xref: /openbmc/linux/drivers/firewire/net.c (revision 81d67439)
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8 
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/ethtool.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/highmem.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/jiffies.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/skbuff.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 
29 #include <asm/unaligned.h>
30 #include <net/arp.h>
31 
32 /* rx limits */
33 #define FWNET_MAX_FRAGMENTS		30 /* arbitrary, > TX queue depth */
34 #define FWNET_ISO_PAGE_COUNT		(PAGE_SIZE < 16*1024 ? 4 : 2)
35 
36 /* tx limits */
37 #define FWNET_MAX_QUEUED_DATAGRAMS	20 /* < 64 = number of tlabels */
38 #define FWNET_MIN_QUEUED_DATAGRAMS	10 /* should keep AT DMA busy enough */
39 #define FWNET_TX_QUEUE_LEN		FWNET_MAX_QUEUED_DATAGRAMS /* ? */
40 
41 #define IEEE1394_BROADCAST_CHANNEL	31
42 #define IEEE1394_ALL_NODES		(0xffc0 | 0x003f)
43 #define IEEE1394_MAX_PAYLOAD_S100	512
44 #define FWNET_NO_FIFO_ADDR		(~0ULL)
45 
46 #define IANA_SPECIFIER_ID		0x00005eU
47 #define RFC2734_SW_VERSION		0x000001U
48 
49 #define IEEE1394_GASP_HDR_SIZE	8
50 
51 #define RFC2374_UNFRAG_HDR_SIZE	4
52 #define RFC2374_FRAG_HDR_SIZE	8
53 #define RFC2374_FRAG_OVERHEAD	4
54 
55 #define RFC2374_HDR_UNFRAG	0	/* unfragmented		*/
56 #define RFC2374_HDR_FIRSTFRAG	1	/* first fragment	*/
57 #define RFC2374_HDR_LASTFRAG	2	/* last fragment	*/
58 #define RFC2374_HDR_INTFRAG	3	/* interior fragment	*/
59 
60 #define RFC2734_HW_ADDR_LEN	16
61 
62 struct rfc2734_arp {
63 	__be16 hw_type;		/* 0x0018	*/
64 	__be16 proto_type;	/* 0x0806       */
65 	u8 hw_addr_len;		/* 16		*/
66 	u8 ip_addr_len;		/* 4		*/
67 	__be16 opcode;		/* ARP Opcode	*/
68 	/* Above is exactly the same format as struct arphdr */
69 
70 	__be64 s_uniq_id;	/* Sender's 64bit EUI			*/
71 	u8 max_rec;		/* Sender's max packet size		*/
72 	u8 sspd;		/* Sender's max speed			*/
73 	__be16 fifo_hi;		/* hi 16bits of sender's FIFO addr	*/
74 	__be32 fifo_lo;		/* lo 32bits of sender's FIFO addr	*/
75 	__be32 sip;		/* Sender's IP Address			*/
76 	__be32 tip;		/* IP Address of requested hw addr	*/
77 } __packed;
78 
79 /* This header format is specific to this driver implementation. */
80 #define FWNET_ALEN	8
81 #define FWNET_HLEN	10
82 struct fwnet_header {
83 	u8 h_dest[FWNET_ALEN];	/* destination address */
84 	__be16 h_proto;		/* packet type ID field */
85 } __packed;
86 
87 /* IPv4 and IPv6 encapsulation header */
88 struct rfc2734_header {
89 	u32 w0;
90 	u32 w1;
91 };
92 
93 #define fwnet_get_hdr_lf(h)		(((h)->w0 & 0xc0000000) >> 30)
94 #define fwnet_get_hdr_ether_type(h)	(((h)->w0 & 0x0000ffff))
95 #define fwnet_get_hdr_dg_size(h)	(((h)->w0 & 0x0fff0000) >> 16)
96 #define fwnet_get_hdr_fg_off(h)		(((h)->w0 & 0x00000fff))
97 #define fwnet_get_hdr_dgl(h)		(((h)->w1 & 0xffff0000) >> 16)
98 
99 #define fwnet_set_hdr_lf(lf)		((lf)  << 30)
100 #define fwnet_set_hdr_ether_type(et)	(et)
101 #define fwnet_set_hdr_dg_size(dgs)	((dgs) << 16)
102 #define fwnet_set_hdr_fg_off(fgo)	(fgo)
103 
104 #define fwnet_set_hdr_dgl(dgl)		((dgl) << 16)
105 
106 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
107 		unsigned ether_type)
108 {
109 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
110 		  | fwnet_set_hdr_ether_type(ether_type);
111 }
112 
113 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
114 		unsigned ether_type, unsigned dg_size, unsigned dgl)
115 {
116 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
117 		  | fwnet_set_hdr_dg_size(dg_size)
118 		  | fwnet_set_hdr_ether_type(ether_type);
119 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
120 }
121 
122 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
123 		unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
124 {
125 	hdr->w0 = fwnet_set_hdr_lf(lf)
126 		  | fwnet_set_hdr_dg_size(dg_size)
127 		  | fwnet_set_hdr_fg_off(fg_off);
128 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
129 }
130 
131 /* This list keeps track of what parts of the datagram have been filled in */
132 struct fwnet_fragment_info {
133 	struct list_head fi_link;
134 	u16 offset;
135 	u16 len;
136 };
137 
138 struct fwnet_partial_datagram {
139 	struct list_head pd_link;
140 	struct list_head fi_list;
141 	struct sk_buff *skb;
142 	/* FIXME Why not use skb->data? */
143 	char *pbuf;
144 	u16 datagram_label;
145 	u16 ether_type;
146 	u16 datagram_size;
147 };
148 
149 static DEFINE_MUTEX(fwnet_device_mutex);
150 static LIST_HEAD(fwnet_device_list);
151 
152 struct fwnet_device {
153 	struct list_head dev_link;
154 	spinlock_t lock;
155 	enum {
156 		FWNET_BROADCAST_ERROR,
157 		FWNET_BROADCAST_RUNNING,
158 		FWNET_BROADCAST_STOPPED,
159 	} broadcast_state;
160 	struct fw_iso_context *broadcast_rcv_context;
161 	struct fw_iso_buffer broadcast_rcv_buffer;
162 	void **broadcast_rcv_buffer_ptrs;
163 	unsigned broadcast_rcv_next_ptr;
164 	unsigned num_broadcast_rcv_ptrs;
165 	unsigned rcv_buffer_size;
166 	/*
167 	 * This value is the maximum unfragmented datagram size that can be
168 	 * sent by the hardware.  It already has the GASP overhead and the
169 	 * unfragmented datagram header overhead calculated into it.
170 	 */
171 	unsigned broadcast_xmt_max_payload;
172 	u16 broadcast_xmt_datagramlabel;
173 
174 	/*
175 	 * The CSR address that remote nodes must send datagrams to for us to
176 	 * receive them.
177 	 */
178 	struct fw_address_handler handler;
179 	u64 local_fifo;
180 
181 	/* Number of tx datagrams that have been queued but not yet acked */
182 	int queued_datagrams;
183 
184 	int peer_count;
185 	struct list_head peer_list;
186 	struct fw_card *card;
187 	struct net_device *netdev;
188 };
189 
190 struct fwnet_peer {
191 	struct list_head peer_link;
192 	struct fwnet_device *dev;
193 	u64 guid;
194 	u64 fifo;
195 	__be32 ip;
196 
197 	/* guarded by dev->lock */
198 	struct list_head pd_list; /* received partial datagrams */
199 	unsigned pdg_size;        /* pd_list size */
200 
201 	u16 datagram_label;       /* outgoing datagram label */
202 	u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
203 	int node_id;
204 	int generation;
205 	unsigned speed;
206 };
207 
208 /* This is our task struct. It's used for the packet complete callback.  */
209 struct fwnet_packet_task {
210 	struct fw_transaction transaction;
211 	struct rfc2734_header hdr;
212 	struct sk_buff *skb;
213 	struct fwnet_device *dev;
214 
215 	int outstanding_pkts;
216 	u64 fifo_addr;
217 	u16 dest_node;
218 	u16 max_payload;
219 	u8 generation;
220 	u8 speed;
221 	u8 enqueued;
222 };
223 
224 /*
225  * saddr == NULL means use device source address.
226  * daddr == NULL means leave destination address (eg unresolved arp).
227  */
228 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
229 			unsigned short type, const void *daddr,
230 			const void *saddr, unsigned len)
231 {
232 	struct fwnet_header *h;
233 
234 	h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
235 	put_unaligned_be16(type, &h->h_proto);
236 
237 	if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
238 		memset(h->h_dest, 0, net->addr_len);
239 
240 		return net->hard_header_len;
241 	}
242 
243 	if (daddr) {
244 		memcpy(h->h_dest, daddr, net->addr_len);
245 
246 		return net->hard_header_len;
247 	}
248 
249 	return -net->hard_header_len;
250 }
251 
252 static int fwnet_header_rebuild(struct sk_buff *skb)
253 {
254 	struct fwnet_header *h = (struct fwnet_header *)skb->data;
255 
256 	if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
257 		return arp_find((unsigned char *)&h->h_dest, skb);
258 
259 	fw_notify("%s: unable to resolve type %04x addresses\n",
260 		  skb->dev->name, be16_to_cpu(h->h_proto));
261 	return 0;
262 }
263 
264 static int fwnet_header_cache(const struct neighbour *neigh,
265 			      struct hh_cache *hh, __be16 type)
266 {
267 	struct net_device *net;
268 	struct fwnet_header *h;
269 
270 	if (type == cpu_to_be16(ETH_P_802_3))
271 		return -1;
272 	net = neigh->dev;
273 	h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
274 	h->h_proto = type;
275 	memcpy(h->h_dest, neigh->ha, net->addr_len);
276 	hh->hh_len = FWNET_HLEN;
277 
278 	return 0;
279 }
280 
281 /* Called by Address Resolution module to notify changes in address. */
282 static void fwnet_header_cache_update(struct hh_cache *hh,
283 		const struct net_device *net, const unsigned char *haddr)
284 {
285 	memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
286 }
287 
288 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
289 {
290 	memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
291 
292 	return FWNET_ALEN;
293 }
294 
295 static const struct header_ops fwnet_header_ops = {
296 	.create         = fwnet_header_create,
297 	.rebuild        = fwnet_header_rebuild,
298 	.cache		= fwnet_header_cache,
299 	.cache_update	= fwnet_header_cache_update,
300 	.parse          = fwnet_header_parse,
301 };
302 
303 /* FIXME: is this correct for all cases? */
304 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
305 			       unsigned offset, unsigned len)
306 {
307 	struct fwnet_fragment_info *fi;
308 	unsigned end = offset + len;
309 
310 	list_for_each_entry(fi, &pd->fi_list, fi_link)
311 		if (offset < fi->offset + fi->len && end > fi->offset)
312 			return true;
313 
314 	return false;
315 }
316 
317 /* Assumes that new fragment does not overlap any existing fragments */
318 static struct fwnet_fragment_info *fwnet_frag_new(
319 	struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
320 {
321 	struct fwnet_fragment_info *fi, *fi2, *new;
322 	struct list_head *list;
323 
324 	list = &pd->fi_list;
325 	list_for_each_entry(fi, &pd->fi_list, fi_link) {
326 		if (fi->offset + fi->len == offset) {
327 			/* The new fragment can be tacked on to the end */
328 			/* Did the new fragment plug a hole? */
329 			fi2 = list_entry(fi->fi_link.next,
330 					 struct fwnet_fragment_info, fi_link);
331 			if (fi->offset + fi->len == fi2->offset) {
332 				/* glue fragments together */
333 				fi->len += len + fi2->len;
334 				list_del(&fi2->fi_link);
335 				kfree(fi2);
336 			} else {
337 				fi->len += len;
338 			}
339 
340 			return fi;
341 		}
342 		if (offset + len == fi->offset) {
343 			/* The new fragment can be tacked on to the beginning */
344 			/* Did the new fragment plug a hole? */
345 			fi2 = list_entry(fi->fi_link.prev,
346 					 struct fwnet_fragment_info, fi_link);
347 			if (fi2->offset + fi2->len == fi->offset) {
348 				/* glue fragments together */
349 				fi2->len += fi->len + len;
350 				list_del(&fi->fi_link);
351 				kfree(fi);
352 
353 				return fi2;
354 			}
355 			fi->offset = offset;
356 			fi->len += len;
357 
358 			return fi;
359 		}
360 		if (offset > fi->offset + fi->len) {
361 			list = &fi->fi_link;
362 			break;
363 		}
364 		if (offset + len < fi->offset) {
365 			list = fi->fi_link.prev;
366 			break;
367 		}
368 	}
369 
370 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
371 	if (!new) {
372 		fw_error("out of memory\n");
373 		return NULL;
374 	}
375 
376 	new->offset = offset;
377 	new->len = len;
378 	list_add(&new->fi_link, list);
379 
380 	return new;
381 }
382 
383 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
384 		struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
385 		void *frag_buf, unsigned frag_off, unsigned frag_len)
386 {
387 	struct fwnet_partial_datagram *new;
388 	struct fwnet_fragment_info *fi;
389 
390 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
391 	if (!new)
392 		goto fail;
393 
394 	INIT_LIST_HEAD(&new->fi_list);
395 	fi = fwnet_frag_new(new, frag_off, frag_len);
396 	if (fi == NULL)
397 		goto fail_w_new;
398 
399 	new->datagram_label = datagram_label;
400 	new->datagram_size = dg_size;
401 	new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
402 	if (new->skb == NULL)
403 		goto fail_w_fi;
404 
405 	skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
406 	new->pbuf = skb_put(new->skb, dg_size);
407 	memcpy(new->pbuf + frag_off, frag_buf, frag_len);
408 	list_add_tail(&new->pd_link, &peer->pd_list);
409 
410 	return new;
411 
412 fail_w_fi:
413 	kfree(fi);
414 fail_w_new:
415 	kfree(new);
416 fail:
417 	fw_error("out of memory\n");
418 
419 	return NULL;
420 }
421 
422 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
423 						    u16 datagram_label)
424 {
425 	struct fwnet_partial_datagram *pd;
426 
427 	list_for_each_entry(pd, &peer->pd_list, pd_link)
428 		if (pd->datagram_label == datagram_label)
429 			return pd;
430 
431 	return NULL;
432 }
433 
434 
435 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
436 {
437 	struct fwnet_fragment_info *fi, *n;
438 
439 	list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
440 		kfree(fi);
441 
442 	list_del(&old->pd_link);
443 	dev_kfree_skb_any(old->skb);
444 	kfree(old);
445 }
446 
447 static bool fwnet_pd_update(struct fwnet_peer *peer,
448 		struct fwnet_partial_datagram *pd, void *frag_buf,
449 		unsigned frag_off, unsigned frag_len)
450 {
451 	if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
452 		return false;
453 
454 	memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
455 
456 	/*
457 	 * Move list entry to beginning of list so that oldest partial
458 	 * datagrams percolate to the end of the list
459 	 */
460 	list_move_tail(&pd->pd_link, &peer->pd_list);
461 
462 	return true;
463 }
464 
465 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
466 {
467 	struct fwnet_fragment_info *fi;
468 
469 	fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
470 
471 	return fi->len == pd->datagram_size;
472 }
473 
474 /* caller must hold dev->lock */
475 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
476 						  u64 guid)
477 {
478 	struct fwnet_peer *peer;
479 
480 	list_for_each_entry(peer, &dev->peer_list, peer_link)
481 		if (peer->guid == guid)
482 			return peer;
483 
484 	return NULL;
485 }
486 
487 /* caller must hold dev->lock */
488 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
489 						int node_id, int generation)
490 {
491 	struct fwnet_peer *peer;
492 
493 	list_for_each_entry(peer, &dev->peer_list, peer_link)
494 		if (peer->node_id    == node_id &&
495 		    peer->generation == generation)
496 			return peer;
497 
498 	return NULL;
499 }
500 
501 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
502 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
503 {
504 	max_rec = min(max_rec, speed + 8);
505 	max_rec = min(max_rec, 0xbU); /* <= 4096 */
506 	if (max_rec < 8) {
507 		fw_notify("max_rec %x out of range\n", max_rec);
508 		max_rec = 8;
509 	}
510 
511 	return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
512 }
513 
514 
515 static int fwnet_finish_incoming_packet(struct net_device *net,
516 					struct sk_buff *skb, u16 source_node_id,
517 					bool is_broadcast, u16 ether_type)
518 {
519 	struct fwnet_device *dev;
520 	static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
521 	int status;
522 	__be64 guid;
523 
524 	dev = netdev_priv(net);
525 	/* Write metadata, and then pass to the receive level */
526 	skb->dev = net;
527 	skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
528 
529 	/*
530 	 * Parse the encapsulation header. This actually does the job of
531 	 * converting to an ethernet frame header, as well as arp
532 	 * conversion if needed. ARP conversion is easier in this
533 	 * direction, since we are using ethernet as our backend.
534 	 */
535 	/*
536 	 * If this is an ARP packet, convert it. First, we want to make
537 	 * use of some of the fields, since they tell us a little bit
538 	 * about the sending machine.
539 	 */
540 	if (ether_type == ETH_P_ARP) {
541 		struct rfc2734_arp *arp1394;
542 		struct arphdr *arp;
543 		unsigned char *arp_ptr;
544 		u64 fifo_addr;
545 		u64 peer_guid;
546 		unsigned sspd;
547 		u16 max_payload;
548 		struct fwnet_peer *peer;
549 		unsigned long flags;
550 
551 		arp1394   = (struct rfc2734_arp *)skb->data;
552 		arp       = (struct arphdr *)skb->data;
553 		arp_ptr   = (unsigned char *)(arp + 1);
554 		peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
555 		fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
556 				| get_unaligned_be32(&arp1394->fifo_lo);
557 
558 		sspd = arp1394->sspd;
559 		/* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
560 		if (sspd > SCODE_3200) {
561 			fw_notify("sspd %x out of range\n", sspd);
562 			sspd = SCODE_3200;
563 		}
564 		max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
565 
566 		spin_lock_irqsave(&dev->lock, flags);
567 		peer = fwnet_peer_find_by_guid(dev, peer_guid);
568 		if (peer) {
569 			peer->fifo = fifo_addr;
570 
571 			if (peer->speed > sspd)
572 				peer->speed = sspd;
573 			if (peer->max_payload > max_payload)
574 				peer->max_payload = max_payload;
575 
576 			peer->ip = arp1394->sip;
577 		}
578 		spin_unlock_irqrestore(&dev->lock, flags);
579 
580 		if (!peer) {
581 			fw_notify("No peer for ARP packet from %016llx\n",
582 				  (unsigned long long)peer_guid);
583 			goto no_peer;
584 		}
585 
586 		/*
587 		 * Now that we're done with the 1394 specific stuff, we'll
588 		 * need to alter some of the data.  Believe it or not, all
589 		 * that needs to be done is sender_IP_address needs to be
590 		 * moved, the destination hardware address get stuffed
591 		 * in and the hardware address length set to 8.
592 		 *
593 		 * IMPORTANT: The code below overwrites 1394 specific data
594 		 * needed above so keep the munging of the data for the
595 		 * higher level IP stack last.
596 		 */
597 
598 		arp->ar_hln = 8;
599 		/* skip over sender unique id */
600 		arp_ptr += arp->ar_hln;
601 		/* move sender IP addr */
602 		put_unaligned(arp1394->sip, (u32 *)arp_ptr);
603 		/* skip over sender IP addr */
604 		arp_ptr += arp->ar_pln;
605 
606 		if (arp->ar_op == htons(ARPOP_REQUEST))
607 			memset(arp_ptr, 0, sizeof(u64));
608 		else
609 			memcpy(arp_ptr, net->dev_addr, sizeof(u64));
610 	}
611 
612 	/* Now add the ethernet header. */
613 	guid = cpu_to_be64(dev->card->guid);
614 	if (dev_hard_header(skb, net, ether_type,
615 			   is_broadcast ? &broadcast_hw : &guid,
616 			   NULL, skb->len) >= 0) {
617 		struct fwnet_header *eth;
618 		u16 *rawp;
619 		__be16 protocol;
620 
621 		skb_reset_mac_header(skb);
622 		skb_pull(skb, sizeof(*eth));
623 		eth = (struct fwnet_header *)skb_mac_header(skb);
624 		if (*eth->h_dest & 1) {
625 			if (memcmp(eth->h_dest, net->broadcast,
626 				   net->addr_len) == 0)
627 				skb->pkt_type = PACKET_BROADCAST;
628 #if 0
629 			else
630 				skb->pkt_type = PACKET_MULTICAST;
631 #endif
632 		} else {
633 			if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
634 				skb->pkt_type = PACKET_OTHERHOST;
635 		}
636 		if (ntohs(eth->h_proto) >= 1536) {
637 			protocol = eth->h_proto;
638 		} else {
639 			rawp = (u16 *)skb->data;
640 			if (*rawp == 0xffff)
641 				protocol = htons(ETH_P_802_3);
642 			else
643 				protocol = htons(ETH_P_802_2);
644 		}
645 		skb->protocol = protocol;
646 	}
647 	status = netif_rx(skb);
648 	if (status == NET_RX_DROP) {
649 		net->stats.rx_errors++;
650 		net->stats.rx_dropped++;
651 	} else {
652 		net->stats.rx_packets++;
653 		net->stats.rx_bytes += skb->len;
654 	}
655 
656 	return 0;
657 
658  no_peer:
659 	net->stats.rx_errors++;
660 	net->stats.rx_dropped++;
661 
662 	dev_kfree_skb_any(skb);
663 
664 	return -ENOENT;
665 }
666 
667 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
668 				 int source_node_id, int generation,
669 				 bool is_broadcast)
670 {
671 	struct sk_buff *skb;
672 	struct net_device *net = dev->netdev;
673 	struct rfc2734_header hdr;
674 	unsigned lf;
675 	unsigned long flags;
676 	struct fwnet_peer *peer;
677 	struct fwnet_partial_datagram *pd;
678 	int fg_off;
679 	int dg_size;
680 	u16 datagram_label;
681 	int retval;
682 	u16 ether_type;
683 
684 	hdr.w0 = be32_to_cpu(buf[0]);
685 	lf = fwnet_get_hdr_lf(&hdr);
686 	if (lf == RFC2374_HDR_UNFRAG) {
687 		/*
688 		 * An unfragmented datagram has been received by the ieee1394
689 		 * bus. Build an skbuff around it so we can pass it to the
690 		 * high level network layer.
691 		 */
692 		ether_type = fwnet_get_hdr_ether_type(&hdr);
693 		buf++;
694 		len -= RFC2374_UNFRAG_HDR_SIZE;
695 
696 		skb = dev_alloc_skb(len + net->hard_header_len + 15);
697 		if (unlikely(!skb)) {
698 			fw_error("out of memory\n");
699 			net->stats.rx_dropped++;
700 
701 			return -ENOMEM;
702 		}
703 		skb_reserve(skb, (net->hard_header_len + 15) & ~15);
704 		memcpy(skb_put(skb, len), buf, len);
705 
706 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
707 						    is_broadcast, ether_type);
708 	}
709 	/* A datagram fragment has been received, now the fun begins. */
710 	hdr.w1 = ntohl(buf[1]);
711 	buf += 2;
712 	len -= RFC2374_FRAG_HDR_SIZE;
713 	if (lf == RFC2374_HDR_FIRSTFRAG) {
714 		ether_type = fwnet_get_hdr_ether_type(&hdr);
715 		fg_off = 0;
716 	} else {
717 		ether_type = 0;
718 		fg_off = fwnet_get_hdr_fg_off(&hdr);
719 	}
720 	datagram_label = fwnet_get_hdr_dgl(&hdr);
721 	dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
722 
723 	spin_lock_irqsave(&dev->lock, flags);
724 
725 	peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
726 	if (!peer) {
727 		retval = -ENOENT;
728 		goto fail;
729 	}
730 
731 	pd = fwnet_pd_find(peer, datagram_label);
732 	if (pd == NULL) {
733 		while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
734 			/* remove the oldest */
735 			fwnet_pd_delete(list_first_entry(&peer->pd_list,
736 				struct fwnet_partial_datagram, pd_link));
737 			peer->pdg_size--;
738 		}
739 		pd = fwnet_pd_new(net, peer, datagram_label,
740 				  dg_size, buf, fg_off, len);
741 		if (pd == NULL) {
742 			retval = -ENOMEM;
743 			goto fail;
744 		}
745 		peer->pdg_size++;
746 	} else {
747 		if (fwnet_frag_overlap(pd, fg_off, len) ||
748 		    pd->datagram_size != dg_size) {
749 			/*
750 			 * Differing datagram sizes or overlapping fragments,
751 			 * discard old datagram and start a new one.
752 			 */
753 			fwnet_pd_delete(pd);
754 			pd = fwnet_pd_new(net, peer, datagram_label,
755 					  dg_size, buf, fg_off, len);
756 			if (pd == NULL) {
757 				peer->pdg_size--;
758 				retval = -ENOMEM;
759 				goto fail;
760 			}
761 		} else {
762 			if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
763 				/*
764 				 * Couldn't save off fragment anyway
765 				 * so might as well obliterate the
766 				 * datagram now.
767 				 */
768 				fwnet_pd_delete(pd);
769 				peer->pdg_size--;
770 				retval = -ENOMEM;
771 				goto fail;
772 			}
773 		}
774 	} /* new datagram or add to existing one */
775 
776 	if (lf == RFC2374_HDR_FIRSTFRAG)
777 		pd->ether_type = ether_type;
778 
779 	if (fwnet_pd_is_complete(pd)) {
780 		ether_type = pd->ether_type;
781 		peer->pdg_size--;
782 		skb = skb_get(pd->skb);
783 		fwnet_pd_delete(pd);
784 
785 		spin_unlock_irqrestore(&dev->lock, flags);
786 
787 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
788 						    false, ether_type);
789 	}
790 	/*
791 	 * Datagram is not complete, we're done for the
792 	 * moment.
793 	 */
794 	retval = 0;
795  fail:
796 	spin_unlock_irqrestore(&dev->lock, flags);
797 
798 	return retval;
799 }
800 
801 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
802 		int tcode, int destination, int source, int generation,
803 		unsigned long long offset, void *payload, size_t length,
804 		void *callback_data)
805 {
806 	struct fwnet_device *dev = callback_data;
807 	int rcode;
808 
809 	if (destination == IEEE1394_ALL_NODES) {
810 		kfree(r);
811 
812 		return;
813 	}
814 
815 	if (offset != dev->handler.offset)
816 		rcode = RCODE_ADDRESS_ERROR;
817 	else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
818 		rcode = RCODE_TYPE_ERROR;
819 	else if (fwnet_incoming_packet(dev, payload, length,
820 				       source, generation, false) != 0) {
821 		fw_error("Incoming packet failure\n");
822 		rcode = RCODE_CONFLICT_ERROR;
823 	} else
824 		rcode = RCODE_COMPLETE;
825 
826 	fw_send_response(card, r, rcode);
827 }
828 
829 static void fwnet_receive_broadcast(struct fw_iso_context *context,
830 		u32 cycle, size_t header_length, void *header, void *data)
831 {
832 	struct fwnet_device *dev;
833 	struct fw_iso_packet packet;
834 	struct fw_card *card;
835 	__be16 *hdr_ptr;
836 	__be32 *buf_ptr;
837 	int retval;
838 	u32 length;
839 	u16 source_node_id;
840 	u32 specifier_id;
841 	u32 ver;
842 	unsigned long offset;
843 	unsigned long flags;
844 
845 	dev = data;
846 	card = dev->card;
847 	hdr_ptr = header;
848 	length = be16_to_cpup(hdr_ptr);
849 
850 	spin_lock_irqsave(&dev->lock, flags);
851 
852 	offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
853 	buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
854 	if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
855 		dev->broadcast_rcv_next_ptr = 0;
856 
857 	spin_unlock_irqrestore(&dev->lock, flags);
858 
859 	specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
860 			| (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
861 	ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
862 	source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
863 
864 	if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
865 		buf_ptr += 2;
866 		length -= IEEE1394_GASP_HDR_SIZE;
867 		fwnet_incoming_packet(dev, buf_ptr, length,
868 				      source_node_id, -1, true);
869 	}
870 
871 	packet.payload_length = dev->rcv_buffer_size;
872 	packet.interrupt = 1;
873 	packet.skip = 0;
874 	packet.tag = 3;
875 	packet.sy = 0;
876 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
877 
878 	spin_lock_irqsave(&dev->lock, flags);
879 
880 	retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
881 				      &dev->broadcast_rcv_buffer, offset);
882 
883 	spin_unlock_irqrestore(&dev->lock, flags);
884 
885 	if (retval >= 0)
886 		fw_iso_context_queue_flush(dev->broadcast_rcv_context);
887 	else
888 		fw_error("requeue failed\n");
889 }
890 
891 static struct kmem_cache *fwnet_packet_task_cache;
892 
893 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
894 {
895 	dev_kfree_skb_any(ptask->skb);
896 	kmem_cache_free(fwnet_packet_task_cache, ptask);
897 }
898 
899 /* Caller must hold dev->lock. */
900 static void dec_queued_datagrams(struct fwnet_device *dev)
901 {
902 	if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
903 		netif_wake_queue(dev->netdev);
904 }
905 
906 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
907 
908 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
909 {
910 	struct fwnet_device *dev = ptask->dev;
911 	struct sk_buff *skb = ptask->skb;
912 	unsigned long flags;
913 	bool free;
914 
915 	spin_lock_irqsave(&dev->lock, flags);
916 
917 	ptask->outstanding_pkts--;
918 
919 	/* Check whether we or the networking TX soft-IRQ is last user. */
920 	free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
921 	if (free)
922 		dec_queued_datagrams(dev);
923 
924 	if (ptask->outstanding_pkts == 0) {
925 		dev->netdev->stats.tx_packets++;
926 		dev->netdev->stats.tx_bytes += skb->len;
927 	}
928 
929 	spin_unlock_irqrestore(&dev->lock, flags);
930 
931 	if (ptask->outstanding_pkts > 0) {
932 		u16 dg_size;
933 		u16 fg_off;
934 		u16 datagram_label;
935 		u16 lf;
936 
937 		/* Update the ptask to point to the next fragment and send it */
938 		lf = fwnet_get_hdr_lf(&ptask->hdr);
939 		switch (lf) {
940 		case RFC2374_HDR_LASTFRAG:
941 		case RFC2374_HDR_UNFRAG:
942 		default:
943 			fw_error("Outstanding packet %x lf %x, header %x,%x\n",
944 				 ptask->outstanding_pkts, lf, ptask->hdr.w0,
945 				 ptask->hdr.w1);
946 			BUG();
947 
948 		case RFC2374_HDR_FIRSTFRAG:
949 			/* Set frag type here for future interior fragments */
950 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
951 			fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
952 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
953 			break;
954 
955 		case RFC2374_HDR_INTFRAG:
956 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
957 			fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
958 				  + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
959 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
960 			break;
961 		}
962 
963 		skb_pull(skb, ptask->max_payload);
964 		if (ptask->outstanding_pkts > 1) {
965 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
966 					  dg_size, fg_off, datagram_label);
967 		} else {
968 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
969 					  dg_size, fg_off, datagram_label);
970 			ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
971 		}
972 		fwnet_send_packet(ptask);
973 	}
974 
975 	if (free)
976 		fwnet_free_ptask(ptask);
977 }
978 
979 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
980 {
981 	struct fwnet_device *dev = ptask->dev;
982 	unsigned long flags;
983 	bool free;
984 
985 	spin_lock_irqsave(&dev->lock, flags);
986 
987 	/* One fragment failed; don't try to send remaining fragments. */
988 	ptask->outstanding_pkts = 0;
989 
990 	/* Check whether we or the networking TX soft-IRQ is last user. */
991 	free = ptask->enqueued;
992 	if (free)
993 		dec_queued_datagrams(dev);
994 
995 	dev->netdev->stats.tx_dropped++;
996 	dev->netdev->stats.tx_errors++;
997 
998 	spin_unlock_irqrestore(&dev->lock, flags);
999 
1000 	if (free)
1001 		fwnet_free_ptask(ptask);
1002 }
1003 
1004 static void fwnet_write_complete(struct fw_card *card, int rcode,
1005 				 void *payload, size_t length, void *data)
1006 {
1007 	struct fwnet_packet_task *ptask = data;
1008 	static unsigned long j;
1009 	static int last_rcode, errors_skipped;
1010 
1011 	if (rcode == RCODE_COMPLETE) {
1012 		fwnet_transmit_packet_done(ptask);
1013 	} else {
1014 		fwnet_transmit_packet_failed(ptask);
1015 
1016 		if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
1017 			fw_error("fwnet_write_complete: "
1018 				"failed: %x (skipped %d)\n", rcode, errors_skipped);
1019 
1020 			errors_skipped = 0;
1021 			last_rcode = rcode;
1022 		} else
1023 			errors_skipped++;
1024 	}
1025 }
1026 
1027 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1028 {
1029 	struct fwnet_device *dev;
1030 	unsigned tx_len;
1031 	struct rfc2734_header *bufhdr;
1032 	unsigned long flags;
1033 	bool free;
1034 
1035 	dev = ptask->dev;
1036 	tx_len = ptask->max_payload;
1037 	switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1038 	case RFC2374_HDR_UNFRAG:
1039 		bufhdr = (struct rfc2734_header *)
1040 				skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1041 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1042 		break;
1043 
1044 	case RFC2374_HDR_FIRSTFRAG:
1045 	case RFC2374_HDR_INTFRAG:
1046 	case RFC2374_HDR_LASTFRAG:
1047 		bufhdr = (struct rfc2734_header *)
1048 				skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1049 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1050 		put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1051 		break;
1052 
1053 	default:
1054 		BUG();
1055 	}
1056 	if (ptask->dest_node == IEEE1394_ALL_NODES) {
1057 		u8 *p;
1058 		int generation;
1059 		int node_id;
1060 
1061 		/* ptask->generation may not have been set yet */
1062 		generation = dev->card->generation;
1063 		smp_rmb();
1064 		node_id = dev->card->node_id;
1065 
1066 		p = skb_push(ptask->skb, 8);
1067 		put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1068 		put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1069 						| RFC2734_SW_VERSION, &p[4]);
1070 
1071 		/* We should not transmit if broadcast_channel.valid == 0. */
1072 		fw_send_request(dev->card, &ptask->transaction,
1073 				TCODE_STREAM_DATA,
1074 				fw_stream_packet_destination_id(3,
1075 						IEEE1394_BROADCAST_CHANNEL, 0),
1076 				generation, SCODE_100, 0ULL, ptask->skb->data,
1077 				tx_len + 8, fwnet_write_complete, ptask);
1078 
1079 		spin_lock_irqsave(&dev->lock, flags);
1080 
1081 		/* If the AT tasklet already ran, we may be last user. */
1082 		free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1083 		if (!free)
1084 			ptask->enqueued = true;
1085 		else
1086 			dec_queued_datagrams(dev);
1087 
1088 		spin_unlock_irqrestore(&dev->lock, flags);
1089 
1090 		goto out;
1091 	}
1092 
1093 	fw_send_request(dev->card, &ptask->transaction,
1094 			TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1095 			ptask->generation, ptask->speed, ptask->fifo_addr,
1096 			ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1097 
1098 	spin_lock_irqsave(&dev->lock, flags);
1099 
1100 	/* If the AT tasklet already ran, we may be last user. */
1101 	free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1102 	if (!free)
1103 		ptask->enqueued = true;
1104 	else
1105 		dec_queued_datagrams(dev);
1106 
1107 	spin_unlock_irqrestore(&dev->lock, flags);
1108 
1109 	dev->netdev->trans_start = jiffies;
1110  out:
1111 	if (free)
1112 		fwnet_free_ptask(ptask);
1113 
1114 	return 0;
1115 }
1116 
1117 static int fwnet_broadcast_start(struct fwnet_device *dev)
1118 {
1119 	struct fw_iso_context *context;
1120 	int retval;
1121 	unsigned num_packets;
1122 	unsigned max_receive;
1123 	struct fw_iso_packet packet;
1124 	unsigned long offset;
1125 	unsigned u;
1126 
1127 	if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1128 		/* outside OHCI posted write area? */
1129 		static const struct fw_address_region region = {
1130 			.start = 0xffff00000000ULL,
1131 			.end   = CSR_REGISTER_BASE,
1132 		};
1133 
1134 		dev->handler.length = 4096;
1135 		dev->handler.address_callback = fwnet_receive_packet;
1136 		dev->handler.callback_data = dev;
1137 
1138 		retval = fw_core_add_address_handler(&dev->handler, &region);
1139 		if (retval < 0)
1140 			goto failed_initial;
1141 
1142 		dev->local_fifo = dev->handler.offset;
1143 	}
1144 
1145 	max_receive = 1U << (dev->card->max_receive + 1);
1146 	num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1147 
1148 	if (!dev->broadcast_rcv_context) {
1149 		void **ptrptr;
1150 
1151 		context = fw_iso_context_create(dev->card,
1152 		    FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1153 		    dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1154 		if (IS_ERR(context)) {
1155 			retval = PTR_ERR(context);
1156 			goto failed_context_create;
1157 		}
1158 
1159 		retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1160 		    dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1161 		if (retval < 0)
1162 			goto failed_buffer_init;
1163 
1164 		ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1165 		if (!ptrptr) {
1166 			retval = -ENOMEM;
1167 			goto failed_ptrs_alloc;
1168 		}
1169 
1170 		dev->broadcast_rcv_buffer_ptrs = ptrptr;
1171 		for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1172 			void *ptr;
1173 			unsigned v;
1174 
1175 			ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1176 			for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1177 				*ptrptr++ = (void *)
1178 						((char *)ptr + v * max_receive);
1179 		}
1180 		dev->broadcast_rcv_context = context;
1181 	} else {
1182 		context = dev->broadcast_rcv_context;
1183 	}
1184 
1185 	packet.payload_length = max_receive;
1186 	packet.interrupt = 1;
1187 	packet.skip = 0;
1188 	packet.tag = 3;
1189 	packet.sy = 0;
1190 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
1191 	offset = 0;
1192 
1193 	for (u = 0; u < num_packets; u++) {
1194 		retval = fw_iso_context_queue(context, &packet,
1195 				&dev->broadcast_rcv_buffer, offset);
1196 		if (retval < 0)
1197 			goto failed_rcv_queue;
1198 
1199 		offset += max_receive;
1200 	}
1201 	dev->num_broadcast_rcv_ptrs = num_packets;
1202 	dev->rcv_buffer_size = max_receive;
1203 	dev->broadcast_rcv_next_ptr = 0U;
1204 	retval = fw_iso_context_start(context, -1, 0,
1205 			FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1206 	if (retval < 0)
1207 		goto failed_rcv_queue;
1208 
1209 	/* FIXME: adjust it according to the min. speed of all known peers? */
1210 	dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1211 			- IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1212 	dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1213 
1214 	return 0;
1215 
1216  failed_rcv_queue:
1217 	kfree(dev->broadcast_rcv_buffer_ptrs);
1218 	dev->broadcast_rcv_buffer_ptrs = NULL;
1219  failed_ptrs_alloc:
1220 	fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1221  failed_buffer_init:
1222 	fw_iso_context_destroy(context);
1223 	dev->broadcast_rcv_context = NULL;
1224  failed_context_create:
1225 	fw_core_remove_address_handler(&dev->handler);
1226  failed_initial:
1227 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1228 
1229 	return retval;
1230 }
1231 
1232 static void set_carrier_state(struct fwnet_device *dev)
1233 {
1234 	if (dev->peer_count > 1)
1235 		netif_carrier_on(dev->netdev);
1236 	else
1237 		netif_carrier_off(dev->netdev);
1238 }
1239 
1240 /* ifup */
1241 static int fwnet_open(struct net_device *net)
1242 {
1243 	struct fwnet_device *dev = netdev_priv(net);
1244 	int ret;
1245 
1246 	if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1247 		ret = fwnet_broadcast_start(dev);
1248 		if (ret)
1249 			return ret;
1250 	}
1251 	netif_start_queue(net);
1252 
1253 	spin_lock_irq(&dev->lock);
1254 	set_carrier_state(dev);
1255 	spin_unlock_irq(&dev->lock);
1256 
1257 	return 0;
1258 }
1259 
1260 /* ifdown */
1261 static int fwnet_stop(struct net_device *net)
1262 {
1263 	netif_stop_queue(net);
1264 
1265 	/* Deallocate iso context for use by other applications? */
1266 
1267 	return 0;
1268 }
1269 
1270 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1271 {
1272 	struct fwnet_header hdr_buf;
1273 	struct fwnet_device *dev = netdev_priv(net);
1274 	__be16 proto;
1275 	u16 dest_node;
1276 	unsigned max_payload;
1277 	u16 dg_size;
1278 	u16 *datagram_label_ptr;
1279 	struct fwnet_packet_task *ptask;
1280 	struct fwnet_peer *peer;
1281 	unsigned long flags;
1282 
1283 	spin_lock_irqsave(&dev->lock, flags);
1284 
1285 	/* Can this happen? */
1286 	if (netif_queue_stopped(dev->netdev)) {
1287 		spin_unlock_irqrestore(&dev->lock, flags);
1288 
1289 		return NETDEV_TX_BUSY;
1290 	}
1291 
1292 	ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1293 	if (ptask == NULL)
1294 		goto fail;
1295 
1296 	skb = skb_share_check(skb, GFP_ATOMIC);
1297 	if (!skb)
1298 		goto fail;
1299 
1300 	/*
1301 	 * Make a copy of the driver-specific header.
1302 	 * We might need to rebuild the header on tx failure.
1303 	 */
1304 	memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1305 	skb_pull(skb, sizeof(hdr_buf));
1306 
1307 	proto = hdr_buf.h_proto;
1308 	dg_size = skb->len;
1309 
1310 	/*
1311 	 * Set the transmission type for the packet.  ARP packets and IP
1312 	 * broadcast packets are sent via GASP.
1313 	 */
1314 	if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1315 	    || proto == htons(ETH_P_ARP)
1316 	    || (proto == htons(ETH_P_IP)
1317 		&& IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1318 		max_payload        = dev->broadcast_xmt_max_payload;
1319 		datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1320 
1321 		ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1322 		ptask->generation  = 0;
1323 		ptask->dest_node   = IEEE1394_ALL_NODES;
1324 		ptask->speed       = SCODE_100;
1325 	} else {
1326 		__be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1327 		u8 generation;
1328 
1329 		peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1330 		if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1331 			goto fail;
1332 
1333 		generation         = peer->generation;
1334 		dest_node          = peer->node_id;
1335 		max_payload        = peer->max_payload;
1336 		datagram_label_ptr = &peer->datagram_label;
1337 
1338 		ptask->fifo_addr   = peer->fifo;
1339 		ptask->generation  = generation;
1340 		ptask->dest_node   = dest_node;
1341 		ptask->speed       = peer->speed;
1342 	}
1343 
1344 	/* If this is an ARP packet, convert it */
1345 	if (proto == htons(ETH_P_ARP)) {
1346 		struct arphdr *arp = (struct arphdr *)skb->data;
1347 		unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1348 		struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1349 		__be32 ipaddr;
1350 
1351 		ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1352 
1353 		arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1354 		arp1394->max_rec        = dev->card->max_receive;
1355 		arp1394->sspd		= dev->card->link_speed;
1356 
1357 		put_unaligned_be16(dev->local_fifo >> 32,
1358 				   &arp1394->fifo_hi);
1359 		put_unaligned_be32(dev->local_fifo & 0xffffffff,
1360 				   &arp1394->fifo_lo);
1361 		put_unaligned(ipaddr, &arp1394->sip);
1362 	}
1363 
1364 	ptask->hdr.w0 = 0;
1365 	ptask->hdr.w1 = 0;
1366 	ptask->skb = skb;
1367 	ptask->dev = dev;
1368 
1369 	/* Does it all fit in one packet? */
1370 	if (dg_size <= max_payload) {
1371 		fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1372 		ptask->outstanding_pkts = 1;
1373 		max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1374 	} else {
1375 		u16 datagram_label;
1376 
1377 		max_payload -= RFC2374_FRAG_OVERHEAD;
1378 		datagram_label = (*datagram_label_ptr)++;
1379 		fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1380 				  datagram_label);
1381 		ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1382 		max_payload += RFC2374_FRAG_HDR_SIZE;
1383 	}
1384 
1385 	if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1386 		netif_stop_queue(dev->netdev);
1387 
1388 	spin_unlock_irqrestore(&dev->lock, flags);
1389 
1390 	ptask->max_payload = max_payload;
1391 	ptask->enqueued    = 0;
1392 
1393 	fwnet_send_packet(ptask);
1394 
1395 	return NETDEV_TX_OK;
1396 
1397  fail:
1398 	spin_unlock_irqrestore(&dev->lock, flags);
1399 
1400 	if (ptask)
1401 		kmem_cache_free(fwnet_packet_task_cache, ptask);
1402 
1403 	if (skb != NULL)
1404 		dev_kfree_skb(skb);
1405 
1406 	net->stats.tx_dropped++;
1407 	net->stats.tx_errors++;
1408 
1409 	/*
1410 	 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1411 	 * causes serious problems" here, allegedly.  Before that patch,
1412 	 * -ERRNO was returned which is not appropriate under Linux 2.6.
1413 	 * Perhaps more needs to be done?  Stop the queue in serious
1414 	 * conditions and restart it elsewhere?
1415 	 */
1416 	return NETDEV_TX_OK;
1417 }
1418 
1419 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1420 {
1421 	if (new_mtu < 68)
1422 		return -EINVAL;
1423 
1424 	net->mtu = new_mtu;
1425 	return 0;
1426 }
1427 
1428 static const struct ethtool_ops fwnet_ethtool_ops = {
1429 	.get_link	= ethtool_op_get_link,
1430 };
1431 
1432 static const struct net_device_ops fwnet_netdev_ops = {
1433 	.ndo_open       = fwnet_open,
1434 	.ndo_stop	= fwnet_stop,
1435 	.ndo_start_xmit = fwnet_tx,
1436 	.ndo_change_mtu = fwnet_change_mtu,
1437 };
1438 
1439 static void fwnet_init_dev(struct net_device *net)
1440 {
1441 	net->header_ops		= &fwnet_header_ops;
1442 	net->netdev_ops		= &fwnet_netdev_ops;
1443 	net->watchdog_timeo	= 2 * HZ;
1444 	net->flags		= IFF_BROADCAST | IFF_MULTICAST;
1445 	net->features		= NETIF_F_HIGHDMA;
1446 	net->addr_len		= FWNET_ALEN;
1447 	net->hard_header_len	= FWNET_HLEN;
1448 	net->type		= ARPHRD_IEEE1394;
1449 	net->tx_queue_len	= FWNET_TX_QUEUE_LEN;
1450 	net->ethtool_ops	= &fwnet_ethtool_ops;
1451 }
1452 
1453 /* caller must hold fwnet_device_mutex */
1454 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1455 {
1456 	struct fwnet_device *dev;
1457 
1458 	list_for_each_entry(dev, &fwnet_device_list, dev_link)
1459 		if (dev->card == card)
1460 			return dev;
1461 
1462 	return NULL;
1463 }
1464 
1465 static int fwnet_add_peer(struct fwnet_device *dev,
1466 			  struct fw_unit *unit, struct fw_device *device)
1467 {
1468 	struct fwnet_peer *peer;
1469 
1470 	peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1471 	if (!peer)
1472 		return -ENOMEM;
1473 
1474 	dev_set_drvdata(&unit->device, peer);
1475 
1476 	peer->dev = dev;
1477 	peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1478 	peer->fifo = FWNET_NO_FIFO_ADDR;
1479 	peer->ip = 0;
1480 	INIT_LIST_HEAD(&peer->pd_list);
1481 	peer->pdg_size = 0;
1482 	peer->datagram_label = 0;
1483 	peer->speed = device->max_speed;
1484 	peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1485 
1486 	peer->generation = device->generation;
1487 	smp_rmb();
1488 	peer->node_id = device->node_id;
1489 
1490 	spin_lock_irq(&dev->lock);
1491 	list_add_tail(&peer->peer_link, &dev->peer_list);
1492 	dev->peer_count++;
1493 	set_carrier_state(dev);
1494 	spin_unlock_irq(&dev->lock);
1495 
1496 	return 0;
1497 }
1498 
1499 static int fwnet_probe(struct device *_dev)
1500 {
1501 	struct fw_unit *unit = fw_unit(_dev);
1502 	struct fw_device *device = fw_parent_device(unit);
1503 	struct fw_card *card = device->card;
1504 	struct net_device *net;
1505 	bool allocated_netdev = false;
1506 	struct fwnet_device *dev;
1507 	unsigned max_mtu;
1508 	int ret;
1509 
1510 	mutex_lock(&fwnet_device_mutex);
1511 
1512 	dev = fwnet_dev_find(card);
1513 	if (dev) {
1514 		net = dev->netdev;
1515 		goto have_dev;
1516 	}
1517 
1518 	net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1519 	if (net == NULL) {
1520 		ret = -ENOMEM;
1521 		goto out;
1522 	}
1523 
1524 	allocated_netdev = true;
1525 	SET_NETDEV_DEV(net, card->device);
1526 	dev = netdev_priv(net);
1527 
1528 	spin_lock_init(&dev->lock);
1529 	dev->broadcast_state = FWNET_BROADCAST_ERROR;
1530 	dev->broadcast_rcv_context = NULL;
1531 	dev->broadcast_xmt_max_payload = 0;
1532 	dev->broadcast_xmt_datagramlabel = 0;
1533 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1534 	dev->queued_datagrams = 0;
1535 	INIT_LIST_HEAD(&dev->peer_list);
1536 	dev->card = card;
1537 	dev->netdev = net;
1538 
1539 	/*
1540 	 * Use the RFC 2734 default 1500 octets or the maximum payload
1541 	 * as initial MTU
1542 	 */
1543 	max_mtu = (1 << (card->max_receive + 1))
1544 		  - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1545 	net->mtu = min(1500U, max_mtu);
1546 
1547 	/* Set our hardware address while we're at it */
1548 	put_unaligned_be64(card->guid, net->dev_addr);
1549 	put_unaligned_be64(~0ULL, net->broadcast);
1550 	ret = register_netdev(net);
1551 	if (ret) {
1552 		fw_error("Cannot register the driver\n");
1553 		goto out;
1554 	}
1555 
1556 	list_add_tail(&dev->dev_link, &fwnet_device_list);
1557 	fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1558 		  net->name, (unsigned long long)card->guid);
1559  have_dev:
1560 	ret = fwnet_add_peer(dev, unit, device);
1561 	if (ret && allocated_netdev) {
1562 		unregister_netdev(net);
1563 		list_del(&dev->dev_link);
1564 	}
1565  out:
1566 	if (ret && allocated_netdev)
1567 		free_netdev(net);
1568 
1569 	mutex_unlock(&fwnet_device_mutex);
1570 
1571 	return ret;
1572 }
1573 
1574 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1575 {
1576 	struct fwnet_partial_datagram *pd, *pd_next;
1577 
1578 	spin_lock_irq(&dev->lock);
1579 	list_del(&peer->peer_link);
1580 	dev->peer_count--;
1581 	set_carrier_state(dev);
1582 	spin_unlock_irq(&dev->lock);
1583 
1584 	list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1585 		fwnet_pd_delete(pd);
1586 
1587 	kfree(peer);
1588 }
1589 
1590 static int fwnet_remove(struct device *_dev)
1591 {
1592 	struct fwnet_peer *peer = dev_get_drvdata(_dev);
1593 	struct fwnet_device *dev = peer->dev;
1594 	struct net_device *net;
1595 	int i;
1596 
1597 	mutex_lock(&fwnet_device_mutex);
1598 
1599 	net = dev->netdev;
1600 	if (net && peer->ip)
1601 		arp_invalidate(net, peer->ip);
1602 
1603 	fwnet_remove_peer(peer, dev);
1604 
1605 	if (list_empty(&dev->peer_list)) {
1606 		unregister_netdev(net);
1607 
1608 		if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1609 			fw_core_remove_address_handler(&dev->handler);
1610 		if (dev->broadcast_rcv_context) {
1611 			fw_iso_context_stop(dev->broadcast_rcv_context);
1612 			fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1613 					      dev->card);
1614 			fw_iso_context_destroy(dev->broadcast_rcv_context);
1615 		}
1616 		for (i = 0; dev->queued_datagrams && i < 5; i++)
1617 			ssleep(1);
1618 		WARN_ON(dev->queued_datagrams);
1619 		list_del(&dev->dev_link);
1620 
1621 		free_netdev(net);
1622 	}
1623 
1624 	mutex_unlock(&fwnet_device_mutex);
1625 
1626 	return 0;
1627 }
1628 
1629 /*
1630  * FIXME abort partially sent fragmented datagrams,
1631  * discard partially received fragmented datagrams
1632  */
1633 static void fwnet_update(struct fw_unit *unit)
1634 {
1635 	struct fw_device *device = fw_parent_device(unit);
1636 	struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1637 	int generation;
1638 
1639 	generation = device->generation;
1640 
1641 	spin_lock_irq(&peer->dev->lock);
1642 	peer->node_id    = device->node_id;
1643 	peer->generation = generation;
1644 	spin_unlock_irq(&peer->dev->lock);
1645 }
1646 
1647 static const struct ieee1394_device_id fwnet_id_table[] = {
1648 	{
1649 		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1650 				IEEE1394_MATCH_VERSION,
1651 		.specifier_id = IANA_SPECIFIER_ID,
1652 		.version      = RFC2734_SW_VERSION,
1653 	},
1654 	{ }
1655 };
1656 
1657 static struct fw_driver fwnet_driver = {
1658 	.driver = {
1659 		.owner  = THIS_MODULE,
1660 		.name   = "net",
1661 		.bus    = &fw_bus_type,
1662 		.probe  = fwnet_probe,
1663 		.remove = fwnet_remove,
1664 	},
1665 	.update   = fwnet_update,
1666 	.id_table = fwnet_id_table,
1667 };
1668 
1669 static const u32 rfc2374_unit_directory_data[] = {
1670 	0x00040000,	/* directory_length		*/
1671 	0x1200005e,	/* unit_specifier_id: IANA	*/
1672 	0x81000003,	/* textual descriptor offset	*/
1673 	0x13000001,	/* unit_sw_version: RFC 2734	*/
1674 	0x81000005,	/* textual descriptor offset	*/
1675 	0x00030000,	/* descriptor_length		*/
1676 	0x00000000,	/* text				*/
1677 	0x00000000,	/* minimal ASCII, en		*/
1678 	0x49414e41,	/* I A N A			*/
1679 	0x00030000,	/* descriptor_length		*/
1680 	0x00000000,	/* text				*/
1681 	0x00000000,	/* minimal ASCII, en		*/
1682 	0x49507634,	/* I P v 4			*/
1683 };
1684 
1685 static struct fw_descriptor rfc2374_unit_directory = {
1686 	.length = ARRAY_SIZE(rfc2374_unit_directory_data),
1687 	.key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1688 	.data   = rfc2374_unit_directory_data
1689 };
1690 
1691 static int __init fwnet_init(void)
1692 {
1693 	int err;
1694 
1695 	err = fw_core_add_descriptor(&rfc2374_unit_directory);
1696 	if (err)
1697 		return err;
1698 
1699 	fwnet_packet_task_cache = kmem_cache_create("packet_task",
1700 			sizeof(struct fwnet_packet_task), 0, 0, NULL);
1701 	if (!fwnet_packet_task_cache) {
1702 		err = -ENOMEM;
1703 		goto out;
1704 	}
1705 
1706 	err = driver_register(&fwnet_driver.driver);
1707 	if (!err)
1708 		return 0;
1709 
1710 	kmem_cache_destroy(fwnet_packet_task_cache);
1711 out:
1712 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1713 
1714 	return err;
1715 }
1716 module_init(fwnet_init);
1717 
1718 static void __exit fwnet_cleanup(void)
1719 {
1720 	driver_unregister(&fwnet_driver.driver);
1721 	kmem_cache_destroy(fwnet_packet_task_cache);
1722 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1723 }
1724 module_exit(fwnet_cleanup);
1725 
1726 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1727 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1728 MODULE_LICENSE("GPL");
1729 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
1730