xref: /openbmc/linux/drivers/firewire/net.c (revision 7fe2f639)
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8 
9 #include <linux/bug.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/ethtool.h>
13 #include <linux/firewire.h>
14 #include <linux/firewire-constants.h>
15 #include <linux/highmem.h>
16 #include <linux/in.h>
17 #include <linux/ip.h>
18 #include <linux/jiffies.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mutex.h>
23 #include <linux/netdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 
28 #include <asm/unaligned.h>
29 #include <net/arp.h>
30 
31 /* rx limits */
32 #define FWNET_MAX_FRAGMENTS		30 /* arbitrary, > TX queue depth */
33 #define FWNET_ISO_PAGE_COUNT		(PAGE_SIZE < 16*1024 ? 4 : 2)
34 
35 /* tx limits */
36 #define FWNET_MAX_QUEUED_DATAGRAMS	20 /* < 64 = number of tlabels */
37 #define FWNET_MIN_QUEUED_DATAGRAMS	10 /* should keep AT DMA busy enough */
38 #define FWNET_TX_QUEUE_LEN		FWNET_MAX_QUEUED_DATAGRAMS /* ? */
39 
40 #define IEEE1394_BROADCAST_CHANNEL	31
41 #define IEEE1394_ALL_NODES		(0xffc0 | 0x003f)
42 #define IEEE1394_MAX_PAYLOAD_S100	512
43 #define FWNET_NO_FIFO_ADDR		(~0ULL)
44 
45 #define IANA_SPECIFIER_ID		0x00005eU
46 #define RFC2734_SW_VERSION		0x000001U
47 
48 #define IEEE1394_GASP_HDR_SIZE	8
49 
50 #define RFC2374_UNFRAG_HDR_SIZE	4
51 #define RFC2374_FRAG_HDR_SIZE	8
52 #define RFC2374_FRAG_OVERHEAD	4
53 
54 #define RFC2374_HDR_UNFRAG	0	/* unfragmented		*/
55 #define RFC2374_HDR_FIRSTFRAG	1	/* first fragment	*/
56 #define RFC2374_HDR_LASTFRAG	2	/* last fragment	*/
57 #define RFC2374_HDR_INTFRAG	3	/* interior fragment	*/
58 
59 #define RFC2734_HW_ADDR_LEN	16
60 
61 struct rfc2734_arp {
62 	__be16 hw_type;		/* 0x0018	*/
63 	__be16 proto_type;	/* 0x0806       */
64 	u8 hw_addr_len;		/* 16		*/
65 	u8 ip_addr_len;		/* 4		*/
66 	__be16 opcode;		/* ARP Opcode	*/
67 	/* Above is exactly the same format as struct arphdr */
68 
69 	__be64 s_uniq_id;	/* Sender's 64bit EUI			*/
70 	u8 max_rec;		/* Sender's max packet size		*/
71 	u8 sspd;		/* Sender's max speed			*/
72 	__be16 fifo_hi;		/* hi 16bits of sender's FIFO addr	*/
73 	__be32 fifo_lo;		/* lo 32bits of sender's FIFO addr	*/
74 	__be32 sip;		/* Sender's IP Address			*/
75 	__be32 tip;		/* IP Address of requested hw addr	*/
76 } __attribute__((packed));
77 
78 /* This header format is specific to this driver implementation. */
79 #define FWNET_ALEN	8
80 #define FWNET_HLEN	10
81 struct fwnet_header {
82 	u8 h_dest[FWNET_ALEN];	/* destination address */
83 	__be16 h_proto;		/* packet type ID field */
84 } __attribute__((packed));
85 
86 /* IPv4 and IPv6 encapsulation header */
87 struct rfc2734_header {
88 	u32 w0;
89 	u32 w1;
90 };
91 
92 #define fwnet_get_hdr_lf(h)		(((h)->w0 & 0xc0000000) >> 30)
93 #define fwnet_get_hdr_ether_type(h)	(((h)->w0 & 0x0000ffff))
94 #define fwnet_get_hdr_dg_size(h)	(((h)->w0 & 0x0fff0000) >> 16)
95 #define fwnet_get_hdr_fg_off(h)		(((h)->w0 & 0x00000fff))
96 #define fwnet_get_hdr_dgl(h)		(((h)->w1 & 0xffff0000) >> 16)
97 
98 #define fwnet_set_hdr_lf(lf)		((lf)  << 30)
99 #define fwnet_set_hdr_ether_type(et)	(et)
100 #define fwnet_set_hdr_dg_size(dgs)	((dgs) << 16)
101 #define fwnet_set_hdr_fg_off(fgo)	(fgo)
102 
103 #define fwnet_set_hdr_dgl(dgl)		((dgl) << 16)
104 
105 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
106 		unsigned ether_type)
107 {
108 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
109 		  | fwnet_set_hdr_ether_type(ether_type);
110 }
111 
112 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
113 		unsigned ether_type, unsigned dg_size, unsigned dgl)
114 {
115 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
116 		  | fwnet_set_hdr_dg_size(dg_size)
117 		  | fwnet_set_hdr_ether_type(ether_type);
118 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
119 }
120 
121 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
122 		unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
123 {
124 	hdr->w0 = fwnet_set_hdr_lf(lf)
125 		  | fwnet_set_hdr_dg_size(dg_size)
126 		  | fwnet_set_hdr_fg_off(fg_off);
127 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
128 }
129 
130 /* This list keeps track of what parts of the datagram have been filled in */
131 struct fwnet_fragment_info {
132 	struct list_head fi_link;
133 	u16 offset;
134 	u16 len;
135 };
136 
137 struct fwnet_partial_datagram {
138 	struct list_head pd_link;
139 	struct list_head fi_list;
140 	struct sk_buff *skb;
141 	/* FIXME Why not use skb->data? */
142 	char *pbuf;
143 	u16 datagram_label;
144 	u16 ether_type;
145 	u16 datagram_size;
146 };
147 
148 static DEFINE_MUTEX(fwnet_device_mutex);
149 static LIST_HEAD(fwnet_device_list);
150 
151 struct fwnet_device {
152 	struct list_head dev_link;
153 	spinlock_t lock;
154 	enum {
155 		FWNET_BROADCAST_ERROR,
156 		FWNET_BROADCAST_RUNNING,
157 		FWNET_BROADCAST_STOPPED,
158 	} broadcast_state;
159 	struct fw_iso_context *broadcast_rcv_context;
160 	struct fw_iso_buffer broadcast_rcv_buffer;
161 	void **broadcast_rcv_buffer_ptrs;
162 	unsigned broadcast_rcv_next_ptr;
163 	unsigned num_broadcast_rcv_ptrs;
164 	unsigned rcv_buffer_size;
165 	/*
166 	 * This value is the maximum unfragmented datagram size that can be
167 	 * sent by the hardware.  It already has the GASP overhead and the
168 	 * unfragmented datagram header overhead calculated into it.
169 	 */
170 	unsigned broadcast_xmt_max_payload;
171 	u16 broadcast_xmt_datagramlabel;
172 
173 	/*
174 	 * The CSR address that remote nodes must send datagrams to for us to
175 	 * receive them.
176 	 */
177 	struct fw_address_handler handler;
178 	u64 local_fifo;
179 
180 	/* Number of tx datagrams that have been queued but not yet acked */
181 	int queued_datagrams;
182 
183 	int peer_count;
184 	struct list_head peer_list;
185 	struct fw_card *card;
186 	struct net_device *netdev;
187 };
188 
189 struct fwnet_peer {
190 	struct list_head peer_link;
191 	struct fwnet_device *dev;
192 	u64 guid;
193 	u64 fifo;
194 	__be32 ip;
195 
196 	/* guarded by dev->lock */
197 	struct list_head pd_list; /* received partial datagrams */
198 	unsigned pdg_size;        /* pd_list size */
199 
200 	u16 datagram_label;       /* outgoing datagram label */
201 	u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
202 	int node_id;
203 	int generation;
204 	unsigned speed;
205 };
206 
207 /* This is our task struct. It's used for the packet complete callback.  */
208 struct fwnet_packet_task {
209 	struct fw_transaction transaction;
210 	struct rfc2734_header hdr;
211 	struct sk_buff *skb;
212 	struct fwnet_device *dev;
213 
214 	int outstanding_pkts;
215 	u64 fifo_addr;
216 	u16 dest_node;
217 	u16 max_payload;
218 	u8 generation;
219 	u8 speed;
220 	u8 enqueued;
221 };
222 
223 /*
224  * saddr == NULL means use device source address.
225  * daddr == NULL means leave destination address (eg unresolved arp).
226  */
227 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
228 			unsigned short type, const void *daddr,
229 			const void *saddr, unsigned len)
230 {
231 	struct fwnet_header *h;
232 
233 	h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
234 	put_unaligned_be16(type, &h->h_proto);
235 
236 	if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
237 		memset(h->h_dest, 0, net->addr_len);
238 
239 		return net->hard_header_len;
240 	}
241 
242 	if (daddr) {
243 		memcpy(h->h_dest, daddr, net->addr_len);
244 
245 		return net->hard_header_len;
246 	}
247 
248 	return -net->hard_header_len;
249 }
250 
251 static int fwnet_header_rebuild(struct sk_buff *skb)
252 {
253 	struct fwnet_header *h = (struct fwnet_header *)skb->data;
254 
255 	if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
256 		return arp_find((unsigned char *)&h->h_dest, skb);
257 
258 	fw_notify("%s: unable to resolve type %04x addresses\n",
259 		  skb->dev->name, be16_to_cpu(h->h_proto));
260 	return 0;
261 }
262 
263 static int fwnet_header_cache(const struct neighbour *neigh,
264 			      struct hh_cache *hh)
265 {
266 	struct net_device *net;
267 	struct fwnet_header *h;
268 
269 	if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
270 		return -1;
271 	net = neigh->dev;
272 	h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
273 	h->h_proto = hh->hh_type;
274 	memcpy(h->h_dest, neigh->ha, net->addr_len);
275 	hh->hh_len = FWNET_HLEN;
276 
277 	return 0;
278 }
279 
280 /* Called by Address Resolution module to notify changes in address. */
281 static void fwnet_header_cache_update(struct hh_cache *hh,
282 		const struct net_device *net, const unsigned char *haddr)
283 {
284 	memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
285 }
286 
287 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
288 {
289 	memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
290 
291 	return FWNET_ALEN;
292 }
293 
294 static const struct header_ops fwnet_header_ops = {
295 	.create         = fwnet_header_create,
296 	.rebuild        = fwnet_header_rebuild,
297 	.cache		= fwnet_header_cache,
298 	.cache_update	= fwnet_header_cache_update,
299 	.parse          = fwnet_header_parse,
300 };
301 
302 /* FIXME: is this correct for all cases? */
303 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
304 			       unsigned offset, unsigned len)
305 {
306 	struct fwnet_fragment_info *fi;
307 	unsigned end = offset + len;
308 
309 	list_for_each_entry(fi, &pd->fi_list, fi_link)
310 		if (offset < fi->offset + fi->len && end > fi->offset)
311 			return true;
312 
313 	return false;
314 }
315 
316 /* Assumes that new fragment does not overlap any existing fragments */
317 static struct fwnet_fragment_info *fwnet_frag_new(
318 	struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
319 {
320 	struct fwnet_fragment_info *fi, *fi2, *new;
321 	struct list_head *list;
322 
323 	list = &pd->fi_list;
324 	list_for_each_entry(fi, &pd->fi_list, fi_link) {
325 		if (fi->offset + fi->len == offset) {
326 			/* The new fragment can be tacked on to the end */
327 			/* Did the new fragment plug a hole? */
328 			fi2 = list_entry(fi->fi_link.next,
329 					 struct fwnet_fragment_info, fi_link);
330 			if (fi->offset + fi->len == fi2->offset) {
331 				/* glue fragments together */
332 				fi->len += len + fi2->len;
333 				list_del(&fi2->fi_link);
334 				kfree(fi2);
335 			} else {
336 				fi->len += len;
337 			}
338 
339 			return fi;
340 		}
341 		if (offset + len == fi->offset) {
342 			/* The new fragment can be tacked on to the beginning */
343 			/* Did the new fragment plug a hole? */
344 			fi2 = list_entry(fi->fi_link.prev,
345 					 struct fwnet_fragment_info, fi_link);
346 			if (fi2->offset + fi2->len == fi->offset) {
347 				/* glue fragments together */
348 				fi2->len += fi->len + len;
349 				list_del(&fi->fi_link);
350 				kfree(fi);
351 
352 				return fi2;
353 			}
354 			fi->offset = offset;
355 			fi->len += len;
356 
357 			return fi;
358 		}
359 		if (offset > fi->offset + fi->len) {
360 			list = &fi->fi_link;
361 			break;
362 		}
363 		if (offset + len < fi->offset) {
364 			list = fi->fi_link.prev;
365 			break;
366 		}
367 	}
368 
369 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
370 	if (!new) {
371 		fw_error("out of memory\n");
372 		return NULL;
373 	}
374 
375 	new->offset = offset;
376 	new->len = len;
377 	list_add(&new->fi_link, list);
378 
379 	return new;
380 }
381 
382 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
383 		struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
384 		void *frag_buf, unsigned frag_off, unsigned frag_len)
385 {
386 	struct fwnet_partial_datagram *new;
387 	struct fwnet_fragment_info *fi;
388 
389 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
390 	if (!new)
391 		goto fail;
392 
393 	INIT_LIST_HEAD(&new->fi_list);
394 	fi = fwnet_frag_new(new, frag_off, frag_len);
395 	if (fi == NULL)
396 		goto fail_w_new;
397 
398 	new->datagram_label = datagram_label;
399 	new->datagram_size = dg_size;
400 	new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
401 	if (new->skb == NULL)
402 		goto fail_w_fi;
403 
404 	skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
405 	new->pbuf = skb_put(new->skb, dg_size);
406 	memcpy(new->pbuf + frag_off, frag_buf, frag_len);
407 	list_add_tail(&new->pd_link, &peer->pd_list);
408 
409 	return new;
410 
411 fail_w_fi:
412 	kfree(fi);
413 fail_w_new:
414 	kfree(new);
415 fail:
416 	fw_error("out of memory\n");
417 
418 	return NULL;
419 }
420 
421 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
422 						    u16 datagram_label)
423 {
424 	struct fwnet_partial_datagram *pd;
425 
426 	list_for_each_entry(pd, &peer->pd_list, pd_link)
427 		if (pd->datagram_label == datagram_label)
428 			return pd;
429 
430 	return NULL;
431 }
432 
433 
434 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
435 {
436 	struct fwnet_fragment_info *fi, *n;
437 
438 	list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
439 		kfree(fi);
440 
441 	list_del(&old->pd_link);
442 	dev_kfree_skb_any(old->skb);
443 	kfree(old);
444 }
445 
446 static bool fwnet_pd_update(struct fwnet_peer *peer,
447 		struct fwnet_partial_datagram *pd, void *frag_buf,
448 		unsigned frag_off, unsigned frag_len)
449 {
450 	if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
451 		return false;
452 
453 	memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
454 
455 	/*
456 	 * Move list entry to beginning of list so that oldest partial
457 	 * datagrams percolate to the end of the list
458 	 */
459 	list_move_tail(&pd->pd_link, &peer->pd_list);
460 
461 	return true;
462 }
463 
464 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
465 {
466 	struct fwnet_fragment_info *fi;
467 
468 	fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
469 
470 	return fi->len == pd->datagram_size;
471 }
472 
473 /* caller must hold dev->lock */
474 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
475 						  u64 guid)
476 {
477 	struct fwnet_peer *peer;
478 
479 	list_for_each_entry(peer, &dev->peer_list, peer_link)
480 		if (peer->guid == guid)
481 			return peer;
482 
483 	return NULL;
484 }
485 
486 /* caller must hold dev->lock */
487 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
488 						int node_id, int generation)
489 {
490 	struct fwnet_peer *peer;
491 
492 	list_for_each_entry(peer, &dev->peer_list, peer_link)
493 		if (peer->node_id    == node_id &&
494 		    peer->generation == generation)
495 			return peer;
496 
497 	return NULL;
498 }
499 
500 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
501 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
502 {
503 	max_rec = min(max_rec, speed + 8);
504 	max_rec = min(max_rec, 0xbU); /* <= 4096 */
505 	if (max_rec < 8) {
506 		fw_notify("max_rec %x out of range\n", max_rec);
507 		max_rec = 8;
508 	}
509 
510 	return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
511 }
512 
513 
514 static int fwnet_finish_incoming_packet(struct net_device *net,
515 					struct sk_buff *skb, u16 source_node_id,
516 					bool is_broadcast, u16 ether_type)
517 {
518 	struct fwnet_device *dev;
519 	static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
520 	int status;
521 	__be64 guid;
522 
523 	dev = netdev_priv(net);
524 	/* Write metadata, and then pass to the receive level */
525 	skb->dev = net;
526 	skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
527 
528 	/*
529 	 * Parse the encapsulation header. This actually does the job of
530 	 * converting to an ethernet frame header, as well as arp
531 	 * conversion if needed. ARP conversion is easier in this
532 	 * direction, since we are using ethernet as our backend.
533 	 */
534 	/*
535 	 * If this is an ARP packet, convert it. First, we want to make
536 	 * use of some of the fields, since they tell us a little bit
537 	 * about the sending machine.
538 	 */
539 	if (ether_type == ETH_P_ARP) {
540 		struct rfc2734_arp *arp1394;
541 		struct arphdr *arp;
542 		unsigned char *arp_ptr;
543 		u64 fifo_addr;
544 		u64 peer_guid;
545 		unsigned sspd;
546 		u16 max_payload;
547 		struct fwnet_peer *peer;
548 		unsigned long flags;
549 
550 		arp1394   = (struct rfc2734_arp *)skb->data;
551 		arp       = (struct arphdr *)skb->data;
552 		arp_ptr   = (unsigned char *)(arp + 1);
553 		peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
554 		fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
555 				| get_unaligned_be32(&arp1394->fifo_lo);
556 
557 		sspd = arp1394->sspd;
558 		/* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
559 		if (sspd > SCODE_3200) {
560 			fw_notify("sspd %x out of range\n", sspd);
561 			sspd = SCODE_3200;
562 		}
563 		max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
564 
565 		spin_lock_irqsave(&dev->lock, flags);
566 		peer = fwnet_peer_find_by_guid(dev, peer_guid);
567 		if (peer) {
568 			peer->fifo = fifo_addr;
569 
570 			if (peer->speed > sspd)
571 				peer->speed = sspd;
572 			if (peer->max_payload > max_payload)
573 				peer->max_payload = max_payload;
574 
575 			peer->ip = arp1394->sip;
576 		}
577 		spin_unlock_irqrestore(&dev->lock, flags);
578 
579 		if (!peer) {
580 			fw_notify("No peer for ARP packet from %016llx\n",
581 				  (unsigned long long)peer_guid);
582 			goto no_peer;
583 		}
584 
585 		/*
586 		 * Now that we're done with the 1394 specific stuff, we'll
587 		 * need to alter some of the data.  Believe it or not, all
588 		 * that needs to be done is sender_IP_address needs to be
589 		 * moved, the destination hardware address get stuffed
590 		 * in and the hardware address length set to 8.
591 		 *
592 		 * IMPORTANT: The code below overwrites 1394 specific data
593 		 * needed above so keep the munging of the data for the
594 		 * higher level IP stack last.
595 		 */
596 
597 		arp->ar_hln = 8;
598 		/* skip over sender unique id */
599 		arp_ptr += arp->ar_hln;
600 		/* move sender IP addr */
601 		put_unaligned(arp1394->sip, (u32 *)arp_ptr);
602 		/* skip over sender IP addr */
603 		arp_ptr += arp->ar_pln;
604 
605 		if (arp->ar_op == htons(ARPOP_REQUEST))
606 			memset(arp_ptr, 0, sizeof(u64));
607 		else
608 			memcpy(arp_ptr, net->dev_addr, sizeof(u64));
609 	}
610 
611 	/* Now add the ethernet header. */
612 	guid = cpu_to_be64(dev->card->guid);
613 	if (dev_hard_header(skb, net, ether_type,
614 			   is_broadcast ? &broadcast_hw : &guid,
615 			   NULL, skb->len) >= 0) {
616 		struct fwnet_header *eth;
617 		u16 *rawp;
618 		__be16 protocol;
619 
620 		skb_reset_mac_header(skb);
621 		skb_pull(skb, sizeof(*eth));
622 		eth = (struct fwnet_header *)skb_mac_header(skb);
623 		if (*eth->h_dest & 1) {
624 			if (memcmp(eth->h_dest, net->broadcast,
625 				   net->addr_len) == 0)
626 				skb->pkt_type = PACKET_BROADCAST;
627 #if 0
628 			else
629 				skb->pkt_type = PACKET_MULTICAST;
630 #endif
631 		} else {
632 			if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
633 				skb->pkt_type = PACKET_OTHERHOST;
634 		}
635 		if (ntohs(eth->h_proto) >= 1536) {
636 			protocol = eth->h_proto;
637 		} else {
638 			rawp = (u16 *)skb->data;
639 			if (*rawp == 0xffff)
640 				protocol = htons(ETH_P_802_3);
641 			else
642 				protocol = htons(ETH_P_802_2);
643 		}
644 		skb->protocol = protocol;
645 	}
646 	status = netif_rx(skb);
647 	if (status == NET_RX_DROP) {
648 		net->stats.rx_errors++;
649 		net->stats.rx_dropped++;
650 	} else {
651 		net->stats.rx_packets++;
652 		net->stats.rx_bytes += skb->len;
653 	}
654 
655 	return 0;
656 
657  no_peer:
658 	net->stats.rx_errors++;
659 	net->stats.rx_dropped++;
660 
661 	dev_kfree_skb_any(skb);
662 
663 	return -ENOENT;
664 }
665 
666 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
667 				 int source_node_id, int generation,
668 				 bool is_broadcast)
669 {
670 	struct sk_buff *skb;
671 	struct net_device *net = dev->netdev;
672 	struct rfc2734_header hdr;
673 	unsigned lf;
674 	unsigned long flags;
675 	struct fwnet_peer *peer;
676 	struct fwnet_partial_datagram *pd;
677 	int fg_off;
678 	int dg_size;
679 	u16 datagram_label;
680 	int retval;
681 	u16 ether_type;
682 
683 	hdr.w0 = be32_to_cpu(buf[0]);
684 	lf = fwnet_get_hdr_lf(&hdr);
685 	if (lf == RFC2374_HDR_UNFRAG) {
686 		/*
687 		 * An unfragmented datagram has been received by the ieee1394
688 		 * bus. Build an skbuff around it so we can pass it to the
689 		 * high level network layer.
690 		 */
691 		ether_type = fwnet_get_hdr_ether_type(&hdr);
692 		buf++;
693 		len -= RFC2374_UNFRAG_HDR_SIZE;
694 
695 		skb = dev_alloc_skb(len + net->hard_header_len + 15);
696 		if (unlikely(!skb)) {
697 			fw_error("out of memory\n");
698 			net->stats.rx_dropped++;
699 
700 			return -ENOMEM;
701 		}
702 		skb_reserve(skb, (net->hard_header_len + 15) & ~15);
703 		memcpy(skb_put(skb, len), buf, len);
704 
705 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
706 						    is_broadcast, ether_type);
707 	}
708 	/* A datagram fragment has been received, now the fun begins. */
709 	hdr.w1 = ntohl(buf[1]);
710 	buf += 2;
711 	len -= RFC2374_FRAG_HDR_SIZE;
712 	if (lf == RFC2374_HDR_FIRSTFRAG) {
713 		ether_type = fwnet_get_hdr_ether_type(&hdr);
714 		fg_off = 0;
715 	} else {
716 		ether_type = 0;
717 		fg_off = fwnet_get_hdr_fg_off(&hdr);
718 	}
719 	datagram_label = fwnet_get_hdr_dgl(&hdr);
720 	dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
721 
722 	spin_lock_irqsave(&dev->lock, flags);
723 
724 	peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
725 	if (!peer) {
726 		retval = -ENOENT;
727 		goto fail;
728 	}
729 
730 	pd = fwnet_pd_find(peer, datagram_label);
731 	if (pd == NULL) {
732 		while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
733 			/* remove the oldest */
734 			fwnet_pd_delete(list_first_entry(&peer->pd_list,
735 				struct fwnet_partial_datagram, pd_link));
736 			peer->pdg_size--;
737 		}
738 		pd = fwnet_pd_new(net, peer, datagram_label,
739 				  dg_size, buf, fg_off, len);
740 		if (pd == NULL) {
741 			retval = -ENOMEM;
742 			goto fail;
743 		}
744 		peer->pdg_size++;
745 	} else {
746 		if (fwnet_frag_overlap(pd, fg_off, len) ||
747 		    pd->datagram_size != dg_size) {
748 			/*
749 			 * Differing datagram sizes or overlapping fragments,
750 			 * discard old datagram and start a new one.
751 			 */
752 			fwnet_pd_delete(pd);
753 			pd = fwnet_pd_new(net, peer, datagram_label,
754 					  dg_size, buf, fg_off, len);
755 			if (pd == NULL) {
756 				peer->pdg_size--;
757 				retval = -ENOMEM;
758 				goto fail;
759 			}
760 		} else {
761 			if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
762 				/*
763 				 * Couldn't save off fragment anyway
764 				 * so might as well obliterate the
765 				 * datagram now.
766 				 */
767 				fwnet_pd_delete(pd);
768 				peer->pdg_size--;
769 				retval = -ENOMEM;
770 				goto fail;
771 			}
772 		}
773 	} /* new datagram or add to existing one */
774 
775 	if (lf == RFC2374_HDR_FIRSTFRAG)
776 		pd->ether_type = ether_type;
777 
778 	if (fwnet_pd_is_complete(pd)) {
779 		ether_type = pd->ether_type;
780 		peer->pdg_size--;
781 		skb = skb_get(pd->skb);
782 		fwnet_pd_delete(pd);
783 
784 		spin_unlock_irqrestore(&dev->lock, flags);
785 
786 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
787 						    false, ether_type);
788 	}
789 	/*
790 	 * Datagram is not complete, we're done for the
791 	 * moment.
792 	 */
793 	retval = 0;
794  fail:
795 	spin_unlock_irqrestore(&dev->lock, flags);
796 
797 	return retval;
798 }
799 
800 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
801 		int tcode, int destination, int source, int generation,
802 		unsigned long long offset, void *payload, size_t length,
803 		void *callback_data)
804 {
805 	struct fwnet_device *dev = callback_data;
806 	int rcode;
807 
808 	if (destination == IEEE1394_ALL_NODES) {
809 		kfree(r);
810 
811 		return;
812 	}
813 
814 	if (offset != dev->handler.offset)
815 		rcode = RCODE_ADDRESS_ERROR;
816 	else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
817 		rcode = RCODE_TYPE_ERROR;
818 	else if (fwnet_incoming_packet(dev, payload, length,
819 				       source, generation, false) != 0) {
820 		fw_error("Incoming packet failure\n");
821 		rcode = RCODE_CONFLICT_ERROR;
822 	} else
823 		rcode = RCODE_COMPLETE;
824 
825 	fw_send_response(card, r, rcode);
826 }
827 
828 static void fwnet_receive_broadcast(struct fw_iso_context *context,
829 		u32 cycle, size_t header_length, void *header, void *data)
830 {
831 	struct fwnet_device *dev;
832 	struct fw_iso_packet packet;
833 	struct fw_card *card;
834 	__be16 *hdr_ptr;
835 	__be32 *buf_ptr;
836 	int retval;
837 	u32 length;
838 	u16 source_node_id;
839 	u32 specifier_id;
840 	u32 ver;
841 	unsigned long offset;
842 	unsigned long flags;
843 
844 	dev = data;
845 	card = dev->card;
846 	hdr_ptr = header;
847 	length = be16_to_cpup(hdr_ptr);
848 
849 	spin_lock_irqsave(&dev->lock, flags);
850 
851 	offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
852 	buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
853 	if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
854 		dev->broadcast_rcv_next_ptr = 0;
855 
856 	spin_unlock_irqrestore(&dev->lock, flags);
857 
858 	specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
859 			| (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
860 	ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
861 	source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
862 
863 	if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
864 		buf_ptr += 2;
865 		length -= IEEE1394_GASP_HDR_SIZE;
866 		fwnet_incoming_packet(dev, buf_ptr, length,
867 				      source_node_id, -1, true);
868 	}
869 
870 	packet.payload_length = dev->rcv_buffer_size;
871 	packet.interrupt = 1;
872 	packet.skip = 0;
873 	packet.tag = 3;
874 	packet.sy = 0;
875 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
876 
877 	spin_lock_irqsave(&dev->lock, flags);
878 
879 	retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
880 				      &dev->broadcast_rcv_buffer, offset);
881 
882 	spin_unlock_irqrestore(&dev->lock, flags);
883 
884 	if (retval >= 0)
885 		fw_iso_context_queue_flush(dev->broadcast_rcv_context);
886 	else
887 		fw_error("requeue failed\n");
888 }
889 
890 static struct kmem_cache *fwnet_packet_task_cache;
891 
892 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
893 {
894 	dev_kfree_skb_any(ptask->skb);
895 	kmem_cache_free(fwnet_packet_task_cache, ptask);
896 }
897 
898 /* Caller must hold dev->lock. */
899 static void dec_queued_datagrams(struct fwnet_device *dev)
900 {
901 	if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
902 		netif_wake_queue(dev->netdev);
903 }
904 
905 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
906 
907 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
908 {
909 	struct fwnet_device *dev = ptask->dev;
910 	struct sk_buff *skb = ptask->skb;
911 	unsigned long flags;
912 	bool free;
913 
914 	spin_lock_irqsave(&dev->lock, flags);
915 
916 	ptask->outstanding_pkts--;
917 
918 	/* Check whether we or the networking TX soft-IRQ is last user. */
919 	free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
920 	if (free)
921 		dec_queued_datagrams(dev);
922 
923 	if (ptask->outstanding_pkts == 0) {
924 		dev->netdev->stats.tx_packets++;
925 		dev->netdev->stats.tx_bytes += skb->len;
926 	}
927 
928 	spin_unlock_irqrestore(&dev->lock, flags);
929 
930 	if (ptask->outstanding_pkts > 0) {
931 		u16 dg_size;
932 		u16 fg_off;
933 		u16 datagram_label;
934 		u16 lf;
935 
936 		/* Update the ptask to point to the next fragment and send it */
937 		lf = fwnet_get_hdr_lf(&ptask->hdr);
938 		switch (lf) {
939 		case RFC2374_HDR_LASTFRAG:
940 		case RFC2374_HDR_UNFRAG:
941 		default:
942 			fw_error("Outstanding packet %x lf %x, header %x,%x\n",
943 				 ptask->outstanding_pkts, lf, ptask->hdr.w0,
944 				 ptask->hdr.w1);
945 			BUG();
946 
947 		case RFC2374_HDR_FIRSTFRAG:
948 			/* Set frag type here for future interior fragments */
949 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
950 			fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
951 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
952 			break;
953 
954 		case RFC2374_HDR_INTFRAG:
955 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
956 			fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
957 				  + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
958 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
959 			break;
960 		}
961 
962 		skb_pull(skb, ptask->max_payload);
963 		if (ptask->outstanding_pkts > 1) {
964 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
965 					  dg_size, fg_off, datagram_label);
966 		} else {
967 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
968 					  dg_size, fg_off, datagram_label);
969 			ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
970 		}
971 		fwnet_send_packet(ptask);
972 	}
973 
974 	if (free)
975 		fwnet_free_ptask(ptask);
976 }
977 
978 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
979 {
980 	struct fwnet_device *dev = ptask->dev;
981 	unsigned long flags;
982 	bool free;
983 
984 	spin_lock_irqsave(&dev->lock, flags);
985 
986 	/* One fragment failed; don't try to send remaining fragments. */
987 	ptask->outstanding_pkts = 0;
988 
989 	/* Check whether we or the networking TX soft-IRQ is last user. */
990 	free = ptask->enqueued;
991 	if (free)
992 		dec_queued_datagrams(dev);
993 
994 	dev->netdev->stats.tx_dropped++;
995 	dev->netdev->stats.tx_errors++;
996 
997 	spin_unlock_irqrestore(&dev->lock, flags);
998 
999 	if (free)
1000 		fwnet_free_ptask(ptask);
1001 }
1002 
1003 static void fwnet_write_complete(struct fw_card *card, int rcode,
1004 				 void *payload, size_t length, void *data)
1005 {
1006 	struct fwnet_packet_task *ptask = data;
1007 	static unsigned long j;
1008 	static int last_rcode, errors_skipped;
1009 
1010 	if (rcode == RCODE_COMPLETE) {
1011 		fwnet_transmit_packet_done(ptask);
1012 	} else {
1013 		fwnet_transmit_packet_failed(ptask);
1014 
1015 		if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
1016 			fw_error("fwnet_write_complete: "
1017 				"failed: %x (skipped %d)\n", rcode, errors_skipped);
1018 
1019 			errors_skipped = 0;
1020 			last_rcode = rcode;
1021 		} else
1022 			errors_skipped++;
1023 	}
1024 }
1025 
1026 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1027 {
1028 	struct fwnet_device *dev;
1029 	unsigned tx_len;
1030 	struct rfc2734_header *bufhdr;
1031 	unsigned long flags;
1032 	bool free;
1033 
1034 	dev = ptask->dev;
1035 	tx_len = ptask->max_payload;
1036 	switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1037 	case RFC2374_HDR_UNFRAG:
1038 		bufhdr = (struct rfc2734_header *)
1039 				skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1040 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1041 		break;
1042 
1043 	case RFC2374_HDR_FIRSTFRAG:
1044 	case RFC2374_HDR_INTFRAG:
1045 	case RFC2374_HDR_LASTFRAG:
1046 		bufhdr = (struct rfc2734_header *)
1047 				skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1048 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1049 		put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1050 		break;
1051 
1052 	default:
1053 		BUG();
1054 	}
1055 	if (ptask->dest_node == IEEE1394_ALL_NODES) {
1056 		u8 *p;
1057 		int generation;
1058 		int node_id;
1059 
1060 		/* ptask->generation may not have been set yet */
1061 		generation = dev->card->generation;
1062 		smp_rmb();
1063 		node_id = dev->card->node_id;
1064 
1065 		p = skb_push(ptask->skb, 8);
1066 		put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1067 		put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1068 						| RFC2734_SW_VERSION, &p[4]);
1069 
1070 		/* We should not transmit if broadcast_channel.valid == 0. */
1071 		fw_send_request(dev->card, &ptask->transaction,
1072 				TCODE_STREAM_DATA,
1073 				fw_stream_packet_destination_id(3,
1074 						IEEE1394_BROADCAST_CHANNEL, 0),
1075 				generation, SCODE_100, 0ULL, ptask->skb->data,
1076 				tx_len + 8, fwnet_write_complete, ptask);
1077 
1078 		spin_lock_irqsave(&dev->lock, flags);
1079 
1080 		/* If the AT tasklet already ran, we may be last user. */
1081 		free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1082 		if (!free)
1083 			ptask->enqueued = true;
1084 		else
1085 			dec_queued_datagrams(dev);
1086 
1087 		spin_unlock_irqrestore(&dev->lock, flags);
1088 
1089 		goto out;
1090 	}
1091 
1092 	fw_send_request(dev->card, &ptask->transaction,
1093 			TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1094 			ptask->generation, ptask->speed, ptask->fifo_addr,
1095 			ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1096 
1097 	spin_lock_irqsave(&dev->lock, flags);
1098 
1099 	/* If the AT tasklet already ran, we may be last user. */
1100 	free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1101 	if (!free)
1102 		ptask->enqueued = true;
1103 	else
1104 		dec_queued_datagrams(dev);
1105 
1106 	spin_unlock_irqrestore(&dev->lock, flags);
1107 
1108 	dev->netdev->trans_start = jiffies;
1109  out:
1110 	if (free)
1111 		fwnet_free_ptask(ptask);
1112 
1113 	return 0;
1114 }
1115 
1116 static int fwnet_broadcast_start(struct fwnet_device *dev)
1117 {
1118 	struct fw_iso_context *context;
1119 	int retval;
1120 	unsigned num_packets;
1121 	unsigned max_receive;
1122 	struct fw_iso_packet packet;
1123 	unsigned long offset;
1124 	unsigned u;
1125 
1126 	if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1127 		/* outside OHCI posted write area? */
1128 		static const struct fw_address_region region = {
1129 			.start = 0xffff00000000ULL,
1130 			.end   = CSR_REGISTER_BASE,
1131 		};
1132 
1133 		dev->handler.length = 4096;
1134 		dev->handler.address_callback = fwnet_receive_packet;
1135 		dev->handler.callback_data = dev;
1136 
1137 		retval = fw_core_add_address_handler(&dev->handler, &region);
1138 		if (retval < 0)
1139 			goto failed_initial;
1140 
1141 		dev->local_fifo = dev->handler.offset;
1142 	}
1143 
1144 	max_receive = 1U << (dev->card->max_receive + 1);
1145 	num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1146 
1147 	if (!dev->broadcast_rcv_context) {
1148 		void **ptrptr;
1149 
1150 		context = fw_iso_context_create(dev->card,
1151 		    FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1152 		    dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1153 		if (IS_ERR(context)) {
1154 			retval = PTR_ERR(context);
1155 			goto failed_context_create;
1156 		}
1157 
1158 		retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1159 		    dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1160 		if (retval < 0)
1161 			goto failed_buffer_init;
1162 
1163 		ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1164 		if (!ptrptr) {
1165 			retval = -ENOMEM;
1166 			goto failed_ptrs_alloc;
1167 		}
1168 
1169 		dev->broadcast_rcv_buffer_ptrs = ptrptr;
1170 		for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1171 			void *ptr;
1172 			unsigned v;
1173 
1174 			ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1175 			for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1176 				*ptrptr++ = (void *)
1177 						((char *)ptr + v * max_receive);
1178 		}
1179 		dev->broadcast_rcv_context = context;
1180 	} else {
1181 		context = dev->broadcast_rcv_context;
1182 	}
1183 
1184 	packet.payload_length = max_receive;
1185 	packet.interrupt = 1;
1186 	packet.skip = 0;
1187 	packet.tag = 3;
1188 	packet.sy = 0;
1189 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
1190 	offset = 0;
1191 
1192 	for (u = 0; u < num_packets; u++) {
1193 		retval = fw_iso_context_queue(context, &packet,
1194 				&dev->broadcast_rcv_buffer, offset);
1195 		if (retval < 0)
1196 			goto failed_rcv_queue;
1197 
1198 		offset += max_receive;
1199 	}
1200 	dev->num_broadcast_rcv_ptrs = num_packets;
1201 	dev->rcv_buffer_size = max_receive;
1202 	dev->broadcast_rcv_next_ptr = 0U;
1203 	retval = fw_iso_context_start(context, -1, 0,
1204 			FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1205 	if (retval < 0)
1206 		goto failed_rcv_queue;
1207 
1208 	/* FIXME: adjust it according to the min. speed of all known peers? */
1209 	dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1210 			- IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1211 	dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1212 
1213 	return 0;
1214 
1215  failed_rcv_queue:
1216 	kfree(dev->broadcast_rcv_buffer_ptrs);
1217 	dev->broadcast_rcv_buffer_ptrs = NULL;
1218  failed_ptrs_alloc:
1219 	fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1220  failed_buffer_init:
1221 	fw_iso_context_destroy(context);
1222 	dev->broadcast_rcv_context = NULL;
1223  failed_context_create:
1224 	fw_core_remove_address_handler(&dev->handler);
1225  failed_initial:
1226 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1227 
1228 	return retval;
1229 }
1230 
1231 static void set_carrier_state(struct fwnet_device *dev)
1232 {
1233 	if (dev->peer_count > 1)
1234 		netif_carrier_on(dev->netdev);
1235 	else
1236 		netif_carrier_off(dev->netdev);
1237 }
1238 
1239 /* ifup */
1240 static int fwnet_open(struct net_device *net)
1241 {
1242 	struct fwnet_device *dev = netdev_priv(net);
1243 	int ret;
1244 
1245 	if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1246 		ret = fwnet_broadcast_start(dev);
1247 		if (ret)
1248 			return ret;
1249 	}
1250 	netif_start_queue(net);
1251 
1252 	spin_lock_irq(&dev->lock);
1253 	set_carrier_state(dev);
1254 	spin_unlock_irq(&dev->lock);
1255 
1256 	return 0;
1257 }
1258 
1259 /* ifdown */
1260 static int fwnet_stop(struct net_device *net)
1261 {
1262 	netif_stop_queue(net);
1263 
1264 	/* Deallocate iso context for use by other applications? */
1265 
1266 	return 0;
1267 }
1268 
1269 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1270 {
1271 	struct fwnet_header hdr_buf;
1272 	struct fwnet_device *dev = netdev_priv(net);
1273 	__be16 proto;
1274 	u16 dest_node;
1275 	unsigned max_payload;
1276 	u16 dg_size;
1277 	u16 *datagram_label_ptr;
1278 	struct fwnet_packet_task *ptask;
1279 	struct fwnet_peer *peer;
1280 	unsigned long flags;
1281 
1282 	spin_lock_irqsave(&dev->lock, flags);
1283 
1284 	/* Can this happen? */
1285 	if (netif_queue_stopped(dev->netdev)) {
1286 		spin_unlock_irqrestore(&dev->lock, flags);
1287 
1288 		return NETDEV_TX_BUSY;
1289 	}
1290 
1291 	ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1292 	if (ptask == NULL)
1293 		goto fail;
1294 
1295 	skb = skb_share_check(skb, GFP_ATOMIC);
1296 	if (!skb)
1297 		goto fail;
1298 
1299 	/*
1300 	 * Make a copy of the driver-specific header.
1301 	 * We might need to rebuild the header on tx failure.
1302 	 */
1303 	memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1304 	skb_pull(skb, sizeof(hdr_buf));
1305 
1306 	proto = hdr_buf.h_proto;
1307 	dg_size = skb->len;
1308 
1309 	/*
1310 	 * Set the transmission type for the packet.  ARP packets and IP
1311 	 * broadcast packets are sent via GASP.
1312 	 */
1313 	if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1314 	    || proto == htons(ETH_P_ARP)
1315 	    || (proto == htons(ETH_P_IP)
1316 		&& IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1317 		max_payload        = dev->broadcast_xmt_max_payload;
1318 		datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1319 
1320 		ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1321 		ptask->generation  = 0;
1322 		ptask->dest_node   = IEEE1394_ALL_NODES;
1323 		ptask->speed       = SCODE_100;
1324 	} else {
1325 		__be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1326 		u8 generation;
1327 
1328 		peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1329 		if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1330 			goto fail;
1331 
1332 		generation         = peer->generation;
1333 		dest_node          = peer->node_id;
1334 		max_payload        = peer->max_payload;
1335 		datagram_label_ptr = &peer->datagram_label;
1336 
1337 		ptask->fifo_addr   = peer->fifo;
1338 		ptask->generation  = generation;
1339 		ptask->dest_node   = dest_node;
1340 		ptask->speed       = peer->speed;
1341 	}
1342 
1343 	/* If this is an ARP packet, convert it */
1344 	if (proto == htons(ETH_P_ARP)) {
1345 		struct arphdr *arp = (struct arphdr *)skb->data;
1346 		unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1347 		struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1348 		__be32 ipaddr;
1349 
1350 		ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1351 
1352 		arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1353 		arp1394->max_rec        = dev->card->max_receive;
1354 		arp1394->sspd		= dev->card->link_speed;
1355 
1356 		put_unaligned_be16(dev->local_fifo >> 32,
1357 				   &arp1394->fifo_hi);
1358 		put_unaligned_be32(dev->local_fifo & 0xffffffff,
1359 				   &arp1394->fifo_lo);
1360 		put_unaligned(ipaddr, &arp1394->sip);
1361 	}
1362 
1363 	ptask->hdr.w0 = 0;
1364 	ptask->hdr.w1 = 0;
1365 	ptask->skb = skb;
1366 	ptask->dev = dev;
1367 
1368 	/* Does it all fit in one packet? */
1369 	if (dg_size <= max_payload) {
1370 		fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1371 		ptask->outstanding_pkts = 1;
1372 		max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1373 	} else {
1374 		u16 datagram_label;
1375 
1376 		max_payload -= RFC2374_FRAG_OVERHEAD;
1377 		datagram_label = (*datagram_label_ptr)++;
1378 		fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1379 				  datagram_label);
1380 		ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1381 		max_payload += RFC2374_FRAG_HDR_SIZE;
1382 	}
1383 
1384 	if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1385 		netif_stop_queue(dev->netdev);
1386 
1387 	spin_unlock_irqrestore(&dev->lock, flags);
1388 
1389 	ptask->max_payload = max_payload;
1390 	ptask->enqueued    = 0;
1391 
1392 	fwnet_send_packet(ptask);
1393 
1394 	return NETDEV_TX_OK;
1395 
1396  fail:
1397 	spin_unlock_irqrestore(&dev->lock, flags);
1398 
1399 	if (ptask)
1400 		kmem_cache_free(fwnet_packet_task_cache, ptask);
1401 
1402 	if (skb != NULL)
1403 		dev_kfree_skb(skb);
1404 
1405 	net->stats.tx_dropped++;
1406 	net->stats.tx_errors++;
1407 
1408 	/*
1409 	 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1410 	 * causes serious problems" here, allegedly.  Before that patch,
1411 	 * -ERRNO was returned which is not appropriate under Linux 2.6.
1412 	 * Perhaps more needs to be done?  Stop the queue in serious
1413 	 * conditions and restart it elsewhere?
1414 	 */
1415 	return NETDEV_TX_OK;
1416 }
1417 
1418 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1419 {
1420 	if (new_mtu < 68)
1421 		return -EINVAL;
1422 
1423 	net->mtu = new_mtu;
1424 	return 0;
1425 }
1426 
1427 static const struct ethtool_ops fwnet_ethtool_ops = {
1428 	.get_link	= ethtool_op_get_link,
1429 };
1430 
1431 static const struct net_device_ops fwnet_netdev_ops = {
1432 	.ndo_open       = fwnet_open,
1433 	.ndo_stop	= fwnet_stop,
1434 	.ndo_start_xmit = fwnet_tx,
1435 	.ndo_change_mtu = fwnet_change_mtu,
1436 };
1437 
1438 static void fwnet_init_dev(struct net_device *net)
1439 {
1440 	net->header_ops		= &fwnet_header_ops;
1441 	net->netdev_ops		= &fwnet_netdev_ops;
1442 	net->watchdog_timeo	= 2 * HZ;
1443 	net->flags		= IFF_BROADCAST | IFF_MULTICAST;
1444 	net->features		= NETIF_F_HIGHDMA;
1445 	net->addr_len		= FWNET_ALEN;
1446 	net->hard_header_len	= FWNET_HLEN;
1447 	net->type		= ARPHRD_IEEE1394;
1448 	net->tx_queue_len	= FWNET_TX_QUEUE_LEN;
1449 	net->ethtool_ops	= &fwnet_ethtool_ops;
1450 }
1451 
1452 /* caller must hold fwnet_device_mutex */
1453 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1454 {
1455 	struct fwnet_device *dev;
1456 
1457 	list_for_each_entry(dev, &fwnet_device_list, dev_link)
1458 		if (dev->card == card)
1459 			return dev;
1460 
1461 	return NULL;
1462 }
1463 
1464 static int fwnet_add_peer(struct fwnet_device *dev,
1465 			  struct fw_unit *unit, struct fw_device *device)
1466 {
1467 	struct fwnet_peer *peer;
1468 
1469 	peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1470 	if (!peer)
1471 		return -ENOMEM;
1472 
1473 	dev_set_drvdata(&unit->device, peer);
1474 
1475 	peer->dev = dev;
1476 	peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1477 	peer->fifo = FWNET_NO_FIFO_ADDR;
1478 	peer->ip = 0;
1479 	INIT_LIST_HEAD(&peer->pd_list);
1480 	peer->pdg_size = 0;
1481 	peer->datagram_label = 0;
1482 	peer->speed = device->max_speed;
1483 	peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1484 
1485 	peer->generation = device->generation;
1486 	smp_rmb();
1487 	peer->node_id = device->node_id;
1488 
1489 	spin_lock_irq(&dev->lock);
1490 	list_add_tail(&peer->peer_link, &dev->peer_list);
1491 	dev->peer_count++;
1492 	set_carrier_state(dev);
1493 	spin_unlock_irq(&dev->lock);
1494 
1495 	return 0;
1496 }
1497 
1498 static int fwnet_probe(struct device *_dev)
1499 {
1500 	struct fw_unit *unit = fw_unit(_dev);
1501 	struct fw_device *device = fw_parent_device(unit);
1502 	struct fw_card *card = device->card;
1503 	struct net_device *net;
1504 	bool allocated_netdev = false;
1505 	struct fwnet_device *dev;
1506 	unsigned max_mtu;
1507 	int ret;
1508 
1509 	mutex_lock(&fwnet_device_mutex);
1510 
1511 	dev = fwnet_dev_find(card);
1512 	if (dev) {
1513 		net = dev->netdev;
1514 		goto have_dev;
1515 	}
1516 
1517 	net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1518 	if (net == NULL) {
1519 		ret = -ENOMEM;
1520 		goto out;
1521 	}
1522 
1523 	allocated_netdev = true;
1524 	SET_NETDEV_DEV(net, card->device);
1525 	dev = netdev_priv(net);
1526 
1527 	spin_lock_init(&dev->lock);
1528 	dev->broadcast_state = FWNET_BROADCAST_ERROR;
1529 	dev->broadcast_rcv_context = NULL;
1530 	dev->broadcast_xmt_max_payload = 0;
1531 	dev->broadcast_xmt_datagramlabel = 0;
1532 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1533 	dev->queued_datagrams = 0;
1534 	INIT_LIST_HEAD(&dev->peer_list);
1535 	dev->card = card;
1536 	dev->netdev = net;
1537 
1538 	/*
1539 	 * Use the RFC 2734 default 1500 octets or the maximum payload
1540 	 * as initial MTU
1541 	 */
1542 	max_mtu = (1 << (card->max_receive + 1))
1543 		  - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1544 	net->mtu = min(1500U, max_mtu);
1545 
1546 	/* Set our hardware address while we're at it */
1547 	put_unaligned_be64(card->guid, net->dev_addr);
1548 	put_unaligned_be64(~0ULL, net->broadcast);
1549 	ret = register_netdev(net);
1550 	if (ret) {
1551 		fw_error("Cannot register the driver\n");
1552 		goto out;
1553 	}
1554 
1555 	list_add_tail(&dev->dev_link, &fwnet_device_list);
1556 	fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1557 		  net->name, (unsigned long long)card->guid);
1558  have_dev:
1559 	ret = fwnet_add_peer(dev, unit, device);
1560 	if (ret && allocated_netdev) {
1561 		unregister_netdev(net);
1562 		list_del(&dev->dev_link);
1563 	}
1564  out:
1565 	if (ret && allocated_netdev)
1566 		free_netdev(net);
1567 
1568 	mutex_unlock(&fwnet_device_mutex);
1569 
1570 	return ret;
1571 }
1572 
1573 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1574 {
1575 	struct fwnet_partial_datagram *pd, *pd_next;
1576 
1577 	spin_lock_irq(&dev->lock);
1578 	list_del(&peer->peer_link);
1579 	dev->peer_count--;
1580 	set_carrier_state(dev);
1581 	spin_unlock_irq(&dev->lock);
1582 
1583 	list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1584 		fwnet_pd_delete(pd);
1585 
1586 	kfree(peer);
1587 }
1588 
1589 static int fwnet_remove(struct device *_dev)
1590 {
1591 	struct fwnet_peer *peer = dev_get_drvdata(_dev);
1592 	struct fwnet_device *dev = peer->dev;
1593 	struct net_device *net;
1594 	int i;
1595 
1596 	mutex_lock(&fwnet_device_mutex);
1597 
1598 	net = dev->netdev;
1599 	if (net && peer->ip)
1600 		arp_invalidate(net, peer->ip);
1601 
1602 	fwnet_remove_peer(peer, dev);
1603 
1604 	if (list_empty(&dev->peer_list)) {
1605 		unregister_netdev(net);
1606 
1607 		if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1608 			fw_core_remove_address_handler(&dev->handler);
1609 		if (dev->broadcast_rcv_context) {
1610 			fw_iso_context_stop(dev->broadcast_rcv_context);
1611 			fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1612 					      dev->card);
1613 			fw_iso_context_destroy(dev->broadcast_rcv_context);
1614 		}
1615 		for (i = 0; dev->queued_datagrams && i < 5; i++)
1616 			ssleep(1);
1617 		WARN_ON(dev->queued_datagrams);
1618 		list_del(&dev->dev_link);
1619 
1620 		free_netdev(net);
1621 	}
1622 
1623 	mutex_unlock(&fwnet_device_mutex);
1624 
1625 	return 0;
1626 }
1627 
1628 /*
1629  * FIXME abort partially sent fragmented datagrams,
1630  * discard partially received fragmented datagrams
1631  */
1632 static void fwnet_update(struct fw_unit *unit)
1633 {
1634 	struct fw_device *device = fw_parent_device(unit);
1635 	struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1636 	int generation;
1637 
1638 	generation = device->generation;
1639 
1640 	spin_lock_irq(&peer->dev->lock);
1641 	peer->node_id    = device->node_id;
1642 	peer->generation = generation;
1643 	spin_unlock_irq(&peer->dev->lock);
1644 }
1645 
1646 static const struct ieee1394_device_id fwnet_id_table[] = {
1647 	{
1648 		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1649 				IEEE1394_MATCH_VERSION,
1650 		.specifier_id = IANA_SPECIFIER_ID,
1651 		.version      = RFC2734_SW_VERSION,
1652 	},
1653 	{ }
1654 };
1655 
1656 static struct fw_driver fwnet_driver = {
1657 	.driver = {
1658 		.owner  = THIS_MODULE,
1659 		.name   = "net",
1660 		.bus    = &fw_bus_type,
1661 		.probe  = fwnet_probe,
1662 		.remove = fwnet_remove,
1663 	},
1664 	.update   = fwnet_update,
1665 	.id_table = fwnet_id_table,
1666 };
1667 
1668 static const u32 rfc2374_unit_directory_data[] = {
1669 	0x00040000,	/* directory_length		*/
1670 	0x1200005e,	/* unit_specifier_id: IANA	*/
1671 	0x81000003,	/* textual descriptor offset	*/
1672 	0x13000001,	/* unit_sw_version: RFC 2734	*/
1673 	0x81000005,	/* textual descriptor offset	*/
1674 	0x00030000,	/* descriptor_length		*/
1675 	0x00000000,	/* text				*/
1676 	0x00000000,	/* minimal ASCII, en		*/
1677 	0x49414e41,	/* I A N A			*/
1678 	0x00030000,	/* descriptor_length		*/
1679 	0x00000000,	/* text				*/
1680 	0x00000000,	/* minimal ASCII, en		*/
1681 	0x49507634,	/* I P v 4			*/
1682 };
1683 
1684 static struct fw_descriptor rfc2374_unit_directory = {
1685 	.length = ARRAY_SIZE(rfc2374_unit_directory_data),
1686 	.key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1687 	.data   = rfc2374_unit_directory_data
1688 };
1689 
1690 static int __init fwnet_init(void)
1691 {
1692 	int err;
1693 
1694 	err = fw_core_add_descriptor(&rfc2374_unit_directory);
1695 	if (err)
1696 		return err;
1697 
1698 	fwnet_packet_task_cache = kmem_cache_create("packet_task",
1699 			sizeof(struct fwnet_packet_task), 0, 0, NULL);
1700 	if (!fwnet_packet_task_cache) {
1701 		err = -ENOMEM;
1702 		goto out;
1703 	}
1704 
1705 	err = driver_register(&fwnet_driver.driver);
1706 	if (!err)
1707 		return 0;
1708 
1709 	kmem_cache_destroy(fwnet_packet_task_cache);
1710 out:
1711 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1712 
1713 	return err;
1714 }
1715 module_init(fwnet_init);
1716 
1717 static void __exit fwnet_cleanup(void)
1718 {
1719 	driver_unregister(&fwnet_driver.driver);
1720 	kmem_cache_destroy(fwnet_packet_task_cache);
1721 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1722 }
1723 module_exit(fwnet_cleanup);
1724 
1725 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1726 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1727 MODULE_LICENSE("GPL");
1728 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
1729