xref: /openbmc/linux/drivers/firewire/net.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8 
9 #include <linux/bug.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/highmem.h>
15 #include <linux/in.h>
16 #include <linux/ip.h>
17 #include <linux/jiffies.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/mutex.h>
22 #include <linux/netdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 
27 #include <asm/unaligned.h>
28 #include <net/arp.h>
29 
30 /* rx limits */
31 #define FWNET_MAX_FRAGMENTS		30 /* arbitrary, > TX queue depth */
32 #define FWNET_ISO_PAGE_COUNT		(PAGE_SIZE < 16*1024 ? 4 : 2)
33 
34 /* tx limits */
35 #define FWNET_MAX_QUEUED_DATAGRAMS	20 /* < 64 = number of tlabels */
36 #define FWNET_MIN_QUEUED_DATAGRAMS	10 /* should keep AT DMA busy enough */
37 #define FWNET_TX_QUEUE_LEN		FWNET_MAX_QUEUED_DATAGRAMS /* ? */
38 
39 #define IEEE1394_BROADCAST_CHANNEL	31
40 #define IEEE1394_ALL_NODES		(0xffc0 | 0x003f)
41 #define IEEE1394_MAX_PAYLOAD_S100	512
42 #define FWNET_NO_FIFO_ADDR		(~0ULL)
43 
44 #define IANA_SPECIFIER_ID		0x00005eU
45 #define RFC2734_SW_VERSION		0x000001U
46 
47 #define IEEE1394_GASP_HDR_SIZE	8
48 
49 #define RFC2374_UNFRAG_HDR_SIZE	4
50 #define RFC2374_FRAG_HDR_SIZE	8
51 #define RFC2374_FRAG_OVERHEAD	4
52 
53 #define RFC2374_HDR_UNFRAG	0	/* unfragmented		*/
54 #define RFC2374_HDR_FIRSTFRAG	1	/* first fragment	*/
55 #define RFC2374_HDR_LASTFRAG	2	/* last fragment	*/
56 #define RFC2374_HDR_INTFRAG	3	/* interior fragment	*/
57 
58 #define RFC2734_HW_ADDR_LEN	16
59 
60 struct rfc2734_arp {
61 	__be16 hw_type;		/* 0x0018	*/
62 	__be16 proto_type;	/* 0x0806       */
63 	u8 hw_addr_len;		/* 16		*/
64 	u8 ip_addr_len;		/* 4		*/
65 	__be16 opcode;		/* ARP Opcode	*/
66 	/* Above is exactly the same format as struct arphdr */
67 
68 	__be64 s_uniq_id;	/* Sender's 64bit EUI			*/
69 	u8 max_rec;		/* Sender's max packet size		*/
70 	u8 sspd;		/* Sender's max speed			*/
71 	__be16 fifo_hi;		/* hi 16bits of sender's FIFO addr	*/
72 	__be32 fifo_lo;		/* lo 32bits of sender's FIFO addr	*/
73 	__be32 sip;		/* Sender's IP Address			*/
74 	__be32 tip;		/* IP Address of requested hw addr	*/
75 } __attribute__((packed));
76 
77 /* This header format is specific to this driver implementation. */
78 #define FWNET_ALEN	8
79 #define FWNET_HLEN	10
80 struct fwnet_header {
81 	u8 h_dest[FWNET_ALEN];	/* destination address */
82 	__be16 h_proto;		/* packet type ID field */
83 } __attribute__((packed));
84 
85 /* IPv4 and IPv6 encapsulation header */
86 struct rfc2734_header {
87 	u32 w0;
88 	u32 w1;
89 };
90 
91 #define fwnet_get_hdr_lf(h)		(((h)->w0 & 0xc0000000) >> 30)
92 #define fwnet_get_hdr_ether_type(h)	(((h)->w0 & 0x0000ffff))
93 #define fwnet_get_hdr_dg_size(h)	(((h)->w0 & 0x0fff0000) >> 16)
94 #define fwnet_get_hdr_fg_off(h)		(((h)->w0 & 0x00000fff))
95 #define fwnet_get_hdr_dgl(h)		(((h)->w1 & 0xffff0000) >> 16)
96 
97 #define fwnet_set_hdr_lf(lf)		((lf)  << 30)
98 #define fwnet_set_hdr_ether_type(et)	(et)
99 #define fwnet_set_hdr_dg_size(dgs)	((dgs) << 16)
100 #define fwnet_set_hdr_fg_off(fgo)	(fgo)
101 
102 #define fwnet_set_hdr_dgl(dgl)		((dgl) << 16)
103 
104 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
105 		unsigned ether_type)
106 {
107 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
108 		  | fwnet_set_hdr_ether_type(ether_type);
109 }
110 
111 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
112 		unsigned ether_type, unsigned dg_size, unsigned dgl)
113 {
114 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
115 		  | fwnet_set_hdr_dg_size(dg_size)
116 		  | fwnet_set_hdr_ether_type(ether_type);
117 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
118 }
119 
120 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
121 		unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
122 {
123 	hdr->w0 = fwnet_set_hdr_lf(lf)
124 		  | fwnet_set_hdr_dg_size(dg_size)
125 		  | fwnet_set_hdr_fg_off(fg_off);
126 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
127 }
128 
129 /* This list keeps track of what parts of the datagram have been filled in */
130 struct fwnet_fragment_info {
131 	struct list_head fi_link;
132 	u16 offset;
133 	u16 len;
134 };
135 
136 struct fwnet_partial_datagram {
137 	struct list_head pd_link;
138 	struct list_head fi_list;
139 	struct sk_buff *skb;
140 	/* FIXME Why not use skb->data? */
141 	char *pbuf;
142 	u16 datagram_label;
143 	u16 ether_type;
144 	u16 datagram_size;
145 };
146 
147 static DEFINE_MUTEX(fwnet_device_mutex);
148 static LIST_HEAD(fwnet_device_list);
149 
150 struct fwnet_device {
151 	struct list_head dev_link;
152 	spinlock_t lock;
153 	enum {
154 		FWNET_BROADCAST_ERROR,
155 		FWNET_BROADCAST_RUNNING,
156 		FWNET_BROADCAST_STOPPED,
157 	} broadcast_state;
158 	struct fw_iso_context *broadcast_rcv_context;
159 	struct fw_iso_buffer broadcast_rcv_buffer;
160 	void **broadcast_rcv_buffer_ptrs;
161 	unsigned broadcast_rcv_next_ptr;
162 	unsigned num_broadcast_rcv_ptrs;
163 	unsigned rcv_buffer_size;
164 	/*
165 	 * This value is the maximum unfragmented datagram size that can be
166 	 * sent by the hardware.  It already has the GASP overhead and the
167 	 * unfragmented datagram header overhead calculated into it.
168 	 */
169 	unsigned broadcast_xmt_max_payload;
170 	u16 broadcast_xmt_datagramlabel;
171 
172 	/*
173 	 * The CSR address that remote nodes must send datagrams to for us to
174 	 * receive them.
175 	 */
176 	struct fw_address_handler handler;
177 	u64 local_fifo;
178 
179 	/* Number of tx datagrams that have been queued but not yet acked */
180 	int queued_datagrams;
181 
182 	struct list_head peer_list;
183 	struct fw_card *card;
184 	struct net_device *netdev;
185 };
186 
187 struct fwnet_peer {
188 	struct list_head peer_link;
189 	struct fwnet_device *dev;
190 	u64 guid;
191 	u64 fifo;
192 
193 	/* guarded by dev->lock */
194 	struct list_head pd_list; /* received partial datagrams */
195 	unsigned pdg_size;        /* pd_list size */
196 
197 	u16 datagram_label;       /* outgoing datagram label */
198 	u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
199 	int node_id;
200 	int generation;
201 	unsigned speed;
202 };
203 
204 /* This is our task struct. It's used for the packet complete callback.  */
205 struct fwnet_packet_task {
206 	struct fw_transaction transaction;
207 	struct rfc2734_header hdr;
208 	struct sk_buff *skb;
209 	struct fwnet_device *dev;
210 
211 	int outstanding_pkts;
212 	u64 fifo_addr;
213 	u16 dest_node;
214 	u16 max_payload;
215 	u8 generation;
216 	u8 speed;
217 	u8 enqueued;
218 };
219 
220 /*
221  * saddr == NULL means use device source address.
222  * daddr == NULL means leave destination address (eg unresolved arp).
223  */
224 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
225 			unsigned short type, const void *daddr,
226 			const void *saddr, unsigned len)
227 {
228 	struct fwnet_header *h;
229 
230 	h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
231 	put_unaligned_be16(type, &h->h_proto);
232 
233 	if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
234 		memset(h->h_dest, 0, net->addr_len);
235 
236 		return net->hard_header_len;
237 	}
238 
239 	if (daddr) {
240 		memcpy(h->h_dest, daddr, net->addr_len);
241 
242 		return net->hard_header_len;
243 	}
244 
245 	return -net->hard_header_len;
246 }
247 
248 static int fwnet_header_rebuild(struct sk_buff *skb)
249 {
250 	struct fwnet_header *h = (struct fwnet_header *)skb->data;
251 
252 	if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
253 		return arp_find((unsigned char *)&h->h_dest, skb);
254 
255 	fw_notify("%s: unable to resolve type %04x addresses\n",
256 		  skb->dev->name, be16_to_cpu(h->h_proto));
257 	return 0;
258 }
259 
260 static int fwnet_header_cache(const struct neighbour *neigh,
261 			      struct hh_cache *hh)
262 {
263 	struct net_device *net;
264 	struct fwnet_header *h;
265 
266 	if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
267 		return -1;
268 	net = neigh->dev;
269 	h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
270 	h->h_proto = hh->hh_type;
271 	memcpy(h->h_dest, neigh->ha, net->addr_len);
272 	hh->hh_len = FWNET_HLEN;
273 
274 	return 0;
275 }
276 
277 /* Called by Address Resolution module to notify changes in address. */
278 static void fwnet_header_cache_update(struct hh_cache *hh,
279 		const struct net_device *net, const unsigned char *haddr)
280 {
281 	memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
282 }
283 
284 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
285 {
286 	memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
287 
288 	return FWNET_ALEN;
289 }
290 
291 static const struct header_ops fwnet_header_ops = {
292 	.create         = fwnet_header_create,
293 	.rebuild        = fwnet_header_rebuild,
294 	.cache		= fwnet_header_cache,
295 	.cache_update	= fwnet_header_cache_update,
296 	.parse          = fwnet_header_parse,
297 };
298 
299 /* FIXME: is this correct for all cases? */
300 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
301 			       unsigned offset, unsigned len)
302 {
303 	struct fwnet_fragment_info *fi;
304 	unsigned end = offset + len;
305 
306 	list_for_each_entry(fi, &pd->fi_list, fi_link)
307 		if (offset < fi->offset + fi->len && end > fi->offset)
308 			return true;
309 
310 	return false;
311 }
312 
313 /* Assumes that new fragment does not overlap any existing fragments */
314 static struct fwnet_fragment_info *fwnet_frag_new(
315 	struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
316 {
317 	struct fwnet_fragment_info *fi, *fi2, *new;
318 	struct list_head *list;
319 
320 	list = &pd->fi_list;
321 	list_for_each_entry(fi, &pd->fi_list, fi_link) {
322 		if (fi->offset + fi->len == offset) {
323 			/* The new fragment can be tacked on to the end */
324 			/* Did the new fragment plug a hole? */
325 			fi2 = list_entry(fi->fi_link.next,
326 					 struct fwnet_fragment_info, fi_link);
327 			if (fi->offset + fi->len == fi2->offset) {
328 				/* glue fragments together */
329 				fi->len += len + fi2->len;
330 				list_del(&fi2->fi_link);
331 				kfree(fi2);
332 			} else {
333 				fi->len += len;
334 			}
335 
336 			return fi;
337 		}
338 		if (offset + len == fi->offset) {
339 			/* The new fragment can be tacked on to the beginning */
340 			/* Did the new fragment plug a hole? */
341 			fi2 = list_entry(fi->fi_link.prev,
342 					 struct fwnet_fragment_info, fi_link);
343 			if (fi2->offset + fi2->len == fi->offset) {
344 				/* glue fragments together */
345 				fi2->len += fi->len + len;
346 				list_del(&fi->fi_link);
347 				kfree(fi);
348 
349 				return fi2;
350 			}
351 			fi->offset = offset;
352 			fi->len += len;
353 
354 			return fi;
355 		}
356 		if (offset > fi->offset + fi->len) {
357 			list = &fi->fi_link;
358 			break;
359 		}
360 		if (offset + len < fi->offset) {
361 			list = fi->fi_link.prev;
362 			break;
363 		}
364 	}
365 
366 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
367 	if (!new) {
368 		fw_error("out of memory\n");
369 		return NULL;
370 	}
371 
372 	new->offset = offset;
373 	new->len = len;
374 	list_add(&new->fi_link, list);
375 
376 	return new;
377 }
378 
379 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
380 		struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
381 		void *frag_buf, unsigned frag_off, unsigned frag_len)
382 {
383 	struct fwnet_partial_datagram *new;
384 	struct fwnet_fragment_info *fi;
385 
386 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
387 	if (!new)
388 		goto fail;
389 
390 	INIT_LIST_HEAD(&new->fi_list);
391 	fi = fwnet_frag_new(new, frag_off, frag_len);
392 	if (fi == NULL)
393 		goto fail_w_new;
394 
395 	new->datagram_label = datagram_label;
396 	new->datagram_size = dg_size;
397 	new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
398 	if (new->skb == NULL)
399 		goto fail_w_fi;
400 
401 	skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
402 	new->pbuf = skb_put(new->skb, dg_size);
403 	memcpy(new->pbuf + frag_off, frag_buf, frag_len);
404 	list_add_tail(&new->pd_link, &peer->pd_list);
405 
406 	return new;
407 
408 fail_w_fi:
409 	kfree(fi);
410 fail_w_new:
411 	kfree(new);
412 fail:
413 	fw_error("out of memory\n");
414 
415 	return NULL;
416 }
417 
418 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
419 						    u16 datagram_label)
420 {
421 	struct fwnet_partial_datagram *pd;
422 
423 	list_for_each_entry(pd, &peer->pd_list, pd_link)
424 		if (pd->datagram_label == datagram_label)
425 			return pd;
426 
427 	return NULL;
428 }
429 
430 
431 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
432 {
433 	struct fwnet_fragment_info *fi, *n;
434 
435 	list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
436 		kfree(fi);
437 
438 	list_del(&old->pd_link);
439 	dev_kfree_skb_any(old->skb);
440 	kfree(old);
441 }
442 
443 static bool fwnet_pd_update(struct fwnet_peer *peer,
444 		struct fwnet_partial_datagram *pd, void *frag_buf,
445 		unsigned frag_off, unsigned frag_len)
446 {
447 	if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
448 		return false;
449 
450 	memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
451 
452 	/*
453 	 * Move list entry to beginnig of list so that oldest partial
454 	 * datagrams percolate to the end of the list
455 	 */
456 	list_move_tail(&pd->pd_link, &peer->pd_list);
457 
458 	return true;
459 }
460 
461 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
462 {
463 	struct fwnet_fragment_info *fi;
464 
465 	fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
466 
467 	return fi->len == pd->datagram_size;
468 }
469 
470 /* caller must hold dev->lock */
471 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
472 						  u64 guid)
473 {
474 	struct fwnet_peer *peer;
475 
476 	list_for_each_entry(peer, &dev->peer_list, peer_link)
477 		if (peer->guid == guid)
478 			return peer;
479 
480 	return NULL;
481 }
482 
483 /* caller must hold dev->lock */
484 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
485 						int node_id, int generation)
486 {
487 	struct fwnet_peer *peer;
488 
489 	list_for_each_entry(peer, &dev->peer_list, peer_link)
490 		if (peer->node_id    == node_id &&
491 		    peer->generation == generation)
492 			return peer;
493 
494 	return NULL;
495 }
496 
497 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
498 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
499 {
500 	max_rec = min(max_rec, speed + 8);
501 	max_rec = min(max_rec, 0xbU); /* <= 4096 */
502 	if (max_rec < 8) {
503 		fw_notify("max_rec %x out of range\n", max_rec);
504 		max_rec = 8;
505 	}
506 
507 	return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
508 }
509 
510 
511 static int fwnet_finish_incoming_packet(struct net_device *net,
512 					struct sk_buff *skb, u16 source_node_id,
513 					bool is_broadcast, u16 ether_type)
514 {
515 	struct fwnet_device *dev;
516 	static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
517 	int status;
518 	__be64 guid;
519 
520 	dev = netdev_priv(net);
521 	/* Write metadata, and then pass to the receive level */
522 	skb->dev = net;
523 	skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
524 
525 	/*
526 	 * Parse the encapsulation header. This actually does the job of
527 	 * converting to an ethernet frame header, as well as arp
528 	 * conversion if needed. ARP conversion is easier in this
529 	 * direction, since we are using ethernet as our backend.
530 	 */
531 	/*
532 	 * If this is an ARP packet, convert it. First, we want to make
533 	 * use of some of the fields, since they tell us a little bit
534 	 * about the sending machine.
535 	 */
536 	if (ether_type == ETH_P_ARP) {
537 		struct rfc2734_arp *arp1394;
538 		struct arphdr *arp;
539 		unsigned char *arp_ptr;
540 		u64 fifo_addr;
541 		u64 peer_guid;
542 		unsigned sspd;
543 		u16 max_payload;
544 		struct fwnet_peer *peer;
545 		unsigned long flags;
546 
547 		arp1394   = (struct rfc2734_arp *)skb->data;
548 		arp       = (struct arphdr *)skb->data;
549 		arp_ptr   = (unsigned char *)(arp + 1);
550 		peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
551 		fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
552 				| get_unaligned_be32(&arp1394->fifo_lo);
553 
554 		sspd = arp1394->sspd;
555 		/* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
556 		if (sspd > SCODE_3200) {
557 			fw_notify("sspd %x out of range\n", sspd);
558 			sspd = SCODE_3200;
559 		}
560 		max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
561 
562 		spin_lock_irqsave(&dev->lock, flags);
563 		peer = fwnet_peer_find_by_guid(dev, peer_guid);
564 		if (peer) {
565 			peer->fifo = fifo_addr;
566 
567 			if (peer->speed > sspd)
568 				peer->speed = sspd;
569 			if (peer->max_payload > max_payload)
570 				peer->max_payload = max_payload;
571 		}
572 		spin_unlock_irqrestore(&dev->lock, flags);
573 
574 		if (!peer) {
575 			fw_notify("No peer for ARP packet from %016llx\n",
576 				  (unsigned long long)peer_guid);
577 			goto no_peer;
578 		}
579 
580 		/*
581 		 * Now that we're done with the 1394 specific stuff, we'll
582 		 * need to alter some of the data.  Believe it or not, all
583 		 * that needs to be done is sender_IP_address needs to be
584 		 * moved, the destination hardware address get stuffed
585 		 * in and the hardware address length set to 8.
586 		 *
587 		 * IMPORTANT: The code below overwrites 1394 specific data
588 		 * needed above so keep the munging of the data for the
589 		 * higher level IP stack last.
590 		 */
591 
592 		arp->ar_hln = 8;
593 		/* skip over sender unique id */
594 		arp_ptr += arp->ar_hln;
595 		/* move sender IP addr */
596 		put_unaligned(arp1394->sip, (u32 *)arp_ptr);
597 		/* skip over sender IP addr */
598 		arp_ptr += arp->ar_pln;
599 
600 		if (arp->ar_op == htons(ARPOP_REQUEST))
601 			memset(arp_ptr, 0, sizeof(u64));
602 		else
603 			memcpy(arp_ptr, net->dev_addr, sizeof(u64));
604 	}
605 
606 	/* Now add the ethernet header. */
607 	guid = cpu_to_be64(dev->card->guid);
608 	if (dev_hard_header(skb, net, ether_type,
609 			   is_broadcast ? &broadcast_hw : &guid,
610 			   NULL, skb->len) >= 0) {
611 		struct fwnet_header *eth;
612 		u16 *rawp;
613 		__be16 protocol;
614 
615 		skb_reset_mac_header(skb);
616 		skb_pull(skb, sizeof(*eth));
617 		eth = (struct fwnet_header *)skb_mac_header(skb);
618 		if (*eth->h_dest & 1) {
619 			if (memcmp(eth->h_dest, net->broadcast,
620 				   net->addr_len) == 0)
621 				skb->pkt_type = PACKET_BROADCAST;
622 #if 0
623 			else
624 				skb->pkt_type = PACKET_MULTICAST;
625 #endif
626 		} else {
627 			if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
628 				skb->pkt_type = PACKET_OTHERHOST;
629 		}
630 		if (ntohs(eth->h_proto) >= 1536) {
631 			protocol = eth->h_proto;
632 		} else {
633 			rawp = (u16 *)skb->data;
634 			if (*rawp == 0xffff)
635 				protocol = htons(ETH_P_802_3);
636 			else
637 				protocol = htons(ETH_P_802_2);
638 		}
639 		skb->protocol = protocol;
640 	}
641 	status = netif_rx(skb);
642 	if (status == NET_RX_DROP) {
643 		net->stats.rx_errors++;
644 		net->stats.rx_dropped++;
645 	} else {
646 		net->stats.rx_packets++;
647 		net->stats.rx_bytes += skb->len;
648 	}
649 
650 	return 0;
651 
652  no_peer:
653 	net->stats.rx_errors++;
654 	net->stats.rx_dropped++;
655 
656 	dev_kfree_skb_any(skb);
657 
658 	return -ENOENT;
659 }
660 
661 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
662 				 int source_node_id, int generation,
663 				 bool is_broadcast)
664 {
665 	struct sk_buff *skb;
666 	struct net_device *net = dev->netdev;
667 	struct rfc2734_header hdr;
668 	unsigned lf;
669 	unsigned long flags;
670 	struct fwnet_peer *peer;
671 	struct fwnet_partial_datagram *pd;
672 	int fg_off;
673 	int dg_size;
674 	u16 datagram_label;
675 	int retval;
676 	u16 ether_type;
677 
678 	hdr.w0 = be32_to_cpu(buf[0]);
679 	lf = fwnet_get_hdr_lf(&hdr);
680 	if (lf == RFC2374_HDR_UNFRAG) {
681 		/*
682 		 * An unfragmented datagram has been received by the ieee1394
683 		 * bus. Build an skbuff around it so we can pass it to the
684 		 * high level network layer.
685 		 */
686 		ether_type = fwnet_get_hdr_ether_type(&hdr);
687 		buf++;
688 		len -= RFC2374_UNFRAG_HDR_SIZE;
689 
690 		skb = dev_alloc_skb(len + net->hard_header_len + 15);
691 		if (unlikely(!skb)) {
692 			fw_error("out of memory\n");
693 			net->stats.rx_dropped++;
694 
695 			return -ENOMEM;
696 		}
697 		skb_reserve(skb, (net->hard_header_len + 15) & ~15);
698 		memcpy(skb_put(skb, len), buf, len);
699 
700 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
701 						    is_broadcast, ether_type);
702 	}
703 	/* A datagram fragment has been received, now the fun begins. */
704 	hdr.w1 = ntohl(buf[1]);
705 	buf += 2;
706 	len -= RFC2374_FRAG_HDR_SIZE;
707 	if (lf == RFC2374_HDR_FIRSTFRAG) {
708 		ether_type = fwnet_get_hdr_ether_type(&hdr);
709 		fg_off = 0;
710 	} else {
711 		ether_type = 0;
712 		fg_off = fwnet_get_hdr_fg_off(&hdr);
713 	}
714 	datagram_label = fwnet_get_hdr_dgl(&hdr);
715 	dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
716 
717 	spin_lock_irqsave(&dev->lock, flags);
718 
719 	peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
720 	if (!peer) {
721 		retval = -ENOENT;
722 		goto fail;
723 	}
724 
725 	pd = fwnet_pd_find(peer, datagram_label);
726 	if (pd == NULL) {
727 		while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
728 			/* remove the oldest */
729 			fwnet_pd_delete(list_first_entry(&peer->pd_list,
730 				struct fwnet_partial_datagram, pd_link));
731 			peer->pdg_size--;
732 		}
733 		pd = fwnet_pd_new(net, peer, datagram_label,
734 				  dg_size, buf, fg_off, len);
735 		if (pd == NULL) {
736 			retval = -ENOMEM;
737 			goto fail;
738 		}
739 		peer->pdg_size++;
740 	} else {
741 		if (fwnet_frag_overlap(pd, fg_off, len) ||
742 		    pd->datagram_size != dg_size) {
743 			/*
744 			 * Differing datagram sizes or overlapping fragments,
745 			 * discard old datagram and start a new one.
746 			 */
747 			fwnet_pd_delete(pd);
748 			pd = fwnet_pd_new(net, peer, datagram_label,
749 					  dg_size, buf, fg_off, len);
750 			if (pd == NULL) {
751 				peer->pdg_size--;
752 				retval = -ENOMEM;
753 				goto fail;
754 			}
755 		} else {
756 			if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
757 				/*
758 				 * Couldn't save off fragment anyway
759 				 * so might as well obliterate the
760 				 * datagram now.
761 				 */
762 				fwnet_pd_delete(pd);
763 				peer->pdg_size--;
764 				retval = -ENOMEM;
765 				goto fail;
766 			}
767 		}
768 	} /* new datagram or add to existing one */
769 
770 	if (lf == RFC2374_HDR_FIRSTFRAG)
771 		pd->ether_type = ether_type;
772 
773 	if (fwnet_pd_is_complete(pd)) {
774 		ether_type = pd->ether_type;
775 		peer->pdg_size--;
776 		skb = skb_get(pd->skb);
777 		fwnet_pd_delete(pd);
778 
779 		spin_unlock_irqrestore(&dev->lock, flags);
780 
781 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
782 						    false, ether_type);
783 	}
784 	/*
785 	 * Datagram is not complete, we're done for the
786 	 * moment.
787 	 */
788 	retval = 0;
789  fail:
790 	spin_unlock_irqrestore(&dev->lock, flags);
791 
792 	return retval;
793 }
794 
795 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
796 		int tcode, int destination, int source, int generation,
797 		unsigned long long offset, void *payload, size_t length,
798 		void *callback_data)
799 {
800 	struct fwnet_device *dev = callback_data;
801 	int rcode;
802 
803 	if (destination == IEEE1394_ALL_NODES) {
804 		kfree(r);
805 
806 		return;
807 	}
808 
809 	if (offset != dev->handler.offset)
810 		rcode = RCODE_ADDRESS_ERROR;
811 	else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
812 		rcode = RCODE_TYPE_ERROR;
813 	else if (fwnet_incoming_packet(dev, payload, length,
814 				       source, generation, false) != 0) {
815 		fw_error("Incoming packet failure\n");
816 		rcode = RCODE_CONFLICT_ERROR;
817 	} else
818 		rcode = RCODE_COMPLETE;
819 
820 	fw_send_response(card, r, rcode);
821 }
822 
823 static void fwnet_receive_broadcast(struct fw_iso_context *context,
824 		u32 cycle, size_t header_length, void *header, void *data)
825 {
826 	struct fwnet_device *dev;
827 	struct fw_iso_packet packet;
828 	struct fw_card *card;
829 	__be16 *hdr_ptr;
830 	__be32 *buf_ptr;
831 	int retval;
832 	u32 length;
833 	u16 source_node_id;
834 	u32 specifier_id;
835 	u32 ver;
836 	unsigned long offset;
837 	unsigned long flags;
838 
839 	dev = data;
840 	card = dev->card;
841 	hdr_ptr = header;
842 	length = be16_to_cpup(hdr_ptr);
843 
844 	spin_lock_irqsave(&dev->lock, flags);
845 
846 	offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
847 	buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
848 	if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
849 		dev->broadcast_rcv_next_ptr = 0;
850 
851 	spin_unlock_irqrestore(&dev->lock, flags);
852 
853 	specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
854 			| (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
855 	ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
856 	source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
857 
858 	if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
859 		buf_ptr += 2;
860 		length -= IEEE1394_GASP_HDR_SIZE;
861 		fwnet_incoming_packet(dev, buf_ptr, length,
862 				      source_node_id, -1, true);
863 	}
864 
865 	packet.payload_length = dev->rcv_buffer_size;
866 	packet.interrupt = 1;
867 	packet.skip = 0;
868 	packet.tag = 3;
869 	packet.sy = 0;
870 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
871 
872 	spin_lock_irqsave(&dev->lock, flags);
873 
874 	retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
875 				      &dev->broadcast_rcv_buffer, offset);
876 
877 	spin_unlock_irqrestore(&dev->lock, flags);
878 
879 	if (retval < 0)
880 		fw_error("requeue failed\n");
881 }
882 
883 static struct kmem_cache *fwnet_packet_task_cache;
884 
885 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
886 {
887 	dev_kfree_skb_any(ptask->skb);
888 	kmem_cache_free(fwnet_packet_task_cache, ptask);
889 }
890 
891 /* Caller must hold dev->lock. */
892 static void dec_queued_datagrams(struct fwnet_device *dev)
893 {
894 	if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
895 		netif_wake_queue(dev->netdev);
896 }
897 
898 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
899 
900 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
901 {
902 	struct fwnet_device *dev = ptask->dev;
903 	struct sk_buff *skb = ptask->skb;
904 	unsigned long flags;
905 	bool free;
906 
907 	spin_lock_irqsave(&dev->lock, flags);
908 
909 	ptask->outstanding_pkts--;
910 
911 	/* Check whether we or the networking TX soft-IRQ is last user. */
912 	free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
913 	if (free)
914 		dec_queued_datagrams(dev);
915 
916 	if (ptask->outstanding_pkts == 0) {
917 		dev->netdev->stats.tx_packets++;
918 		dev->netdev->stats.tx_bytes += skb->len;
919 	}
920 
921 	spin_unlock_irqrestore(&dev->lock, flags);
922 
923 	if (ptask->outstanding_pkts > 0) {
924 		u16 dg_size;
925 		u16 fg_off;
926 		u16 datagram_label;
927 		u16 lf;
928 
929 		/* Update the ptask to point to the next fragment and send it */
930 		lf = fwnet_get_hdr_lf(&ptask->hdr);
931 		switch (lf) {
932 		case RFC2374_HDR_LASTFRAG:
933 		case RFC2374_HDR_UNFRAG:
934 		default:
935 			fw_error("Outstanding packet %x lf %x, header %x,%x\n",
936 				 ptask->outstanding_pkts, lf, ptask->hdr.w0,
937 				 ptask->hdr.w1);
938 			BUG();
939 
940 		case RFC2374_HDR_FIRSTFRAG:
941 			/* Set frag type here for future interior fragments */
942 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
943 			fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
944 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
945 			break;
946 
947 		case RFC2374_HDR_INTFRAG:
948 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
949 			fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
950 				  + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
951 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
952 			break;
953 		}
954 
955 		skb_pull(skb, ptask->max_payload);
956 		if (ptask->outstanding_pkts > 1) {
957 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
958 					  dg_size, fg_off, datagram_label);
959 		} else {
960 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
961 					  dg_size, fg_off, datagram_label);
962 			ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
963 		}
964 		fwnet_send_packet(ptask);
965 	}
966 
967 	if (free)
968 		fwnet_free_ptask(ptask);
969 }
970 
971 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
972 {
973 	struct fwnet_device *dev = ptask->dev;
974 	unsigned long flags;
975 	bool free;
976 
977 	spin_lock_irqsave(&dev->lock, flags);
978 
979 	/* One fragment failed; don't try to send remaining fragments. */
980 	ptask->outstanding_pkts = 0;
981 
982 	/* Check whether we or the networking TX soft-IRQ is last user. */
983 	free = ptask->enqueued;
984 	if (free)
985 		dec_queued_datagrams(dev);
986 
987 	dev->netdev->stats.tx_dropped++;
988 	dev->netdev->stats.tx_errors++;
989 
990 	spin_unlock_irqrestore(&dev->lock, flags);
991 
992 	if (free)
993 		fwnet_free_ptask(ptask);
994 }
995 
996 static void fwnet_write_complete(struct fw_card *card, int rcode,
997 				 void *payload, size_t length, void *data)
998 {
999 	struct fwnet_packet_task *ptask;
1000 
1001 	ptask = data;
1002 
1003 	if (rcode == RCODE_COMPLETE) {
1004 		fwnet_transmit_packet_done(ptask);
1005 	} else {
1006 		fw_error("fwnet_write_complete: failed: %x\n", rcode);
1007 		fwnet_transmit_packet_failed(ptask);
1008 	}
1009 }
1010 
1011 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1012 {
1013 	struct fwnet_device *dev;
1014 	unsigned tx_len;
1015 	struct rfc2734_header *bufhdr;
1016 	unsigned long flags;
1017 	bool free;
1018 
1019 	dev = ptask->dev;
1020 	tx_len = ptask->max_payload;
1021 	switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1022 	case RFC2374_HDR_UNFRAG:
1023 		bufhdr = (struct rfc2734_header *)
1024 				skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1025 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1026 		break;
1027 
1028 	case RFC2374_HDR_FIRSTFRAG:
1029 	case RFC2374_HDR_INTFRAG:
1030 	case RFC2374_HDR_LASTFRAG:
1031 		bufhdr = (struct rfc2734_header *)
1032 				skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1033 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1034 		put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1035 		break;
1036 
1037 	default:
1038 		BUG();
1039 	}
1040 	if (ptask->dest_node == IEEE1394_ALL_NODES) {
1041 		u8 *p;
1042 		int generation;
1043 		int node_id;
1044 
1045 		/* ptask->generation may not have been set yet */
1046 		generation = dev->card->generation;
1047 		smp_rmb();
1048 		node_id = dev->card->node_id;
1049 
1050 		p = skb_push(ptask->skb, 8);
1051 		put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1052 		put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1053 						| RFC2734_SW_VERSION, &p[4]);
1054 
1055 		/* We should not transmit if broadcast_channel.valid == 0. */
1056 		fw_send_request(dev->card, &ptask->transaction,
1057 				TCODE_STREAM_DATA,
1058 				fw_stream_packet_destination_id(3,
1059 						IEEE1394_BROADCAST_CHANNEL, 0),
1060 				generation, SCODE_100, 0ULL, ptask->skb->data,
1061 				tx_len + 8, fwnet_write_complete, ptask);
1062 
1063 		spin_lock_irqsave(&dev->lock, flags);
1064 
1065 		/* If the AT tasklet already ran, we may be last user. */
1066 		free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1067 		if (!free)
1068 			ptask->enqueued = true;
1069 		else
1070 			dec_queued_datagrams(dev);
1071 
1072 		spin_unlock_irqrestore(&dev->lock, flags);
1073 
1074 		goto out;
1075 	}
1076 
1077 	fw_send_request(dev->card, &ptask->transaction,
1078 			TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1079 			ptask->generation, ptask->speed, ptask->fifo_addr,
1080 			ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1081 
1082 	spin_lock_irqsave(&dev->lock, flags);
1083 
1084 	/* If the AT tasklet already ran, we may be last user. */
1085 	free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1086 	if (!free)
1087 		ptask->enqueued = true;
1088 	else
1089 		dec_queued_datagrams(dev);
1090 
1091 	spin_unlock_irqrestore(&dev->lock, flags);
1092 
1093 	dev->netdev->trans_start = jiffies;
1094  out:
1095 	if (free)
1096 		fwnet_free_ptask(ptask);
1097 
1098 	return 0;
1099 }
1100 
1101 static int fwnet_broadcast_start(struct fwnet_device *dev)
1102 {
1103 	struct fw_iso_context *context;
1104 	int retval;
1105 	unsigned num_packets;
1106 	unsigned max_receive;
1107 	struct fw_iso_packet packet;
1108 	unsigned long offset;
1109 	unsigned u;
1110 
1111 	if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1112 		/* outside OHCI posted write area? */
1113 		static const struct fw_address_region region = {
1114 			.start = 0xffff00000000ULL,
1115 			.end   = CSR_REGISTER_BASE,
1116 		};
1117 
1118 		dev->handler.length = 4096;
1119 		dev->handler.address_callback = fwnet_receive_packet;
1120 		dev->handler.callback_data = dev;
1121 
1122 		retval = fw_core_add_address_handler(&dev->handler, &region);
1123 		if (retval < 0)
1124 			goto failed_initial;
1125 
1126 		dev->local_fifo = dev->handler.offset;
1127 	}
1128 
1129 	max_receive = 1U << (dev->card->max_receive + 1);
1130 	num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1131 
1132 	if (!dev->broadcast_rcv_context) {
1133 		void **ptrptr;
1134 
1135 		context = fw_iso_context_create(dev->card,
1136 		    FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1137 		    dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1138 		if (IS_ERR(context)) {
1139 			retval = PTR_ERR(context);
1140 			goto failed_context_create;
1141 		}
1142 
1143 		retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1144 		    dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1145 		if (retval < 0)
1146 			goto failed_buffer_init;
1147 
1148 		ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1149 		if (!ptrptr) {
1150 			retval = -ENOMEM;
1151 			goto failed_ptrs_alloc;
1152 		}
1153 
1154 		dev->broadcast_rcv_buffer_ptrs = ptrptr;
1155 		for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1156 			void *ptr;
1157 			unsigned v;
1158 
1159 			ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1160 			for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1161 				*ptrptr++ = (void *)
1162 						((char *)ptr + v * max_receive);
1163 		}
1164 		dev->broadcast_rcv_context = context;
1165 	} else {
1166 		context = dev->broadcast_rcv_context;
1167 	}
1168 
1169 	packet.payload_length = max_receive;
1170 	packet.interrupt = 1;
1171 	packet.skip = 0;
1172 	packet.tag = 3;
1173 	packet.sy = 0;
1174 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
1175 	offset = 0;
1176 
1177 	for (u = 0; u < num_packets; u++) {
1178 		retval = fw_iso_context_queue(context, &packet,
1179 				&dev->broadcast_rcv_buffer, offset);
1180 		if (retval < 0)
1181 			goto failed_rcv_queue;
1182 
1183 		offset += max_receive;
1184 	}
1185 	dev->num_broadcast_rcv_ptrs = num_packets;
1186 	dev->rcv_buffer_size = max_receive;
1187 	dev->broadcast_rcv_next_ptr = 0U;
1188 	retval = fw_iso_context_start(context, -1, 0,
1189 			FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1190 	if (retval < 0)
1191 		goto failed_rcv_queue;
1192 
1193 	/* FIXME: adjust it according to the min. speed of all known peers? */
1194 	dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1195 			- IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1196 	dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1197 
1198 	return 0;
1199 
1200  failed_rcv_queue:
1201 	kfree(dev->broadcast_rcv_buffer_ptrs);
1202 	dev->broadcast_rcv_buffer_ptrs = NULL;
1203  failed_ptrs_alloc:
1204 	fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1205  failed_buffer_init:
1206 	fw_iso_context_destroy(context);
1207 	dev->broadcast_rcv_context = NULL;
1208  failed_context_create:
1209 	fw_core_remove_address_handler(&dev->handler);
1210  failed_initial:
1211 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1212 
1213 	return retval;
1214 }
1215 
1216 /* ifup */
1217 static int fwnet_open(struct net_device *net)
1218 {
1219 	struct fwnet_device *dev = netdev_priv(net);
1220 	int ret;
1221 
1222 	if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1223 		ret = fwnet_broadcast_start(dev);
1224 		if (ret)
1225 			return ret;
1226 	}
1227 	netif_start_queue(net);
1228 
1229 	return 0;
1230 }
1231 
1232 /* ifdown */
1233 static int fwnet_stop(struct net_device *net)
1234 {
1235 	netif_stop_queue(net);
1236 
1237 	/* Deallocate iso context for use by other applications? */
1238 
1239 	return 0;
1240 }
1241 
1242 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1243 {
1244 	struct fwnet_header hdr_buf;
1245 	struct fwnet_device *dev = netdev_priv(net);
1246 	__be16 proto;
1247 	u16 dest_node;
1248 	unsigned max_payload;
1249 	u16 dg_size;
1250 	u16 *datagram_label_ptr;
1251 	struct fwnet_packet_task *ptask;
1252 	struct fwnet_peer *peer;
1253 	unsigned long flags;
1254 
1255 	spin_lock_irqsave(&dev->lock, flags);
1256 
1257 	/* Can this happen? */
1258 	if (netif_queue_stopped(dev->netdev)) {
1259 		spin_unlock_irqrestore(&dev->lock, flags);
1260 
1261 		return NETDEV_TX_BUSY;
1262 	}
1263 
1264 	ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1265 	if (ptask == NULL)
1266 		goto fail;
1267 
1268 	skb = skb_share_check(skb, GFP_ATOMIC);
1269 	if (!skb)
1270 		goto fail;
1271 
1272 	/*
1273 	 * Make a copy of the driver-specific header.
1274 	 * We might need to rebuild the header on tx failure.
1275 	 */
1276 	memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1277 	skb_pull(skb, sizeof(hdr_buf));
1278 
1279 	proto = hdr_buf.h_proto;
1280 	dg_size = skb->len;
1281 
1282 	/*
1283 	 * Set the transmission type for the packet.  ARP packets and IP
1284 	 * broadcast packets are sent via GASP.
1285 	 */
1286 	if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1287 	    || proto == htons(ETH_P_ARP)
1288 	    || (proto == htons(ETH_P_IP)
1289 		&& IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1290 		max_payload        = dev->broadcast_xmt_max_payload;
1291 		datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1292 
1293 		ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1294 		ptask->generation  = 0;
1295 		ptask->dest_node   = IEEE1394_ALL_NODES;
1296 		ptask->speed       = SCODE_100;
1297 	} else {
1298 		__be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1299 		u8 generation;
1300 
1301 		peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1302 		if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1303 			goto fail;
1304 
1305 		generation         = peer->generation;
1306 		dest_node          = peer->node_id;
1307 		max_payload        = peer->max_payload;
1308 		datagram_label_ptr = &peer->datagram_label;
1309 
1310 		ptask->fifo_addr   = peer->fifo;
1311 		ptask->generation  = generation;
1312 		ptask->dest_node   = dest_node;
1313 		ptask->speed       = peer->speed;
1314 	}
1315 
1316 	/* If this is an ARP packet, convert it */
1317 	if (proto == htons(ETH_P_ARP)) {
1318 		struct arphdr *arp = (struct arphdr *)skb->data;
1319 		unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1320 		struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1321 		__be32 ipaddr;
1322 
1323 		ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1324 
1325 		arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1326 		arp1394->max_rec        = dev->card->max_receive;
1327 		arp1394->sspd		= dev->card->link_speed;
1328 
1329 		put_unaligned_be16(dev->local_fifo >> 32,
1330 				   &arp1394->fifo_hi);
1331 		put_unaligned_be32(dev->local_fifo & 0xffffffff,
1332 				   &arp1394->fifo_lo);
1333 		put_unaligned(ipaddr, &arp1394->sip);
1334 	}
1335 
1336 	ptask->hdr.w0 = 0;
1337 	ptask->hdr.w1 = 0;
1338 	ptask->skb = skb;
1339 	ptask->dev = dev;
1340 
1341 	/* Does it all fit in one packet? */
1342 	if (dg_size <= max_payload) {
1343 		fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1344 		ptask->outstanding_pkts = 1;
1345 		max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1346 	} else {
1347 		u16 datagram_label;
1348 
1349 		max_payload -= RFC2374_FRAG_OVERHEAD;
1350 		datagram_label = (*datagram_label_ptr)++;
1351 		fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1352 				  datagram_label);
1353 		ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1354 		max_payload += RFC2374_FRAG_HDR_SIZE;
1355 	}
1356 
1357 	if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1358 		netif_stop_queue(dev->netdev);
1359 
1360 	spin_unlock_irqrestore(&dev->lock, flags);
1361 
1362 	ptask->max_payload = max_payload;
1363 	ptask->enqueued    = 0;
1364 
1365 	fwnet_send_packet(ptask);
1366 
1367 	return NETDEV_TX_OK;
1368 
1369  fail:
1370 	spin_unlock_irqrestore(&dev->lock, flags);
1371 
1372 	if (ptask)
1373 		kmem_cache_free(fwnet_packet_task_cache, ptask);
1374 
1375 	if (skb != NULL)
1376 		dev_kfree_skb(skb);
1377 
1378 	net->stats.tx_dropped++;
1379 	net->stats.tx_errors++;
1380 
1381 	/*
1382 	 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1383 	 * causes serious problems" here, allegedly.  Before that patch,
1384 	 * -ERRNO was returned which is not appropriate under Linux 2.6.
1385 	 * Perhaps more needs to be done?  Stop the queue in serious
1386 	 * conditions and restart it elsewhere?
1387 	 */
1388 	return NETDEV_TX_OK;
1389 }
1390 
1391 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1392 {
1393 	if (new_mtu < 68)
1394 		return -EINVAL;
1395 
1396 	net->mtu = new_mtu;
1397 	return 0;
1398 }
1399 
1400 static const struct net_device_ops fwnet_netdev_ops = {
1401 	.ndo_open       = fwnet_open,
1402 	.ndo_stop	= fwnet_stop,
1403 	.ndo_start_xmit = fwnet_tx,
1404 	.ndo_change_mtu = fwnet_change_mtu,
1405 };
1406 
1407 static void fwnet_init_dev(struct net_device *net)
1408 {
1409 	net->header_ops		= &fwnet_header_ops;
1410 	net->netdev_ops		= &fwnet_netdev_ops;
1411 	net->watchdog_timeo	= 2 * HZ;
1412 	net->flags		= IFF_BROADCAST | IFF_MULTICAST;
1413 	net->features		= NETIF_F_HIGHDMA;
1414 	net->addr_len		= FWNET_ALEN;
1415 	net->hard_header_len	= FWNET_HLEN;
1416 	net->type		= ARPHRD_IEEE1394;
1417 	net->tx_queue_len	= FWNET_TX_QUEUE_LEN;
1418 }
1419 
1420 /* caller must hold fwnet_device_mutex */
1421 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1422 {
1423 	struct fwnet_device *dev;
1424 
1425 	list_for_each_entry(dev, &fwnet_device_list, dev_link)
1426 		if (dev->card == card)
1427 			return dev;
1428 
1429 	return NULL;
1430 }
1431 
1432 static int fwnet_add_peer(struct fwnet_device *dev,
1433 			  struct fw_unit *unit, struct fw_device *device)
1434 {
1435 	struct fwnet_peer *peer;
1436 
1437 	peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1438 	if (!peer)
1439 		return -ENOMEM;
1440 
1441 	dev_set_drvdata(&unit->device, peer);
1442 
1443 	peer->dev = dev;
1444 	peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1445 	peer->fifo = FWNET_NO_FIFO_ADDR;
1446 	INIT_LIST_HEAD(&peer->pd_list);
1447 	peer->pdg_size = 0;
1448 	peer->datagram_label = 0;
1449 	peer->speed = device->max_speed;
1450 	peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1451 
1452 	peer->generation = device->generation;
1453 	smp_rmb();
1454 	peer->node_id = device->node_id;
1455 
1456 	spin_lock_irq(&dev->lock);
1457 	list_add_tail(&peer->peer_link, &dev->peer_list);
1458 	spin_unlock_irq(&dev->lock);
1459 
1460 	return 0;
1461 }
1462 
1463 static int fwnet_probe(struct device *_dev)
1464 {
1465 	struct fw_unit *unit = fw_unit(_dev);
1466 	struct fw_device *device = fw_parent_device(unit);
1467 	struct fw_card *card = device->card;
1468 	struct net_device *net;
1469 	bool allocated_netdev = false;
1470 	struct fwnet_device *dev;
1471 	unsigned max_mtu;
1472 	int ret;
1473 
1474 	mutex_lock(&fwnet_device_mutex);
1475 
1476 	dev = fwnet_dev_find(card);
1477 	if (dev) {
1478 		net = dev->netdev;
1479 		goto have_dev;
1480 	}
1481 
1482 	net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1483 	if (net == NULL) {
1484 		ret = -ENOMEM;
1485 		goto out;
1486 	}
1487 
1488 	allocated_netdev = true;
1489 	SET_NETDEV_DEV(net, card->device);
1490 	dev = netdev_priv(net);
1491 
1492 	spin_lock_init(&dev->lock);
1493 	dev->broadcast_state = FWNET_BROADCAST_ERROR;
1494 	dev->broadcast_rcv_context = NULL;
1495 	dev->broadcast_xmt_max_payload = 0;
1496 	dev->broadcast_xmt_datagramlabel = 0;
1497 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1498 	dev->queued_datagrams = 0;
1499 	INIT_LIST_HEAD(&dev->peer_list);
1500 	dev->card = card;
1501 	dev->netdev = net;
1502 
1503 	/*
1504 	 * Use the RFC 2734 default 1500 octets or the maximum payload
1505 	 * as initial MTU
1506 	 */
1507 	max_mtu = (1 << (card->max_receive + 1))
1508 		  - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1509 	net->mtu = min(1500U, max_mtu);
1510 
1511 	/* Set our hardware address while we're at it */
1512 	put_unaligned_be64(card->guid, net->dev_addr);
1513 	put_unaligned_be64(~0ULL, net->broadcast);
1514 	ret = register_netdev(net);
1515 	if (ret) {
1516 		fw_error("Cannot register the driver\n");
1517 		goto out;
1518 	}
1519 
1520 	list_add_tail(&dev->dev_link, &fwnet_device_list);
1521 	fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1522 		  net->name, (unsigned long long)card->guid);
1523  have_dev:
1524 	ret = fwnet_add_peer(dev, unit, device);
1525 	if (ret && allocated_netdev) {
1526 		unregister_netdev(net);
1527 		list_del(&dev->dev_link);
1528 	}
1529  out:
1530 	if (ret && allocated_netdev)
1531 		free_netdev(net);
1532 
1533 	mutex_unlock(&fwnet_device_mutex);
1534 
1535 	return ret;
1536 }
1537 
1538 static void fwnet_remove_peer(struct fwnet_peer *peer)
1539 {
1540 	struct fwnet_partial_datagram *pd, *pd_next;
1541 
1542 	spin_lock_irq(&peer->dev->lock);
1543 	list_del(&peer->peer_link);
1544 	spin_unlock_irq(&peer->dev->lock);
1545 
1546 	list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1547 		fwnet_pd_delete(pd);
1548 
1549 	kfree(peer);
1550 }
1551 
1552 static int fwnet_remove(struct device *_dev)
1553 {
1554 	struct fwnet_peer *peer = dev_get_drvdata(_dev);
1555 	struct fwnet_device *dev = peer->dev;
1556 	struct net_device *net;
1557 	int i;
1558 
1559 	mutex_lock(&fwnet_device_mutex);
1560 
1561 	fwnet_remove_peer(peer);
1562 
1563 	if (list_empty(&dev->peer_list)) {
1564 		net = dev->netdev;
1565 		unregister_netdev(net);
1566 
1567 		if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1568 			fw_core_remove_address_handler(&dev->handler);
1569 		if (dev->broadcast_rcv_context) {
1570 			fw_iso_context_stop(dev->broadcast_rcv_context);
1571 			fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1572 					      dev->card);
1573 			fw_iso_context_destroy(dev->broadcast_rcv_context);
1574 		}
1575 		for (i = 0; dev->queued_datagrams && i < 5; i++)
1576 			ssleep(1);
1577 		WARN_ON(dev->queued_datagrams);
1578 		list_del(&dev->dev_link);
1579 
1580 		free_netdev(net);
1581 	}
1582 
1583 	mutex_unlock(&fwnet_device_mutex);
1584 
1585 	return 0;
1586 }
1587 
1588 /*
1589  * FIXME abort partially sent fragmented datagrams,
1590  * discard partially received fragmented datagrams
1591  */
1592 static void fwnet_update(struct fw_unit *unit)
1593 {
1594 	struct fw_device *device = fw_parent_device(unit);
1595 	struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1596 	int generation;
1597 
1598 	generation = device->generation;
1599 
1600 	spin_lock_irq(&peer->dev->lock);
1601 	peer->node_id    = device->node_id;
1602 	peer->generation = generation;
1603 	spin_unlock_irq(&peer->dev->lock);
1604 }
1605 
1606 static const struct ieee1394_device_id fwnet_id_table[] = {
1607 	{
1608 		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1609 				IEEE1394_MATCH_VERSION,
1610 		.specifier_id = IANA_SPECIFIER_ID,
1611 		.version      = RFC2734_SW_VERSION,
1612 	},
1613 	{ }
1614 };
1615 
1616 static struct fw_driver fwnet_driver = {
1617 	.driver = {
1618 		.owner  = THIS_MODULE,
1619 		.name   = "net",
1620 		.bus    = &fw_bus_type,
1621 		.probe  = fwnet_probe,
1622 		.remove = fwnet_remove,
1623 	},
1624 	.update   = fwnet_update,
1625 	.id_table = fwnet_id_table,
1626 };
1627 
1628 static const u32 rfc2374_unit_directory_data[] = {
1629 	0x00040000,	/* directory_length		*/
1630 	0x1200005e,	/* unit_specifier_id: IANA	*/
1631 	0x81000003,	/* textual descriptor offset	*/
1632 	0x13000001,	/* unit_sw_version: RFC 2734	*/
1633 	0x81000005,	/* textual descriptor offset	*/
1634 	0x00030000,	/* descriptor_length		*/
1635 	0x00000000,	/* text				*/
1636 	0x00000000,	/* minimal ASCII, en		*/
1637 	0x49414e41,	/* I A N A			*/
1638 	0x00030000,	/* descriptor_length		*/
1639 	0x00000000,	/* text				*/
1640 	0x00000000,	/* minimal ASCII, en		*/
1641 	0x49507634,	/* I P v 4			*/
1642 };
1643 
1644 static struct fw_descriptor rfc2374_unit_directory = {
1645 	.length = ARRAY_SIZE(rfc2374_unit_directory_data),
1646 	.key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1647 	.data   = rfc2374_unit_directory_data
1648 };
1649 
1650 static int __init fwnet_init(void)
1651 {
1652 	int err;
1653 
1654 	err = fw_core_add_descriptor(&rfc2374_unit_directory);
1655 	if (err)
1656 		return err;
1657 
1658 	fwnet_packet_task_cache = kmem_cache_create("packet_task",
1659 			sizeof(struct fwnet_packet_task), 0, 0, NULL);
1660 	if (!fwnet_packet_task_cache) {
1661 		err = -ENOMEM;
1662 		goto out;
1663 	}
1664 
1665 	err = driver_register(&fwnet_driver.driver);
1666 	if (!err)
1667 		return 0;
1668 
1669 	kmem_cache_destroy(fwnet_packet_task_cache);
1670 out:
1671 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1672 
1673 	return err;
1674 }
1675 module_init(fwnet_init);
1676 
1677 static void __exit fwnet_cleanup(void)
1678 {
1679 	driver_unregister(&fwnet_driver.driver);
1680 	kmem_cache_destroy(fwnet_packet_task_cache);
1681 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1682 }
1683 module_exit(fwnet_cleanup);
1684 
1685 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1686 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1687 MODULE_LICENSE("GPL");
1688 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
1689