1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core IEEE1394 transaction logic 4 * 5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bug.h> 9 #include <linux/completion.h> 10 #include <linux/device.h> 11 #include <linux/errno.h> 12 #include <linux/firewire.h> 13 #include <linux/firewire-constants.h> 14 #include <linux/fs.h> 15 #include <linux/init.h> 16 #include <linux/idr.h> 17 #include <linux/jiffies.h> 18 #include <linux/kernel.h> 19 #include <linux/list.h> 20 #include <linux/module.h> 21 #include <linux/rculist.h> 22 #include <linux/slab.h> 23 #include <linux/spinlock.h> 24 #include <linux/string.h> 25 #include <linux/timer.h> 26 #include <linux/types.h> 27 #include <linux/workqueue.h> 28 29 #include <asm/byteorder.h> 30 31 #include "core.h" 32 33 #define HEADER_PRI(pri) ((pri) << 0) 34 #define HEADER_TCODE(tcode) ((tcode) << 4) 35 #define HEADER_RETRY(retry) ((retry) << 8) 36 #define HEADER_TLABEL(tlabel) ((tlabel) << 10) 37 #define HEADER_DESTINATION(destination) ((destination) << 16) 38 #define HEADER_SOURCE(source) ((source) << 16) 39 #define HEADER_RCODE(rcode) ((rcode) << 12) 40 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0) 41 #define HEADER_DATA_LENGTH(length) ((length) << 16) 42 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0) 43 44 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f) 45 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f) 46 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f) 47 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff) 48 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff) 49 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff) 50 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff) 51 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff) 52 53 #define HEADER_DESTINATION_IS_BROADCAST(q) \ 54 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f)) 55 56 #define PHY_PACKET_CONFIG 0x0 57 #define PHY_PACKET_LINK_ON 0x1 58 #define PHY_PACKET_SELF_ID 0x2 59 60 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22)) 61 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23)) 62 #define PHY_IDENTIFIER(id) ((id) << 30) 63 64 /* returns 0 if the split timeout handler is already running */ 65 static int try_cancel_split_timeout(struct fw_transaction *t) 66 { 67 if (t->is_split_transaction) 68 return del_timer(&t->split_timeout_timer); 69 else 70 return 1; 71 } 72 73 static int close_transaction(struct fw_transaction *transaction, 74 struct fw_card *card, int rcode) 75 { 76 struct fw_transaction *t; 77 unsigned long flags; 78 79 spin_lock_irqsave(&card->lock, flags); 80 list_for_each_entry(t, &card->transaction_list, link) { 81 if (t == transaction) { 82 if (!try_cancel_split_timeout(t)) { 83 spin_unlock_irqrestore(&card->lock, flags); 84 goto timed_out; 85 } 86 list_del_init(&t->link); 87 card->tlabel_mask &= ~(1ULL << t->tlabel); 88 break; 89 } 90 } 91 spin_unlock_irqrestore(&card->lock, flags); 92 93 if (&t->link != &card->transaction_list) { 94 t->callback(card, rcode, NULL, 0, t->callback_data); 95 return 0; 96 } 97 98 timed_out: 99 return -ENOENT; 100 } 101 102 /* 103 * Only valid for transactions that are potentially pending (ie have 104 * been sent). 105 */ 106 int fw_cancel_transaction(struct fw_card *card, 107 struct fw_transaction *transaction) 108 { 109 /* 110 * Cancel the packet transmission if it's still queued. That 111 * will call the packet transmission callback which cancels 112 * the transaction. 113 */ 114 115 if (card->driver->cancel_packet(card, &transaction->packet) == 0) 116 return 0; 117 118 /* 119 * If the request packet has already been sent, we need to see 120 * if the transaction is still pending and remove it in that case. 121 */ 122 123 return close_transaction(transaction, card, RCODE_CANCELLED); 124 } 125 EXPORT_SYMBOL(fw_cancel_transaction); 126 127 static void split_transaction_timeout_callback(struct timer_list *timer) 128 { 129 struct fw_transaction *t = from_timer(t, timer, split_timeout_timer); 130 struct fw_card *card = t->card; 131 unsigned long flags; 132 133 spin_lock_irqsave(&card->lock, flags); 134 if (list_empty(&t->link)) { 135 spin_unlock_irqrestore(&card->lock, flags); 136 return; 137 } 138 list_del(&t->link); 139 card->tlabel_mask &= ~(1ULL << t->tlabel); 140 spin_unlock_irqrestore(&card->lock, flags); 141 142 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data); 143 } 144 145 static void start_split_transaction_timeout(struct fw_transaction *t, 146 struct fw_card *card) 147 { 148 unsigned long flags; 149 150 spin_lock_irqsave(&card->lock, flags); 151 152 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) { 153 spin_unlock_irqrestore(&card->lock, flags); 154 return; 155 } 156 157 t->is_split_transaction = true; 158 mod_timer(&t->split_timeout_timer, 159 jiffies + card->split_timeout_jiffies); 160 161 spin_unlock_irqrestore(&card->lock, flags); 162 } 163 164 static void transmit_complete_callback(struct fw_packet *packet, 165 struct fw_card *card, int status) 166 { 167 struct fw_transaction *t = 168 container_of(packet, struct fw_transaction, packet); 169 170 switch (status) { 171 case ACK_COMPLETE: 172 close_transaction(t, card, RCODE_COMPLETE); 173 break; 174 case ACK_PENDING: 175 start_split_transaction_timeout(t, card); 176 break; 177 case ACK_BUSY_X: 178 case ACK_BUSY_A: 179 case ACK_BUSY_B: 180 close_transaction(t, card, RCODE_BUSY); 181 break; 182 case ACK_DATA_ERROR: 183 close_transaction(t, card, RCODE_DATA_ERROR); 184 break; 185 case ACK_TYPE_ERROR: 186 close_transaction(t, card, RCODE_TYPE_ERROR); 187 break; 188 default: 189 /* 190 * In this case the ack is really a juju specific 191 * rcode, so just forward that to the callback. 192 */ 193 close_transaction(t, card, status); 194 break; 195 } 196 } 197 198 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel, 199 int destination_id, int source_id, int generation, int speed, 200 unsigned long long offset, void *payload, size_t length) 201 { 202 int ext_tcode; 203 204 if (tcode == TCODE_STREAM_DATA) { 205 packet->header[0] = 206 HEADER_DATA_LENGTH(length) | 207 destination_id | 208 HEADER_TCODE(TCODE_STREAM_DATA); 209 packet->header_length = 4; 210 packet->payload = payload; 211 packet->payload_length = length; 212 213 goto common; 214 } 215 216 if (tcode > 0x10) { 217 ext_tcode = tcode & ~0x10; 218 tcode = TCODE_LOCK_REQUEST; 219 } else 220 ext_tcode = 0; 221 222 packet->header[0] = 223 HEADER_RETRY(RETRY_X) | 224 HEADER_TLABEL(tlabel) | 225 HEADER_TCODE(tcode) | 226 HEADER_DESTINATION(destination_id); 227 packet->header[1] = 228 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id); 229 packet->header[2] = 230 offset; 231 232 switch (tcode) { 233 case TCODE_WRITE_QUADLET_REQUEST: 234 packet->header[3] = *(u32 *)payload; 235 packet->header_length = 16; 236 packet->payload_length = 0; 237 break; 238 239 case TCODE_LOCK_REQUEST: 240 case TCODE_WRITE_BLOCK_REQUEST: 241 packet->header[3] = 242 HEADER_DATA_LENGTH(length) | 243 HEADER_EXTENDED_TCODE(ext_tcode); 244 packet->header_length = 16; 245 packet->payload = payload; 246 packet->payload_length = length; 247 break; 248 249 case TCODE_READ_QUADLET_REQUEST: 250 packet->header_length = 12; 251 packet->payload_length = 0; 252 break; 253 254 case TCODE_READ_BLOCK_REQUEST: 255 packet->header[3] = 256 HEADER_DATA_LENGTH(length) | 257 HEADER_EXTENDED_TCODE(ext_tcode); 258 packet->header_length = 16; 259 packet->payload_length = 0; 260 break; 261 262 default: 263 WARN(1, "wrong tcode %d\n", tcode); 264 } 265 common: 266 packet->speed = speed; 267 packet->generation = generation; 268 packet->ack = 0; 269 packet->payload_mapped = false; 270 } 271 272 static int allocate_tlabel(struct fw_card *card) 273 { 274 int tlabel; 275 276 tlabel = card->current_tlabel; 277 while (card->tlabel_mask & (1ULL << tlabel)) { 278 tlabel = (tlabel + 1) & 0x3f; 279 if (tlabel == card->current_tlabel) 280 return -EBUSY; 281 } 282 283 card->current_tlabel = (tlabel + 1) & 0x3f; 284 card->tlabel_mask |= 1ULL << tlabel; 285 286 return tlabel; 287 } 288 289 /** 290 * fw_send_request() - submit a request packet for transmission 291 * @card: interface to send the request at 292 * @t: transaction instance to which the request belongs 293 * @tcode: transaction code 294 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 295 * @generation: bus generation in which request and response are valid 296 * @speed: transmission speed 297 * @offset: 48bit wide offset into destination's address space 298 * @payload: data payload for the request subaction 299 * @length: length of the payload, in bytes 300 * @callback: function to be called when the transaction is completed 301 * @callback_data: data to be passed to the transaction completion callback 302 * 303 * Submit a request packet into the asynchronous request transmission queue. 304 * Can be called from atomic context. If you prefer a blocking API, use 305 * fw_run_transaction() in a context that can sleep. 306 * 307 * In case of lock requests, specify one of the firewire-core specific %TCODE_ 308 * constants instead of %TCODE_LOCK_REQUEST in @tcode. 309 * 310 * Make sure that the value in @destination_id is not older than the one in 311 * @generation. Otherwise the request is in danger to be sent to a wrong node. 312 * 313 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller 314 * needs to synthesize @destination_id with fw_stream_packet_destination_id(). 315 * It will contain tag, channel, and sy data instead of a node ID then. 316 * 317 * The payload buffer at @data is going to be DMA-mapped except in case of 318 * @length <= 8 or of local (loopback) requests. Hence make sure that the 319 * buffer complies with the restrictions of the streaming DMA mapping API. 320 * @payload must not be freed before the @callback is called. 321 * 322 * In case of request types without payload, @data is NULL and @length is 0. 323 * 324 * After the transaction is completed successfully or unsuccessfully, the 325 * @callback will be called. Among its parameters is the response code which 326 * is either one of the rcodes per IEEE 1394 or, in case of internal errors, 327 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core 328 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION, 329 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request 330 * generation, or missing ACK respectively. 331 * 332 * Note some timing corner cases: fw_send_request() may complete much earlier 333 * than when the request packet actually hits the wire. On the other hand, 334 * transaction completion and hence execution of @callback may happen even 335 * before fw_send_request() returns. 336 */ 337 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, 338 int destination_id, int generation, int speed, 339 unsigned long long offset, void *payload, size_t length, 340 fw_transaction_callback_t callback, void *callback_data) 341 { 342 unsigned long flags; 343 int tlabel; 344 345 /* 346 * Allocate tlabel from the bitmap and put the transaction on 347 * the list while holding the card spinlock. 348 */ 349 350 spin_lock_irqsave(&card->lock, flags); 351 352 tlabel = allocate_tlabel(card); 353 if (tlabel < 0) { 354 spin_unlock_irqrestore(&card->lock, flags); 355 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data); 356 return; 357 } 358 359 t->node_id = destination_id; 360 t->tlabel = tlabel; 361 t->card = card; 362 t->is_split_transaction = false; 363 timer_setup(&t->split_timeout_timer, 364 split_transaction_timeout_callback, 0); 365 t->callback = callback; 366 t->callback_data = callback_data; 367 368 fw_fill_request(&t->packet, tcode, t->tlabel, 369 destination_id, card->node_id, generation, 370 speed, offset, payload, length); 371 t->packet.callback = transmit_complete_callback; 372 373 list_add_tail(&t->link, &card->transaction_list); 374 375 spin_unlock_irqrestore(&card->lock, flags); 376 377 card->driver->send_request(card, &t->packet); 378 } 379 EXPORT_SYMBOL(fw_send_request); 380 381 struct transaction_callback_data { 382 struct completion done; 383 void *payload; 384 int rcode; 385 }; 386 387 static void transaction_callback(struct fw_card *card, int rcode, 388 void *payload, size_t length, void *data) 389 { 390 struct transaction_callback_data *d = data; 391 392 if (rcode == RCODE_COMPLETE) 393 memcpy(d->payload, payload, length); 394 d->rcode = rcode; 395 complete(&d->done); 396 } 397 398 /** 399 * fw_run_transaction() - send request and sleep until transaction is completed 400 * @card: card interface for this request 401 * @tcode: transaction code 402 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 403 * @generation: bus generation in which request and response are valid 404 * @speed: transmission speed 405 * @offset: 48bit wide offset into destination's address space 406 * @payload: data payload for the request subaction 407 * @length: length of the payload, in bytes 408 * 409 * Returns the RCODE. See fw_send_request() for parameter documentation. 410 * Unlike fw_send_request(), @data points to the payload of the request or/and 411 * to the payload of the response. DMA mapping restrictions apply to outbound 412 * request payloads of >= 8 bytes but not to inbound response payloads. 413 */ 414 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, 415 int generation, int speed, unsigned long long offset, 416 void *payload, size_t length) 417 { 418 struct transaction_callback_data d; 419 struct fw_transaction t; 420 421 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0); 422 init_completion(&d.done); 423 d.payload = payload; 424 fw_send_request(card, &t, tcode, destination_id, generation, speed, 425 offset, payload, length, transaction_callback, &d); 426 wait_for_completion(&d.done); 427 destroy_timer_on_stack(&t.split_timeout_timer); 428 429 return d.rcode; 430 } 431 EXPORT_SYMBOL(fw_run_transaction); 432 433 static DEFINE_MUTEX(phy_config_mutex); 434 static DECLARE_COMPLETION(phy_config_done); 435 436 static void transmit_phy_packet_callback(struct fw_packet *packet, 437 struct fw_card *card, int status) 438 { 439 complete(&phy_config_done); 440 } 441 442 static struct fw_packet phy_config_packet = { 443 .header_length = 12, 444 .header[0] = TCODE_LINK_INTERNAL << 4, 445 .payload_length = 0, 446 .speed = SCODE_100, 447 .callback = transmit_phy_packet_callback, 448 }; 449 450 void fw_send_phy_config(struct fw_card *card, 451 int node_id, int generation, int gap_count) 452 { 453 long timeout = DIV_ROUND_UP(HZ, 10); 454 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG); 455 456 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) 457 data |= PHY_CONFIG_ROOT_ID(node_id); 458 459 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) { 460 gap_count = card->driver->read_phy_reg(card, 1); 461 if (gap_count < 0) 462 return; 463 464 gap_count &= 63; 465 if (gap_count == 63) 466 return; 467 } 468 data |= PHY_CONFIG_GAP_COUNT(gap_count); 469 470 mutex_lock(&phy_config_mutex); 471 472 phy_config_packet.header[1] = data; 473 phy_config_packet.header[2] = ~data; 474 phy_config_packet.generation = generation; 475 reinit_completion(&phy_config_done); 476 477 card->driver->send_request(card, &phy_config_packet); 478 wait_for_completion_timeout(&phy_config_done, timeout); 479 480 mutex_unlock(&phy_config_mutex); 481 } 482 483 static struct fw_address_handler *lookup_overlapping_address_handler( 484 struct list_head *list, unsigned long long offset, size_t length) 485 { 486 struct fw_address_handler *handler; 487 488 list_for_each_entry_rcu(handler, list, link) { 489 if (handler->offset < offset + length && 490 offset < handler->offset + handler->length) 491 return handler; 492 } 493 494 return NULL; 495 } 496 497 static bool is_enclosing_handler(struct fw_address_handler *handler, 498 unsigned long long offset, size_t length) 499 { 500 return handler->offset <= offset && 501 offset + length <= handler->offset + handler->length; 502 } 503 504 static struct fw_address_handler *lookup_enclosing_address_handler( 505 struct list_head *list, unsigned long long offset, size_t length) 506 { 507 struct fw_address_handler *handler; 508 509 list_for_each_entry_rcu(handler, list, link) { 510 if (is_enclosing_handler(handler, offset, length)) 511 return handler; 512 } 513 514 return NULL; 515 } 516 517 static DEFINE_SPINLOCK(address_handler_list_lock); 518 static LIST_HEAD(address_handler_list); 519 520 const struct fw_address_region fw_high_memory_region = 521 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, }; 522 EXPORT_SYMBOL(fw_high_memory_region); 523 524 static const struct fw_address_region low_memory_region = 525 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, }; 526 527 #if 0 528 const struct fw_address_region fw_private_region = 529 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, }; 530 const struct fw_address_region fw_csr_region = 531 { .start = CSR_REGISTER_BASE, 532 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, }; 533 const struct fw_address_region fw_unit_space_region = 534 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, }; 535 #endif /* 0 */ 536 537 static bool is_in_fcp_region(u64 offset, size_t length) 538 { 539 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 540 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END); 541 } 542 543 /** 544 * fw_core_add_address_handler() - register for incoming requests 545 * @handler: callback 546 * @region: region in the IEEE 1212 node space address range 547 * 548 * region->start, ->end, and handler->length have to be quadlet-aligned. 549 * 550 * When a request is received that falls within the specified address range, 551 * the specified callback is invoked. The parameters passed to the callback 552 * give the details of the particular request. 553 * 554 * To be called in process context. 555 * Return value: 0 on success, non-zero otherwise. 556 * 557 * The start offset of the handler's address region is determined by 558 * fw_core_add_address_handler() and is returned in handler->offset. 559 * 560 * Address allocations are exclusive, except for the FCP registers. 561 */ 562 int fw_core_add_address_handler(struct fw_address_handler *handler, 563 const struct fw_address_region *region) 564 { 565 struct fw_address_handler *other; 566 int ret = -EBUSY; 567 568 if (region->start & 0xffff000000000003ULL || 569 region->start >= region->end || 570 region->end > 0x0001000000000000ULL || 571 handler->length & 3 || 572 handler->length == 0) 573 return -EINVAL; 574 575 spin_lock(&address_handler_list_lock); 576 577 handler->offset = region->start; 578 while (handler->offset + handler->length <= region->end) { 579 if (is_in_fcp_region(handler->offset, handler->length)) 580 other = NULL; 581 else 582 other = lookup_overlapping_address_handler 583 (&address_handler_list, 584 handler->offset, handler->length); 585 if (other != NULL) { 586 handler->offset += other->length; 587 } else { 588 list_add_tail_rcu(&handler->link, &address_handler_list); 589 ret = 0; 590 break; 591 } 592 } 593 594 spin_unlock(&address_handler_list_lock); 595 596 return ret; 597 } 598 EXPORT_SYMBOL(fw_core_add_address_handler); 599 600 /** 601 * fw_core_remove_address_handler() - unregister an address handler 602 * @handler: callback 603 * 604 * To be called in process context. 605 * 606 * When fw_core_remove_address_handler() returns, @handler->callback() is 607 * guaranteed to not run on any CPU anymore. 608 */ 609 void fw_core_remove_address_handler(struct fw_address_handler *handler) 610 { 611 spin_lock(&address_handler_list_lock); 612 list_del_rcu(&handler->link); 613 spin_unlock(&address_handler_list_lock); 614 synchronize_rcu(); 615 } 616 EXPORT_SYMBOL(fw_core_remove_address_handler); 617 618 struct fw_request { 619 struct fw_packet response; 620 u32 request_header[4]; 621 int ack; 622 u32 length; 623 u32 data[]; 624 }; 625 626 static void free_response_callback(struct fw_packet *packet, 627 struct fw_card *card, int status) 628 { 629 struct fw_request *request; 630 631 request = container_of(packet, struct fw_request, response); 632 kfree(request); 633 } 634 635 int fw_get_response_length(struct fw_request *r) 636 { 637 int tcode, ext_tcode, data_length; 638 639 tcode = HEADER_GET_TCODE(r->request_header[0]); 640 641 switch (tcode) { 642 case TCODE_WRITE_QUADLET_REQUEST: 643 case TCODE_WRITE_BLOCK_REQUEST: 644 return 0; 645 646 case TCODE_READ_QUADLET_REQUEST: 647 return 4; 648 649 case TCODE_READ_BLOCK_REQUEST: 650 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); 651 return data_length; 652 653 case TCODE_LOCK_REQUEST: 654 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]); 655 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); 656 switch (ext_tcode) { 657 case EXTCODE_FETCH_ADD: 658 case EXTCODE_LITTLE_ADD: 659 return data_length; 660 default: 661 return data_length / 2; 662 } 663 664 default: 665 WARN(1, "wrong tcode %d\n", tcode); 666 return 0; 667 } 668 } 669 670 void fw_fill_response(struct fw_packet *response, u32 *request_header, 671 int rcode, void *payload, size_t length) 672 { 673 int tcode, tlabel, extended_tcode, source, destination; 674 675 tcode = HEADER_GET_TCODE(request_header[0]); 676 tlabel = HEADER_GET_TLABEL(request_header[0]); 677 source = HEADER_GET_DESTINATION(request_header[0]); 678 destination = HEADER_GET_SOURCE(request_header[1]); 679 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]); 680 681 response->header[0] = 682 HEADER_RETRY(RETRY_1) | 683 HEADER_TLABEL(tlabel) | 684 HEADER_DESTINATION(destination); 685 response->header[1] = 686 HEADER_SOURCE(source) | 687 HEADER_RCODE(rcode); 688 response->header[2] = 0; 689 690 switch (tcode) { 691 case TCODE_WRITE_QUADLET_REQUEST: 692 case TCODE_WRITE_BLOCK_REQUEST: 693 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE); 694 response->header_length = 12; 695 response->payload_length = 0; 696 break; 697 698 case TCODE_READ_QUADLET_REQUEST: 699 response->header[0] |= 700 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE); 701 if (payload != NULL) 702 response->header[3] = *(u32 *)payload; 703 else 704 response->header[3] = 0; 705 response->header_length = 16; 706 response->payload_length = 0; 707 break; 708 709 case TCODE_READ_BLOCK_REQUEST: 710 case TCODE_LOCK_REQUEST: 711 response->header[0] |= HEADER_TCODE(tcode + 2); 712 response->header[3] = 713 HEADER_DATA_LENGTH(length) | 714 HEADER_EXTENDED_TCODE(extended_tcode); 715 response->header_length = 16; 716 response->payload = payload; 717 response->payload_length = length; 718 break; 719 720 default: 721 WARN(1, "wrong tcode %d\n", tcode); 722 } 723 724 response->payload_mapped = false; 725 } 726 EXPORT_SYMBOL(fw_fill_response); 727 728 static u32 compute_split_timeout_timestamp(struct fw_card *card, 729 u32 request_timestamp) 730 { 731 unsigned int cycles; 732 u32 timestamp; 733 734 cycles = card->split_timeout_cycles; 735 cycles += request_timestamp & 0x1fff; 736 737 timestamp = request_timestamp & ~0x1fff; 738 timestamp += (cycles / 8000) << 13; 739 timestamp |= cycles % 8000; 740 741 return timestamp; 742 } 743 744 static struct fw_request *allocate_request(struct fw_card *card, 745 struct fw_packet *p) 746 { 747 struct fw_request *request; 748 u32 *data, length; 749 int request_tcode; 750 751 request_tcode = HEADER_GET_TCODE(p->header[0]); 752 switch (request_tcode) { 753 case TCODE_WRITE_QUADLET_REQUEST: 754 data = &p->header[3]; 755 length = 4; 756 break; 757 758 case TCODE_WRITE_BLOCK_REQUEST: 759 case TCODE_LOCK_REQUEST: 760 data = p->payload; 761 length = HEADER_GET_DATA_LENGTH(p->header[3]); 762 break; 763 764 case TCODE_READ_QUADLET_REQUEST: 765 data = NULL; 766 length = 4; 767 break; 768 769 case TCODE_READ_BLOCK_REQUEST: 770 data = NULL; 771 length = HEADER_GET_DATA_LENGTH(p->header[3]); 772 break; 773 774 default: 775 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n", 776 p->header[0], p->header[1], p->header[2]); 777 return NULL; 778 } 779 780 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC); 781 if (request == NULL) 782 return NULL; 783 784 request->response.speed = p->speed; 785 request->response.timestamp = 786 compute_split_timeout_timestamp(card, p->timestamp); 787 request->response.generation = p->generation; 788 request->response.ack = 0; 789 request->response.callback = free_response_callback; 790 request->ack = p->ack; 791 request->length = length; 792 if (data) 793 memcpy(request->data, data, length); 794 795 memcpy(request->request_header, p->header, sizeof(p->header)); 796 797 return request; 798 } 799 800 void fw_send_response(struct fw_card *card, 801 struct fw_request *request, int rcode) 802 { 803 if (WARN_ONCE(!request, "invalid for FCP address handlers")) 804 return; 805 806 /* unified transaction or broadcast transaction: don't respond */ 807 if (request->ack != ACK_PENDING || 808 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) { 809 kfree(request); 810 return; 811 } 812 813 if (rcode == RCODE_COMPLETE) 814 fw_fill_response(&request->response, request->request_header, 815 rcode, request->data, 816 fw_get_response_length(request)); 817 else 818 fw_fill_response(&request->response, request->request_header, 819 rcode, NULL, 0); 820 821 card->driver->send_response(card, &request->response); 822 } 823 EXPORT_SYMBOL(fw_send_response); 824 825 /** 826 * fw_get_request_speed() - returns speed at which the @request was received 827 * @request: firewire request data 828 */ 829 int fw_get_request_speed(struct fw_request *request) 830 { 831 return request->response.speed; 832 } 833 EXPORT_SYMBOL(fw_get_request_speed); 834 835 static void handle_exclusive_region_request(struct fw_card *card, 836 struct fw_packet *p, 837 struct fw_request *request, 838 unsigned long long offset) 839 { 840 struct fw_address_handler *handler; 841 int tcode, destination, source; 842 843 destination = HEADER_GET_DESTINATION(p->header[0]); 844 source = HEADER_GET_SOURCE(p->header[1]); 845 tcode = HEADER_GET_TCODE(p->header[0]); 846 if (tcode == TCODE_LOCK_REQUEST) 847 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]); 848 849 rcu_read_lock(); 850 handler = lookup_enclosing_address_handler(&address_handler_list, 851 offset, request->length); 852 if (handler) 853 handler->address_callback(card, request, 854 tcode, destination, source, 855 p->generation, offset, 856 request->data, request->length, 857 handler->callback_data); 858 rcu_read_unlock(); 859 860 if (!handler) 861 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 862 } 863 864 static void handle_fcp_region_request(struct fw_card *card, 865 struct fw_packet *p, 866 struct fw_request *request, 867 unsigned long long offset) 868 { 869 struct fw_address_handler *handler; 870 int tcode, destination, source; 871 872 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 873 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) || 874 request->length > 0x200) { 875 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 876 877 return; 878 } 879 880 tcode = HEADER_GET_TCODE(p->header[0]); 881 destination = HEADER_GET_DESTINATION(p->header[0]); 882 source = HEADER_GET_SOURCE(p->header[1]); 883 884 if (tcode != TCODE_WRITE_QUADLET_REQUEST && 885 tcode != TCODE_WRITE_BLOCK_REQUEST) { 886 fw_send_response(card, request, RCODE_TYPE_ERROR); 887 888 return; 889 } 890 891 rcu_read_lock(); 892 list_for_each_entry_rcu(handler, &address_handler_list, link) { 893 if (is_enclosing_handler(handler, offset, request->length)) 894 handler->address_callback(card, NULL, tcode, 895 destination, source, 896 p->generation, offset, 897 request->data, 898 request->length, 899 handler->callback_data); 900 } 901 rcu_read_unlock(); 902 903 fw_send_response(card, request, RCODE_COMPLETE); 904 } 905 906 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p) 907 { 908 struct fw_request *request; 909 unsigned long long offset; 910 911 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE) 912 return; 913 914 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) { 915 fw_cdev_handle_phy_packet(card, p); 916 return; 917 } 918 919 request = allocate_request(card, p); 920 if (request == NULL) { 921 /* FIXME: send statically allocated busy packet. */ 922 return; 923 } 924 925 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) | 926 p->header[2]; 927 928 if (!is_in_fcp_region(offset, request->length)) 929 handle_exclusive_region_request(card, p, request, offset); 930 else 931 handle_fcp_region_request(card, p, request, offset); 932 933 } 934 EXPORT_SYMBOL(fw_core_handle_request); 935 936 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p) 937 { 938 struct fw_transaction *t; 939 unsigned long flags; 940 u32 *data; 941 size_t data_length; 942 int tcode, tlabel, source, rcode; 943 944 tcode = HEADER_GET_TCODE(p->header[0]); 945 tlabel = HEADER_GET_TLABEL(p->header[0]); 946 source = HEADER_GET_SOURCE(p->header[1]); 947 rcode = HEADER_GET_RCODE(p->header[1]); 948 949 spin_lock_irqsave(&card->lock, flags); 950 list_for_each_entry(t, &card->transaction_list, link) { 951 if (t->node_id == source && t->tlabel == tlabel) { 952 if (!try_cancel_split_timeout(t)) { 953 spin_unlock_irqrestore(&card->lock, flags); 954 goto timed_out; 955 } 956 list_del_init(&t->link); 957 card->tlabel_mask &= ~(1ULL << t->tlabel); 958 break; 959 } 960 } 961 spin_unlock_irqrestore(&card->lock, flags); 962 963 if (&t->link == &card->transaction_list) { 964 timed_out: 965 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n", 966 source, tlabel); 967 return; 968 } 969 970 /* 971 * FIXME: sanity check packet, is length correct, does tcodes 972 * and addresses match. 973 */ 974 975 switch (tcode) { 976 case TCODE_READ_QUADLET_RESPONSE: 977 data = (u32 *) &p->header[3]; 978 data_length = 4; 979 break; 980 981 case TCODE_WRITE_RESPONSE: 982 data = NULL; 983 data_length = 0; 984 break; 985 986 case TCODE_READ_BLOCK_RESPONSE: 987 case TCODE_LOCK_RESPONSE: 988 data = p->payload; 989 data_length = HEADER_GET_DATA_LENGTH(p->header[3]); 990 break; 991 992 default: 993 /* Should never happen, this is just to shut up gcc. */ 994 data = NULL; 995 data_length = 0; 996 break; 997 } 998 999 /* 1000 * The response handler may be executed while the request handler 1001 * is still pending. Cancel the request handler. 1002 */ 1003 card->driver->cancel_packet(card, &t->packet); 1004 1005 t->callback(card, rcode, data, data_length, t->callback_data); 1006 } 1007 EXPORT_SYMBOL(fw_core_handle_response); 1008 1009 /** 1010 * fw_rcode_string - convert a firewire result code to an error description 1011 * @rcode: the result code 1012 */ 1013 const char *fw_rcode_string(int rcode) 1014 { 1015 static const char *const names[] = { 1016 [RCODE_COMPLETE] = "no error", 1017 [RCODE_CONFLICT_ERROR] = "conflict error", 1018 [RCODE_DATA_ERROR] = "data error", 1019 [RCODE_TYPE_ERROR] = "type error", 1020 [RCODE_ADDRESS_ERROR] = "address error", 1021 [RCODE_SEND_ERROR] = "send error", 1022 [RCODE_CANCELLED] = "timeout", 1023 [RCODE_BUSY] = "busy", 1024 [RCODE_GENERATION] = "bus reset", 1025 [RCODE_NO_ACK] = "no ack", 1026 }; 1027 1028 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode]) 1029 return names[rcode]; 1030 else 1031 return "unknown"; 1032 } 1033 EXPORT_SYMBOL(fw_rcode_string); 1034 1035 static const struct fw_address_region topology_map_region = 1036 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP, 1037 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, }; 1038 1039 static void handle_topology_map(struct fw_card *card, struct fw_request *request, 1040 int tcode, int destination, int source, int generation, 1041 unsigned long long offset, void *payload, size_t length, 1042 void *callback_data) 1043 { 1044 int start; 1045 1046 if (!TCODE_IS_READ_REQUEST(tcode)) { 1047 fw_send_response(card, request, RCODE_TYPE_ERROR); 1048 return; 1049 } 1050 1051 if ((offset & 3) > 0 || (length & 3) > 0) { 1052 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 1053 return; 1054 } 1055 1056 start = (offset - topology_map_region.start) / 4; 1057 memcpy(payload, &card->topology_map[start], length); 1058 1059 fw_send_response(card, request, RCODE_COMPLETE); 1060 } 1061 1062 static struct fw_address_handler topology_map = { 1063 .length = 0x400, 1064 .address_callback = handle_topology_map, 1065 }; 1066 1067 static const struct fw_address_region registers_region = 1068 { .start = CSR_REGISTER_BASE, 1069 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, }; 1070 1071 static void update_split_timeout(struct fw_card *card) 1072 { 1073 unsigned int cycles; 1074 1075 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19); 1076 1077 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */ 1078 cycles = clamp(cycles, 800u, 3u * 8000u); 1079 1080 card->split_timeout_cycles = cycles; 1081 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000); 1082 } 1083 1084 static void handle_registers(struct fw_card *card, struct fw_request *request, 1085 int tcode, int destination, int source, int generation, 1086 unsigned long long offset, void *payload, size_t length, 1087 void *callback_data) 1088 { 1089 int reg = offset & ~CSR_REGISTER_BASE; 1090 __be32 *data = payload; 1091 int rcode = RCODE_COMPLETE; 1092 unsigned long flags; 1093 1094 switch (reg) { 1095 case CSR_PRIORITY_BUDGET: 1096 if (!card->priority_budget_implemented) { 1097 rcode = RCODE_ADDRESS_ERROR; 1098 break; 1099 } 1100 fallthrough; 1101 1102 case CSR_NODE_IDS: 1103 /* 1104 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8 1105 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges 1106 */ 1107 fallthrough; 1108 1109 case CSR_STATE_CLEAR: 1110 case CSR_STATE_SET: 1111 case CSR_CYCLE_TIME: 1112 case CSR_BUS_TIME: 1113 case CSR_BUSY_TIMEOUT: 1114 if (tcode == TCODE_READ_QUADLET_REQUEST) 1115 *data = cpu_to_be32(card->driver->read_csr(card, reg)); 1116 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1117 card->driver->write_csr(card, reg, be32_to_cpu(*data)); 1118 else 1119 rcode = RCODE_TYPE_ERROR; 1120 break; 1121 1122 case CSR_RESET_START: 1123 if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1124 card->driver->write_csr(card, CSR_STATE_CLEAR, 1125 CSR_STATE_BIT_ABDICATE); 1126 else 1127 rcode = RCODE_TYPE_ERROR; 1128 break; 1129 1130 case CSR_SPLIT_TIMEOUT_HI: 1131 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1132 *data = cpu_to_be32(card->split_timeout_hi); 1133 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1134 spin_lock_irqsave(&card->lock, flags); 1135 card->split_timeout_hi = be32_to_cpu(*data) & 7; 1136 update_split_timeout(card); 1137 spin_unlock_irqrestore(&card->lock, flags); 1138 } else { 1139 rcode = RCODE_TYPE_ERROR; 1140 } 1141 break; 1142 1143 case CSR_SPLIT_TIMEOUT_LO: 1144 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1145 *data = cpu_to_be32(card->split_timeout_lo); 1146 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1147 spin_lock_irqsave(&card->lock, flags); 1148 card->split_timeout_lo = 1149 be32_to_cpu(*data) & 0xfff80000; 1150 update_split_timeout(card); 1151 spin_unlock_irqrestore(&card->lock, flags); 1152 } else { 1153 rcode = RCODE_TYPE_ERROR; 1154 } 1155 break; 1156 1157 case CSR_MAINT_UTILITY: 1158 if (tcode == TCODE_READ_QUADLET_REQUEST) 1159 *data = card->maint_utility_register; 1160 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1161 card->maint_utility_register = *data; 1162 else 1163 rcode = RCODE_TYPE_ERROR; 1164 break; 1165 1166 case CSR_BROADCAST_CHANNEL: 1167 if (tcode == TCODE_READ_QUADLET_REQUEST) 1168 *data = cpu_to_be32(card->broadcast_channel); 1169 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1170 card->broadcast_channel = 1171 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) | 1172 BROADCAST_CHANNEL_INITIAL; 1173 else 1174 rcode = RCODE_TYPE_ERROR; 1175 break; 1176 1177 case CSR_BUS_MANAGER_ID: 1178 case CSR_BANDWIDTH_AVAILABLE: 1179 case CSR_CHANNELS_AVAILABLE_HI: 1180 case CSR_CHANNELS_AVAILABLE_LO: 1181 /* 1182 * FIXME: these are handled by the OHCI hardware and 1183 * the stack never sees these request. If we add 1184 * support for a new type of controller that doesn't 1185 * handle this in hardware we need to deal with these 1186 * transactions. 1187 */ 1188 BUG(); 1189 break; 1190 1191 default: 1192 rcode = RCODE_ADDRESS_ERROR; 1193 break; 1194 } 1195 1196 fw_send_response(card, request, rcode); 1197 } 1198 1199 static struct fw_address_handler registers = { 1200 .length = 0x400, 1201 .address_callback = handle_registers, 1202 }; 1203 1204 static void handle_low_memory(struct fw_card *card, struct fw_request *request, 1205 int tcode, int destination, int source, int generation, 1206 unsigned long long offset, void *payload, size_t length, 1207 void *callback_data) 1208 { 1209 /* 1210 * This catches requests not handled by the physical DMA unit, 1211 * i.e., wrong transaction types or unauthorized source nodes. 1212 */ 1213 fw_send_response(card, request, RCODE_TYPE_ERROR); 1214 } 1215 1216 static struct fw_address_handler low_memory = { 1217 .length = FW_MAX_PHYSICAL_RANGE, 1218 .address_callback = handle_low_memory, 1219 }; 1220 1221 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1222 MODULE_DESCRIPTION("Core IEEE1394 transaction logic"); 1223 MODULE_LICENSE("GPL"); 1224 1225 static const u32 vendor_textual_descriptor[] = { 1226 /* textual descriptor leaf () */ 1227 0x00060000, 1228 0x00000000, 1229 0x00000000, 1230 0x4c696e75, /* L i n u */ 1231 0x78204669, /* x F i */ 1232 0x72657769, /* r e w i */ 1233 0x72650000, /* r e */ 1234 }; 1235 1236 static const u32 model_textual_descriptor[] = { 1237 /* model descriptor leaf () */ 1238 0x00030000, 1239 0x00000000, 1240 0x00000000, 1241 0x4a756a75, /* J u j u */ 1242 }; 1243 1244 static struct fw_descriptor vendor_id_descriptor = { 1245 .length = ARRAY_SIZE(vendor_textual_descriptor), 1246 .immediate = 0x03001f11, 1247 .key = 0x81000000, 1248 .data = vendor_textual_descriptor, 1249 }; 1250 1251 static struct fw_descriptor model_id_descriptor = { 1252 .length = ARRAY_SIZE(model_textual_descriptor), 1253 .immediate = 0x17023901, 1254 .key = 0x81000000, 1255 .data = model_textual_descriptor, 1256 }; 1257 1258 static int __init fw_core_init(void) 1259 { 1260 int ret; 1261 1262 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0); 1263 if (!fw_workqueue) 1264 return -ENOMEM; 1265 1266 ret = bus_register(&fw_bus_type); 1267 if (ret < 0) { 1268 destroy_workqueue(fw_workqueue); 1269 return ret; 1270 } 1271 1272 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops); 1273 if (fw_cdev_major < 0) { 1274 bus_unregister(&fw_bus_type); 1275 destroy_workqueue(fw_workqueue); 1276 return fw_cdev_major; 1277 } 1278 1279 fw_core_add_address_handler(&topology_map, &topology_map_region); 1280 fw_core_add_address_handler(®isters, ®isters_region); 1281 fw_core_add_address_handler(&low_memory, &low_memory_region); 1282 fw_core_add_descriptor(&vendor_id_descriptor); 1283 fw_core_add_descriptor(&model_id_descriptor); 1284 1285 return 0; 1286 } 1287 1288 static void __exit fw_core_cleanup(void) 1289 { 1290 unregister_chrdev(fw_cdev_major, "firewire"); 1291 bus_unregister(&fw_bus_type); 1292 destroy_workqueue(fw_workqueue); 1293 idr_destroy(&fw_device_idr); 1294 } 1295 1296 module_init(fw_core_init); 1297 module_exit(fw_core_cleanup); 1298