1 /* 2 * IPv4 over IEEE 1394, per RFC 2734 3 * 4 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com> 5 * 6 * based on eth1394 by Ben Collins et al 7 */ 8 9 #include <linux/bug.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/firewire.h> 13 #include <linux/firewire-constants.h> 14 #include <linux/highmem.h> 15 #include <linux/in.h> 16 #include <linux/ip.h> 17 #include <linux/jiffies.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/module.h> 20 #include <linux/moduleparam.h> 21 #include <linux/mutex.h> 22 #include <linux/netdevice.h> 23 #include <linux/skbuff.h> 24 #include <linux/slab.h> 25 #include <linux/spinlock.h> 26 27 #include <asm/unaligned.h> 28 #include <net/arp.h> 29 30 /* rx limits */ 31 #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */ 32 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2) 33 34 /* tx limits */ 35 #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */ 36 #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */ 37 #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */ 38 39 #define IEEE1394_BROADCAST_CHANNEL 31 40 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f) 41 #define IEEE1394_MAX_PAYLOAD_S100 512 42 #define FWNET_NO_FIFO_ADDR (~0ULL) 43 44 #define IANA_SPECIFIER_ID 0x00005eU 45 #define RFC2734_SW_VERSION 0x000001U 46 47 #define IEEE1394_GASP_HDR_SIZE 8 48 49 #define RFC2374_UNFRAG_HDR_SIZE 4 50 #define RFC2374_FRAG_HDR_SIZE 8 51 #define RFC2374_FRAG_OVERHEAD 4 52 53 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */ 54 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */ 55 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */ 56 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */ 57 58 #define RFC2734_HW_ADDR_LEN 16 59 60 struct rfc2734_arp { 61 __be16 hw_type; /* 0x0018 */ 62 __be16 proto_type; /* 0x0806 */ 63 u8 hw_addr_len; /* 16 */ 64 u8 ip_addr_len; /* 4 */ 65 __be16 opcode; /* ARP Opcode */ 66 /* Above is exactly the same format as struct arphdr */ 67 68 __be64 s_uniq_id; /* Sender's 64bit EUI */ 69 u8 max_rec; /* Sender's max packet size */ 70 u8 sspd; /* Sender's max speed */ 71 __be16 fifo_hi; /* hi 16bits of sender's FIFO addr */ 72 __be32 fifo_lo; /* lo 32bits of sender's FIFO addr */ 73 __be32 sip; /* Sender's IP Address */ 74 __be32 tip; /* IP Address of requested hw addr */ 75 } __attribute__((packed)); 76 77 /* This header format is specific to this driver implementation. */ 78 #define FWNET_ALEN 8 79 #define FWNET_HLEN 10 80 struct fwnet_header { 81 u8 h_dest[FWNET_ALEN]; /* destination address */ 82 __be16 h_proto; /* packet type ID field */ 83 } __attribute__((packed)); 84 85 /* IPv4 and IPv6 encapsulation header */ 86 struct rfc2734_header { 87 u32 w0; 88 u32 w1; 89 }; 90 91 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30) 92 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff)) 93 #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16) 94 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff)) 95 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16) 96 97 #define fwnet_set_hdr_lf(lf) ((lf) << 30) 98 #define fwnet_set_hdr_ether_type(et) (et) 99 #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16) 100 #define fwnet_set_hdr_fg_off(fgo) (fgo) 101 102 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16) 103 104 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr, 105 unsigned ether_type) 106 { 107 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG) 108 | fwnet_set_hdr_ether_type(ether_type); 109 } 110 111 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr, 112 unsigned ether_type, unsigned dg_size, unsigned dgl) 113 { 114 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG) 115 | fwnet_set_hdr_dg_size(dg_size) 116 | fwnet_set_hdr_ether_type(ether_type); 117 hdr->w1 = fwnet_set_hdr_dgl(dgl); 118 } 119 120 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr, 121 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl) 122 { 123 hdr->w0 = fwnet_set_hdr_lf(lf) 124 | fwnet_set_hdr_dg_size(dg_size) 125 | fwnet_set_hdr_fg_off(fg_off); 126 hdr->w1 = fwnet_set_hdr_dgl(dgl); 127 } 128 129 /* This list keeps track of what parts of the datagram have been filled in */ 130 struct fwnet_fragment_info { 131 struct list_head fi_link; 132 u16 offset; 133 u16 len; 134 }; 135 136 struct fwnet_partial_datagram { 137 struct list_head pd_link; 138 struct list_head fi_list; 139 struct sk_buff *skb; 140 /* FIXME Why not use skb->data? */ 141 char *pbuf; 142 u16 datagram_label; 143 u16 ether_type; 144 u16 datagram_size; 145 }; 146 147 static DEFINE_MUTEX(fwnet_device_mutex); 148 static LIST_HEAD(fwnet_device_list); 149 150 struct fwnet_device { 151 struct list_head dev_link; 152 spinlock_t lock; 153 enum { 154 FWNET_BROADCAST_ERROR, 155 FWNET_BROADCAST_RUNNING, 156 FWNET_BROADCAST_STOPPED, 157 } broadcast_state; 158 struct fw_iso_context *broadcast_rcv_context; 159 struct fw_iso_buffer broadcast_rcv_buffer; 160 void **broadcast_rcv_buffer_ptrs; 161 unsigned broadcast_rcv_next_ptr; 162 unsigned num_broadcast_rcv_ptrs; 163 unsigned rcv_buffer_size; 164 /* 165 * This value is the maximum unfragmented datagram size that can be 166 * sent by the hardware. It already has the GASP overhead and the 167 * unfragmented datagram header overhead calculated into it. 168 */ 169 unsigned broadcast_xmt_max_payload; 170 u16 broadcast_xmt_datagramlabel; 171 172 /* 173 * The CSR address that remote nodes must send datagrams to for us to 174 * receive them. 175 */ 176 struct fw_address_handler handler; 177 u64 local_fifo; 178 179 /* Number of tx datagrams that have been queued but not yet acked */ 180 int queued_datagrams; 181 182 struct list_head peer_list; 183 struct fw_card *card; 184 struct net_device *netdev; 185 }; 186 187 struct fwnet_peer { 188 struct list_head peer_link; 189 struct fwnet_device *dev; 190 u64 guid; 191 u64 fifo; 192 193 /* guarded by dev->lock */ 194 struct list_head pd_list; /* received partial datagrams */ 195 unsigned pdg_size; /* pd_list size */ 196 197 u16 datagram_label; /* outgoing datagram label */ 198 u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */ 199 int node_id; 200 int generation; 201 unsigned speed; 202 }; 203 204 /* This is our task struct. It's used for the packet complete callback. */ 205 struct fwnet_packet_task { 206 struct fw_transaction transaction; 207 struct rfc2734_header hdr; 208 struct sk_buff *skb; 209 struct fwnet_device *dev; 210 211 int outstanding_pkts; 212 u64 fifo_addr; 213 u16 dest_node; 214 u16 max_payload; 215 u8 generation; 216 u8 speed; 217 u8 enqueued; 218 }; 219 220 /* 221 * saddr == NULL means use device source address. 222 * daddr == NULL means leave destination address (eg unresolved arp). 223 */ 224 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net, 225 unsigned short type, const void *daddr, 226 const void *saddr, unsigned len) 227 { 228 struct fwnet_header *h; 229 230 h = (struct fwnet_header *)skb_push(skb, sizeof(*h)); 231 put_unaligned_be16(type, &h->h_proto); 232 233 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) { 234 memset(h->h_dest, 0, net->addr_len); 235 236 return net->hard_header_len; 237 } 238 239 if (daddr) { 240 memcpy(h->h_dest, daddr, net->addr_len); 241 242 return net->hard_header_len; 243 } 244 245 return -net->hard_header_len; 246 } 247 248 static int fwnet_header_rebuild(struct sk_buff *skb) 249 { 250 struct fwnet_header *h = (struct fwnet_header *)skb->data; 251 252 if (get_unaligned_be16(&h->h_proto) == ETH_P_IP) 253 return arp_find((unsigned char *)&h->h_dest, skb); 254 255 fw_notify("%s: unable to resolve type %04x addresses\n", 256 skb->dev->name, be16_to_cpu(h->h_proto)); 257 return 0; 258 } 259 260 static int fwnet_header_cache(const struct neighbour *neigh, 261 struct hh_cache *hh) 262 { 263 struct net_device *net; 264 struct fwnet_header *h; 265 266 if (hh->hh_type == cpu_to_be16(ETH_P_802_3)) 267 return -1; 268 net = neigh->dev; 269 h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h)); 270 h->h_proto = hh->hh_type; 271 memcpy(h->h_dest, neigh->ha, net->addr_len); 272 hh->hh_len = FWNET_HLEN; 273 274 return 0; 275 } 276 277 /* Called by Address Resolution module to notify changes in address. */ 278 static void fwnet_header_cache_update(struct hh_cache *hh, 279 const struct net_device *net, const unsigned char *haddr) 280 { 281 memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len); 282 } 283 284 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr) 285 { 286 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN); 287 288 return FWNET_ALEN; 289 } 290 291 static const struct header_ops fwnet_header_ops = { 292 .create = fwnet_header_create, 293 .rebuild = fwnet_header_rebuild, 294 .cache = fwnet_header_cache, 295 .cache_update = fwnet_header_cache_update, 296 .parse = fwnet_header_parse, 297 }; 298 299 /* FIXME: is this correct for all cases? */ 300 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd, 301 unsigned offset, unsigned len) 302 { 303 struct fwnet_fragment_info *fi; 304 unsigned end = offset + len; 305 306 list_for_each_entry(fi, &pd->fi_list, fi_link) 307 if (offset < fi->offset + fi->len && end > fi->offset) 308 return true; 309 310 return false; 311 } 312 313 /* Assumes that new fragment does not overlap any existing fragments */ 314 static struct fwnet_fragment_info *fwnet_frag_new( 315 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len) 316 { 317 struct fwnet_fragment_info *fi, *fi2, *new; 318 struct list_head *list; 319 320 list = &pd->fi_list; 321 list_for_each_entry(fi, &pd->fi_list, fi_link) { 322 if (fi->offset + fi->len == offset) { 323 /* The new fragment can be tacked on to the end */ 324 /* Did the new fragment plug a hole? */ 325 fi2 = list_entry(fi->fi_link.next, 326 struct fwnet_fragment_info, fi_link); 327 if (fi->offset + fi->len == fi2->offset) { 328 /* glue fragments together */ 329 fi->len += len + fi2->len; 330 list_del(&fi2->fi_link); 331 kfree(fi2); 332 } else { 333 fi->len += len; 334 } 335 336 return fi; 337 } 338 if (offset + len == fi->offset) { 339 /* The new fragment can be tacked on to the beginning */ 340 /* Did the new fragment plug a hole? */ 341 fi2 = list_entry(fi->fi_link.prev, 342 struct fwnet_fragment_info, fi_link); 343 if (fi2->offset + fi2->len == fi->offset) { 344 /* glue fragments together */ 345 fi2->len += fi->len + len; 346 list_del(&fi->fi_link); 347 kfree(fi); 348 349 return fi2; 350 } 351 fi->offset = offset; 352 fi->len += len; 353 354 return fi; 355 } 356 if (offset > fi->offset + fi->len) { 357 list = &fi->fi_link; 358 break; 359 } 360 if (offset + len < fi->offset) { 361 list = fi->fi_link.prev; 362 break; 363 } 364 } 365 366 new = kmalloc(sizeof(*new), GFP_ATOMIC); 367 if (!new) { 368 fw_error("out of memory\n"); 369 return NULL; 370 } 371 372 new->offset = offset; 373 new->len = len; 374 list_add(&new->fi_link, list); 375 376 return new; 377 } 378 379 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net, 380 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size, 381 void *frag_buf, unsigned frag_off, unsigned frag_len) 382 { 383 struct fwnet_partial_datagram *new; 384 struct fwnet_fragment_info *fi; 385 386 new = kmalloc(sizeof(*new), GFP_ATOMIC); 387 if (!new) 388 goto fail; 389 390 INIT_LIST_HEAD(&new->fi_list); 391 fi = fwnet_frag_new(new, frag_off, frag_len); 392 if (fi == NULL) 393 goto fail_w_new; 394 395 new->datagram_label = datagram_label; 396 new->datagram_size = dg_size; 397 new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15); 398 if (new->skb == NULL) 399 goto fail_w_fi; 400 401 skb_reserve(new->skb, (net->hard_header_len + 15) & ~15); 402 new->pbuf = skb_put(new->skb, dg_size); 403 memcpy(new->pbuf + frag_off, frag_buf, frag_len); 404 list_add_tail(&new->pd_link, &peer->pd_list); 405 406 return new; 407 408 fail_w_fi: 409 kfree(fi); 410 fail_w_new: 411 kfree(new); 412 fail: 413 fw_error("out of memory\n"); 414 415 return NULL; 416 } 417 418 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer, 419 u16 datagram_label) 420 { 421 struct fwnet_partial_datagram *pd; 422 423 list_for_each_entry(pd, &peer->pd_list, pd_link) 424 if (pd->datagram_label == datagram_label) 425 return pd; 426 427 return NULL; 428 } 429 430 431 static void fwnet_pd_delete(struct fwnet_partial_datagram *old) 432 { 433 struct fwnet_fragment_info *fi, *n; 434 435 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link) 436 kfree(fi); 437 438 list_del(&old->pd_link); 439 dev_kfree_skb_any(old->skb); 440 kfree(old); 441 } 442 443 static bool fwnet_pd_update(struct fwnet_peer *peer, 444 struct fwnet_partial_datagram *pd, void *frag_buf, 445 unsigned frag_off, unsigned frag_len) 446 { 447 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL) 448 return false; 449 450 memcpy(pd->pbuf + frag_off, frag_buf, frag_len); 451 452 /* 453 * Move list entry to beginnig of list so that oldest partial 454 * datagrams percolate to the end of the list 455 */ 456 list_move_tail(&pd->pd_link, &peer->pd_list); 457 458 return true; 459 } 460 461 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd) 462 { 463 struct fwnet_fragment_info *fi; 464 465 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link); 466 467 return fi->len == pd->datagram_size; 468 } 469 470 /* caller must hold dev->lock */ 471 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev, 472 u64 guid) 473 { 474 struct fwnet_peer *peer; 475 476 list_for_each_entry(peer, &dev->peer_list, peer_link) 477 if (peer->guid == guid) 478 return peer; 479 480 return NULL; 481 } 482 483 /* caller must hold dev->lock */ 484 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev, 485 int node_id, int generation) 486 { 487 struct fwnet_peer *peer; 488 489 list_for_each_entry(peer, &dev->peer_list, peer_link) 490 if (peer->node_id == node_id && 491 peer->generation == generation) 492 return peer; 493 494 return NULL; 495 } 496 497 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */ 498 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed) 499 { 500 max_rec = min(max_rec, speed + 8); 501 max_rec = min(max_rec, 0xbU); /* <= 4096 */ 502 if (max_rec < 8) { 503 fw_notify("max_rec %x out of range\n", max_rec); 504 max_rec = 8; 505 } 506 507 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE; 508 } 509 510 511 static int fwnet_finish_incoming_packet(struct net_device *net, 512 struct sk_buff *skb, u16 source_node_id, 513 bool is_broadcast, u16 ether_type) 514 { 515 struct fwnet_device *dev; 516 static const __be64 broadcast_hw = cpu_to_be64(~0ULL); 517 int status; 518 __be64 guid; 519 520 dev = netdev_priv(net); 521 /* Write metadata, and then pass to the receive level */ 522 skb->dev = net; 523 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */ 524 525 /* 526 * Parse the encapsulation header. This actually does the job of 527 * converting to an ethernet frame header, as well as arp 528 * conversion if needed. ARP conversion is easier in this 529 * direction, since we are using ethernet as our backend. 530 */ 531 /* 532 * If this is an ARP packet, convert it. First, we want to make 533 * use of some of the fields, since they tell us a little bit 534 * about the sending machine. 535 */ 536 if (ether_type == ETH_P_ARP) { 537 struct rfc2734_arp *arp1394; 538 struct arphdr *arp; 539 unsigned char *arp_ptr; 540 u64 fifo_addr; 541 u64 peer_guid; 542 unsigned sspd; 543 u16 max_payload; 544 struct fwnet_peer *peer; 545 unsigned long flags; 546 547 arp1394 = (struct rfc2734_arp *)skb->data; 548 arp = (struct arphdr *)skb->data; 549 arp_ptr = (unsigned char *)(arp + 1); 550 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id); 551 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32 552 | get_unaligned_be32(&arp1394->fifo_lo); 553 554 sspd = arp1394->sspd; 555 /* Sanity check. OS X 10.3 PPC reportedly sends 131. */ 556 if (sspd > SCODE_3200) { 557 fw_notify("sspd %x out of range\n", sspd); 558 sspd = SCODE_3200; 559 } 560 max_payload = fwnet_max_payload(arp1394->max_rec, sspd); 561 562 spin_lock_irqsave(&dev->lock, flags); 563 peer = fwnet_peer_find_by_guid(dev, peer_guid); 564 if (peer) { 565 peer->fifo = fifo_addr; 566 567 if (peer->speed > sspd) 568 peer->speed = sspd; 569 if (peer->max_payload > max_payload) 570 peer->max_payload = max_payload; 571 } 572 spin_unlock_irqrestore(&dev->lock, flags); 573 574 if (!peer) { 575 fw_notify("No peer for ARP packet from %016llx\n", 576 (unsigned long long)peer_guid); 577 goto no_peer; 578 } 579 580 /* 581 * Now that we're done with the 1394 specific stuff, we'll 582 * need to alter some of the data. Believe it or not, all 583 * that needs to be done is sender_IP_address needs to be 584 * moved, the destination hardware address get stuffed 585 * in and the hardware address length set to 8. 586 * 587 * IMPORTANT: The code below overwrites 1394 specific data 588 * needed above so keep the munging of the data for the 589 * higher level IP stack last. 590 */ 591 592 arp->ar_hln = 8; 593 /* skip over sender unique id */ 594 arp_ptr += arp->ar_hln; 595 /* move sender IP addr */ 596 put_unaligned(arp1394->sip, (u32 *)arp_ptr); 597 /* skip over sender IP addr */ 598 arp_ptr += arp->ar_pln; 599 600 if (arp->ar_op == htons(ARPOP_REQUEST)) 601 memset(arp_ptr, 0, sizeof(u64)); 602 else 603 memcpy(arp_ptr, net->dev_addr, sizeof(u64)); 604 } 605 606 /* Now add the ethernet header. */ 607 guid = cpu_to_be64(dev->card->guid); 608 if (dev_hard_header(skb, net, ether_type, 609 is_broadcast ? &broadcast_hw : &guid, 610 NULL, skb->len) >= 0) { 611 struct fwnet_header *eth; 612 u16 *rawp; 613 __be16 protocol; 614 615 skb_reset_mac_header(skb); 616 skb_pull(skb, sizeof(*eth)); 617 eth = (struct fwnet_header *)skb_mac_header(skb); 618 if (*eth->h_dest & 1) { 619 if (memcmp(eth->h_dest, net->broadcast, 620 net->addr_len) == 0) 621 skb->pkt_type = PACKET_BROADCAST; 622 #if 0 623 else 624 skb->pkt_type = PACKET_MULTICAST; 625 #endif 626 } else { 627 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len)) 628 skb->pkt_type = PACKET_OTHERHOST; 629 } 630 if (ntohs(eth->h_proto) >= 1536) { 631 protocol = eth->h_proto; 632 } else { 633 rawp = (u16 *)skb->data; 634 if (*rawp == 0xffff) 635 protocol = htons(ETH_P_802_3); 636 else 637 protocol = htons(ETH_P_802_2); 638 } 639 skb->protocol = protocol; 640 } 641 status = netif_rx(skb); 642 if (status == NET_RX_DROP) { 643 net->stats.rx_errors++; 644 net->stats.rx_dropped++; 645 } else { 646 net->stats.rx_packets++; 647 net->stats.rx_bytes += skb->len; 648 } 649 650 return 0; 651 652 no_peer: 653 net->stats.rx_errors++; 654 net->stats.rx_dropped++; 655 656 dev_kfree_skb_any(skb); 657 658 return -ENOENT; 659 } 660 661 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len, 662 int source_node_id, int generation, 663 bool is_broadcast) 664 { 665 struct sk_buff *skb; 666 struct net_device *net = dev->netdev; 667 struct rfc2734_header hdr; 668 unsigned lf; 669 unsigned long flags; 670 struct fwnet_peer *peer; 671 struct fwnet_partial_datagram *pd; 672 int fg_off; 673 int dg_size; 674 u16 datagram_label; 675 int retval; 676 u16 ether_type; 677 678 hdr.w0 = be32_to_cpu(buf[0]); 679 lf = fwnet_get_hdr_lf(&hdr); 680 if (lf == RFC2374_HDR_UNFRAG) { 681 /* 682 * An unfragmented datagram has been received by the ieee1394 683 * bus. Build an skbuff around it so we can pass it to the 684 * high level network layer. 685 */ 686 ether_type = fwnet_get_hdr_ether_type(&hdr); 687 buf++; 688 len -= RFC2374_UNFRAG_HDR_SIZE; 689 690 skb = dev_alloc_skb(len + net->hard_header_len + 15); 691 if (unlikely(!skb)) { 692 fw_error("out of memory\n"); 693 net->stats.rx_dropped++; 694 695 return -ENOMEM; 696 } 697 skb_reserve(skb, (net->hard_header_len + 15) & ~15); 698 memcpy(skb_put(skb, len), buf, len); 699 700 return fwnet_finish_incoming_packet(net, skb, source_node_id, 701 is_broadcast, ether_type); 702 } 703 /* A datagram fragment has been received, now the fun begins. */ 704 hdr.w1 = ntohl(buf[1]); 705 buf += 2; 706 len -= RFC2374_FRAG_HDR_SIZE; 707 if (lf == RFC2374_HDR_FIRSTFRAG) { 708 ether_type = fwnet_get_hdr_ether_type(&hdr); 709 fg_off = 0; 710 } else { 711 ether_type = 0; 712 fg_off = fwnet_get_hdr_fg_off(&hdr); 713 } 714 datagram_label = fwnet_get_hdr_dgl(&hdr); 715 dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */ 716 717 spin_lock_irqsave(&dev->lock, flags); 718 719 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation); 720 if (!peer) { 721 retval = -ENOENT; 722 goto fail; 723 } 724 725 pd = fwnet_pd_find(peer, datagram_label); 726 if (pd == NULL) { 727 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) { 728 /* remove the oldest */ 729 fwnet_pd_delete(list_first_entry(&peer->pd_list, 730 struct fwnet_partial_datagram, pd_link)); 731 peer->pdg_size--; 732 } 733 pd = fwnet_pd_new(net, peer, datagram_label, 734 dg_size, buf, fg_off, len); 735 if (pd == NULL) { 736 retval = -ENOMEM; 737 goto fail; 738 } 739 peer->pdg_size++; 740 } else { 741 if (fwnet_frag_overlap(pd, fg_off, len) || 742 pd->datagram_size != dg_size) { 743 /* 744 * Differing datagram sizes or overlapping fragments, 745 * discard old datagram and start a new one. 746 */ 747 fwnet_pd_delete(pd); 748 pd = fwnet_pd_new(net, peer, datagram_label, 749 dg_size, buf, fg_off, len); 750 if (pd == NULL) { 751 peer->pdg_size--; 752 retval = -ENOMEM; 753 goto fail; 754 } 755 } else { 756 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) { 757 /* 758 * Couldn't save off fragment anyway 759 * so might as well obliterate the 760 * datagram now. 761 */ 762 fwnet_pd_delete(pd); 763 peer->pdg_size--; 764 retval = -ENOMEM; 765 goto fail; 766 } 767 } 768 } /* new datagram or add to existing one */ 769 770 if (lf == RFC2374_HDR_FIRSTFRAG) 771 pd->ether_type = ether_type; 772 773 if (fwnet_pd_is_complete(pd)) { 774 ether_type = pd->ether_type; 775 peer->pdg_size--; 776 skb = skb_get(pd->skb); 777 fwnet_pd_delete(pd); 778 779 spin_unlock_irqrestore(&dev->lock, flags); 780 781 return fwnet_finish_incoming_packet(net, skb, source_node_id, 782 false, ether_type); 783 } 784 /* 785 * Datagram is not complete, we're done for the 786 * moment. 787 */ 788 retval = 0; 789 fail: 790 spin_unlock_irqrestore(&dev->lock, flags); 791 792 return retval; 793 } 794 795 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r, 796 int tcode, int destination, int source, int generation, 797 unsigned long long offset, void *payload, size_t length, 798 void *callback_data) 799 { 800 struct fwnet_device *dev = callback_data; 801 int rcode; 802 803 if (destination == IEEE1394_ALL_NODES) { 804 kfree(r); 805 806 return; 807 } 808 809 if (offset != dev->handler.offset) 810 rcode = RCODE_ADDRESS_ERROR; 811 else if (tcode != TCODE_WRITE_BLOCK_REQUEST) 812 rcode = RCODE_TYPE_ERROR; 813 else if (fwnet_incoming_packet(dev, payload, length, 814 source, generation, false) != 0) { 815 fw_error("Incoming packet failure\n"); 816 rcode = RCODE_CONFLICT_ERROR; 817 } else 818 rcode = RCODE_COMPLETE; 819 820 fw_send_response(card, r, rcode); 821 } 822 823 static void fwnet_receive_broadcast(struct fw_iso_context *context, 824 u32 cycle, size_t header_length, void *header, void *data) 825 { 826 struct fwnet_device *dev; 827 struct fw_iso_packet packet; 828 struct fw_card *card; 829 __be16 *hdr_ptr; 830 __be32 *buf_ptr; 831 int retval; 832 u32 length; 833 u16 source_node_id; 834 u32 specifier_id; 835 u32 ver; 836 unsigned long offset; 837 unsigned long flags; 838 839 dev = data; 840 card = dev->card; 841 hdr_ptr = header; 842 length = be16_to_cpup(hdr_ptr); 843 844 spin_lock_irqsave(&dev->lock, flags); 845 846 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr; 847 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++]; 848 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs) 849 dev->broadcast_rcv_next_ptr = 0; 850 851 spin_unlock_irqrestore(&dev->lock, flags); 852 853 specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8 854 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24; 855 ver = be32_to_cpu(buf_ptr[1]) & 0xffffff; 856 source_node_id = be32_to_cpu(buf_ptr[0]) >> 16; 857 858 if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) { 859 buf_ptr += 2; 860 length -= IEEE1394_GASP_HDR_SIZE; 861 fwnet_incoming_packet(dev, buf_ptr, length, 862 source_node_id, -1, true); 863 } 864 865 packet.payload_length = dev->rcv_buffer_size; 866 packet.interrupt = 1; 867 packet.skip = 0; 868 packet.tag = 3; 869 packet.sy = 0; 870 packet.header_length = IEEE1394_GASP_HDR_SIZE; 871 872 spin_lock_irqsave(&dev->lock, flags); 873 874 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet, 875 &dev->broadcast_rcv_buffer, offset); 876 877 spin_unlock_irqrestore(&dev->lock, flags); 878 879 if (retval < 0) 880 fw_error("requeue failed\n"); 881 } 882 883 static struct kmem_cache *fwnet_packet_task_cache; 884 885 static void fwnet_free_ptask(struct fwnet_packet_task *ptask) 886 { 887 dev_kfree_skb_any(ptask->skb); 888 kmem_cache_free(fwnet_packet_task_cache, ptask); 889 } 890 891 /* Caller must hold dev->lock. */ 892 static void dec_queued_datagrams(struct fwnet_device *dev) 893 { 894 if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS) 895 netif_wake_queue(dev->netdev); 896 } 897 898 static int fwnet_send_packet(struct fwnet_packet_task *ptask); 899 900 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask) 901 { 902 struct fwnet_device *dev = ptask->dev; 903 struct sk_buff *skb = ptask->skb; 904 unsigned long flags; 905 bool free; 906 907 spin_lock_irqsave(&dev->lock, flags); 908 909 ptask->outstanding_pkts--; 910 911 /* Check whether we or the networking TX soft-IRQ is last user. */ 912 free = (ptask->outstanding_pkts == 0 && ptask->enqueued); 913 if (free) 914 dec_queued_datagrams(dev); 915 916 if (ptask->outstanding_pkts == 0) { 917 dev->netdev->stats.tx_packets++; 918 dev->netdev->stats.tx_bytes += skb->len; 919 } 920 921 spin_unlock_irqrestore(&dev->lock, flags); 922 923 if (ptask->outstanding_pkts > 0) { 924 u16 dg_size; 925 u16 fg_off; 926 u16 datagram_label; 927 u16 lf; 928 929 /* Update the ptask to point to the next fragment and send it */ 930 lf = fwnet_get_hdr_lf(&ptask->hdr); 931 switch (lf) { 932 case RFC2374_HDR_LASTFRAG: 933 case RFC2374_HDR_UNFRAG: 934 default: 935 fw_error("Outstanding packet %x lf %x, header %x,%x\n", 936 ptask->outstanding_pkts, lf, ptask->hdr.w0, 937 ptask->hdr.w1); 938 BUG(); 939 940 case RFC2374_HDR_FIRSTFRAG: 941 /* Set frag type here for future interior fragments */ 942 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); 943 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE; 944 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); 945 break; 946 947 case RFC2374_HDR_INTFRAG: 948 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); 949 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr) 950 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE; 951 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); 952 break; 953 } 954 955 skb_pull(skb, ptask->max_payload); 956 if (ptask->outstanding_pkts > 1) { 957 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG, 958 dg_size, fg_off, datagram_label); 959 } else { 960 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG, 961 dg_size, fg_off, datagram_label); 962 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE; 963 } 964 fwnet_send_packet(ptask); 965 } 966 967 if (free) 968 fwnet_free_ptask(ptask); 969 } 970 971 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask) 972 { 973 struct fwnet_device *dev = ptask->dev; 974 unsigned long flags; 975 bool free; 976 977 spin_lock_irqsave(&dev->lock, flags); 978 979 /* One fragment failed; don't try to send remaining fragments. */ 980 ptask->outstanding_pkts = 0; 981 982 /* Check whether we or the networking TX soft-IRQ is last user. */ 983 free = ptask->enqueued; 984 if (free) 985 dec_queued_datagrams(dev); 986 987 dev->netdev->stats.tx_dropped++; 988 dev->netdev->stats.tx_errors++; 989 990 spin_unlock_irqrestore(&dev->lock, flags); 991 992 if (free) 993 fwnet_free_ptask(ptask); 994 } 995 996 static void fwnet_write_complete(struct fw_card *card, int rcode, 997 void *payload, size_t length, void *data) 998 { 999 struct fwnet_packet_task *ptask; 1000 1001 ptask = data; 1002 1003 if (rcode == RCODE_COMPLETE) { 1004 fwnet_transmit_packet_done(ptask); 1005 } else { 1006 fw_error("fwnet_write_complete: failed: %x\n", rcode); 1007 fwnet_transmit_packet_failed(ptask); 1008 } 1009 } 1010 1011 static int fwnet_send_packet(struct fwnet_packet_task *ptask) 1012 { 1013 struct fwnet_device *dev; 1014 unsigned tx_len; 1015 struct rfc2734_header *bufhdr; 1016 unsigned long flags; 1017 bool free; 1018 1019 dev = ptask->dev; 1020 tx_len = ptask->max_payload; 1021 switch (fwnet_get_hdr_lf(&ptask->hdr)) { 1022 case RFC2374_HDR_UNFRAG: 1023 bufhdr = (struct rfc2734_header *) 1024 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE); 1025 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); 1026 break; 1027 1028 case RFC2374_HDR_FIRSTFRAG: 1029 case RFC2374_HDR_INTFRAG: 1030 case RFC2374_HDR_LASTFRAG: 1031 bufhdr = (struct rfc2734_header *) 1032 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE); 1033 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); 1034 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1); 1035 break; 1036 1037 default: 1038 BUG(); 1039 } 1040 if (ptask->dest_node == IEEE1394_ALL_NODES) { 1041 u8 *p; 1042 int generation; 1043 int node_id; 1044 1045 /* ptask->generation may not have been set yet */ 1046 generation = dev->card->generation; 1047 smp_rmb(); 1048 node_id = dev->card->node_id; 1049 1050 p = skb_push(ptask->skb, 8); 1051 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p); 1052 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24 1053 | RFC2734_SW_VERSION, &p[4]); 1054 1055 /* We should not transmit if broadcast_channel.valid == 0. */ 1056 fw_send_request(dev->card, &ptask->transaction, 1057 TCODE_STREAM_DATA, 1058 fw_stream_packet_destination_id(3, 1059 IEEE1394_BROADCAST_CHANNEL, 0), 1060 generation, SCODE_100, 0ULL, ptask->skb->data, 1061 tx_len + 8, fwnet_write_complete, ptask); 1062 1063 spin_lock_irqsave(&dev->lock, flags); 1064 1065 /* If the AT tasklet already ran, we may be last user. */ 1066 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued); 1067 if (!free) 1068 ptask->enqueued = true; 1069 else 1070 dec_queued_datagrams(dev); 1071 1072 spin_unlock_irqrestore(&dev->lock, flags); 1073 1074 goto out; 1075 } 1076 1077 fw_send_request(dev->card, &ptask->transaction, 1078 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node, 1079 ptask->generation, ptask->speed, ptask->fifo_addr, 1080 ptask->skb->data, tx_len, fwnet_write_complete, ptask); 1081 1082 spin_lock_irqsave(&dev->lock, flags); 1083 1084 /* If the AT tasklet already ran, we may be last user. */ 1085 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued); 1086 if (!free) 1087 ptask->enqueued = true; 1088 else 1089 dec_queued_datagrams(dev); 1090 1091 spin_unlock_irqrestore(&dev->lock, flags); 1092 1093 dev->netdev->trans_start = jiffies; 1094 out: 1095 if (free) 1096 fwnet_free_ptask(ptask); 1097 1098 return 0; 1099 } 1100 1101 static int fwnet_broadcast_start(struct fwnet_device *dev) 1102 { 1103 struct fw_iso_context *context; 1104 int retval; 1105 unsigned num_packets; 1106 unsigned max_receive; 1107 struct fw_iso_packet packet; 1108 unsigned long offset; 1109 unsigned u; 1110 1111 if (dev->local_fifo == FWNET_NO_FIFO_ADDR) { 1112 /* outside OHCI posted write area? */ 1113 static const struct fw_address_region region = { 1114 .start = 0xffff00000000ULL, 1115 .end = CSR_REGISTER_BASE, 1116 }; 1117 1118 dev->handler.length = 4096; 1119 dev->handler.address_callback = fwnet_receive_packet; 1120 dev->handler.callback_data = dev; 1121 1122 retval = fw_core_add_address_handler(&dev->handler, ®ion); 1123 if (retval < 0) 1124 goto failed_initial; 1125 1126 dev->local_fifo = dev->handler.offset; 1127 } 1128 1129 max_receive = 1U << (dev->card->max_receive + 1); 1130 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive; 1131 1132 if (!dev->broadcast_rcv_context) { 1133 void **ptrptr; 1134 1135 context = fw_iso_context_create(dev->card, 1136 FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL, 1137 dev->card->link_speed, 8, fwnet_receive_broadcast, dev); 1138 if (IS_ERR(context)) { 1139 retval = PTR_ERR(context); 1140 goto failed_context_create; 1141 } 1142 1143 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, 1144 dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE); 1145 if (retval < 0) 1146 goto failed_buffer_init; 1147 1148 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL); 1149 if (!ptrptr) { 1150 retval = -ENOMEM; 1151 goto failed_ptrs_alloc; 1152 } 1153 1154 dev->broadcast_rcv_buffer_ptrs = ptrptr; 1155 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) { 1156 void *ptr; 1157 unsigned v; 1158 1159 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]); 1160 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++) 1161 *ptrptr++ = (void *) 1162 ((char *)ptr + v * max_receive); 1163 } 1164 dev->broadcast_rcv_context = context; 1165 } else { 1166 context = dev->broadcast_rcv_context; 1167 } 1168 1169 packet.payload_length = max_receive; 1170 packet.interrupt = 1; 1171 packet.skip = 0; 1172 packet.tag = 3; 1173 packet.sy = 0; 1174 packet.header_length = IEEE1394_GASP_HDR_SIZE; 1175 offset = 0; 1176 1177 for (u = 0; u < num_packets; u++) { 1178 retval = fw_iso_context_queue(context, &packet, 1179 &dev->broadcast_rcv_buffer, offset); 1180 if (retval < 0) 1181 goto failed_rcv_queue; 1182 1183 offset += max_receive; 1184 } 1185 dev->num_broadcast_rcv_ptrs = num_packets; 1186 dev->rcv_buffer_size = max_receive; 1187 dev->broadcast_rcv_next_ptr = 0U; 1188 retval = fw_iso_context_start(context, -1, 0, 1189 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */ 1190 if (retval < 0) 1191 goto failed_rcv_queue; 1192 1193 /* FIXME: adjust it according to the min. speed of all known peers? */ 1194 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100 1195 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE; 1196 dev->broadcast_state = FWNET_BROADCAST_RUNNING; 1197 1198 return 0; 1199 1200 failed_rcv_queue: 1201 kfree(dev->broadcast_rcv_buffer_ptrs); 1202 dev->broadcast_rcv_buffer_ptrs = NULL; 1203 failed_ptrs_alloc: 1204 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card); 1205 failed_buffer_init: 1206 fw_iso_context_destroy(context); 1207 dev->broadcast_rcv_context = NULL; 1208 failed_context_create: 1209 fw_core_remove_address_handler(&dev->handler); 1210 failed_initial: 1211 dev->local_fifo = FWNET_NO_FIFO_ADDR; 1212 1213 return retval; 1214 } 1215 1216 /* ifup */ 1217 static int fwnet_open(struct net_device *net) 1218 { 1219 struct fwnet_device *dev = netdev_priv(net); 1220 int ret; 1221 1222 if (dev->broadcast_state == FWNET_BROADCAST_ERROR) { 1223 ret = fwnet_broadcast_start(dev); 1224 if (ret) 1225 return ret; 1226 } 1227 netif_start_queue(net); 1228 1229 return 0; 1230 } 1231 1232 /* ifdown */ 1233 static int fwnet_stop(struct net_device *net) 1234 { 1235 netif_stop_queue(net); 1236 1237 /* Deallocate iso context for use by other applications? */ 1238 1239 return 0; 1240 } 1241 1242 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net) 1243 { 1244 struct fwnet_header hdr_buf; 1245 struct fwnet_device *dev = netdev_priv(net); 1246 __be16 proto; 1247 u16 dest_node; 1248 unsigned max_payload; 1249 u16 dg_size; 1250 u16 *datagram_label_ptr; 1251 struct fwnet_packet_task *ptask; 1252 struct fwnet_peer *peer; 1253 unsigned long flags; 1254 1255 spin_lock_irqsave(&dev->lock, flags); 1256 1257 /* Can this happen? */ 1258 if (netif_queue_stopped(dev->netdev)) { 1259 spin_unlock_irqrestore(&dev->lock, flags); 1260 1261 return NETDEV_TX_BUSY; 1262 } 1263 1264 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC); 1265 if (ptask == NULL) 1266 goto fail; 1267 1268 skb = skb_share_check(skb, GFP_ATOMIC); 1269 if (!skb) 1270 goto fail; 1271 1272 /* 1273 * Make a copy of the driver-specific header. 1274 * We might need to rebuild the header on tx failure. 1275 */ 1276 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf)); 1277 skb_pull(skb, sizeof(hdr_buf)); 1278 1279 proto = hdr_buf.h_proto; 1280 dg_size = skb->len; 1281 1282 /* 1283 * Set the transmission type for the packet. ARP packets and IP 1284 * broadcast packets are sent via GASP. 1285 */ 1286 if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0 1287 || proto == htons(ETH_P_ARP) 1288 || (proto == htons(ETH_P_IP) 1289 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) { 1290 max_payload = dev->broadcast_xmt_max_payload; 1291 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel; 1292 1293 ptask->fifo_addr = FWNET_NO_FIFO_ADDR; 1294 ptask->generation = 0; 1295 ptask->dest_node = IEEE1394_ALL_NODES; 1296 ptask->speed = SCODE_100; 1297 } else { 1298 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest); 1299 u8 generation; 1300 1301 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid)); 1302 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR) 1303 goto fail; 1304 1305 generation = peer->generation; 1306 dest_node = peer->node_id; 1307 max_payload = peer->max_payload; 1308 datagram_label_ptr = &peer->datagram_label; 1309 1310 ptask->fifo_addr = peer->fifo; 1311 ptask->generation = generation; 1312 ptask->dest_node = dest_node; 1313 ptask->speed = peer->speed; 1314 } 1315 1316 /* If this is an ARP packet, convert it */ 1317 if (proto == htons(ETH_P_ARP)) { 1318 struct arphdr *arp = (struct arphdr *)skb->data; 1319 unsigned char *arp_ptr = (unsigned char *)(arp + 1); 1320 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data; 1321 __be32 ipaddr; 1322 1323 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN)); 1324 1325 arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN; 1326 arp1394->max_rec = dev->card->max_receive; 1327 arp1394->sspd = dev->card->link_speed; 1328 1329 put_unaligned_be16(dev->local_fifo >> 32, 1330 &arp1394->fifo_hi); 1331 put_unaligned_be32(dev->local_fifo & 0xffffffff, 1332 &arp1394->fifo_lo); 1333 put_unaligned(ipaddr, &arp1394->sip); 1334 } 1335 1336 ptask->hdr.w0 = 0; 1337 ptask->hdr.w1 = 0; 1338 ptask->skb = skb; 1339 ptask->dev = dev; 1340 1341 /* Does it all fit in one packet? */ 1342 if (dg_size <= max_payload) { 1343 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto)); 1344 ptask->outstanding_pkts = 1; 1345 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE; 1346 } else { 1347 u16 datagram_label; 1348 1349 max_payload -= RFC2374_FRAG_OVERHEAD; 1350 datagram_label = (*datagram_label_ptr)++; 1351 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size, 1352 datagram_label); 1353 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload); 1354 max_payload += RFC2374_FRAG_HDR_SIZE; 1355 } 1356 1357 if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS) 1358 netif_stop_queue(dev->netdev); 1359 1360 spin_unlock_irqrestore(&dev->lock, flags); 1361 1362 ptask->max_payload = max_payload; 1363 ptask->enqueued = 0; 1364 1365 fwnet_send_packet(ptask); 1366 1367 return NETDEV_TX_OK; 1368 1369 fail: 1370 spin_unlock_irqrestore(&dev->lock, flags); 1371 1372 if (ptask) 1373 kmem_cache_free(fwnet_packet_task_cache, ptask); 1374 1375 if (skb != NULL) 1376 dev_kfree_skb(skb); 1377 1378 net->stats.tx_dropped++; 1379 net->stats.tx_errors++; 1380 1381 /* 1382 * FIXME: According to a patch from 2003-02-26, "returning non-zero 1383 * causes serious problems" here, allegedly. Before that patch, 1384 * -ERRNO was returned which is not appropriate under Linux 2.6. 1385 * Perhaps more needs to be done? Stop the queue in serious 1386 * conditions and restart it elsewhere? 1387 */ 1388 return NETDEV_TX_OK; 1389 } 1390 1391 static int fwnet_change_mtu(struct net_device *net, int new_mtu) 1392 { 1393 if (new_mtu < 68) 1394 return -EINVAL; 1395 1396 net->mtu = new_mtu; 1397 return 0; 1398 } 1399 1400 static const struct net_device_ops fwnet_netdev_ops = { 1401 .ndo_open = fwnet_open, 1402 .ndo_stop = fwnet_stop, 1403 .ndo_start_xmit = fwnet_tx, 1404 .ndo_change_mtu = fwnet_change_mtu, 1405 }; 1406 1407 static void fwnet_init_dev(struct net_device *net) 1408 { 1409 net->header_ops = &fwnet_header_ops; 1410 net->netdev_ops = &fwnet_netdev_ops; 1411 net->watchdog_timeo = 2 * HZ; 1412 net->flags = IFF_BROADCAST | IFF_MULTICAST; 1413 net->features = NETIF_F_HIGHDMA; 1414 net->addr_len = FWNET_ALEN; 1415 net->hard_header_len = FWNET_HLEN; 1416 net->type = ARPHRD_IEEE1394; 1417 net->tx_queue_len = FWNET_TX_QUEUE_LEN; 1418 } 1419 1420 /* caller must hold fwnet_device_mutex */ 1421 static struct fwnet_device *fwnet_dev_find(struct fw_card *card) 1422 { 1423 struct fwnet_device *dev; 1424 1425 list_for_each_entry(dev, &fwnet_device_list, dev_link) 1426 if (dev->card == card) 1427 return dev; 1428 1429 return NULL; 1430 } 1431 1432 static int fwnet_add_peer(struct fwnet_device *dev, 1433 struct fw_unit *unit, struct fw_device *device) 1434 { 1435 struct fwnet_peer *peer; 1436 1437 peer = kmalloc(sizeof(*peer), GFP_KERNEL); 1438 if (!peer) 1439 return -ENOMEM; 1440 1441 dev_set_drvdata(&unit->device, peer); 1442 1443 peer->dev = dev; 1444 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1445 peer->fifo = FWNET_NO_FIFO_ADDR; 1446 INIT_LIST_HEAD(&peer->pd_list); 1447 peer->pdg_size = 0; 1448 peer->datagram_label = 0; 1449 peer->speed = device->max_speed; 1450 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed); 1451 1452 peer->generation = device->generation; 1453 smp_rmb(); 1454 peer->node_id = device->node_id; 1455 1456 spin_lock_irq(&dev->lock); 1457 list_add_tail(&peer->peer_link, &dev->peer_list); 1458 spin_unlock_irq(&dev->lock); 1459 1460 return 0; 1461 } 1462 1463 static int fwnet_probe(struct device *_dev) 1464 { 1465 struct fw_unit *unit = fw_unit(_dev); 1466 struct fw_device *device = fw_parent_device(unit); 1467 struct fw_card *card = device->card; 1468 struct net_device *net; 1469 bool allocated_netdev = false; 1470 struct fwnet_device *dev; 1471 unsigned max_mtu; 1472 int ret; 1473 1474 mutex_lock(&fwnet_device_mutex); 1475 1476 dev = fwnet_dev_find(card); 1477 if (dev) { 1478 net = dev->netdev; 1479 goto have_dev; 1480 } 1481 1482 net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev); 1483 if (net == NULL) { 1484 ret = -ENOMEM; 1485 goto out; 1486 } 1487 1488 allocated_netdev = true; 1489 SET_NETDEV_DEV(net, card->device); 1490 dev = netdev_priv(net); 1491 1492 spin_lock_init(&dev->lock); 1493 dev->broadcast_state = FWNET_BROADCAST_ERROR; 1494 dev->broadcast_rcv_context = NULL; 1495 dev->broadcast_xmt_max_payload = 0; 1496 dev->broadcast_xmt_datagramlabel = 0; 1497 dev->local_fifo = FWNET_NO_FIFO_ADDR; 1498 dev->queued_datagrams = 0; 1499 INIT_LIST_HEAD(&dev->peer_list); 1500 dev->card = card; 1501 dev->netdev = net; 1502 1503 /* 1504 * Use the RFC 2734 default 1500 octets or the maximum payload 1505 * as initial MTU 1506 */ 1507 max_mtu = (1 << (card->max_receive + 1)) 1508 - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE; 1509 net->mtu = min(1500U, max_mtu); 1510 1511 /* Set our hardware address while we're at it */ 1512 put_unaligned_be64(card->guid, net->dev_addr); 1513 put_unaligned_be64(~0ULL, net->broadcast); 1514 ret = register_netdev(net); 1515 if (ret) { 1516 fw_error("Cannot register the driver\n"); 1517 goto out; 1518 } 1519 1520 list_add_tail(&dev->dev_link, &fwnet_device_list); 1521 fw_notify("%s: IPv4 over FireWire on device %016llx\n", 1522 net->name, (unsigned long long)card->guid); 1523 have_dev: 1524 ret = fwnet_add_peer(dev, unit, device); 1525 if (ret && allocated_netdev) { 1526 unregister_netdev(net); 1527 list_del(&dev->dev_link); 1528 } 1529 out: 1530 if (ret && allocated_netdev) 1531 free_netdev(net); 1532 1533 mutex_unlock(&fwnet_device_mutex); 1534 1535 return ret; 1536 } 1537 1538 static void fwnet_remove_peer(struct fwnet_peer *peer) 1539 { 1540 struct fwnet_partial_datagram *pd, *pd_next; 1541 1542 spin_lock_irq(&peer->dev->lock); 1543 list_del(&peer->peer_link); 1544 spin_unlock_irq(&peer->dev->lock); 1545 1546 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link) 1547 fwnet_pd_delete(pd); 1548 1549 kfree(peer); 1550 } 1551 1552 static int fwnet_remove(struct device *_dev) 1553 { 1554 struct fwnet_peer *peer = dev_get_drvdata(_dev); 1555 struct fwnet_device *dev = peer->dev; 1556 struct net_device *net; 1557 int i; 1558 1559 mutex_lock(&fwnet_device_mutex); 1560 1561 fwnet_remove_peer(peer); 1562 1563 if (list_empty(&dev->peer_list)) { 1564 net = dev->netdev; 1565 unregister_netdev(net); 1566 1567 if (dev->local_fifo != FWNET_NO_FIFO_ADDR) 1568 fw_core_remove_address_handler(&dev->handler); 1569 if (dev->broadcast_rcv_context) { 1570 fw_iso_context_stop(dev->broadcast_rcv_context); 1571 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, 1572 dev->card); 1573 fw_iso_context_destroy(dev->broadcast_rcv_context); 1574 } 1575 for (i = 0; dev->queued_datagrams && i < 5; i++) 1576 ssleep(1); 1577 WARN_ON(dev->queued_datagrams); 1578 list_del(&dev->dev_link); 1579 1580 free_netdev(net); 1581 } 1582 1583 mutex_unlock(&fwnet_device_mutex); 1584 1585 return 0; 1586 } 1587 1588 /* 1589 * FIXME abort partially sent fragmented datagrams, 1590 * discard partially received fragmented datagrams 1591 */ 1592 static void fwnet_update(struct fw_unit *unit) 1593 { 1594 struct fw_device *device = fw_parent_device(unit); 1595 struct fwnet_peer *peer = dev_get_drvdata(&unit->device); 1596 int generation; 1597 1598 generation = device->generation; 1599 1600 spin_lock_irq(&peer->dev->lock); 1601 peer->node_id = device->node_id; 1602 peer->generation = generation; 1603 spin_unlock_irq(&peer->dev->lock); 1604 } 1605 1606 static const struct ieee1394_device_id fwnet_id_table[] = { 1607 { 1608 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1609 IEEE1394_MATCH_VERSION, 1610 .specifier_id = IANA_SPECIFIER_ID, 1611 .version = RFC2734_SW_VERSION, 1612 }, 1613 { } 1614 }; 1615 1616 static struct fw_driver fwnet_driver = { 1617 .driver = { 1618 .owner = THIS_MODULE, 1619 .name = "net", 1620 .bus = &fw_bus_type, 1621 .probe = fwnet_probe, 1622 .remove = fwnet_remove, 1623 }, 1624 .update = fwnet_update, 1625 .id_table = fwnet_id_table, 1626 }; 1627 1628 static const u32 rfc2374_unit_directory_data[] = { 1629 0x00040000, /* directory_length */ 1630 0x1200005e, /* unit_specifier_id: IANA */ 1631 0x81000003, /* textual descriptor offset */ 1632 0x13000001, /* unit_sw_version: RFC 2734 */ 1633 0x81000005, /* textual descriptor offset */ 1634 0x00030000, /* descriptor_length */ 1635 0x00000000, /* text */ 1636 0x00000000, /* minimal ASCII, en */ 1637 0x49414e41, /* I A N A */ 1638 0x00030000, /* descriptor_length */ 1639 0x00000000, /* text */ 1640 0x00000000, /* minimal ASCII, en */ 1641 0x49507634, /* I P v 4 */ 1642 }; 1643 1644 static struct fw_descriptor rfc2374_unit_directory = { 1645 .length = ARRAY_SIZE(rfc2374_unit_directory_data), 1646 .key = (CSR_DIRECTORY | CSR_UNIT) << 24, 1647 .data = rfc2374_unit_directory_data 1648 }; 1649 1650 static int __init fwnet_init(void) 1651 { 1652 int err; 1653 1654 err = fw_core_add_descriptor(&rfc2374_unit_directory); 1655 if (err) 1656 return err; 1657 1658 fwnet_packet_task_cache = kmem_cache_create("packet_task", 1659 sizeof(struct fwnet_packet_task), 0, 0, NULL); 1660 if (!fwnet_packet_task_cache) { 1661 err = -ENOMEM; 1662 goto out; 1663 } 1664 1665 err = driver_register(&fwnet_driver.driver); 1666 if (!err) 1667 return 0; 1668 1669 kmem_cache_destroy(fwnet_packet_task_cache); 1670 out: 1671 fw_core_remove_descriptor(&rfc2374_unit_directory); 1672 1673 return err; 1674 } 1675 module_init(fwnet_init); 1676 1677 static void __exit fwnet_cleanup(void) 1678 { 1679 driver_unregister(&fwnet_driver.driver); 1680 kmem_cache_destroy(fwnet_packet_task_cache); 1681 fw_core_remove_descriptor(&rfc2374_unit_directory); 1682 } 1683 module_exit(fwnet_cleanup); 1684 1685 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>"); 1686 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734"); 1687 MODULE_LICENSE("GPL"); 1688 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table); 1689