete, we're done for the 791 * moment. 792 */ 793 retval = 0; 794 fail: 795 spin_unlock_irqrestore(&dev->lock, flags); 796 797 return retval; 798 } 799 800 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r, 801 int tcode, int destination, int source, int generation, 802 unsigned long long offset, void *payload, size_t length, 803 void *callback_data) 804 { 805 struct fwnet_device *dev = callback_data; 806 int rcode; 807 808 if (destination == IEEE1394_ALL_NODES) { 809 kfree(r); 810 811 return; 812 } 813 814 if (offset != dev->handler.offset) 815 rcode = RCODE_ADDRESS_ERROR; 816 else if (tcode != TCODE_WRITE_BLOCK_REQUEST) 817 rcode = RCODE_TYPE_ERROR; 818 else if (fwnet_incoming_packet(dev, payload, length, 819 source, generation, false) != 0) { 820 fw_error("Incoming packet failure\n"); 821 rcode = RCODE_CONFLICT_ERROR; 822 } else 823 rcode = RCODE_COMPLETE; 824 825 fw_send_response(card, r, rcode); 826 } 827 828 static void fwnet_receive_broadcast(struct fw_iso_context *context, 829 u32 cycle, size_t header_length, void *header, void *data) 830 { 831 struct fwnet_device *dev; 832 struct fw_iso_packet packet; 833 struct fw_card *card; 834 __be16 *hdr_ptr; 835 __be32 *buf_ptr; 836 int retval; 837 u32 length; 838 u16 source_node_id; 839 u32 specifier_id; 840 u32 ver; 841 unsigned long offset; 842 unsigned long flags; 843 844 dev = data; 845 card = dev->card; 846 hdr_ptr = header; 847 length = be16_to_cpup(hdr_ptr); 848 849 spin_lock_irqsave(&dev->lock, flags); 850 851 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr; 852 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++]; 853 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs) 854 dev->broadcast_rcv_next_ptr = 0; 855 856 spin_unlock_irqrestore(&dev->lock, flags); 857 858 specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8 859 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24; 860 ver = be32_to_cpu(buf_ptr[1]) & 0xffffff; 861 source_node_id = be32_to_cpu(buf_ptr[0]) >> 16; 862 863 if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) { 864 buf_ptr += 2; 865 length -= IEEE1394_GASP_HDR_SIZE; 866 fwnet_incoming_packet(dev, buf_ptr, length, 867 source_node_id, -1, true); 868 } 869 870 packet.payload_length = dev->rcv_buffer_size; 871 packet.interrupt = 1; 872 packet.skip = 0; 873 packet.tag = 3; 874 packet.sy = 0; 875 packet.header_length = IEEE1394_GASP_HDR_SIZE; 876 877 spin_lock_irqsave(&dev->lock, flags); 878 879 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet, 880 &dev->broadcast_rcv_buffer, offset); 881 882 spin_unlock_irqrestore(&dev->lock, flags); 883 884 if (retval < 0) 885 fw_error("requeue failed\n"); 886 } 887 888 static struct kmem_cache *fwnet_packet_task_cache; 889 890 static void fwnet_free_ptask(struct fwnet_packet_task *ptask) 891 { 892 dev_kfree_skb_any(ptask->skb); 893 kmem_cache_free(fwnet_packet_task_cache, ptask); 894 } 895 896 /* Caller must hold dev->lock. */ 897 static void dec_queued_datagrams(struct fwnet_device *dev) 898 { 899 if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS) 900 netif_wake_queue(dev->netdev); 901 } 902 903 static int fwnet_send_packet(struct fwnet_packet_task *ptask); 904 905 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask) 906 { 907 struct fwnet_device *dev = ptask->dev; 908 struct sk_buff *skb = ptask->skb; 909 unsigned long flags; 910 bool free; 911 912 spin_lock_irqsave(&dev->lock, flags); 913 914 ptask->outstanding_pkts--; 915 916 /* Check whether we or the networking TX soft-IRQ is last user. */ 917 free = (ptask->outstanding_pkts == 0 && ptask->enqueued); 918 if (free) 919 dec_queued_datagrams(dev); 920 921 if (ptask->outstanding_pkts == 0) { 922 dev->netdev->stats.tx_packets++; 923 dev->netdev->stats.tx_bytes += skb->len; 924 } 925 926 spin_unlock_irqrestore(&dev->lock, flags); 927 928 if (ptask->outstanding_pkts > 0) { 929 u16 dg_size; 930 u16 fg_off; 931 u16 datagram_label; 932 u16 lf; 933 934 /* Update the ptask to point to the next fragment and send it */ 935 lf = fwnet_get_hdr_lf(&ptask->hdr); 936 switch (lf) { 937 case RFC2374_HDR_LASTFRAG: 938 case RFC2374_HDR_UNFRAG: 939 default: 940 fw_error("Outstanding packet %x lf %x, header %x,%x\n", 941 ptask->outstanding_pkts, lf, ptask->hdr.w0, 942 ptask->hdr.w1); 943 BUG(); 944 945 case RFC2374_HDR_FIRSTFRAG: 946 /* Set frag type here for future interior fragments */ 947 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); 948 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE; 949 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); 950 break; 951 952 case RFC2374_HDR_INTFRAG: 953 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); 954 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr) 955 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE; 956 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); 957 break; 958 } 959 960 skb_pull(skb, ptask->max_payload); 961 if (ptask->outstanding_pkts > 1) { 962 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG, 963 dg_size, fg_off, datagram_label); 964 } else { 965 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG, 966 dg_size, fg_off, datagram_label); 967 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE; 968 } 969 fwnet_send_packet(ptask); 970 } 971 972 if (free) 973 fwnet_free_ptask(ptask); 974 } 975 976 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask) 977 { 978 struct fwnet_device *dev = ptask->dev; 979 unsigned long flags; 980 bool free; 981 982 spin_lock_irqsave(&dev->lock, flags); 983 984 /* One fragment failed; don't try to send remaining fragments. */ 985 ptask->outstanding_pkts = 0; 986 987 /* Check whether we or the networking TX soft-IRQ is last user. */ 988 free = ptask->enqueued; 989 if (free) 990 dec_queued_datagrams(dev); 991 992 dev->netdev->stats.tx_dropped++; 993 dev->netdev->stats.tx_errors++; 994 995 spin_unlock_irqrestore(&dev->lock, flags); 996 997 if (free) 998 fwnet_free_ptask(ptask); 999 } 1000 1001 static void fwnet_write_complete(struct fw_card *card, int rcode, 1002 void *payload, size_t length, void *data) 1003 { 1004 struct fwnet_packet_task *ptask = data; 1005 static unsigned long j; 1006 static int last_rcode, errors_skipped; 1007 1008 if (rcode == RCODE_COMPLETE) { 1009 fwnet_transmit_packet_done(ptask); 1010 } else { 1011 fwnet_transmit_packet_failed(ptask); 1012 1013 if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) { 1014 fw_error("fwnet_write_complete: " 1015 "failed: %x (skipped %d)\n", rcode, errors_skipped); 1016 1017 errors_skipped = 0; 1018 last_rcode = rcode; 1019 } else 1020 errors_skipped++; 1021 } 1022 } 1023 1024 static int fwnet_send_packet(struct fwnet_packet_task *ptask) 1025 { 1026 struct fwnet_device *dev; 1027 unsigned tx_len; 1028 struct rfc2734_header *bufhdr; 1029 unsigned long flags; 1030 bool free; 1031 1032 dev = ptask->dev; 1033 tx_len = ptask->max_payload; 1034 switch (fwnet_get_hdr_lf(&ptask->hdr)) { 1035 case RFC2374_HDR_UNFRAG: 1036 bufhdr = (struct rfc2734_header *) 1037 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE); 1038 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); 1039 break; 1040 1041 case RFC2374_HDR_FIRSTFRAG: 1042 case RFC2374_HDR_INTFRAG: 1043 case RFC2374_HDR_LASTFRAG: 1044 bufhdr = (struct rfc2734_header *) 1045 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE); 1046 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); 1047 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1); 1048 break; 1049 1050 default: 1051 BUG(); 1052 } 1053 if (ptask->dest_node == IEEE1394_ALL_NODES) { 1054 u8 *p; 1055 int generation; 1056 int node_id; 1057 1058 /* ptask->generation may not have been set yet */ 1059 generation = dev->card->generation; 1060 smp_rmb(); 1061 node_id = dev->card->node_id; 1062 1063 p = skb_push(ptask->skb, 8); 1064 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p); 1065 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24 1066 | RFC2734_SW_VERSION, &p[4]); 1067 1068 /* We should not transmit if broadcast_channel.valid == 0. */ 1069 fw_send_request(dev->card, &ptask->transaction, 1070 TCODE_STREAM_DATA, 1071 fw_stream_packet_destination_id(3, 1072 IEEE1394_BROADCAST_CHANNEL, 0), 1073 generation, SCODE_100, 0ULL, ptask->skb->data, 1074 tx_len + 8, fwnet_write_complete, ptask); 1075 1076 spin_lock_irqsave(&dev->lock, flags); 1077 1078 /* If the AT tasklet already ran, we may be last user. */ 1079 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued); 1080 if (!free) 1081 ptask->enqueued = true; 1082 else 1083 dec_queued_datagrams(dev); 1084 1085 spin_unlock_irqrestore(&dev->lock, flags); 1086 1087 goto out; 1088 } 1089 1090 fw_send_request(dev->card, &ptask->transaction, 1091 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node, 1092 ptask->generation, ptask->speed, ptask->fifo_addr, 1093 ptask->skb->data, tx_len, fwnet_write_complete, ptask); 1094 1095 spin_lock_irqsave(&dev->lock, flags); 1096 1097 /* If the AT tasklet already ran, we may be last user. */ 1098 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued); 1099 if (!free) 1100 ptask->enqueued = true; 1101 else 1102 dec_queued_datagrams(dev); 1103 1104 spin_unlock_irqrestore(&dev->lock, flags); 1105 1106 dev->netdev->trans_start = jiffies; 1107 out: 1108 if (free) 1109 fwnet_free_ptask(ptask); 1110 1111 return 0; 1112 } 1113 1114 static int fwnet_broadcast_start(struct fwnet_device *dev) 1115 { 1116 struct fw_iso_context *context; 1117 int retval; 1118 unsigned num_packets; 1119 unsigned max_receive; 1120 struct fw_iso_packet packet; 1121 unsigned long offset; 1122 unsigned u; 1123 1124 if (dev->local_fifo == FWNET_NO_FIFO_ADDR) { 1125 /* outside OHCI posted write area? */ 1126 static const struct fw_address_region region = { 1127 .start = 0xffff00000000ULL, 1128 .end = CSR_REGISTER_BASE, 1129 }; 1130 1131 dev->handler.length = 4096; 1132 dev->handler.address_callback = fwnet_receive_packet; 1133 dev->handler.callback_data = dev; 1134 1135 retval = fw_core_add_address_handler(&dev->handler, ®ion); 1136 if (retval < 0) 1137 goto failed_initial; 1138 1139 dev->local_fifo = dev->handler.offset; 1140 } 1141 1142 max_receive = 1U << (dev->card->max_receive + 1); 1143 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive; 1144 1145 if (!dev->broadcast_rcv_context) { 1146 void **ptrptr; 1147 1148 context = fw_iso_context_create(dev->card, 1149 FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL, 1150 dev->card->link_speed, 8, fwnet_receive_broadcast, dev); 1151 if (IS_ERR(context)) { 1152 retval = PTR_ERR(context); 1153 goto failed_context_create; 1154 } 1155 1156 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, 1157 dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE); 1158 if (retval < 0) 1159 goto failed_buffer_init; 1160 1161 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL); 1162 if (!ptrptr) { 1163 retval = -ENOMEM; 1164 goto failed_ptrs_alloc; 1165 } 1166 1167 dev->broadcast_rcv_buffer_ptrs = ptrptr; 1168 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) { 1169 void *ptr; 1170 unsigned v; 1171 1172 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]); 1173 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++) 1174 *ptrptr++ = (void *) 1175 ((char *)ptr + v * max_receive); 1176 } 1177 dev->broadcast_rcv_context = context; 1178 } else { 1179 context = dev->broadcast_rcv_context; 1180 } 1181 1182 packet.payload_length = max_receive; 1183 packet.interrupt = 1; 1184 packet.skip = 0; 1185 packet.tag = 3; 1186 packet.sy = 0; 1187 packet.header_length = IEEE1394_GASP_HDR_SIZE; 1188 offset = 0; 1189 1190 for (u = 0; u < num_packets; u++) { 1191 retval = fw_iso_context_queue(context, &packet, 1192 &dev->broadcast_rcv_buffer, offset); 1193 if (retval < 0) 1194 goto failed_rcv_queue; 1195 1196 offset += max_receive; 1197 } 1198 dev->num_broadcast_rcv_ptrs = num_packets; 1199 dev->rcv_buffer_size = max_receive; 1200 dev->broadcast_rcv_next_ptr = 0U; 1201 retval = fw_iso_context_start(context, -1, 0, 1202 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */ 1203 if (retval < 0) 1204 goto failed_rcv_queue; 1205 1206 /* FIXME: adjust it according to the min. speed of all known peers? */ 1207 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100 1208 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE; 1209 dev->broadcast_state = FWNET_BROADCAST_RUNNING; 1210 1211 return 0; 1212 1213 failed_rcv_queue: 1214 kfree(dev->broadcast_rcv_buffer_ptrs); 1215 dev->broadcast_rcv_buffer_ptrs = NULL; 1216 failed_ptrs_alloc: 1217 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card); 1218 failed_buffer_init: 1219 fw_iso_context_destroy(context); 1220 dev->broadcast_rcv_context = NULL; 1221 failed_context_create: 1222 fw_core_remove_address_handler(&dev->handler); 1223 failed_initial: 1224 dev->local_fifo = FWNET_NO_FIFO_ADDR; 1225 1226 return retval; 1227 } 1228 1229 static void set_carrier_state(struct fwnet_device *dev) 1230 { 1231 if (dev->peer_count > 1) 1232 netif_carrier_on(dev->netdev); 1233 else 1234 netif_carrier_off(dev->netdev); 1235 } 1236 1237 /* ifup */ 1238 static int fwnet_open(struct net_device *net) 1239 { 1240 struct fwnet_device *dev = netdev_priv(net); 1241 int ret; 1242 1243 if (dev->broadcast_state == FWNET_BROADCAST_ERROR) { 1244 ret = fwnet_broadcast_start(dev); 1245 if (ret) 1246 return ret; 1247 } 1248 netif_start_queue(net); 1249 1250 spin_lock_irq(&dev->lock); 1251 set_carrier_state(dev); 1252 spin_unlock_irq(&dev->lock); 1253 1254 return 0; 1255 } 1256 1257 /* ifdown */ 1258 static int fwnet_stop(struct net_device *net) 1259 { 1260 netif_stop_queue(net); 1261 1262 /* Deallocate iso context for use by other applications? */ 1263 1264 return 0; 1265 } 1266 1267 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net) 1268 { 1269 struct fwnet_header hdr_buf; 1270 struct fwnet_device *dev = netdev_priv(net); 1271 __be16 proto; 1272 u16 dest_node; 1273 unsigned max_payload; 1274 u16 dg_size; 1275 u16 *datagram_label_ptr; 1276 struct fwnet_packet_task *ptask; 1277 struct fwnet_peer *peer; 1278 unsigned long flags; 1279 1280 spin_lock_irqsave(&dev->lock, flags); 1281 1282 /* Can this happen? */ 1283 if (netif_queue_stopped(dev->netdev)) { 1284 spin_unlock_irqrestore(&dev->lock, flags); 1285 1286 return NETDEV_TX_BUSY; 1287 } 1288 1289 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC); 1290 if (ptask == NULL) 1291 goto fail; 1292 1293 skb = skb_share_check(skb, GFP_ATOMIC); 1294 if (!skb) 1295 goto fail; 1296 1297 /* 1298 * Make a copy of the driver-specific header. 1299 * We might need to rebuild the header on tx failure. 1300 */ 1301 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf)); 1302 skb_pull(skb, sizeof(hdr_buf)); 1303 1304 proto = hdr_buf.h_proto; 1305 dg_size = skb->len; 1306 1307 /* 1308 * Set the transmission type for the packet. ARP packets and IP 1309 * broadcast packets are sent via GASP. 1310 */ 1311 if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0 1312 || proto == htons(ETH_P_ARP) 1313 || (proto == htons(ETH_P_IP) 1314 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) { 1315 max_payload = dev->broadcast_xmt_max_payload; 1316 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel; 1317 1318 ptask->fifo_addr = FWNET_NO_FIFO_ADDR; 1319 ptask->generation = 0; 1320 ptask->dest_node = IEEE1394_ALL_NODES; 1321 ptask->speed = SCODE_100; 1322 } else { 1323 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest); 1324 u8 generation; 1325 1326 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid)); 1327 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR) 1328 goto fail; 1329 1330 generation = peer->generation; 1331 dest_node = peer->node_id; 1332 max_payload = peer->max_payload; 1333 datagram_label_ptr = &peer->datagram_label; 1334 1335 ptask->fifo_addr = peer->fifo; 1336 ptask->generation = generation; 1337 ptask->dest_node = dest_node; 1338 ptask->speed = peer->speed; 1339 } 1340 1341 /* If this is an ARP packet, convert it */ 1342 if (proto == htons(ETH_P_ARP)) { 1343 struct arphdr *arp = (struct arphdr *)skb->data; 1344 unsigned char *arp_ptr = (unsigned char *)(arp + 1); 1345 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data; 1346 __be32 ipaddr; 1347 1348 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN)); 1349 1350 arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN; 1351 arp1394->max_rec = dev->card->max_receive; 1352 arp1394->sspd = dev->card->link_speed; 1353 1354 put_unaligned_be16(dev->local_fifo >> 32, 1355 &arp1394->fifo_hi); 1356 put_unaligned_be32(dev->local_fifo & 0xffffffff, 1357 &arp1394->fifo_lo); 1358 put_unaligned(ipaddr, &arp1394->sip); 1359 } 1360 1361 ptask->hdr.w0 = 0; 1362 ptask->hdr.w1 = 0; 1363 ptask->skb = skb; 1364 ptask->dev = dev; 1365 1366 /* Does it all fit in one packet? */ 1367 if (dg_size <= max_payload) { 1368 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto)); 1369 ptask->outstanding_pkts = 1; 1370 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE; 1371 } else { 1372 u16 datagram_label; 1373 1374 max_payload -= RFC2374_FRAG_OVERHEAD; 1375 datagram_label = (*datagram_label_ptr)++; 1376 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size, 1377 datagram_label); 1378 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload); 1379 max_payload += RFC2374_FRAG_HDR_SIZE; 1380 } 1381 1382 if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS) 1383 netif_stop_queue(dev->netdev); 1384 1385 spin_unlock_irqrestore(&dev->lock, flags); 1386 1387 ptask->max_payload = max_payload; 1388 ptask->enqueued = 0; 1389 1390 fwnet_send_packet(ptask); 1391 1392 return NETDEV_TX_OK; 1393 1394 fail: 1395 spin_unlock_irqrestore(&dev->lock, flags); 1396 1397 if (ptask) 1398 kmem_cache_free(fwnet_packet_task_cache, ptask); 1399 1400 if (skb != NULL) 1401 dev_kfree_skb(skb); 1402 1403 net->stats.tx_dropped++; 1404 net->stats.tx_errors++; 1405 1406 /* 1407 * FIXME: According to a patch from 2003-02-26, "returning non-zero 1408 * causes serious problems" here, allegedly. Before that patch, 1409 * -ERRNO was returned which is not appropriate under Linux 2.6. 1410 * Perhaps more needs to be done? Stop the queue in serious 1411 * conditions and restart it elsewhere? 1412 */ 1413 return NETDEV_TX_OK; 1414 } 1415 1416 static int fwnet_change_mtu(struct net_device *net, int new_mtu) 1417 { 1418 if (new_mtu < 68) 1419 return -EINVAL; 1420 1421 net->mtu = new_mtu; 1422 return 0; 1423 } 1424 1425 static const struct ethtool_ops fwnet_ethtool_ops = { 1426 .get_link = ethtool_op_get_link, 1427 }; 1428 1429 static const struct net_device_ops fwnet_netdev_ops = { 1430 .ndo_open = fwnet_open, 1431 .ndo_stop = fwnet_stop, 1432 .ndo_start_xmit = fwnet_tx, 1433 .ndo_change_mtu = fwnet_change_mtu, 1434 }; 1435 1436 static void fwnet_init_dev(struct net_device *net) 1437 { 1438 net->header_ops = &fwnet_header_ops; 1439 net->netdev_ops = &fwnet_netdev_ops; 1440 net->watchdog_timeo = 2 * HZ; 1441 net->flags = IFF_BROADCAST | IFF_MULTICAST; 1442 net->features = NETIF_F_HIGHDMA; 1443 net->addr_len = FWNET_ALEN; 1444 net->hard_header_len = FWNET_HLEN; 1445 net->type = ARPHRD_IEEE1394; 1446 net->tx_queue_len = FWNET_TX_QUEUE_LEN; 1447 net->ethtool_ops = &fwnet_ethtool_ops; 1448 } 1449 1450 /* caller must hold fwnet_device_mutex */ 1451 static struct fwnet_device *fwnet_dev_find(struct fw_card *card) 1452 { 1453 struct fwnet_device *dev; 1454 1455 list_for_each_entry(dev, &fwnet_device_list, dev_link) 1456 if (dev->card == card) 1457 return dev; 1458 1459 return NULL; 1460 } 1461 1462 static int fwnet_add_peer(struct fwnet_device *dev, 1463 struct fw_unit *unit, struct fw_device *device) 1464 { 1465 struct fwnet_peer *peer; 1466 1467 peer = kmalloc(sizeof(*peer), GFP_KERNEL); 1468 if (!peer) 1469 return -ENOMEM; 1470 1471 dev_set_drvdata(&unit->device, peer); 1472 1473 peer->dev = dev; 1474 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1475 peer->fifo = FWNET_NO_FIFO_ADDR; 1476 peer->ip = 0; 1477 INIT_LIST_HEAD(&peer->pd_list); 1478 peer->pdg_size = 0; 1479 peer->datagram_label = 0; 1480 peer->speed = device->max_speed; 1481 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed); 1482 1483 peer->generation = device->generation; 1484 smp_rmb(); 1485 peer->node_id = device->node_id; 1486 1487 spin_lock_irq(&dev->lock); 1488 list_add_tail(&peer->peer_link, &dev->peer_list); 1489 dev->peer_count++; 1490 set_carrier_state(dev); 1491 spin_unlock_irq(&dev->lock); 1492 1493 return 0; 1494 } 1495 1496 static int fwnet_probe(struct device *_dev) 1497 { 1498 struct fw_unit *unit = fw_unit(_dev); 1499 struct fw_device *device = fw_parent_device(unit); 1500 struct fw_card *card = device->card; 1501 struct net_device *net; 1502 bool allocated_netdev = false; 1503 struct fwnet_device *dev; 1504 unsigned max_mtu; 1505 int ret; 1506 1507 mutex_lock(&fwnet_device_mutex); 1508 1509 dev = fwnet_dev_find(card); 1510 if (dev) { 1511 net = dev->netdev; 1512 goto have_dev; 1513 } 1514 1515 net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev); 1516 if (net == NULL) { 1517 ret = -ENOMEM; 1518 goto out; 1519 } 1520 1521 allocated_netdev = true; 1522 SET_NETDEV_DEV(net, card->device); 1523 dev = netdev_priv(net); 1524 1525 spin_lock_init(&dev->lock); 1526 dev->broadcast_state = FWNET_BROADCAST_ERROR; 1527 dev->broadcast_rcv_context = NULL; 1528 dev->broadcast_xmt_max_payload = 0; 1529 dev->broadcast_xmt_datagramlabel = 0; 1530 dev->local_fifo = FWNET_NO_FIFO_ADDR; 1531 dev->queued_datagrams = 0; 1532 INIT_LIST_HEAD(&dev->peer_list); 1533 dev->card = card; 1534 dev->netdev = net; 1535 1536 /* 1537 * Use the RFC 2734 default 1500 octets or the maximum payload 1538 * as initial MTU 1539 */ 1540 max_mtu = (1 << (card->max_receive + 1)) 1541 - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE; 1542 net->mtu = min(1500U, max_mtu); 1543 1544 /* Set our hardware address while we're at it */ 1545 put_unaligned_be64(card->guid, net->dev_addr); 1546 put_unaligned_be64(~0ULL, net->broadcast); 1547 ret = register_netdev(net); 1548 if (ret) { 1549 fw_error("Cannot register the driver\n"); 1550 goto out; 1551 } 1552 1553 list_add_tail(&dev->dev_link, &fwnet_device_list); 1554 fw_notify("%s: IPv4 over FireWire on device %016llx\n", 1555 net->name, (unsigned long long)card->guid); 1556 have_dev: 1557 ret = fwnet_add_peer(dev, unit, device); 1558 if (ret && allocated_netdev) { 1559 unregister_netdev(net); 1560 list_del(&dev->dev_link); 1561 } 1562 out: 1563 if (ret && allocated_netdev) 1564 free_netdev(net); 1565 1566 mutex_unlock(&fwnet_device_mutex); 1567 1568 return ret; 1569 } 1570 1571 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev) 1572 { 1573 struct fwnet_partial_datagram *pd, *pd_next; 1574 1575 spin_lock_irq(&dev->lock); 1576 list_del(&peer->peer_link); 1577 dev->peer_count--; 1578 set_carrier_state(dev); 1579 spin_unlock_irq(&dev->lock); 1580 1581 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link) 1582 fwnet_pd_delete(pd); 1583 1584 kfree(peer); 1585 } 1586 1587 static int fwnet_remove(struct device *_dev) 1588 { 1589 struct fwnet_peer *peer = dev_get_drvdata(_dev); 1590 struct fwnet_device *dev = peer->dev; 1591 struct net_device *net; 1592 int i; 1593 1594 mutex_lock(&fwnet_device_mutex); 1595 1596 net = dev->netdev; 1597 if (net && peer->ip) 1598 arp_invalidate(net, peer->ip); 1599 1600 fwnet_remove_peer(peer, dev); 1601 1602 if (list_empty(&dev->peer_list)) { 1603 unregister_netdev(net); 1604 1605 if (dev->local_fifo != FWNET_NO_FIFO_ADDR) 1606 fw_core_remove_address_handler(&dev->handler); 1607 if (dev->broadcast_rcv_context) { 1608 fw_iso_context_stop(dev->broadcast_rcv_context); 1609 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, 1610 dev->card); 1611 fw_iso_context_destroy(dev->broadcast_rcv_context); 1612 } 1613 for (i = 0; dev->queued_datagrams && i < 5; i++) 1614 ssleep(1); 1615 WARN_ON(dev->queued_datagrams); 1616 list_del(&dev->dev_link); 1617 1618 free_netdev(net); 1619 } 1620 1621 mutex_unlock(&fwnet_device_mutex); 1622 1623 return 0; 1624 } 1625 1626 /* 1627 * FIXME abort partially sent fragmented datagrams, 1628 * discard partially received fragmented datagrams 1629 */ 1630 static void fwnet_update(struct fw_unit *unit) 1631 { 1632 struct fw_device *device = fw_parent_device(unit); 1633 struct fwnet_peer *peer = dev_get_drvdata(&unit->device); 1634 int generation; 1635 1636 generation = device->generation; 1637 1638 spin_lock_irq(&peer->dev->lock); 1639 peer->node_id = device->node_id; 1640 peer->generation = generation; 1641 spin_unlock_irq(&peer->dev->lock); 1642 } 1643 1644 static const struct ieee1394_device_id fwnet_id_table[] = { 1645 { 1646 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1647 IEEE1394_MATCH_VERSION, 1648 .specifier_id = IANA_SPECIFIER_ID, 1649 .version = RFC2734_SW_VERSION, 1650 }, 1651 { } 1652 }; 1653 1654 static struct fw_driver fwnet_driver = { 1655 .driver = { 1656 .owner = THIS_MODULE, 1657 .name = "net", 1658 .bus = &fw_bus_type, 1659 .probe = fwnet_probe, 1660 .remove = fwnet_remove, 1661 }, 1662 .update = fwnet_update, 1663 .id_table = fwnet_id_table, 1664 }; 1665 1666 static const u32 rfc2374_unit_directory_data[] = { 1667 0x00040000, /* directory_length */ 1668 0x1200005e, /* unit_specifier_id: IANA */ 1669 0x81000003, /* textual descriptor offset */ 1670 0x13000001, /* unit_sw_version: RFC 2734 */ 1671 0x81000005, /* textual descriptor offset */ 1672 0x00030000, /* descriptor_length */ 1673 0x00000000, /* text */ 1674 0x00000000, /* minimal ASCII, en */ 1675 0x49414e41, /* I A N A */ 1676 0x00030000, /* descriptor_length */ 1677 0x00000000, /* text */ 1678 0x00000000, /* minimal ASCII, en */ 1679 0x49507634, /* I P v 4 */ 1680 }; 1681 1682 static struct fw_descriptor rfc2374_unit_directory = { 1683 .length = ARRAY_SIZE(rfc2374_unit_directory_data), 1684 .key = (CSR_DIRECTORY | CSR_UNIT) << 24, 1685 .data = rfc2374_unit_directory_data 1686 }; 1687 1688 static int __init fwnet_init(void) 1689 { 1690 int err; 1691 1692 err = fw_core_add_descriptor(&rfc2374_unit_directory); 1693 if (err) 1694 return err; 1695 1696 fwnet_packet_task_cache = kmem_cache_create("packet_task", 1697 sizeof(struct fwnet_packet_task), 0, 0, NULL); 1698 if (!fwnet_packet_task_cache) { 1699 err = -ENOMEM; 1700 goto out; 1701 } 1702 1703 err = driver_register(&fwnet_driver.driver); 1704 if (!err) 1705 return 0; 1706 1707 kmem_cache_destroy(fwnet_packet_task_cache); 1708 out: 1709 fw_core_remove_descriptor(&rfc2374_unit_directory); 1710 1711 return err; 1712 } 1713 module_init(fwnet_init); 1714 1715 static void __exit fwnet_cleanup(void) 1716 { 1717 driver_unregister(&fwnet_driver.driver); 1718 kmem_cache_destroy(fwnet_packet_task_cache); 1719 fw_core_remove_descriptor(&rfc2374_unit_directory); 1720 } 1721 module_exit(fwnet_cleanup); 1722 1723 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>"); 1724 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734"); 1725 MODULE_LICENSE("GPL"); 1726 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table); 1727