1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * IPv4 over IEEE 1394, per RFC 2734 4 * IPv6 over IEEE 1394, per RFC 3146 5 * 6 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com> 7 * 8 * based on eth1394 by Ben Collins et al 9 */ 10 11 #include <linux/bug.h> 12 #include <linux/compiler.h> 13 #include <linux/delay.h> 14 #include <linux/device.h> 15 #include <linux/ethtool.h> 16 #include <linux/firewire.h> 17 #include <linux/firewire-constants.h> 18 #include <linux/highmem.h> 19 #include <linux/in.h> 20 #include <linux/ip.h> 21 #include <linux/jiffies.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/module.h> 24 #include <linux/moduleparam.h> 25 #include <linux/mutex.h> 26 #include <linux/netdevice.h> 27 #include <linux/skbuff.h> 28 #include <linux/slab.h> 29 #include <linux/spinlock.h> 30 31 #include <asm/unaligned.h> 32 #include <net/arp.h> 33 #include <net/firewire.h> 34 35 /* rx limits */ 36 #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */ 37 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2) 38 39 /* tx limits */ 40 #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */ 41 #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */ 42 #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */ 43 44 #define IEEE1394_BROADCAST_CHANNEL 31 45 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f) 46 #define IEEE1394_MAX_PAYLOAD_S100 512 47 #define FWNET_NO_FIFO_ADDR (~0ULL) 48 49 #define IANA_SPECIFIER_ID 0x00005eU 50 #define RFC2734_SW_VERSION 0x000001U 51 #define RFC3146_SW_VERSION 0x000002U 52 53 #define IEEE1394_GASP_HDR_SIZE 8 54 55 #define RFC2374_UNFRAG_HDR_SIZE 4 56 #define RFC2374_FRAG_HDR_SIZE 8 57 #define RFC2374_FRAG_OVERHEAD 4 58 59 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */ 60 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */ 61 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */ 62 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */ 63 64 static bool fwnet_hwaddr_is_multicast(u8 *ha) 65 { 66 return !!(*ha & 1); 67 } 68 69 /* IPv4 and IPv6 encapsulation header */ 70 struct rfc2734_header { 71 u32 w0; 72 u32 w1; 73 }; 74 75 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30) 76 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff)) 77 #define fwnet_get_hdr_dg_size(h) ((((h)->w0 & 0x0fff0000) >> 16) + 1) 78 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff)) 79 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16) 80 81 #define fwnet_set_hdr_lf(lf) ((lf) << 30) 82 #define fwnet_set_hdr_ether_type(et) (et) 83 #define fwnet_set_hdr_dg_size(dgs) (((dgs) - 1) << 16) 84 #define fwnet_set_hdr_fg_off(fgo) (fgo) 85 86 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16) 87 88 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr, 89 unsigned ether_type) 90 { 91 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG) 92 | fwnet_set_hdr_ether_type(ether_type); 93 } 94 95 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr, 96 unsigned ether_type, unsigned dg_size, unsigned dgl) 97 { 98 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG) 99 | fwnet_set_hdr_dg_size(dg_size) 100 | fwnet_set_hdr_ether_type(ether_type); 101 hdr->w1 = fwnet_set_hdr_dgl(dgl); 102 } 103 104 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr, 105 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl) 106 { 107 hdr->w0 = fwnet_set_hdr_lf(lf) 108 | fwnet_set_hdr_dg_size(dg_size) 109 | fwnet_set_hdr_fg_off(fg_off); 110 hdr->w1 = fwnet_set_hdr_dgl(dgl); 111 } 112 113 /* This list keeps track of what parts of the datagram have been filled in */ 114 struct fwnet_fragment_info { 115 struct list_head fi_link; 116 u16 offset; 117 u16 len; 118 }; 119 120 struct fwnet_partial_datagram { 121 struct list_head pd_link; 122 struct list_head fi_list; 123 struct sk_buff *skb; 124 /* FIXME Why not use skb->data? */ 125 char *pbuf; 126 u16 datagram_label; 127 u16 ether_type; 128 u16 datagram_size; 129 }; 130 131 static DEFINE_MUTEX(fwnet_device_mutex); 132 static LIST_HEAD(fwnet_device_list); 133 134 struct fwnet_device { 135 struct list_head dev_link; 136 spinlock_t lock; 137 enum { 138 FWNET_BROADCAST_ERROR, 139 FWNET_BROADCAST_RUNNING, 140 FWNET_BROADCAST_STOPPED, 141 } broadcast_state; 142 struct fw_iso_context *broadcast_rcv_context; 143 struct fw_iso_buffer broadcast_rcv_buffer; 144 void **broadcast_rcv_buffer_ptrs; 145 unsigned broadcast_rcv_next_ptr; 146 unsigned num_broadcast_rcv_ptrs; 147 unsigned rcv_buffer_size; 148 /* 149 * This value is the maximum unfragmented datagram size that can be 150 * sent by the hardware. It already has the GASP overhead and the 151 * unfragmented datagram header overhead calculated into it. 152 */ 153 unsigned broadcast_xmt_max_payload; 154 u16 broadcast_xmt_datagramlabel; 155 156 /* 157 * The CSR address that remote nodes must send datagrams to for us to 158 * receive them. 159 */ 160 struct fw_address_handler handler; 161 u64 local_fifo; 162 163 /* Number of tx datagrams that have been queued but not yet acked */ 164 int queued_datagrams; 165 166 int peer_count; 167 struct list_head peer_list; 168 struct fw_card *card; 169 struct net_device *netdev; 170 }; 171 172 struct fwnet_peer { 173 struct list_head peer_link; 174 struct fwnet_device *dev; 175 u64 guid; 176 177 /* guarded by dev->lock */ 178 struct list_head pd_list; /* received partial datagrams */ 179 unsigned pdg_size; /* pd_list size */ 180 181 u16 datagram_label; /* outgoing datagram label */ 182 u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */ 183 int node_id; 184 int generation; 185 unsigned speed; 186 }; 187 188 /* This is our task struct. It's used for the packet complete callback. */ 189 struct fwnet_packet_task { 190 struct fw_transaction transaction; 191 struct rfc2734_header hdr; 192 struct sk_buff *skb; 193 struct fwnet_device *dev; 194 195 int outstanding_pkts; 196 u64 fifo_addr; 197 u16 dest_node; 198 u16 max_payload; 199 u8 generation; 200 u8 speed; 201 u8 enqueued; 202 }; 203 204 /* 205 * saddr == NULL means use device source address. 206 * daddr == NULL means leave destination address (eg unresolved arp). 207 */ 208 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net, 209 unsigned short type, const void *daddr, 210 const void *saddr, unsigned len) 211 { 212 struct fwnet_header *h; 213 214 h = skb_push(skb, sizeof(*h)); 215 put_unaligned_be16(type, &h->h_proto); 216 217 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) { 218 memset(h->h_dest, 0, net->addr_len); 219 220 return net->hard_header_len; 221 } 222 223 if (daddr) { 224 memcpy(h->h_dest, daddr, net->addr_len); 225 226 return net->hard_header_len; 227 } 228 229 return -net->hard_header_len; 230 } 231 232 static int fwnet_header_cache(const struct neighbour *neigh, 233 struct hh_cache *hh, __be16 type) 234 { 235 struct net_device *net; 236 struct fwnet_header *h; 237 238 if (type == cpu_to_be16(ETH_P_802_3)) 239 return -1; 240 net = neigh->dev; 241 h = (struct fwnet_header *)((u8 *)hh->hh_data + HH_DATA_OFF(sizeof(*h))); 242 h->h_proto = type; 243 memcpy(h->h_dest, neigh->ha, net->addr_len); 244 245 /* Pairs with the READ_ONCE() in neigh_resolve_output(), 246 * neigh_hh_output() and neigh_update_hhs(). 247 */ 248 smp_store_release(&hh->hh_len, FWNET_HLEN); 249 250 return 0; 251 } 252 253 /* Called by Address Resolution module to notify changes in address. */ 254 static void fwnet_header_cache_update(struct hh_cache *hh, 255 const struct net_device *net, const unsigned char *haddr) 256 { 257 memcpy((u8 *)hh->hh_data + HH_DATA_OFF(FWNET_HLEN), haddr, net->addr_len); 258 } 259 260 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr) 261 { 262 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN); 263 264 return FWNET_ALEN; 265 } 266 267 static const struct header_ops fwnet_header_ops = { 268 .create = fwnet_header_create, 269 .cache = fwnet_header_cache, 270 .cache_update = fwnet_header_cache_update, 271 .parse = fwnet_header_parse, 272 }; 273 274 /* FIXME: is this correct for all cases? */ 275 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd, 276 unsigned offset, unsigned len) 277 { 278 struct fwnet_fragment_info *fi; 279 unsigned end = offset + len; 280 281 list_for_each_entry(fi, &pd->fi_list, fi_link) 282 if (offset < fi->offset + fi->len && end > fi->offset) 283 return true; 284 285 return false; 286 } 287 288 /* Assumes that new fragment does not overlap any existing fragments */ 289 static struct fwnet_fragment_info *fwnet_frag_new( 290 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len) 291 { 292 struct fwnet_fragment_info *fi, *fi2, *new; 293 struct list_head *list; 294 295 list = &pd->fi_list; 296 list_for_each_entry(fi, &pd->fi_list, fi_link) { 297 if (fi->offset + fi->len == offset) { 298 /* The new fragment can be tacked on to the end */ 299 /* Did the new fragment plug a hole? */ 300 fi2 = list_entry(fi->fi_link.next, 301 struct fwnet_fragment_info, fi_link); 302 if (fi->offset + fi->len == fi2->offset) { 303 /* glue fragments together */ 304 fi->len += len + fi2->len; 305 list_del(&fi2->fi_link); 306 kfree(fi2); 307 } else { 308 fi->len += len; 309 } 310 311 return fi; 312 } 313 if (offset + len == fi->offset) { 314 /* The new fragment can be tacked on to the beginning */ 315 /* Did the new fragment plug a hole? */ 316 fi2 = list_entry(fi->fi_link.prev, 317 struct fwnet_fragment_info, fi_link); 318 if (fi2->offset + fi2->len == fi->offset) { 319 /* glue fragments together */ 320 fi2->len += fi->len + len; 321 list_del(&fi->fi_link); 322 kfree(fi); 323 324 return fi2; 325 } 326 fi->offset = offset; 327 fi->len += len; 328 329 return fi; 330 } 331 if (offset > fi->offset + fi->len) { 332 list = &fi->fi_link; 333 break; 334 } 335 if (offset + len < fi->offset) { 336 list = fi->fi_link.prev; 337 break; 338 } 339 } 340 341 new = kmalloc(sizeof(*new), GFP_ATOMIC); 342 if (!new) 343 return NULL; 344 345 new->offset = offset; 346 new->len = len; 347 list_add(&new->fi_link, list); 348 349 return new; 350 } 351 352 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net, 353 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size, 354 void *frag_buf, unsigned frag_off, unsigned frag_len) 355 { 356 struct fwnet_partial_datagram *new; 357 struct fwnet_fragment_info *fi; 358 359 new = kmalloc(sizeof(*new), GFP_ATOMIC); 360 if (!new) 361 goto fail; 362 363 INIT_LIST_HEAD(&new->fi_list); 364 fi = fwnet_frag_new(new, frag_off, frag_len); 365 if (fi == NULL) 366 goto fail_w_new; 367 368 new->datagram_label = datagram_label; 369 new->datagram_size = dg_size; 370 new->skb = dev_alloc_skb(dg_size + LL_RESERVED_SPACE(net)); 371 if (new->skb == NULL) 372 goto fail_w_fi; 373 374 skb_reserve(new->skb, LL_RESERVED_SPACE(net)); 375 new->pbuf = skb_put(new->skb, dg_size); 376 memcpy(new->pbuf + frag_off, frag_buf, frag_len); 377 list_add_tail(&new->pd_link, &peer->pd_list); 378 379 return new; 380 381 fail_w_fi: 382 kfree(fi); 383 fail_w_new: 384 kfree(new); 385 fail: 386 return NULL; 387 } 388 389 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer, 390 u16 datagram_label) 391 { 392 struct fwnet_partial_datagram *pd; 393 394 list_for_each_entry(pd, &peer->pd_list, pd_link) 395 if (pd->datagram_label == datagram_label) 396 return pd; 397 398 return NULL; 399 } 400 401 402 static void fwnet_pd_delete(struct fwnet_partial_datagram *old) 403 { 404 struct fwnet_fragment_info *fi, *n; 405 406 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link) 407 kfree(fi); 408 409 list_del(&old->pd_link); 410 dev_kfree_skb_any(old->skb); 411 kfree(old); 412 } 413 414 static bool fwnet_pd_update(struct fwnet_peer *peer, 415 struct fwnet_partial_datagram *pd, void *frag_buf, 416 unsigned frag_off, unsigned frag_len) 417 { 418 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL) 419 return false; 420 421 memcpy(pd->pbuf + frag_off, frag_buf, frag_len); 422 423 /* 424 * Move list entry to beginning of list so that oldest partial 425 * datagrams percolate to the end of the list 426 */ 427 list_move_tail(&pd->pd_link, &peer->pd_list); 428 429 return true; 430 } 431 432 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd) 433 { 434 struct fwnet_fragment_info *fi; 435 436 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link); 437 438 return fi->len == pd->datagram_size; 439 } 440 441 /* caller must hold dev->lock */ 442 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev, 443 u64 guid) 444 { 445 struct fwnet_peer *peer; 446 447 list_for_each_entry(peer, &dev->peer_list, peer_link) 448 if (peer->guid == guid) 449 return peer; 450 451 return NULL; 452 } 453 454 /* caller must hold dev->lock */ 455 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev, 456 int node_id, int generation) 457 { 458 struct fwnet_peer *peer; 459 460 list_for_each_entry(peer, &dev->peer_list, peer_link) 461 if (peer->node_id == node_id && 462 peer->generation == generation) 463 return peer; 464 465 return NULL; 466 } 467 468 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */ 469 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed) 470 { 471 max_rec = min(max_rec, speed + 8); 472 max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */ 473 474 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE; 475 } 476 477 478 static int fwnet_finish_incoming_packet(struct net_device *net, 479 struct sk_buff *skb, u16 source_node_id, 480 bool is_broadcast, u16 ether_type) 481 { 482 int status; 483 484 switch (ether_type) { 485 case ETH_P_ARP: 486 case ETH_P_IP: 487 #if IS_ENABLED(CONFIG_IPV6) 488 case ETH_P_IPV6: 489 #endif 490 break; 491 default: 492 goto err; 493 } 494 495 /* Write metadata, and then pass to the receive level */ 496 skb->dev = net; 497 skb->ip_summed = CHECKSUM_NONE; 498 499 /* 500 * Parse the encapsulation header. This actually does the job of 501 * converting to an ethernet-like pseudo frame header. 502 */ 503 if (dev_hard_header(skb, net, ether_type, 504 is_broadcast ? net->broadcast : net->dev_addr, 505 NULL, skb->len) >= 0) { 506 struct fwnet_header *eth; 507 u16 *rawp; 508 __be16 protocol; 509 510 skb_reset_mac_header(skb); 511 skb_pull(skb, sizeof(*eth)); 512 eth = (struct fwnet_header *)skb_mac_header(skb); 513 if (fwnet_hwaddr_is_multicast(eth->h_dest)) { 514 if (memcmp(eth->h_dest, net->broadcast, 515 net->addr_len) == 0) 516 skb->pkt_type = PACKET_BROADCAST; 517 #if 0 518 else 519 skb->pkt_type = PACKET_MULTICAST; 520 #endif 521 } else { 522 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len)) 523 skb->pkt_type = PACKET_OTHERHOST; 524 } 525 if (ntohs(eth->h_proto) >= ETH_P_802_3_MIN) { 526 protocol = eth->h_proto; 527 } else { 528 rawp = (u16 *)skb->data; 529 if (*rawp == 0xffff) 530 protocol = htons(ETH_P_802_3); 531 else 532 protocol = htons(ETH_P_802_2); 533 } 534 skb->protocol = protocol; 535 } 536 status = netif_rx(skb); 537 if (status == NET_RX_DROP) { 538 net->stats.rx_errors++; 539 net->stats.rx_dropped++; 540 } else { 541 net->stats.rx_packets++; 542 net->stats.rx_bytes += skb->len; 543 } 544 545 return 0; 546 547 err: 548 net->stats.rx_errors++; 549 net->stats.rx_dropped++; 550 551 dev_kfree_skb_any(skb); 552 553 return -ENOENT; 554 } 555 556 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len, 557 int source_node_id, int generation, 558 bool is_broadcast) 559 { 560 struct sk_buff *skb; 561 struct net_device *net = dev->netdev; 562 struct rfc2734_header hdr; 563 unsigned lf; 564 unsigned long flags; 565 struct fwnet_peer *peer; 566 struct fwnet_partial_datagram *pd; 567 int fg_off; 568 int dg_size; 569 u16 datagram_label; 570 int retval; 571 u16 ether_type; 572 573 if (len <= RFC2374_UNFRAG_HDR_SIZE) 574 return 0; 575 576 hdr.w0 = be32_to_cpu(buf[0]); 577 lf = fwnet_get_hdr_lf(&hdr); 578 if (lf == RFC2374_HDR_UNFRAG) { 579 /* 580 * An unfragmented datagram has been received by the ieee1394 581 * bus. Build an skbuff around it so we can pass it to the 582 * high level network layer. 583 */ 584 ether_type = fwnet_get_hdr_ether_type(&hdr); 585 buf++; 586 len -= RFC2374_UNFRAG_HDR_SIZE; 587 588 skb = dev_alloc_skb(len + LL_RESERVED_SPACE(net)); 589 if (unlikely(!skb)) { 590 net->stats.rx_dropped++; 591 592 return -ENOMEM; 593 } 594 skb_reserve(skb, LL_RESERVED_SPACE(net)); 595 skb_put_data(skb, buf, len); 596 597 return fwnet_finish_incoming_packet(net, skb, source_node_id, 598 is_broadcast, ether_type); 599 } 600 601 /* A datagram fragment has been received, now the fun begins. */ 602 603 if (len <= RFC2374_FRAG_HDR_SIZE) 604 return 0; 605 606 hdr.w1 = ntohl(buf[1]); 607 buf += 2; 608 len -= RFC2374_FRAG_HDR_SIZE; 609 if (lf == RFC2374_HDR_FIRSTFRAG) { 610 ether_type = fwnet_get_hdr_ether_type(&hdr); 611 fg_off = 0; 612 } else { 613 ether_type = 0; 614 fg_off = fwnet_get_hdr_fg_off(&hdr); 615 } 616 datagram_label = fwnet_get_hdr_dgl(&hdr); 617 dg_size = fwnet_get_hdr_dg_size(&hdr); 618 619 if (fg_off + len > dg_size) 620 return 0; 621 622 spin_lock_irqsave(&dev->lock, flags); 623 624 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation); 625 if (!peer) { 626 retval = -ENOENT; 627 goto fail; 628 } 629 630 pd = fwnet_pd_find(peer, datagram_label); 631 if (pd == NULL) { 632 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) { 633 /* remove the oldest */ 634 fwnet_pd_delete(list_first_entry(&peer->pd_list, 635 struct fwnet_partial_datagram, pd_link)); 636 peer->pdg_size--; 637 } 638 pd = fwnet_pd_new(net, peer, datagram_label, 639 dg_size, buf, fg_off, len); 640 if (pd == NULL) { 641 retval = -ENOMEM; 642 goto fail; 643 } 644 peer->pdg_size++; 645 } else { 646 if (fwnet_frag_overlap(pd, fg_off, len) || 647 pd->datagram_size != dg_size) { 648 /* 649 * Differing datagram sizes or overlapping fragments, 650 * discard old datagram and start a new one. 651 */ 652 fwnet_pd_delete(pd); 653 pd = fwnet_pd_new(net, peer, datagram_label, 654 dg_size, buf, fg_off, len); 655 if (pd == NULL) { 656 peer->pdg_size--; 657 retval = -ENOMEM; 658 goto fail; 659 } 660 } else { 661 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) { 662 /* 663 * Couldn't save off fragment anyway 664 * so might as well obliterate the 665 * datagram now. 666 */ 667 fwnet_pd_delete(pd); 668 peer->pdg_size--; 669 retval = -ENOMEM; 670 goto fail; 671 } 672 } 673 } /* new datagram or add to existing one */ 674 675 if (lf == RFC2374_HDR_FIRSTFRAG) 676 pd->ether_type = ether_type; 677 678 if (fwnet_pd_is_complete(pd)) { 679 ether_type = pd->ether_type; 680 peer->pdg_size--; 681 skb = skb_get(pd->skb); 682 fwnet_pd_delete(pd); 683 684 spin_unlock_irqrestore(&dev->lock, flags); 685 686 return fwnet_finish_incoming_packet(net, skb, source_node_id, 687 false, ether_type); 688 } 689 /* 690 * Datagram is not complete, we're done for the 691 * moment. 692 */ 693 retval = 0; 694 fail: 695 spin_unlock_irqrestore(&dev->lock, flags); 696 697 return retval; 698 } 699 700 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r, 701 int tcode, int destination, int source, int generation, 702 unsigned long long offset, void *payload, size_t length, 703 void *callback_data) 704 { 705 struct fwnet_device *dev = callback_data; 706 int rcode; 707 708 if (destination == IEEE1394_ALL_NODES) { 709 // Although the response to the broadcast packet is not necessarily required, the 710 // fw_send_response() function should still be called to maintain the reference 711 // counting of the object. In the case, the call of function just releases the 712 // object as a result to decrease the reference counting. 713 rcode = RCODE_COMPLETE; 714 } else if (offset != dev->handler.offset) { 715 rcode = RCODE_ADDRESS_ERROR; 716 } else if (tcode != TCODE_WRITE_BLOCK_REQUEST) { 717 rcode = RCODE_TYPE_ERROR; 718 } else if (fwnet_incoming_packet(dev, payload, length, 719 source, generation, false) != 0) { 720 dev_err(&dev->netdev->dev, "incoming packet failure\n"); 721 rcode = RCODE_CONFLICT_ERROR; 722 } else { 723 rcode = RCODE_COMPLETE; 724 } 725 726 fw_send_response(card, r, rcode); 727 } 728 729 static int gasp_source_id(__be32 *p) 730 { 731 return be32_to_cpu(p[0]) >> 16; 732 } 733 734 static u32 gasp_specifier_id(__be32 *p) 735 { 736 return (be32_to_cpu(p[0]) & 0xffff) << 8 | 737 (be32_to_cpu(p[1]) & 0xff000000) >> 24; 738 } 739 740 static u32 gasp_version(__be32 *p) 741 { 742 return be32_to_cpu(p[1]) & 0xffffff; 743 } 744 745 static void fwnet_receive_broadcast(struct fw_iso_context *context, 746 u32 cycle, size_t header_length, void *header, void *data) 747 { 748 struct fwnet_device *dev; 749 struct fw_iso_packet packet; 750 __be16 *hdr_ptr; 751 __be32 *buf_ptr; 752 int retval; 753 u32 length; 754 unsigned long offset; 755 unsigned long flags; 756 757 dev = data; 758 hdr_ptr = header; 759 length = be16_to_cpup(hdr_ptr); 760 761 spin_lock_irqsave(&dev->lock, flags); 762 763 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr; 764 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++]; 765 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs) 766 dev->broadcast_rcv_next_ptr = 0; 767 768 spin_unlock_irqrestore(&dev->lock, flags); 769 770 if (length > IEEE1394_GASP_HDR_SIZE && 771 gasp_specifier_id(buf_ptr) == IANA_SPECIFIER_ID && 772 (gasp_version(buf_ptr) == RFC2734_SW_VERSION 773 #if IS_ENABLED(CONFIG_IPV6) 774 || gasp_version(buf_ptr) == RFC3146_SW_VERSION 775 #endif 776 )) 777 fwnet_incoming_packet(dev, buf_ptr + 2, 778 length - IEEE1394_GASP_HDR_SIZE, 779 gasp_source_id(buf_ptr), 780 context->card->generation, true); 781 782 packet.payload_length = dev->rcv_buffer_size; 783 packet.interrupt = 1; 784 packet.skip = 0; 785 packet.tag = 3; 786 packet.sy = 0; 787 packet.header_length = IEEE1394_GASP_HDR_SIZE; 788 789 spin_lock_irqsave(&dev->lock, flags); 790 791 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet, 792 &dev->broadcast_rcv_buffer, offset); 793 794 spin_unlock_irqrestore(&dev->lock, flags); 795 796 if (retval >= 0) 797 fw_iso_context_queue_flush(dev->broadcast_rcv_context); 798 else 799 dev_err(&dev->netdev->dev, "requeue failed\n"); 800 } 801 802 static struct kmem_cache *fwnet_packet_task_cache; 803 804 static void fwnet_free_ptask(struct fwnet_packet_task *ptask) 805 { 806 dev_kfree_skb_any(ptask->skb); 807 kmem_cache_free(fwnet_packet_task_cache, ptask); 808 } 809 810 /* Caller must hold dev->lock. */ 811 static void dec_queued_datagrams(struct fwnet_device *dev) 812 { 813 if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS) 814 netif_wake_queue(dev->netdev); 815 } 816 817 static int fwnet_send_packet(struct fwnet_packet_task *ptask); 818 819 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask) 820 { 821 struct fwnet_device *dev = ptask->dev; 822 struct sk_buff *skb = ptask->skb; 823 unsigned long flags; 824 bool free; 825 826 spin_lock_irqsave(&dev->lock, flags); 827 828 ptask->outstanding_pkts--; 829 830 /* Check whether we or the networking TX soft-IRQ is last user. */ 831 free = (ptask->outstanding_pkts == 0 && ptask->enqueued); 832 if (free) 833 dec_queued_datagrams(dev); 834 835 if (ptask->outstanding_pkts == 0) { 836 dev->netdev->stats.tx_packets++; 837 dev->netdev->stats.tx_bytes += skb->len; 838 } 839 840 spin_unlock_irqrestore(&dev->lock, flags); 841 842 if (ptask->outstanding_pkts > 0) { 843 u16 dg_size; 844 u16 fg_off; 845 u16 datagram_label; 846 u16 lf; 847 848 /* Update the ptask to point to the next fragment and send it */ 849 lf = fwnet_get_hdr_lf(&ptask->hdr); 850 switch (lf) { 851 case RFC2374_HDR_LASTFRAG: 852 case RFC2374_HDR_UNFRAG: 853 default: 854 dev_err(&dev->netdev->dev, 855 "outstanding packet %x lf %x, header %x,%x\n", 856 ptask->outstanding_pkts, lf, ptask->hdr.w0, 857 ptask->hdr.w1); 858 BUG(); 859 860 case RFC2374_HDR_FIRSTFRAG: 861 /* Set frag type here for future interior fragments */ 862 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); 863 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE; 864 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); 865 break; 866 867 case RFC2374_HDR_INTFRAG: 868 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr); 869 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr) 870 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE; 871 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr); 872 break; 873 } 874 875 if (ptask->dest_node == IEEE1394_ALL_NODES) { 876 skb_pull(skb, 877 ptask->max_payload + IEEE1394_GASP_HDR_SIZE); 878 } else { 879 skb_pull(skb, ptask->max_payload); 880 } 881 if (ptask->outstanding_pkts > 1) { 882 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG, 883 dg_size, fg_off, datagram_label); 884 } else { 885 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG, 886 dg_size, fg_off, datagram_label); 887 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE; 888 } 889 fwnet_send_packet(ptask); 890 } 891 892 if (free) 893 fwnet_free_ptask(ptask); 894 } 895 896 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask) 897 { 898 struct fwnet_device *dev = ptask->dev; 899 unsigned long flags; 900 bool free; 901 902 spin_lock_irqsave(&dev->lock, flags); 903 904 /* One fragment failed; don't try to send remaining fragments. */ 905 ptask->outstanding_pkts = 0; 906 907 /* Check whether we or the networking TX soft-IRQ is last user. */ 908 free = ptask->enqueued; 909 if (free) 910 dec_queued_datagrams(dev); 911 912 dev->netdev->stats.tx_dropped++; 913 dev->netdev->stats.tx_errors++; 914 915 spin_unlock_irqrestore(&dev->lock, flags); 916 917 if (free) 918 fwnet_free_ptask(ptask); 919 } 920 921 static void fwnet_write_complete(struct fw_card *card, int rcode, 922 void *payload, size_t length, void *data) 923 { 924 struct fwnet_packet_task *ptask = data; 925 static unsigned long j; 926 static int last_rcode, errors_skipped; 927 928 if (rcode == RCODE_COMPLETE) { 929 fwnet_transmit_packet_done(ptask); 930 } else { 931 if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) { 932 dev_err(&ptask->dev->netdev->dev, 933 "fwnet_write_complete failed: %x (skipped %d)\n", 934 rcode, errors_skipped); 935 936 errors_skipped = 0; 937 last_rcode = rcode; 938 } else { 939 errors_skipped++; 940 } 941 fwnet_transmit_packet_failed(ptask); 942 } 943 } 944 945 static int fwnet_send_packet(struct fwnet_packet_task *ptask) 946 { 947 struct fwnet_device *dev; 948 unsigned tx_len; 949 struct rfc2734_header *bufhdr; 950 unsigned long flags; 951 bool free; 952 953 dev = ptask->dev; 954 tx_len = ptask->max_payload; 955 switch (fwnet_get_hdr_lf(&ptask->hdr)) { 956 case RFC2374_HDR_UNFRAG: 957 bufhdr = skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE); 958 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); 959 break; 960 961 case RFC2374_HDR_FIRSTFRAG: 962 case RFC2374_HDR_INTFRAG: 963 case RFC2374_HDR_LASTFRAG: 964 bufhdr = skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE); 965 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0); 966 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1); 967 break; 968 969 default: 970 BUG(); 971 } 972 if (ptask->dest_node == IEEE1394_ALL_NODES) { 973 u8 *p; 974 int generation; 975 int node_id; 976 unsigned int sw_version; 977 978 /* ptask->generation may not have been set yet */ 979 generation = dev->card->generation; 980 smp_rmb(); 981 node_id = dev->card->node_id; 982 983 switch (ptask->skb->protocol) { 984 default: 985 sw_version = RFC2734_SW_VERSION; 986 break; 987 #if IS_ENABLED(CONFIG_IPV6) 988 case htons(ETH_P_IPV6): 989 sw_version = RFC3146_SW_VERSION; 990 #endif 991 } 992 993 p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE); 994 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p); 995 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24 996 | sw_version, &p[4]); 997 998 /* We should not transmit if broadcast_channel.valid == 0. */ 999 fw_send_request(dev->card, &ptask->transaction, 1000 TCODE_STREAM_DATA, 1001 fw_stream_packet_destination_id(3, 1002 IEEE1394_BROADCAST_CHANNEL, 0), 1003 generation, SCODE_100, 0ULL, ptask->skb->data, 1004 tx_len + 8, fwnet_write_complete, ptask); 1005 1006 spin_lock_irqsave(&dev->lock, flags); 1007 1008 /* If the AT tasklet already ran, we may be last user. */ 1009 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued); 1010 if (!free) 1011 ptask->enqueued = true; 1012 else 1013 dec_queued_datagrams(dev); 1014 1015 spin_unlock_irqrestore(&dev->lock, flags); 1016 1017 goto out; 1018 } 1019 1020 fw_send_request(dev->card, &ptask->transaction, 1021 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node, 1022 ptask->generation, ptask->speed, ptask->fifo_addr, 1023 ptask->skb->data, tx_len, fwnet_write_complete, ptask); 1024 1025 spin_lock_irqsave(&dev->lock, flags); 1026 1027 /* If the AT tasklet already ran, we may be last user. */ 1028 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued); 1029 if (!free) 1030 ptask->enqueued = true; 1031 else 1032 dec_queued_datagrams(dev); 1033 1034 spin_unlock_irqrestore(&dev->lock, flags); 1035 1036 netif_trans_update(dev->netdev); 1037 out: 1038 if (free) 1039 fwnet_free_ptask(ptask); 1040 1041 return 0; 1042 } 1043 1044 static void fwnet_fifo_stop(struct fwnet_device *dev) 1045 { 1046 if (dev->local_fifo == FWNET_NO_FIFO_ADDR) 1047 return; 1048 1049 fw_core_remove_address_handler(&dev->handler); 1050 dev->local_fifo = FWNET_NO_FIFO_ADDR; 1051 } 1052 1053 static int fwnet_fifo_start(struct fwnet_device *dev) 1054 { 1055 int retval; 1056 1057 if (dev->local_fifo != FWNET_NO_FIFO_ADDR) 1058 return 0; 1059 1060 dev->handler.length = 4096; 1061 dev->handler.address_callback = fwnet_receive_packet; 1062 dev->handler.callback_data = dev; 1063 1064 retval = fw_core_add_address_handler(&dev->handler, 1065 &fw_high_memory_region); 1066 if (retval < 0) 1067 return retval; 1068 1069 dev->local_fifo = dev->handler.offset; 1070 1071 return 0; 1072 } 1073 1074 static void __fwnet_broadcast_stop(struct fwnet_device *dev) 1075 { 1076 unsigned u; 1077 1078 if (dev->broadcast_state != FWNET_BROADCAST_ERROR) { 1079 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) 1080 kunmap(dev->broadcast_rcv_buffer.pages[u]); 1081 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card); 1082 } 1083 if (dev->broadcast_rcv_context) { 1084 fw_iso_context_destroy(dev->broadcast_rcv_context); 1085 dev->broadcast_rcv_context = NULL; 1086 } 1087 kfree(dev->broadcast_rcv_buffer_ptrs); 1088 dev->broadcast_rcv_buffer_ptrs = NULL; 1089 dev->broadcast_state = FWNET_BROADCAST_ERROR; 1090 } 1091 1092 static void fwnet_broadcast_stop(struct fwnet_device *dev) 1093 { 1094 if (dev->broadcast_state == FWNET_BROADCAST_ERROR) 1095 return; 1096 fw_iso_context_stop(dev->broadcast_rcv_context); 1097 __fwnet_broadcast_stop(dev); 1098 } 1099 1100 static int fwnet_broadcast_start(struct fwnet_device *dev) 1101 { 1102 struct fw_iso_context *context; 1103 int retval; 1104 unsigned num_packets; 1105 unsigned max_receive; 1106 struct fw_iso_packet packet; 1107 unsigned long offset; 1108 void **ptrptr; 1109 unsigned u; 1110 1111 if (dev->broadcast_state != FWNET_BROADCAST_ERROR) 1112 return 0; 1113 1114 max_receive = 1U << (dev->card->max_receive + 1); 1115 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive; 1116 1117 ptrptr = kmalloc_array(num_packets, sizeof(void *), GFP_KERNEL); 1118 if (!ptrptr) { 1119 retval = -ENOMEM; 1120 goto failed; 1121 } 1122 dev->broadcast_rcv_buffer_ptrs = ptrptr; 1123 1124 context = fw_iso_context_create(dev->card, FW_ISO_CONTEXT_RECEIVE, 1125 IEEE1394_BROADCAST_CHANNEL, 1126 dev->card->link_speed, 8, 1127 fwnet_receive_broadcast, dev); 1128 if (IS_ERR(context)) { 1129 retval = PTR_ERR(context); 1130 goto failed; 1131 } 1132 1133 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, dev->card, 1134 FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE); 1135 if (retval < 0) 1136 goto failed; 1137 1138 dev->broadcast_state = FWNET_BROADCAST_STOPPED; 1139 1140 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) { 1141 void *ptr; 1142 unsigned v; 1143 1144 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]); 1145 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++) 1146 *ptrptr++ = (void *) ((char *)ptr + v * max_receive); 1147 } 1148 dev->broadcast_rcv_context = context; 1149 1150 packet.payload_length = max_receive; 1151 packet.interrupt = 1; 1152 packet.skip = 0; 1153 packet.tag = 3; 1154 packet.sy = 0; 1155 packet.header_length = IEEE1394_GASP_HDR_SIZE; 1156 offset = 0; 1157 1158 for (u = 0; u < num_packets; u++) { 1159 retval = fw_iso_context_queue(context, &packet, 1160 &dev->broadcast_rcv_buffer, offset); 1161 if (retval < 0) 1162 goto failed; 1163 1164 offset += max_receive; 1165 } 1166 dev->num_broadcast_rcv_ptrs = num_packets; 1167 dev->rcv_buffer_size = max_receive; 1168 dev->broadcast_rcv_next_ptr = 0U; 1169 retval = fw_iso_context_start(context, -1, 0, 1170 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */ 1171 if (retval < 0) 1172 goto failed; 1173 1174 /* FIXME: adjust it according to the min. speed of all known peers? */ 1175 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100 1176 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE; 1177 dev->broadcast_state = FWNET_BROADCAST_RUNNING; 1178 1179 return 0; 1180 1181 failed: 1182 __fwnet_broadcast_stop(dev); 1183 return retval; 1184 } 1185 1186 static void set_carrier_state(struct fwnet_device *dev) 1187 { 1188 if (dev->peer_count > 1) 1189 netif_carrier_on(dev->netdev); 1190 else 1191 netif_carrier_off(dev->netdev); 1192 } 1193 1194 /* ifup */ 1195 static int fwnet_open(struct net_device *net) 1196 { 1197 struct fwnet_device *dev = netdev_priv(net); 1198 int ret; 1199 1200 ret = fwnet_broadcast_start(dev); 1201 if (ret) 1202 return ret; 1203 1204 netif_start_queue(net); 1205 1206 spin_lock_irq(&dev->lock); 1207 set_carrier_state(dev); 1208 spin_unlock_irq(&dev->lock); 1209 1210 return 0; 1211 } 1212 1213 /* ifdown */ 1214 static int fwnet_stop(struct net_device *net) 1215 { 1216 struct fwnet_device *dev = netdev_priv(net); 1217 1218 netif_stop_queue(net); 1219 fwnet_broadcast_stop(dev); 1220 1221 return 0; 1222 } 1223 1224 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net) 1225 { 1226 struct fwnet_header hdr_buf; 1227 struct fwnet_device *dev = netdev_priv(net); 1228 __be16 proto; 1229 u16 dest_node; 1230 unsigned max_payload; 1231 u16 dg_size; 1232 u16 *datagram_label_ptr; 1233 struct fwnet_packet_task *ptask; 1234 struct fwnet_peer *peer; 1235 unsigned long flags; 1236 1237 spin_lock_irqsave(&dev->lock, flags); 1238 1239 /* Can this happen? */ 1240 if (netif_queue_stopped(dev->netdev)) { 1241 spin_unlock_irqrestore(&dev->lock, flags); 1242 1243 return NETDEV_TX_BUSY; 1244 } 1245 1246 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC); 1247 if (ptask == NULL) 1248 goto fail; 1249 1250 skb = skb_share_check(skb, GFP_ATOMIC); 1251 if (!skb) 1252 goto fail; 1253 1254 /* 1255 * Make a copy of the driver-specific header. 1256 * We might need to rebuild the header on tx failure. 1257 */ 1258 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf)); 1259 proto = hdr_buf.h_proto; 1260 1261 switch (proto) { 1262 case htons(ETH_P_ARP): 1263 case htons(ETH_P_IP): 1264 #if IS_ENABLED(CONFIG_IPV6) 1265 case htons(ETH_P_IPV6): 1266 #endif 1267 break; 1268 default: 1269 goto fail; 1270 } 1271 1272 skb_pull(skb, sizeof(hdr_buf)); 1273 dg_size = skb->len; 1274 1275 /* 1276 * Set the transmission type for the packet. ARP packets and IP 1277 * broadcast packets are sent via GASP. 1278 */ 1279 if (fwnet_hwaddr_is_multicast(hdr_buf.h_dest)) { 1280 max_payload = dev->broadcast_xmt_max_payload; 1281 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel; 1282 1283 ptask->fifo_addr = FWNET_NO_FIFO_ADDR; 1284 ptask->generation = 0; 1285 ptask->dest_node = IEEE1394_ALL_NODES; 1286 ptask->speed = SCODE_100; 1287 } else { 1288 union fwnet_hwaddr *ha = (union fwnet_hwaddr *)hdr_buf.h_dest; 1289 __be64 guid = get_unaligned(&ha->uc.uniq_id); 1290 u8 generation; 1291 1292 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid)); 1293 if (!peer) 1294 goto fail; 1295 1296 generation = peer->generation; 1297 dest_node = peer->node_id; 1298 max_payload = peer->max_payload; 1299 datagram_label_ptr = &peer->datagram_label; 1300 1301 ptask->fifo_addr = get_unaligned_be48(ha->uc.fifo); 1302 ptask->generation = generation; 1303 ptask->dest_node = dest_node; 1304 ptask->speed = peer->speed; 1305 } 1306 1307 ptask->hdr.w0 = 0; 1308 ptask->hdr.w1 = 0; 1309 ptask->skb = skb; 1310 ptask->dev = dev; 1311 1312 /* Does it all fit in one packet? */ 1313 if (dg_size <= max_payload) { 1314 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto)); 1315 ptask->outstanding_pkts = 1; 1316 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE; 1317 } else { 1318 u16 datagram_label; 1319 1320 max_payload -= RFC2374_FRAG_OVERHEAD; 1321 datagram_label = (*datagram_label_ptr)++; 1322 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size, 1323 datagram_label); 1324 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload); 1325 max_payload += RFC2374_FRAG_HDR_SIZE; 1326 } 1327 1328 if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS) 1329 netif_stop_queue(dev->netdev); 1330 1331 spin_unlock_irqrestore(&dev->lock, flags); 1332 1333 ptask->max_payload = max_payload; 1334 ptask->enqueued = 0; 1335 1336 fwnet_send_packet(ptask); 1337 1338 return NETDEV_TX_OK; 1339 1340 fail: 1341 spin_unlock_irqrestore(&dev->lock, flags); 1342 1343 if (ptask) 1344 kmem_cache_free(fwnet_packet_task_cache, ptask); 1345 1346 if (skb != NULL) 1347 dev_kfree_skb(skb); 1348 1349 net->stats.tx_dropped++; 1350 net->stats.tx_errors++; 1351 1352 /* 1353 * FIXME: According to a patch from 2003-02-26, "returning non-zero 1354 * causes serious problems" here, allegedly. Before that patch, 1355 * -ERRNO was returned which is not appropriate under Linux 2.6. 1356 * Perhaps more needs to be done? Stop the queue in serious 1357 * conditions and restart it elsewhere? 1358 */ 1359 return NETDEV_TX_OK; 1360 } 1361 1362 static const struct ethtool_ops fwnet_ethtool_ops = { 1363 .get_link = ethtool_op_get_link, 1364 }; 1365 1366 static const struct net_device_ops fwnet_netdev_ops = { 1367 .ndo_open = fwnet_open, 1368 .ndo_stop = fwnet_stop, 1369 .ndo_start_xmit = fwnet_tx, 1370 }; 1371 1372 static void fwnet_init_dev(struct net_device *net) 1373 { 1374 net->header_ops = &fwnet_header_ops; 1375 net->netdev_ops = &fwnet_netdev_ops; 1376 net->watchdog_timeo = 2 * HZ; 1377 net->flags = IFF_BROADCAST | IFF_MULTICAST; 1378 net->features = NETIF_F_HIGHDMA; 1379 net->addr_len = FWNET_ALEN; 1380 net->hard_header_len = FWNET_HLEN; 1381 net->type = ARPHRD_IEEE1394; 1382 net->tx_queue_len = FWNET_TX_QUEUE_LEN; 1383 net->ethtool_ops = &fwnet_ethtool_ops; 1384 } 1385 1386 /* caller must hold fwnet_device_mutex */ 1387 static struct fwnet_device *fwnet_dev_find(struct fw_card *card) 1388 { 1389 struct fwnet_device *dev; 1390 1391 list_for_each_entry(dev, &fwnet_device_list, dev_link) 1392 if (dev->card == card) 1393 return dev; 1394 1395 return NULL; 1396 } 1397 1398 static int fwnet_add_peer(struct fwnet_device *dev, 1399 struct fw_unit *unit, struct fw_device *device) 1400 { 1401 struct fwnet_peer *peer; 1402 1403 peer = kmalloc(sizeof(*peer), GFP_KERNEL); 1404 if (!peer) 1405 return -ENOMEM; 1406 1407 dev_set_drvdata(&unit->device, peer); 1408 1409 peer->dev = dev; 1410 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1411 INIT_LIST_HEAD(&peer->pd_list); 1412 peer->pdg_size = 0; 1413 peer->datagram_label = 0; 1414 peer->speed = device->max_speed; 1415 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed); 1416 1417 peer->generation = device->generation; 1418 smp_rmb(); 1419 peer->node_id = device->node_id; 1420 1421 spin_lock_irq(&dev->lock); 1422 list_add_tail(&peer->peer_link, &dev->peer_list); 1423 dev->peer_count++; 1424 set_carrier_state(dev); 1425 spin_unlock_irq(&dev->lock); 1426 1427 return 0; 1428 } 1429 1430 static int fwnet_probe(struct fw_unit *unit, 1431 const struct ieee1394_device_id *id) 1432 { 1433 struct fw_device *device = fw_parent_device(unit); 1434 struct fw_card *card = device->card; 1435 struct net_device *net; 1436 bool allocated_netdev = false; 1437 struct fwnet_device *dev; 1438 union fwnet_hwaddr ha; 1439 int ret; 1440 1441 mutex_lock(&fwnet_device_mutex); 1442 1443 dev = fwnet_dev_find(card); 1444 if (dev) { 1445 net = dev->netdev; 1446 goto have_dev; 1447 } 1448 1449 net = alloc_netdev(sizeof(*dev), "firewire%d", NET_NAME_UNKNOWN, 1450 fwnet_init_dev); 1451 if (net == NULL) { 1452 mutex_unlock(&fwnet_device_mutex); 1453 return -ENOMEM; 1454 } 1455 1456 allocated_netdev = true; 1457 SET_NETDEV_DEV(net, card->device); 1458 dev = netdev_priv(net); 1459 1460 spin_lock_init(&dev->lock); 1461 dev->broadcast_state = FWNET_BROADCAST_ERROR; 1462 dev->broadcast_rcv_context = NULL; 1463 dev->broadcast_xmt_max_payload = 0; 1464 dev->broadcast_xmt_datagramlabel = 0; 1465 dev->local_fifo = FWNET_NO_FIFO_ADDR; 1466 dev->queued_datagrams = 0; 1467 INIT_LIST_HEAD(&dev->peer_list); 1468 dev->card = card; 1469 dev->netdev = net; 1470 1471 ret = fwnet_fifo_start(dev); 1472 if (ret < 0) 1473 goto out; 1474 dev->local_fifo = dev->handler.offset; 1475 1476 /* 1477 * default MTU: RFC 2734 cl. 4, RFC 3146 cl. 4 1478 * maximum MTU: RFC 2734 cl. 4.2, fragment encapsulation header's 1479 * maximum possible datagram_size + 1 = 0xfff + 1 1480 */ 1481 net->mtu = 1500U; 1482 net->min_mtu = ETH_MIN_MTU; 1483 net->max_mtu = 4096U; 1484 1485 /* Set our hardware address while we're at it */ 1486 ha.uc.uniq_id = cpu_to_be64(card->guid); 1487 ha.uc.max_rec = dev->card->max_receive; 1488 ha.uc.sspd = dev->card->link_speed; 1489 put_unaligned_be48(dev->local_fifo, ha.uc.fifo); 1490 dev_addr_set(net, ha.u); 1491 1492 memset(net->broadcast, -1, net->addr_len); 1493 1494 ret = register_netdev(net); 1495 if (ret) 1496 goto out; 1497 1498 list_add_tail(&dev->dev_link, &fwnet_device_list); 1499 dev_notice(&net->dev, "IP over IEEE 1394 on card %s\n", 1500 dev_name(card->device)); 1501 have_dev: 1502 ret = fwnet_add_peer(dev, unit, device); 1503 if (ret && allocated_netdev) { 1504 unregister_netdev(net); 1505 list_del(&dev->dev_link); 1506 out: 1507 fwnet_fifo_stop(dev); 1508 free_netdev(net); 1509 } 1510 1511 mutex_unlock(&fwnet_device_mutex); 1512 1513 return ret; 1514 } 1515 1516 /* 1517 * FIXME abort partially sent fragmented datagrams, 1518 * discard partially received fragmented datagrams 1519 */ 1520 static void fwnet_update(struct fw_unit *unit) 1521 { 1522 struct fw_device *device = fw_parent_device(unit); 1523 struct fwnet_peer *peer = dev_get_drvdata(&unit->device); 1524 int generation; 1525 1526 generation = device->generation; 1527 1528 spin_lock_irq(&peer->dev->lock); 1529 peer->node_id = device->node_id; 1530 peer->generation = generation; 1531 spin_unlock_irq(&peer->dev->lock); 1532 } 1533 1534 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev) 1535 { 1536 struct fwnet_partial_datagram *pd, *pd_next; 1537 1538 spin_lock_irq(&dev->lock); 1539 list_del(&peer->peer_link); 1540 dev->peer_count--; 1541 set_carrier_state(dev); 1542 spin_unlock_irq(&dev->lock); 1543 1544 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link) 1545 fwnet_pd_delete(pd); 1546 1547 kfree(peer); 1548 } 1549 1550 static void fwnet_remove(struct fw_unit *unit) 1551 { 1552 struct fwnet_peer *peer = dev_get_drvdata(&unit->device); 1553 struct fwnet_device *dev = peer->dev; 1554 struct net_device *net; 1555 int i; 1556 1557 mutex_lock(&fwnet_device_mutex); 1558 1559 net = dev->netdev; 1560 1561 fwnet_remove_peer(peer, dev); 1562 1563 if (list_empty(&dev->peer_list)) { 1564 unregister_netdev(net); 1565 1566 fwnet_fifo_stop(dev); 1567 1568 for (i = 0; dev->queued_datagrams && i < 5; i++) 1569 ssleep(1); 1570 WARN_ON(dev->queued_datagrams); 1571 list_del(&dev->dev_link); 1572 1573 free_netdev(net); 1574 } 1575 1576 mutex_unlock(&fwnet_device_mutex); 1577 } 1578 1579 static const struct ieee1394_device_id fwnet_id_table[] = { 1580 { 1581 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1582 IEEE1394_MATCH_VERSION, 1583 .specifier_id = IANA_SPECIFIER_ID, 1584 .version = RFC2734_SW_VERSION, 1585 }, 1586 #if IS_ENABLED(CONFIG_IPV6) 1587 { 1588 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1589 IEEE1394_MATCH_VERSION, 1590 .specifier_id = IANA_SPECIFIER_ID, 1591 .version = RFC3146_SW_VERSION, 1592 }, 1593 #endif 1594 { } 1595 }; 1596 1597 static struct fw_driver fwnet_driver = { 1598 .driver = { 1599 .owner = THIS_MODULE, 1600 .name = KBUILD_MODNAME, 1601 .bus = &fw_bus_type, 1602 }, 1603 .probe = fwnet_probe, 1604 .update = fwnet_update, 1605 .remove = fwnet_remove, 1606 .id_table = fwnet_id_table, 1607 }; 1608 1609 static const u32 rfc2374_unit_directory_data[] = { 1610 0x00040000, /* directory_length */ 1611 0x1200005e, /* unit_specifier_id: IANA */ 1612 0x81000003, /* textual descriptor offset */ 1613 0x13000001, /* unit_sw_version: RFC 2734 */ 1614 0x81000005, /* textual descriptor offset */ 1615 0x00030000, /* descriptor_length */ 1616 0x00000000, /* text */ 1617 0x00000000, /* minimal ASCII, en */ 1618 0x49414e41, /* I A N A */ 1619 0x00030000, /* descriptor_length */ 1620 0x00000000, /* text */ 1621 0x00000000, /* minimal ASCII, en */ 1622 0x49507634, /* I P v 4 */ 1623 }; 1624 1625 static struct fw_descriptor rfc2374_unit_directory = { 1626 .length = ARRAY_SIZE(rfc2374_unit_directory_data), 1627 .key = (CSR_DIRECTORY | CSR_UNIT) << 24, 1628 .data = rfc2374_unit_directory_data 1629 }; 1630 1631 #if IS_ENABLED(CONFIG_IPV6) 1632 static const u32 rfc3146_unit_directory_data[] = { 1633 0x00040000, /* directory_length */ 1634 0x1200005e, /* unit_specifier_id: IANA */ 1635 0x81000003, /* textual descriptor offset */ 1636 0x13000002, /* unit_sw_version: RFC 3146 */ 1637 0x81000005, /* textual descriptor offset */ 1638 0x00030000, /* descriptor_length */ 1639 0x00000000, /* text */ 1640 0x00000000, /* minimal ASCII, en */ 1641 0x49414e41, /* I A N A */ 1642 0x00030000, /* descriptor_length */ 1643 0x00000000, /* text */ 1644 0x00000000, /* minimal ASCII, en */ 1645 0x49507636, /* I P v 6 */ 1646 }; 1647 1648 static struct fw_descriptor rfc3146_unit_directory = { 1649 .length = ARRAY_SIZE(rfc3146_unit_directory_data), 1650 .key = (CSR_DIRECTORY | CSR_UNIT) << 24, 1651 .data = rfc3146_unit_directory_data 1652 }; 1653 #endif 1654 1655 static int __init fwnet_init(void) 1656 { 1657 int err; 1658 1659 err = fw_core_add_descriptor(&rfc2374_unit_directory); 1660 if (err) 1661 return err; 1662 1663 #if IS_ENABLED(CONFIG_IPV6) 1664 err = fw_core_add_descriptor(&rfc3146_unit_directory); 1665 if (err) 1666 goto out; 1667 #endif 1668 1669 fwnet_packet_task_cache = kmem_cache_create("packet_task", 1670 sizeof(struct fwnet_packet_task), 0, 0, NULL); 1671 if (!fwnet_packet_task_cache) { 1672 err = -ENOMEM; 1673 goto out2; 1674 } 1675 1676 err = driver_register(&fwnet_driver.driver); 1677 if (!err) 1678 return 0; 1679 1680 kmem_cache_destroy(fwnet_packet_task_cache); 1681 out2: 1682 #if IS_ENABLED(CONFIG_IPV6) 1683 fw_core_remove_descriptor(&rfc3146_unit_directory); 1684 out: 1685 #endif 1686 fw_core_remove_descriptor(&rfc2374_unit_directory); 1687 1688 return err; 1689 } 1690 module_init(fwnet_init); 1691 1692 static void __exit fwnet_cleanup(void) 1693 { 1694 driver_unregister(&fwnet_driver.driver); 1695 kmem_cache_destroy(fwnet_packet_task_cache); 1696 #if IS_ENABLED(CONFIG_IPV6) 1697 fw_core_remove_descriptor(&rfc3146_unit_directory); 1698 #endif 1699 fw_core_remove_descriptor(&rfc2374_unit_directory); 1700 } 1701 module_exit(fwnet_cleanup); 1702 1703 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>"); 1704 MODULE_DESCRIPTION("IP over IEEE1394 as per RFC 2734/3146"); 1705 MODULE_LICENSE("GPL"); 1706 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table); 1707