xref: /openbmc/linux/drivers/firewire/net.c (revision a09d2831)
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8 
9 #include <linux/bug.h>
10 #include <linux/device.h>
11 #include <linux/ethtool.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/highmem.h>
15 #include <linux/in.h>
16 #include <linux/ip.h>
17 #include <linux/jiffies.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/mutex.h>
22 #include <linux/netdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/spinlock.h>
25 
26 #include <asm/unaligned.h>
27 #include <net/arp.h>
28 
29 #define FWNET_MAX_FRAGMENTS	25	/* arbitrary limit */
30 #define FWNET_ISO_PAGE_COUNT	(PAGE_SIZE < 16 * 1024 ? 4 : 2)
31 
32 #define IEEE1394_BROADCAST_CHANNEL	31
33 #define IEEE1394_ALL_NODES		(0xffc0 | 0x003f)
34 #define IEEE1394_MAX_PAYLOAD_S100	512
35 #define FWNET_NO_FIFO_ADDR		(~0ULL)
36 
37 #define IANA_SPECIFIER_ID		0x00005eU
38 #define RFC2734_SW_VERSION		0x000001U
39 
40 #define IEEE1394_GASP_HDR_SIZE	8
41 
42 #define RFC2374_UNFRAG_HDR_SIZE	4
43 #define RFC2374_FRAG_HDR_SIZE	8
44 #define RFC2374_FRAG_OVERHEAD	4
45 
46 #define RFC2374_HDR_UNFRAG	0	/* unfragmented		*/
47 #define RFC2374_HDR_FIRSTFRAG	1	/* first fragment	*/
48 #define RFC2374_HDR_LASTFRAG	2	/* last fragment	*/
49 #define RFC2374_HDR_INTFRAG	3	/* interior fragment	*/
50 
51 #define RFC2734_HW_ADDR_LEN	16
52 
53 struct rfc2734_arp {
54 	__be16 hw_type;		/* 0x0018	*/
55 	__be16 proto_type;	/* 0x0806       */
56 	u8 hw_addr_len;		/* 16		*/
57 	u8 ip_addr_len;		/* 4		*/
58 	__be16 opcode;		/* ARP Opcode	*/
59 	/* Above is exactly the same format as struct arphdr */
60 
61 	__be64 s_uniq_id;	/* Sender's 64bit EUI			*/
62 	u8 max_rec;		/* Sender's max packet size		*/
63 	u8 sspd;		/* Sender's max speed			*/
64 	__be16 fifo_hi;		/* hi 16bits of sender's FIFO addr	*/
65 	__be32 fifo_lo;		/* lo 32bits of sender's FIFO addr	*/
66 	__be32 sip;		/* Sender's IP Address			*/
67 	__be32 tip;		/* IP Address of requested hw addr	*/
68 } __attribute__((packed));
69 
70 /* This header format is specific to this driver implementation. */
71 #define FWNET_ALEN	8
72 #define FWNET_HLEN	10
73 struct fwnet_header {
74 	u8 h_dest[FWNET_ALEN];	/* destination address */
75 	__be16 h_proto;		/* packet type ID field */
76 } __attribute__((packed));
77 
78 /* IPv4 and IPv6 encapsulation header */
79 struct rfc2734_header {
80 	u32 w0;
81 	u32 w1;
82 };
83 
84 #define fwnet_get_hdr_lf(h)		(((h)->w0 & 0xc0000000) >> 30)
85 #define fwnet_get_hdr_ether_type(h)	(((h)->w0 & 0x0000ffff))
86 #define fwnet_get_hdr_dg_size(h)	(((h)->w0 & 0x0fff0000) >> 16)
87 #define fwnet_get_hdr_fg_off(h)		(((h)->w0 & 0x00000fff))
88 #define fwnet_get_hdr_dgl(h)		(((h)->w1 & 0xffff0000) >> 16)
89 
90 #define fwnet_set_hdr_lf(lf)		((lf)  << 30)
91 #define fwnet_set_hdr_ether_type(et)	(et)
92 #define fwnet_set_hdr_dg_size(dgs)	((dgs) << 16)
93 #define fwnet_set_hdr_fg_off(fgo)	(fgo)
94 
95 #define fwnet_set_hdr_dgl(dgl)		((dgl) << 16)
96 
97 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
98 		unsigned ether_type)
99 {
100 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
101 		  | fwnet_set_hdr_ether_type(ether_type);
102 }
103 
104 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
105 		unsigned ether_type, unsigned dg_size, unsigned dgl)
106 {
107 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
108 		  | fwnet_set_hdr_dg_size(dg_size)
109 		  | fwnet_set_hdr_ether_type(ether_type);
110 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
111 }
112 
113 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
114 		unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
115 {
116 	hdr->w0 = fwnet_set_hdr_lf(lf)
117 		  | fwnet_set_hdr_dg_size(dg_size)
118 		  | fwnet_set_hdr_fg_off(fg_off);
119 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
120 }
121 
122 /* This list keeps track of what parts of the datagram have been filled in */
123 struct fwnet_fragment_info {
124 	struct list_head fi_link;
125 	u16 offset;
126 	u16 len;
127 };
128 
129 struct fwnet_partial_datagram {
130 	struct list_head pd_link;
131 	struct list_head fi_list;
132 	struct sk_buff *skb;
133 	/* FIXME Why not use skb->data? */
134 	char *pbuf;
135 	u16 datagram_label;
136 	u16 ether_type;
137 	u16 datagram_size;
138 };
139 
140 static DEFINE_MUTEX(fwnet_device_mutex);
141 static LIST_HEAD(fwnet_device_list);
142 
143 struct fwnet_device {
144 	struct list_head dev_link;
145 	spinlock_t lock;
146 	enum {
147 		FWNET_BROADCAST_ERROR,
148 		FWNET_BROADCAST_RUNNING,
149 		FWNET_BROADCAST_STOPPED,
150 	} broadcast_state;
151 	struct fw_iso_context *broadcast_rcv_context;
152 	struct fw_iso_buffer broadcast_rcv_buffer;
153 	void **broadcast_rcv_buffer_ptrs;
154 	unsigned broadcast_rcv_next_ptr;
155 	unsigned num_broadcast_rcv_ptrs;
156 	unsigned rcv_buffer_size;
157 	/*
158 	 * This value is the maximum unfragmented datagram size that can be
159 	 * sent by the hardware.  It already has the GASP overhead and the
160 	 * unfragmented datagram header overhead calculated into it.
161 	 */
162 	unsigned broadcast_xmt_max_payload;
163 	u16 broadcast_xmt_datagramlabel;
164 
165 	/*
166 	 * The CSR address that remote nodes must send datagrams to for us to
167 	 * receive them.
168 	 */
169 	struct fw_address_handler handler;
170 	u64 local_fifo;
171 
172 	/* List of packets to be sent */
173 	struct list_head packet_list;
174 	/*
175 	 * List of packets that were broadcasted.  When we get an ISO interrupt
176 	 * one of them has been sent
177 	 */
178 	struct list_head broadcasted_list;
179 	/* List of packets that have been sent but not yet acked */
180 	struct list_head sent_list;
181 
182 	struct list_head peer_list;
183 	struct fw_card *card;
184 	struct net_device *netdev;
185 };
186 
187 struct fwnet_peer {
188 	struct list_head peer_link;
189 	struct fwnet_device *dev;
190 	u64 guid;
191 	u64 fifo;
192 
193 	/* guarded by dev->lock */
194 	struct list_head pd_list; /* received partial datagrams */
195 	unsigned pdg_size;        /* pd_list size */
196 
197 	u16 datagram_label;       /* outgoing datagram label */
198 	unsigned max_payload;     /* includes RFC2374_FRAG_HDR_SIZE overhead */
199 	int node_id;
200 	int generation;
201 	unsigned speed;
202 };
203 
204 /* This is our task struct. It's used for the packet complete callback.  */
205 struct fwnet_packet_task {
206 	/*
207 	 * ptask can actually be on dev->packet_list, dev->broadcasted_list,
208 	 * or dev->sent_list depending on its current state.
209 	 */
210 	struct list_head pt_link;
211 	struct fw_transaction transaction;
212 	struct rfc2734_header hdr;
213 	struct sk_buff *skb;
214 	struct fwnet_device *dev;
215 
216 	int outstanding_pkts;
217 	unsigned max_payload;
218 	u64 fifo_addr;
219 	u16 dest_node;
220 	u8 generation;
221 	u8 speed;
222 };
223 
224 /*
225  * saddr == NULL means use device source address.
226  * daddr == NULL means leave destination address (eg unresolved arp).
227  */
228 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
229 			unsigned short type, const void *daddr,
230 			const void *saddr, unsigned len)
231 {
232 	struct fwnet_header *h;
233 
234 	h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
235 	put_unaligned_be16(type, &h->h_proto);
236 
237 	if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
238 		memset(h->h_dest, 0, net->addr_len);
239 
240 		return net->hard_header_len;
241 	}
242 
243 	if (daddr) {
244 		memcpy(h->h_dest, daddr, net->addr_len);
245 
246 		return net->hard_header_len;
247 	}
248 
249 	return -net->hard_header_len;
250 }
251 
252 static int fwnet_header_rebuild(struct sk_buff *skb)
253 {
254 	struct fwnet_header *h = (struct fwnet_header *)skb->data;
255 
256 	if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
257 		return arp_find((unsigned char *)&h->h_dest, skb);
258 
259 	fw_notify("%s: unable to resolve type %04x addresses\n",
260 		  skb->dev->name, be16_to_cpu(h->h_proto));
261 	return 0;
262 }
263 
264 static int fwnet_header_cache(const struct neighbour *neigh,
265 			      struct hh_cache *hh)
266 {
267 	struct net_device *net;
268 	struct fwnet_header *h;
269 
270 	if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
271 		return -1;
272 	net = neigh->dev;
273 	h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
274 	h->h_proto = hh->hh_type;
275 	memcpy(h->h_dest, neigh->ha, net->addr_len);
276 	hh->hh_len = FWNET_HLEN;
277 
278 	return 0;
279 }
280 
281 /* Called by Address Resolution module to notify changes in address. */
282 static void fwnet_header_cache_update(struct hh_cache *hh,
283 		const struct net_device *net, const unsigned char *haddr)
284 {
285 	memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
286 }
287 
288 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
289 {
290 	memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
291 
292 	return FWNET_ALEN;
293 }
294 
295 static const struct header_ops fwnet_header_ops = {
296 	.create         = fwnet_header_create,
297 	.rebuild        = fwnet_header_rebuild,
298 	.cache		= fwnet_header_cache,
299 	.cache_update	= fwnet_header_cache_update,
300 	.parse          = fwnet_header_parse,
301 };
302 
303 /* FIXME: is this correct for all cases? */
304 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
305 			       unsigned offset, unsigned len)
306 {
307 	struct fwnet_fragment_info *fi;
308 	unsigned end = offset + len;
309 
310 	list_for_each_entry(fi, &pd->fi_list, fi_link)
311 		if (offset < fi->offset + fi->len && end > fi->offset)
312 			return true;
313 
314 	return false;
315 }
316 
317 /* Assumes that new fragment does not overlap any existing fragments */
318 static struct fwnet_fragment_info *fwnet_frag_new(
319 	struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
320 {
321 	struct fwnet_fragment_info *fi, *fi2, *new;
322 	struct list_head *list;
323 
324 	list = &pd->fi_list;
325 	list_for_each_entry(fi, &pd->fi_list, fi_link) {
326 		if (fi->offset + fi->len == offset) {
327 			/* The new fragment can be tacked on to the end */
328 			/* Did the new fragment plug a hole? */
329 			fi2 = list_entry(fi->fi_link.next,
330 					 struct fwnet_fragment_info, fi_link);
331 			if (fi->offset + fi->len == fi2->offset) {
332 				/* glue fragments together */
333 				fi->len += len + fi2->len;
334 				list_del(&fi2->fi_link);
335 				kfree(fi2);
336 			} else {
337 				fi->len += len;
338 			}
339 
340 			return fi;
341 		}
342 		if (offset + len == fi->offset) {
343 			/* The new fragment can be tacked on to the beginning */
344 			/* Did the new fragment plug a hole? */
345 			fi2 = list_entry(fi->fi_link.prev,
346 					 struct fwnet_fragment_info, fi_link);
347 			if (fi2->offset + fi2->len == fi->offset) {
348 				/* glue fragments together */
349 				fi2->len += fi->len + len;
350 				list_del(&fi->fi_link);
351 				kfree(fi);
352 
353 				return fi2;
354 			}
355 			fi->offset = offset;
356 			fi->len += len;
357 
358 			return fi;
359 		}
360 		if (offset > fi->offset + fi->len) {
361 			list = &fi->fi_link;
362 			break;
363 		}
364 		if (offset + len < fi->offset) {
365 			list = fi->fi_link.prev;
366 			break;
367 		}
368 	}
369 
370 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
371 	if (!new) {
372 		fw_error("out of memory\n");
373 		return NULL;
374 	}
375 
376 	new->offset = offset;
377 	new->len = len;
378 	list_add(&new->fi_link, list);
379 
380 	return new;
381 }
382 
383 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
384 		struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
385 		void *frag_buf, unsigned frag_off, unsigned frag_len)
386 {
387 	struct fwnet_partial_datagram *new;
388 	struct fwnet_fragment_info *fi;
389 
390 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
391 	if (!new)
392 		goto fail;
393 
394 	INIT_LIST_HEAD(&new->fi_list);
395 	fi = fwnet_frag_new(new, frag_off, frag_len);
396 	if (fi == NULL)
397 		goto fail_w_new;
398 
399 	new->datagram_label = datagram_label;
400 	new->datagram_size = dg_size;
401 	new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
402 	if (new->skb == NULL)
403 		goto fail_w_fi;
404 
405 	skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
406 	new->pbuf = skb_put(new->skb, dg_size);
407 	memcpy(new->pbuf + frag_off, frag_buf, frag_len);
408 	list_add_tail(&new->pd_link, &peer->pd_list);
409 
410 	return new;
411 
412 fail_w_fi:
413 	kfree(fi);
414 fail_w_new:
415 	kfree(new);
416 fail:
417 	fw_error("out of memory\n");
418 
419 	return NULL;
420 }
421 
422 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
423 						    u16 datagram_label)
424 {
425 	struct fwnet_partial_datagram *pd;
426 
427 	list_for_each_entry(pd, &peer->pd_list, pd_link)
428 		if (pd->datagram_label == datagram_label)
429 			return pd;
430 
431 	return NULL;
432 }
433 
434 
435 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
436 {
437 	struct fwnet_fragment_info *fi, *n;
438 
439 	list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
440 		kfree(fi);
441 
442 	list_del(&old->pd_link);
443 	dev_kfree_skb_any(old->skb);
444 	kfree(old);
445 }
446 
447 static bool fwnet_pd_update(struct fwnet_peer *peer,
448 		struct fwnet_partial_datagram *pd, void *frag_buf,
449 		unsigned frag_off, unsigned frag_len)
450 {
451 	if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
452 		return false;
453 
454 	memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
455 
456 	/*
457 	 * Move list entry to beginnig of list so that oldest partial
458 	 * datagrams percolate to the end of the list
459 	 */
460 	list_move_tail(&pd->pd_link, &peer->pd_list);
461 
462 	return true;
463 }
464 
465 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
466 {
467 	struct fwnet_fragment_info *fi;
468 
469 	fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
470 
471 	return fi->len == pd->datagram_size;
472 }
473 
474 /* caller must hold dev->lock */
475 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
476 						  u64 guid)
477 {
478 	struct fwnet_peer *peer;
479 
480 	list_for_each_entry(peer, &dev->peer_list, peer_link)
481 		if (peer->guid == guid)
482 			return peer;
483 
484 	return NULL;
485 }
486 
487 /* caller must hold dev->lock */
488 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
489 						int node_id, int generation)
490 {
491 	struct fwnet_peer *peer;
492 
493 	list_for_each_entry(peer, &dev->peer_list, peer_link)
494 		if (peer->node_id    == node_id &&
495 		    peer->generation == generation)
496 			return peer;
497 
498 	return NULL;
499 }
500 
501 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
502 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
503 {
504 	max_rec = min(max_rec, speed + 8);
505 	max_rec = min(max_rec, 0xbU); /* <= 4096 */
506 	if (max_rec < 8) {
507 		fw_notify("max_rec %x out of range\n", max_rec);
508 		max_rec = 8;
509 	}
510 
511 	return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
512 }
513 
514 
515 static int fwnet_finish_incoming_packet(struct net_device *net,
516 					struct sk_buff *skb, u16 source_node_id,
517 					bool is_broadcast, u16 ether_type)
518 {
519 	struct fwnet_device *dev;
520 	static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
521 	int status;
522 	__be64 guid;
523 
524 	dev = netdev_priv(net);
525 	/* Write metadata, and then pass to the receive level */
526 	skb->dev = net;
527 	skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
528 
529 	/*
530 	 * Parse the encapsulation header. This actually does the job of
531 	 * converting to an ethernet frame header, as well as arp
532 	 * conversion if needed. ARP conversion is easier in this
533 	 * direction, since we are using ethernet as our backend.
534 	 */
535 	/*
536 	 * If this is an ARP packet, convert it. First, we want to make
537 	 * use of some of the fields, since they tell us a little bit
538 	 * about the sending machine.
539 	 */
540 	if (ether_type == ETH_P_ARP) {
541 		struct rfc2734_arp *arp1394;
542 		struct arphdr *arp;
543 		unsigned char *arp_ptr;
544 		u64 fifo_addr;
545 		u64 peer_guid;
546 		unsigned sspd;
547 		u16 max_payload;
548 		struct fwnet_peer *peer;
549 		unsigned long flags;
550 
551 		arp1394   = (struct rfc2734_arp *)skb->data;
552 		arp       = (struct arphdr *)skb->data;
553 		arp_ptr   = (unsigned char *)(arp + 1);
554 		peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
555 		fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
556 				| get_unaligned_be32(&arp1394->fifo_lo);
557 
558 		sspd = arp1394->sspd;
559 		/* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
560 		if (sspd > SCODE_3200) {
561 			fw_notify("sspd %x out of range\n", sspd);
562 			sspd = SCODE_3200;
563 		}
564 		max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
565 
566 		spin_lock_irqsave(&dev->lock, flags);
567 		peer = fwnet_peer_find_by_guid(dev, peer_guid);
568 		if (peer) {
569 			peer->fifo = fifo_addr;
570 
571 			if (peer->speed > sspd)
572 				peer->speed = sspd;
573 			if (peer->max_payload > max_payload)
574 				peer->max_payload = max_payload;
575 		}
576 		spin_unlock_irqrestore(&dev->lock, flags);
577 
578 		if (!peer) {
579 			fw_notify("No peer for ARP packet from %016llx\n",
580 				  (unsigned long long)peer_guid);
581 			goto failed_proto;
582 		}
583 
584 		/*
585 		 * Now that we're done with the 1394 specific stuff, we'll
586 		 * need to alter some of the data.  Believe it or not, all
587 		 * that needs to be done is sender_IP_address needs to be
588 		 * moved, the destination hardware address get stuffed
589 		 * in and the hardware address length set to 8.
590 		 *
591 		 * IMPORTANT: The code below overwrites 1394 specific data
592 		 * needed above so keep the munging of the data for the
593 		 * higher level IP stack last.
594 		 */
595 
596 		arp->ar_hln = 8;
597 		/* skip over sender unique id */
598 		arp_ptr += arp->ar_hln;
599 		/* move sender IP addr */
600 		put_unaligned(arp1394->sip, (u32 *)arp_ptr);
601 		/* skip over sender IP addr */
602 		arp_ptr += arp->ar_pln;
603 
604 		if (arp->ar_op == htons(ARPOP_REQUEST))
605 			memset(arp_ptr, 0, sizeof(u64));
606 		else
607 			memcpy(arp_ptr, net->dev_addr, sizeof(u64));
608 	}
609 
610 	/* Now add the ethernet header. */
611 	guid = cpu_to_be64(dev->card->guid);
612 	if (dev_hard_header(skb, net, ether_type,
613 			   is_broadcast ? &broadcast_hw : &guid,
614 			   NULL, skb->len) >= 0) {
615 		struct fwnet_header *eth;
616 		u16 *rawp;
617 		__be16 protocol;
618 
619 		skb_reset_mac_header(skb);
620 		skb_pull(skb, sizeof(*eth));
621 		eth = (struct fwnet_header *)skb_mac_header(skb);
622 		if (*eth->h_dest & 1) {
623 			if (memcmp(eth->h_dest, net->broadcast,
624 				   net->addr_len) == 0)
625 				skb->pkt_type = PACKET_BROADCAST;
626 #if 0
627 			else
628 				skb->pkt_type = PACKET_MULTICAST;
629 #endif
630 		} else {
631 			if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
632 				skb->pkt_type = PACKET_OTHERHOST;
633 		}
634 		if (ntohs(eth->h_proto) >= 1536) {
635 			protocol = eth->h_proto;
636 		} else {
637 			rawp = (u16 *)skb->data;
638 			if (*rawp == 0xffff)
639 				protocol = htons(ETH_P_802_3);
640 			else
641 				protocol = htons(ETH_P_802_2);
642 		}
643 		skb->protocol = protocol;
644 	}
645 	status = netif_rx(skb);
646 	if (status == NET_RX_DROP) {
647 		net->stats.rx_errors++;
648 		net->stats.rx_dropped++;
649 	} else {
650 		net->stats.rx_packets++;
651 		net->stats.rx_bytes += skb->len;
652 	}
653 	if (netif_queue_stopped(net))
654 		netif_wake_queue(net);
655 
656 	return 0;
657 
658  failed_proto:
659 	net->stats.rx_errors++;
660 	net->stats.rx_dropped++;
661 
662 	dev_kfree_skb_any(skb);
663 	if (netif_queue_stopped(net))
664 		netif_wake_queue(net);
665 
666 	return 0;
667 }
668 
669 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
670 				 int source_node_id, int generation,
671 				 bool is_broadcast)
672 {
673 	struct sk_buff *skb;
674 	struct net_device *net = dev->netdev;
675 	struct rfc2734_header hdr;
676 	unsigned lf;
677 	unsigned long flags;
678 	struct fwnet_peer *peer;
679 	struct fwnet_partial_datagram *pd;
680 	int fg_off;
681 	int dg_size;
682 	u16 datagram_label;
683 	int retval;
684 	u16 ether_type;
685 
686 	hdr.w0 = be32_to_cpu(buf[0]);
687 	lf = fwnet_get_hdr_lf(&hdr);
688 	if (lf == RFC2374_HDR_UNFRAG) {
689 		/*
690 		 * An unfragmented datagram has been received by the ieee1394
691 		 * bus. Build an skbuff around it so we can pass it to the
692 		 * high level network layer.
693 		 */
694 		ether_type = fwnet_get_hdr_ether_type(&hdr);
695 		buf++;
696 		len -= RFC2374_UNFRAG_HDR_SIZE;
697 
698 		skb = dev_alloc_skb(len + net->hard_header_len + 15);
699 		if (unlikely(!skb)) {
700 			fw_error("out of memory\n");
701 			net->stats.rx_dropped++;
702 
703 			return -1;
704 		}
705 		skb_reserve(skb, (net->hard_header_len + 15) & ~15);
706 		memcpy(skb_put(skb, len), buf, len);
707 
708 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
709 						    is_broadcast, ether_type);
710 	}
711 	/* A datagram fragment has been received, now the fun begins. */
712 	hdr.w1 = ntohl(buf[1]);
713 	buf += 2;
714 	len -= RFC2374_FRAG_HDR_SIZE;
715 	if (lf == RFC2374_HDR_FIRSTFRAG) {
716 		ether_type = fwnet_get_hdr_ether_type(&hdr);
717 		fg_off = 0;
718 	} else {
719 		ether_type = 0;
720 		fg_off = fwnet_get_hdr_fg_off(&hdr);
721 	}
722 	datagram_label = fwnet_get_hdr_dgl(&hdr);
723 	dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
724 
725 	spin_lock_irqsave(&dev->lock, flags);
726 
727 	peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
728 	if (!peer)
729 		goto bad_proto;
730 
731 	pd = fwnet_pd_find(peer, datagram_label);
732 	if (pd == NULL) {
733 		while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
734 			/* remove the oldest */
735 			fwnet_pd_delete(list_first_entry(&peer->pd_list,
736 				struct fwnet_partial_datagram, pd_link));
737 			peer->pdg_size--;
738 		}
739 		pd = fwnet_pd_new(net, peer, datagram_label,
740 				  dg_size, buf, fg_off, len);
741 		if (pd == NULL) {
742 			retval = -ENOMEM;
743 			goto bad_proto;
744 		}
745 		peer->pdg_size++;
746 	} else {
747 		if (fwnet_frag_overlap(pd, fg_off, len) ||
748 		    pd->datagram_size != dg_size) {
749 			/*
750 			 * Differing datagram sizes or overlapping fragments,
751 			 * discard old datagram and start a new one.
752 			 */
753 			fwnet_pd_delete(pd);
754 			pd = fwnet_pd_new(net, peer, datagram_label,
755 					  dg_size, buf, fg_off, len);
756 			if (pd == NULL) {
757 				retval = -ENOMEM;
758 				peer->pdg_size--;
759 				goto bad_proto;
760 			}
761 		} else {
762 			if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
763 				/*
764 				 * Couldn't save off fragment anyway
765 				 * so might as well obliterate the
766 				 * datagram now.
767 				 */
768 				fwnet_pd_delete(pd);
769 				peer->pdg_size--;
770 				goto bad_proto;
771 			}
772 		}
773 	} /* new datagram or add to existing one */
774 
775 	if (lf == RFC2374_HDR_FIRSTFRAG)
776 		pd->ether_type = ether_type;
777 
778 	if (fwnet_pd_is_complete(pd)) {
779 		ether_type = pd->ether_type;
780 		peer->pdg_size--;
781 		skb = skb_get(pd->skb);
782 		fwnet_pd_delete(pd);
783 
784 		spin_unlock_irqrestore(&dev->lock, flags);
785 
786 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
787 						    false, ether_type);
788 	}
789 	/*
790 	 * Datagram is not complete, we're done for the
791 	 * moment.
792 	 */
793 	spin_unlock_irqrestore(&dev->lock, flags);
794 
795 	return 0;
796 
797  bad_proto:
798 	spin_unlock_irqrestore(&dev->lock, flags);
799 
800 	if (netif_queue_stopped(net))
801 		netif_wake_queue(net);
802 
803 	return 0;
804 }
805 
806 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
807 		int tcode, int destination, int source, int generation,
808 		int speed, unsigned long long offset, void *payload,
809 		size_t length, void *callback_data)
810 {
811 	struct fwnet_device *dev = callback_data;
812 	int rcode;
813 
814 	if (destination == IEEE1394_ALL_NODES) {
815 		kfree(r);
816 
817 		return;
818 	}
819 
820 	if (offset != dev->handler.offset)
821 		rcode = RCODE_ADDRESS_ERROR;
822 	else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
823 		rcode = RCODE_TYPE_ERROR;
824 	else if (fwnet_incoming_packet(dev, payload, length,
825 				       source, generation, false) != 0) {
826 		fw_error("Incoming packet failure\n");
827 		rcode = RCODE_CONFLICT_ERROR;
828 	} else
829 		rcode = RCODE_COMPLETE;
830 
831 	fw_send_response(card, r, rcode);
832 }
833 
834 static void fwnet_receive_broadcast(struct fw_iso_context *context,
835 		u32 cycle, size_t header_length, void *header, void *data)
836 {
837 	struct fwnet_device *dev;
838 	struct fw_iso_packet packet;
839 	struct fw_card *card;
840 	__be16 *hdr_ptr;
841 	__be32 *buf_ptr;
842 	int retval;
843 	u32 length;
844 	u16 source_node_id;
845 	u32 specifier_id;
846 	u32 ver;
847 	unsigned long offset;
848 	unsigned long flags;
849 
850 	dev = data;
851 	card = dev->card;
852 	hdr_ptr = header;
853 	length = be16_to_cpup(hdr_ptr);
854 
855 	spin_lock_irqsave(&dev->lock, flags);
856 
857 	offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
858 	buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
859 	if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
860 		dev->broadcast_rcv_next_ptr = 0;
861 
862 	spin_unlock_irqrestore(&dev->lock, flags);
863 
864 	specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
865 			| (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
866 	ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
867 	source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
868 
869 	if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
870 		buf_ptr += 2;
871 		length -= IEEE1394_GASP_HDR_SIZE;
872 		fwnet_incoming_packet(dev, buf_ptr, length,
873 				      source_node_id, -1, true);
874 	}
875 
876 	packet.payload_length = dev->rcv_buffer_size;
877 	packet.interrupt = 1;
878 	packet.skip = 0;
879 	packet.tag = 3;
880 	packet.sy = 0;
881 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
882 
883 	spin_lock_irqsave(&dev->lock, flags);
884 
885 	retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
886 				      &dev->broadcast_rcv_buffer, offset);
887 
888 	spin_unlock_irqrestore(&dev->lock, flags);
889 
890 	if (retval < 0)
891 		fw_error("requeue failed\n");
892 }
893 
894 static struct kmem_cache *fwnet_packet_task_cache;
895 
896 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
897 
898 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
899 {
900 	struct fwnet_device *dev;
901 	unsigned long flags;
902 
903 	dev = ptask->dev;
904 
905 	spin_lock_irqsave(&dev->lock, flags);
906 	list_del(&ptask->pt_link);
907 	spin_unlock_irqrestore(&dev->lock, flags);
908 
909 	ptask->outstanding_pkts--; /* FIXME access inside lock */
910 
911 	if (ptask->outstanding_pkts > 0) {
912 		u16 dg_size;
913 		u16 fg_off;
914 		u16 datagram_label;
915 		u16 lf;
916 		struct sk_buff *skb;
917 
918 		/* Update the ptask to point to the next fragment and send it */
919 		lf = fwnet_get_hdr_lf(&ptask->hdr);
920 		switch (lf) {
921 		case RFC2374_HDR_LASTFRAG:
922 		case RFC2374_HDR_UNFRAG:
923 		default:
924 			fw_error("Outstanding packet %x lf %x, header %x,%x\n",
925 				 ptask->outstanding_pkts, lf, ptask->hdr.w0,
926 				 ptask->hdr.w1);
927 			BUG();
928 
929 		case RFC2374_HDR_FIRSTFRAG:
930 			/* Set frag type here for future interior fragments */
931 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
932 			fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
933 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
934 			break;
935 
936 		case RFC2374_HDR_INTFRAG:
937 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
938 			fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
939 				  + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
940 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
941 			break;
942 		}
943 		skb = ptask->skb;
944 		skb_pull(skb, ptask->max_payload);
945 		if (ptask->outstanding_pkts > 1) {
946 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
947 					  dg_size, fg_off, datagram_label);
948 		} else {
949 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
950 					  dg_size, fg_off, datagram_label);
951 			ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
952 		}
953 		fwnet_send_packet(ptask);
954 	} else {
955 		dev_kfree_skb_any(ptask->skb);
956 		kmem_cache_free(fwnet_packet_task_cache, ptask);
957 	}
958 }
959 
960 static void fwnet_write_complete(struct fw_card *card, int rcode,
961 				 void *payload, size_t length, void *data)
962 {
963 	struct fwnet_packet_task *ptask;
964 
965 	ptask = data;
966 
967 	if (rcode == RCODE_COMPLETE)
968 		fwnet_transmit_packet_done(ptask);
969 	else
970 		fw_error("fwnet_write_complete: failed: %x\n", rcode);
971 		/* ??? error recovery */
972 }
973 
974 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
975 {
976 	struct fwnet_device *dev;
977 	unsigned tx_len;
978 	struct rfc2734_header *bufhdr;
979 	unsigned long flags;
980 
981 	dev = ptask->dev;
982 	tx_len = ptask->max_payload;
983 	switch (fwnet_get_hdr_lf(&ptask->hdr)) {
984 	case RFC2374_HDR_UNFRAG:
985 		bufhdr = (struct rfc2734_header *)
986 				skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
987 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
988 		break;
989 
990 	case RFC2374_HDR_FIRSTFRAG:
991 	case RFC2374_HDR_INTFRAG:
992 	case RFC2374_HDR_LASTFRAG:
993 		bufhdr = (struct rfc2734_header *)
994 				skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
995 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
996 		put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
997 		break;
998 
999 	default:
1000 		BUG();
1001 	}
1002 	if (ptask->dest_node == IEEE1394_ALL_NODES) {
1003 		u8 *p;
1004 		int generation;
1005 		int node_id;
1006 
1007 		/* ptask->generation may not have been set yet */
1008 		generation = dev->card->generation;
1009 		smp_rmb();
1010 		node_id = dev->card->node_id;
1011 
1012 		p = skb_push(ptask->skb, 8);
1013 		put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1014 		put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1015 						| RFC2734_SW_VERSION, &p[4]);
1016 
1017 		/* We should not transmit if broadcast_channel.valid == 0. */
1018 		fw_send_request(dev->card, &ptask->transaction,
1019 				TCODE_STREAM_DATA,
1020 				fw_stream_packet_destination_id(3,
1021 						IEEE1394_BROADCAST_CHANNEL, 0),
1022 				generation, SCODE_100, 0ULL, ptask->skb->data,
1023 				tx_len + 8, fwnet_write_complete, ptask);
1024 
1025 		/* FIXME race? */
1026 		spin_lock_irqsave(&dev->lock, flags);
1027 		list_add_tail(&ptask->pt_link, &dev->broadcasted_list);
1028 		spin_unlock_irqrestore(&dev->lock, flags);
1029 
1030 		return 0;
1031 	}
1032 
1033 	fw_send_request(dev->card, &ptask->transaction,
1034 			TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1035 			ptask->generation, ptask->speed, ptask->fifo_addr,
1036 			ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1037 
1038 	/* FIXME race? */
1039 	spin_lock_irqsave(&dev->lock, flags);
1040 	list_add_tail(&ptask->pt_link, &dev->sent_list);
1041 	spin_unlock_irqrestore(&dev->lock, flags);
1042 
1043 	dev->netdev->trans_start = jiffies;
1044 
1045 	return 0;
1046 }
1047 
1048 static int fwnet_broadcast_start(struct fwnet_device *dev)
1049 {
1050 	struct fw_iso_context *context;
1051 	int retval;
1052 	unsigned num_packets;
1053 	unsigned max_receive;
1054 	struct fw_iso_packet packet;
1055 	unsigned long offset;
1056 	unsigned u;
1057 
1058 	if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1059 		/* outside OHCI posted write area? */
1060 		static const struct fw_address_region region = {
1061 			.start = 0xffff00000000ULL,
1062 			.end   = CSR_REGISTER_BASE,
1063 		};
1064 
1065 		dev->handler.length = 4096;
1066 		dev->handler.address_callback = fwnet_receive_packet;
1067 		dev->handler.callback_data = dev;
1068 
1069 		retval = fw_core_add_address_handler(&dev->handler, &region);
1070 		if (retval < 0)
1071 			goto failed_initial;
1072 
1073 		dev->local_fifo = dev->handler.offset;
1074 	}
1075 
1076 	max_receive = 1U << (dev->card->max_receive + 1);
1077 	num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1078 
1079 	if (!dev->broadcast_rcv_context) {
1080 		void **ptrptr;
1081 
1082 		context = fw_iso_context_create(dev->card,
1083 		    FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1084 		    dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1085 		if (IS_ERR(context)) {
1086 			retval = PTR_ERR(context);
1087 			goto failed_context_create;
1088 		}
1089 
1090 		retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1091 		    dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1092 		if (retval < 0)
1093 			goto failed_buffer_init;
1094 
1095 		ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1096 		if (!ptrptr) {
1097 			retval = -ENOMEM;
1098 			goto failed_ptrs_alloc;
1099 		}
1100 
1101 		dev->broadcast_rcv_buffer_ptrs = ptrptr;
1102 		for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1103 			void *ptr;
1104 			unsigned v;
1105 
1106 			ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1107 			for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1108 				*ptrptr++ = (void *)
1109 						((char *)ptr + v * max_receive);
1110 		}
1111 		dev->broadcast_rcv_context = context;
1112 	} else {
1113 		context = dev->broadcast_rcv_context;
1114 	}
1115 
1116 	packet.payload_length = max_receive;
1117 	packet.interrupt = 1;
1118 	packet.skip = 0;
1119 	packet.tag = 3;
1120 	packet.sy = 0;
1121 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
1122 	offset = 0;
1123 
1124 	for (u = 0; u < num_packets; u++) {
1125 		retval = fw_iso_context_queue(context, &packet,
1126 				&dev->broadcast_rcv_buffer, offset);
1127 		if (retval < 0)
1128 			goto failed_rcv_queue;
1129 
1130 		offset += max_receive;
1131 	}
1132 	dev->num_broadcast_rcv_ptrs = num_packets;
1133 	dev->rcv_buffer_size = max_receive;
1134 	dev->broadcast_rcv_next_ptr = 0U;
1135 	retval = fw_iso_context_start(context, -1, 0,
1136 			FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1137 	if (retval < 0)
1138 		goto failed_rcv_queue;
1139 
1140 	/* FIXME: adjust it according to the min. speed of all known peers? */
1141 	dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1142 			- IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1143 	dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1144 
1145 	return 0;
1146 
1147  failed_rcv_queue:
1148 	kfree(dev->broadcast_rcv_buffer_ptrs);
1149 	dev->broadcast_rcv_buffer_ptrs = NULL;
1150  failed_ptrs_alloc:
1151 	fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1152  failed_buffer_init:
1153 	fw_iso_context_destroy(context);
1154 	dev->broadcast_rcv_context = NULL;
1155  failed_context_create:
1156 	fw_core_remove_address_handler(&dev->handler);
1157  failed_initial:
1158 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1159 
1160 	return retval;
1161 }
1162 
1163 /* ifup */
1164 static int fwnet_open(struct net_device *net)
1165 {
1166 	struct fwnet_device *dev = netdev_priv(net);
1167 	int ret;
1168 
1169 	if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1170 		ret = fwnet_broadcast_start(dev);
1171 		if (ret)
1172 			return ret;
1173 	}
1174 	netif_start_queue(net);
1175 
1176 	return 0;
1177 }
1178 
1179 /* ifdown */
1180 static int fwnet_stop(struct net_device *net)
1181 {
1182 	netif_stop_queue(net);
1183 
1184 	/* Deallocate iso context for use by other applications? */
1185 
1186 	return 0;
1187 }
1188 
1189 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1190 {
1191 	struct fwnet_header hdr_buf;
1192 	struct fwnet_device *dev = netdev_priv(net);
1193 	__be16 proto;
1194 	u16 dest_node;
1195 	unsigned max_payload;
1196 	u16 dg_size;
1197 	u16 *datagram_label_ptr;
1198 	struct fwnet_packet_task *ptask;
1199 	struct fwnet_peer *peer;
1200 	unsigned long flags;
1201 
1202 	ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1203 	if (ptask == NULL)
1204 		goto fail;
1205 
1206 	skb = skb_share_check(skb, GFP_ATOMIC);
1207 	if (!skb)
1208 		goto fail;
1209 
1210 	/*
1211 	 * Make a copy of the driver-specific header.
1212 	 * We might need to rebuild the header on tx failure.
1213 	 */
1214 	memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1215 	skb_pull(skb, sizeof(hdr_buf));
1216 
1217 	proto = hdr_buf.h_proto;
1218 	dg_size = skb->len;
1219 
1220 	/* serialize access to peer, including peer->datagram_label */
1221 	spin_lock_irqsave(&dev->lock, flags);
1222 
1223 	/*
1224 	 * Set the transmission type for the packet.  ARP packets and IP
1225 	 * broadcast packets are sent via GASP.
1226 	 */
1227 	if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1228 	    || proto == htons(ETH_P_ARP)
1229 	    || (proto == htons(ETH_P_IP)
1230 		&& IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1231 		max_payload        = dev->broadcast_xmt_max_payload;
1232 		datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1233 
1234 		ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1235 		ptask->generation  = 0;
1236 		ptask->dest_node   = IEEE1394_ALL_NODES;
1237 		ptask->speed       = SCODE_100;
1238 	} else {
1239 		__be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1240 		u8 generation;
1241 
1242 		peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1243 		if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1244 			goto fail_unlock;
1245 
1246 		generation         = peer->generation;
1247 		dest_node          = peer->node_id;
1248 		max_payload        = peer->max_payload;
1249 		datagram_label_ptr = &peer->datagram_label;
1250 
1251 		ptask->fifo_addr   = peer->fifo;
1252 		ptask->generation  = generation;
1253 		ptask->dest_node   = dest_node;
1254 		ptask->speed       = peer->speed;
1255 	}
1256 
1257 	/* If this is an ARP packet, convert it */
1258 	if (proto == htons(ETH_P_ARP)) {
1259 		struct arphdr *arp = (struct arphdr *)skb->data;
1260 		unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1261 		struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1262 		__be32 ipaddr;
1263 
1264 		ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1265 
1266 		arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1267 		arp1394->max_rec        = dev->card->max_receive;
1268 		arp1394->sspd		= dev->card->link_speed;
1269 
1270 		put_unaligned_be16(dev->local_fifo >> 32,
1271 				   &arp1394->fifo_hi);
1272 		put_unaligned_be32(dev->local_fifo & 0xffffffff,
1273 				   &arp1394->fifo_lo);
1274 		put_unaligned(ipaddr, &arp1394->sip);
1275 	}
1276 
1277 	ptask->hdr.w0 = 0;
1278 	ptask->hdr.w1 = 0;
1279 	ptask->skb = skb;
1280 	ptask->dev = dev;
1281 
1282 	/* Does it all fit in one packet? */
1283 	if (dg_size <= max_payload) {
1284 		fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1285 		ptask->outstanding_pkts = 1;
1286 		max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1287 	} else {
1288 		u16 datagram_label;
1289 
1290 		max_payload -= RFC2374_FRAG_OVERHEAD;
1291 		datagram_label = (*datagram_label_ptr)++;
1292 		fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1293 				  datagram_label);
1294 		ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1295 		max_payload += RFC2374_FRAG_HDR_SIZE;
1296 	}
1297 
1298 	spin_unlock_irqrestore(&dev->lock, flags);
1299 
1300 	ptask->max_payload = max_payload;
1301 	fwnet_send_packet(ptask);
1302 
1303 	return NETDEV_TX_OK;
1304 
1305  fail_unlock:
1306 	spin_unlock_irqrestore(&dev->lock, flags);
1307  fail:
1308 	if (ptask)
1309 		kmem_cache_free(fwnet_packet_task_cache, ptask);
1310 
1311 	if (skb != NULL)
1312 		dev_kfree_skb(skb);
1313 
1314 	net->stats.tx_dropped++;
1315 	net->stats.tx_errors++;
1316 
1317 	/*
1318 	 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1319 	 * causes serious problems" here, allegedly.  Before that patch,
1320 	 * -ERRNO was returned which is not appropriate under Linux 2.6.
1321 	 * Perhaps more needs to be done?  Stop the queue in serious
1322 	 * conditions and restart it elsewhere?
1323 	 */
1324 	return NETDEV_TX_OK;
1325 }
1326 
1327 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1328 {
1329 	if (new_mtu < 68)
1330 		return -EINVAL;
1331 
1332 	net->mtu = new_mtu;
1333 	return 0;
1334 }
1335 
1336 static void fwnet_get_drvinfo(struct net_device *net,
1337 			      struct ethtool_drvinfo *info)
1338 {
1339 	strcpy(info->driver, KBUILD_MODNAME);
1340 	strcpy(info->bus_info, "ieee1394");
1341 }
1342 
1343 static const struct ethtool_ops fwnet_ethtool_ops = {
1344 	.get_drvinfo = fwnet_get_drvinfo,
1345 };
1346 
1347 static const struct net_device_ops fwnet_netdev_ops = {
1348 	.ndo_open       = fwnet_open,
1349 	.ndo_stop	= fwnet_stop,
1350 	.ndo_start_xmit = fwnet_tx,
1351 	.ndo_change_mtu = fwnet_change_mtu,
1352 };
1353 
1354 static void fwnet_init_dev(struct net_device *net)
1355 {
1356 	net->header_ops		= &fwnet_header_ops;
1357 	net->netdev_ops		= &fwnet_netdev_ops;
1358 	net->watchdog_timeo	= 2 * HZ;
1359 	net->flags		= IFF_BROADCAST | IFF_MULTICAST;
1360 	net->features		= NETIF_F_HIGHDMA;
1361 	net->addr_len		= FWNET_ALEN;
1362 	net->hard_header_len	= FWNET_HLEN;
1363 	net->type		= ARPHRD_IEEE1394;
1364 	net->tx_queue_len	= 10;
1365 	SET_ETHTOOL_OPS(net, &fwnet_ethtool_ops);
1366 }
1367 
1368 /* caller must hold fwnet_device_mutex */
1369 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1370 {
1371 	struct fwnet_device *dev;
1372 
1373 	list_for_each_entry(dev, &fwnet_device_list, dev_link)
1374 		if (dev->card == card)
1375 			return dev;
1376 
1377 	return NULL;
1378 }
1379 
1380 static int fwnet_add_peer(struct fwnet_device *dev,
1381 			  struct fw_unit *unit, struct fw_device *device)
1382 {
1383 	struct fwnet_peer *peer;
1384 
1385 	peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1386 	if (!peer)
1387 		return -ENOMEM;
1388 
1389 	dev_set_drvdata(&unit->device, peer);
1390 
1391 	peer->dev = dev;
1392 	peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1393 	peer->fifo = FWNET_NO_FIFO_ADDR;
1394 	INIT_LIST_HEAD(&peer->pd_list);
1395 	peer->pdg_size = 0;
1396 	peer->datagram_label = 0;
1397 	peer->speed = device->max_speed;
1398 	peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1399 
1400 	peer->generation = device->generation;
1401 	smp_rmb();
1402 	peer->node_id = device->node_id;
1403 
1404 	spin_lock_irq(&dev->lock);
1405 	list_add_tail(&peer->peer_link, &dev->peer_list);
1406 	spin_unlock_irq(&dev->lock);
1407 
1408 	return 0;
1409 }
1410 
1411 static int fwnet_probe(struct device *_dev)
1412 {
1413 	struct fw_unit *unit = fw_unit(_dev);
1414 	struct fw_device *device = fw_parent_device(unit);
1415 	struct fw_card *card = device->card;
1416 	struct net_device *net;
1417 	bool allocated_netdev = false;
1418 	struct fwnet_device *dev;
1419 	unsigned max_mtu;
1420 	int ret;
1421 
1422 	mutex_lock(&fwnet_device_mutex);
1423 
1424 	dev = fwnet_dev_find(card);
1425 	if (dev) {
1426 		net = dev->netdev;
1427 		goto have_dev;
1428 	}
1429 
1430 	net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1431 	if (net == NULL) {
1432 		ret = -ENOMEM;
1433 		goto out;
1434 	}
1435 
1436 	allocated_netdev = true;
1437 	SET_NETDEV_DEV(net, card->device);
1438 	dev = netdev_priv(net);
1439 
1440 	spin_lock_init(&dev->lock);
1441 	dev->broadcast_state = FWNET_BROADCAST_ERROR;
1442 	dev->broadcast_rcv_context = NULL;
1443 	dev->broadcast_xmt_max_payload = 0;
1444 	dev->broadcast_xmt_datagramlabel = 0;
1445 
1446 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1447 
1448 	INIT_LIST_HEAD(&dev->packet_list);
1449 	INIT_LIST_HEAD(&dev->broadcasted_list);
1450 	INIT_LIST_HEAD(&dev->sent_list);
1451 	INIT_LIST_HEAD(&dev->peer_list);
1452 
1453 	dev->card = card;
1454 	dev->netdev = net;
1455 
1456 	/*
1457 	 * Use the RFC 2734 default 1500 octets or the maximum payload
1458 	 * as initial MTU
1459 	 */
1460 	max_mtu = (1 << (card->max_receive + 1))
1461 		  - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1462 	net->mtu = min(1500U, max_mtu);
1463 
1464 	/* Set our hardware address while we're at it */
1465 	put_unaligned_be64(card->guid, net->dev_addr);
1466 	put_unaligned_be64(~0ULL, net->broadcast);
1467 	ret = register_netdev(net);
1468 	if (ret) {
1469 		fw_error("Cannot register the driver\n");
1470 		goto out;
1471 	}
1472 
1473 	list_add_tail(&dev->dev_link, &fwnet_device_list);
1474 	fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1475 		  net->name, (unsigned long long)card->guid);
1476  have_dev:
1477 	ret = fwnet_add_peer(dev, unit, device);
1478 	if (ret && allocated_netdev) {
1479 		unregister_netdev(net);
1480 		list_del(&dev->dev_link);
1481 	}
1482  out:
1483 	if (ret && allocated_netdev)
1484 		free_netdev(net);
1485 
1486 	mutex_unlock(&fwnet_device_mutex);
1487 
1488 	return ret;
1489 }
1490 
1491 static void fwnet_remove_peer(struct fwnet_peer *peer)
1492 {
1493 	struct fwnet_partial_datagram *pd, *pd_next;
1494 
1495 	spin_lock_irq(&peer->dev->lock);
1496 	list_del(&peer->peer_link);
1497 	spin_unlock_irq(&peer->dev->lock);
1498 
1499 	list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1500 		fwnet_pd_delete(pd);
1501 
1502 	kfree(peer);
1503 }
1504 
1505 static int fwnet_remove(struct device *_dev)
1506 {
1507 	struct fwnet_peer *peer = dev_get_drvdata(_dev);
1508 	struct fwnet_device *dev = peer->dev;
1509 	struct net_device *net;
1510 	struct fwnet_packet_task *ptask, *pt_next;
1511 
1512 	mutex_lock(&fwnet_device_mutex);
1513 
1514 	fwnet_remove_peer(peer);
1515 
1516 	if (list_empty(&dev->peer_list)) {
1517 		net = dev->netdev;
1518 		unregister_netdev(net);
1519 
1520 		if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1521 			fw_core_remove_address_handler(&dev->handler);
1522 		if (dev->broadcast_rcv_context) {
1523 			fw_iso_context_stop(dev->broadcast_rcv_context);
1524 			fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1525 					      dev->card);
1526 			fw_iso_context_destroy(dev->broadcast_rcv_context);
1527 		}
1528 		list_for_each_entry_safe(ptask, pt_next,
1529 					 &dev->packet_list, pt_link) {
1530 			dev_kfree_skb_any(ptask->skb);
1531 			kmem_cache_free(fwnet_packet_task_cache, ptask);
1532 		}
1533 		list_for_each_entry_safe(ptask, pt_next,
1534 					 &dev->broadcasted_list, pt_link) {
1535 			dev_kfree_skb_any(ptask->skb);
1536 			kmem_cache_free(fwnet_packet_task_cache, ptask);
1537 		}
1538 		list_for_each_entry_safe(ptask, pt_next,
1539 					 &dev->sent_list, pt_link) {
1540 			dev_kfree_skb_any(ptask->skb);
1541 			kmem_cache_free(fwnet_packet_task_cache, ptask);
1542 		}
1543 		list_del(&dev->dev_link);
1544 
1545 		free_netdev(net);
1546 	}
1547 
1548 	mutex_unlock(&fwnet_device_mutex);
1549 
1550 	return 0;
1551 }
1552 
1553 /*
1554  * FIXME abort partially sent fragmented datagrams,
1555  * discard partially received fragmented datagrams
1556  */
1557 static void fwnet_update(struct fw_unit *unit)
1558 {
1559 	struct fw_device *device = fw_parent_device(unit);
1560 	struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1561 	int generation;
1562 
1563 	generation = device->generation;
1564 
1565 	spin_lock_irq(&peer->dev->lock);
1566 	peer->node_id    = device->node_id;
1567 	peer->generation = generation;
1568 	spin_unlock_irq(&peer->dev->lock);
1569 }
1570 
1571 static const struct ieee1394_device_id fwnet_id_table[] = {
1572 	{
1573 		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1574 				IEEE1394_MATCH_VERSION,
1575 		.specifier_id = IANA_SPECIFIER_ID,
1576 		.version      = RFC2734_SW_VERSION,
1577 	},
1578 	{ }
1579 };
1580 
1581 static struct fw_driver fwnet_driver = {
1582 	.driver = {
1583 		.owner  = THIS_MODULE,
1584 		.name   = "net",
1585 		.bus    = &fw_bus_type,
1586 		.probe  = fwnet_probe,
1587 		.remove = fwnet_remove,
1588 	},
1589 	.update   = fwnet_update,
1590 	.id_table = fwnet_id_table,
1591 };
1592 
1593 static const u32 rfc2374_unit_directory_data[] = {
1594 	0x00040000,	/* directory_length		*/
1595 	0x1200005e,	/* unit_specifier_id: IANA	*/
1596 	0x81000003,	/* textual descriptor offset	*/
1597 	0x13000001,	/* unit_sw_version: RFC 2734	*/
1598 	0x81000005,	/* textual descriptor offset	*/
1599 	0x00030000,	/* descriptor_length		*/
1600 	0x00000000,	/* text				*/
1601 	0x00000000,	/* minimal ASCII, en		*/
1602 	0x49414e41,	/* I A N A			*/
1603 	0x00030000,	/* descriptor_length		*/
1604 	0x00000000,	/* text				*/
1605 	0x00000000,	/* minimal ASCII, en		*/
1606 	0x49507634,	/* I P v 4			*/
1607 };
1608 
1609 static struct fw_descriptor rfc2374_unit_directory = {
1610 	.length = ARRAY_SIZE(rfc2374_unit_directory_data),
1611 	.key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1612 	.data   = rfc2374_unit_directory_data
1613 };
1614 
1615 static int __init fwnet_init(void)
1616 {
1617 	int err;
1618 
1619 	err = fw_core_add_descriptor(&rfc2374_unit_directory);
1620 	if (err)
1621 		return err;
1622 
1623 	fwnet_packet_task_cache = kmem_cache_create("packet_task",
1624 			sizeof(struct fwnet_packet_task), 0, 0, NULL);
1625 	if (!fwnet_packet_task_cache) {
1626 		err = -ENOMEM;
1627 		goto out;
1628 	}
1629 
1630 	err = driver_register(&fwnet_driver.driver);
1631 	if (!err)
1632 		return 0;
1633 
1634 	kmem_cache_destroy(fwnet_packet_task_cache);
1635 out:
1636 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1637 
1638 	return err;
1639 }
1640 module_init(fwnet_init);
1641 
1642 static void __exit fwnet_cleanup(void)
1643 {
1644 	driver_unregister(&fwnet_driver.driver);
1645 	kmem_cache_destroy(fwnet_packet_task_cache);
1646 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1647 }
1648 module_exit(fwnet_cleanup);
1649 
1650 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1651 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1652 MODULE_LICENSE("GPL");
1653 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
1654