1 /* 2 * Core IEEE1394 transaction logic 3 * 4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 #include <linux/bug.h> 22 #include <linux/completion.h> 23 #include <linux/device.h> 24 #include <linux/errno.h> 25 #include <linux/firewire.h> 26 #include <linux/firewire-constants.h> 27 #include <linux/fs.h> 28 #include <linux/init.h> 29 #include <linux/idr.h> 30 #include <linux/jiffies.h> 31 #include <linux/kernel.h> 32 #include <linux/list.h> 33 #include <linux/module.h> 34 #include <linux/slab.h> 35 #include <linux/spinlock.h> 36 #include <linux/string.h> 37 #include <linux/timer.h> 38 #include <linux/types.h> 39 40 #include <asm/byteorder.h> 41 42 #include "core.h" 43 44 #define HEADER_PRI(pri) ((pri) << 0) 45 #define HEADER_TCODE(tcode) ((tcode) << 4) 46 #define HEADER_RETRY(retry) ((retry) << 8) 47 #define HEADER_TLABEL(tlabel) ((tlabel) << 10) 48 #define HEADER_DESTINATION(destination) ((destination) << 16) 49 #define HEADER_SOURCE(source) ((source) << 16) 50 #define HEADER_RCODE(rcode) ((rcode) << 12) 51 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0) 52 #define HEADER_DATA_LENGTH(length) ((length) << 16) 53 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0) 54 55 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f) 56 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f) 57 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f) 58 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff) 59 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff) 60 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff) 61 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff) 62 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff) 63 64 #define HEADER_DESTINATION_IS_BROADCAST(q) \ 65 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f)) 66 67 #define PHY_PACKET_CONFIG 0x0 68 #define PHY_PACKET_LINK_ON 0x1 69 #define PHY_PACKET_SELF_ID 0x2 70 71 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22)) 72 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23)) 73 #define PHY_IDENTIFIER(id) ((id) << 30) 74 75 /* returns 0 if the split timeout handler is already running */ 76 static int try_cancel_split_timeout(struct fw_transaction *t) 77 { 78 if (t->is_split_transaction) 79 return del_timer(&t->split_timeout_timer); 80 else 81 return 1; 82 } 83 84 static int close_transaction(struct fw_transaction *transaction, 85 struct fw_card *card, int rcode) 86 { 87 struct fw_transaction *t; 88 unsigned long flags; 89 90 spin_lock_irqsave(&card->lock, flags); 91 list_for_each_entry(t, &card->transaction_list, link) { 92 if (t == transaction) { 93 if (!try_cancel_split_timeout(t)) { 94 spin_unlock_irqrestore(&card->lock, flags); 95 goto timed_out; 96 } 97 list_del_init(&t->link); 98 card->tlabel_mask &= ~(1ULL << t->tlabel); 99 break; 100 } 101 } 102 spin_unlock_irqrestore(&card->lock, flags); 103 104 if (&t->link != &card->transaction_list) { 105 t->callback(card, rcode, NULL, 0, t->callback_data); 106 return 0; 107 } 108 109 timed_out: 110 return -ENOENT; 111 } 112 113 /* 114 * Only valid for transactions that are potentially pending (ie have 115 * been sent). 116 */ 117 int fw_cancel_transaction(struct fw_card *card, 118 struct fw_transaction *transaction) 119 { 120 /* 121 * Cancel the packet transmission if it's still queued. That 122 * will call the packet transmission callback which cancels 123 * the transaction. 124 */ 125 126 if (card->driver->cancel_packet(card, &transaction->packet) == 0) 127 return 0; 128 129 /* 130 * If the request packet has already been sent, we need to see 131 * if the transaction is still pending and remove it in that case. 132 */ 133 134 return close_transaction(transaction, card, RCODE_CANCELLED); 135 } 136 EXPORT_SYMBOL(fw_cancel_transaction); 137 138 static void split_transaction_timeout_callback(unsigned long data) 139 { 140 struct fw_transaction *t = (struct fw_transaction *)data; 141 struct fw_card *card = t->card; 142 unsigned long flags; 143 144 spin_lock_irqsave(&card->lock, flags); 145 if (list_empty(&t->link)) { 146 spin_unlock_irqrestore(&card->lock, flags); 147 return; 148 } 149 list_del(&t->link); 150 card->tlabel_mask &= ~(1ULL << t->tlabel); 151 spin_unlock_irqrestore(&card->lock, flags); 152 153 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data); 154 } 155 156 static void start_split_transaction_timeout(struct fw_transaction *t, 157 struct fw_card *card) 158 { 159 unsigned long flags; 160 161 spin_lock_irqsave(&card->lock, flags); 162 163 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) { 164 spin_unlock_irqrestore(&card->lock, flags); 165 return; 166 } 167 168 t->is_split_transaction = true; 169 mod_timer(&t->split_timeout_timer, 170 jiffies + card->split_timeout_jiffies); 171 172 spin_unlock_irqrestore(&card->lock, flags); 173 } 174 175 static void transmit_complete_callback(struct fw_packet *packet, 176 struct fw_card *card, int status) 177 { 178 struct fw_transaction *t = 179 container_of(packet, struct fw_transaction, packet); 180 181 switch (status) { 182 case ACK_COMPLETE: 183 close_transaction(t, card, RCODE_COMPLETE); 184 break; 185 case ACK_PENDING: 186 start_split_transaction_timeout(t, card); 187 break; 188 case ACK_BUSY_X: 189 case ACK_BUSY_A: 190 case ACK_BUSY_B: 191 close_transaction(t, card, RCODE_BUSY); 192 break; 193 case ACK_DATA_ERROR: 194 close_transaction(t, card, RCODE_DATA_ERROR); 195 break; 196 case ACK_TYPE_ERROR: 197 close_transaction(t, card, RCODE_TYPE_ERROR); 198 break; 199 default: 200 /* 201 * In this case the ack is really a juju specific 202 * rcode, so just forward that to the callback. 203 */ 204 close_transaction(t, card, status); 205 break; 206 } 207 } 208 209 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel, 210 int destination_id, int source_id, int generation, int speed, 211 unsigned long long offset, void *payload, size_t length) 212 { 213 int ext_tcode; 214 215 if (tcode == TCODE_STREAM_DATA) { 216 packet->header[0] = 217 HEADER_DATA_LENGTH(length) | 218 destination_id | 219 HEADER_TCODE(TCODE_STREAM_DATA); 220 packet->header_length = 4; 221 packet->payload = payload; 222 packet->payload_length = length; 223 224 goto common; 225 } 226 227 if (tcode > 0x10) { 228 ext_tcode = tcode & ~0x10; 229 tcode = TCODE_LOCK_REQUEST; 230 } else 231 ext_tcode = 0; 232 233 packet->header[0] = 234 HEADER_RETRY(RETRY_X) | 235 HEADER_TLABEL(tlabel) | 236 HEADER_TCODE(tcode) | 237 HEADER_DESTINATION(destination_id); 238 packet->header[1] = 239 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id); 240 packet->header[2] = 241 offset; 242 243 switch (tcode) { 244 case TCODE_WRITE_QUADLET_REQUEST: 245 packet->header[3] = *(u32 *)payload; 246 packet->header_length = 16; 247 packet->payload_length = 0; 248 break; 249 250 case TCODE_LOCK_REQUEST: 251 case TCODE_WRITE_BLOCK_REQUEST: 252 packet->header[3] = 253 HEADER_DATA_LENGTH(length) | 254 HEADER_EXTENDED_TCODE(ext_tcode); 255 packet->header_length = 16; 256 packet->payload = payload; 257 packet->payload_length = length; 258 break; 259 260 case TCODE_READ_QUADLET_REQUEST: 261 packet->header_length = 12; 262 packet->payload_length = 0; 263 break; 264 265 case TCODE_READ_BLOCK_REQUEST: 266 packet->header[3] = 267 HEADER_DATA_LENGTH(length) | 268 HEADER_EXTENDED_TCODE(ext_tcode); 269 packet->header_length = 16; 270 packet->payload_length = 0; 271 break; 272 273 default: 274 WARN(1, "wrong tcode %d\n", tcode); 275 } 276 common: 277 packet->speed = speed; 278 packet->generation = generation; 279 packet->ack = 0; 280 packet->payload_mapped = false; 281 } 282 283 static int allocate_tlabel(struct fw_card *card) 284 { 285 int tlabel; 286 287 tlabel = card->current_tlabel; 288 while (card->tlabel_mask & (1ULL << tlabel)) { 289 tlabel = (tlabel + 1) & 0x3f; 290 if (tlabel == card->current_tlabel) 291 return -EBUSY; 292 } 293 294 card->current_tlabel = (tlabel + 1) & 0x3f; 295 card->tlabel_mask |= 1ULL << tlabel; 296 297 return tlabel; 298 } 299 300 /** 301 * fw_send_request() - submit a request packet for transmission 302 * @card: interface to send the request at 303 * @t: transaction instance to which the request belongs 304 * @tcode: transaction code 305 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 306 * @generation: bus generation in which request and response are valid 307 * @speed: transmission speed 308 * @offset: 48bit wide offset into destination's address space 309 * @payload: data payload for the request subaction 310 * @length: length of the payload, in bytes 311 * @callback: function to be called when the transaction is completed 312 * @callback_data: data to be passed to the transaction completion callback 313 * 314 * Submit a request packet into the asynchronous request transmission queue. 315 * Can be called from atomic context. If you prefer a blocking API, use 316 * fw_run_transaction() in a context that can sleep. 317 * 318 * In case of lock requests, specify one of the firewire-core specific %TCODE_ 319 * constants instead of %TCODE_LOCK_REQUEST in @tcode. 320 * 321 * Make sure that the value in @destination_id is not older than the one in 322 * @generation. Otherwise the request is in danger to be sent to a wrong node. 323 * 324 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller 325 * needs to synthesize @destination_id with fw_stream_packet_destination_id(). 326 * It will contain tag, channel, and sy data instead of a node ID then. 327 * 328 * The payload buffer at @data is going to be DMA-mapped except in case of 329 * quadlet-sized payload or of local (loopback) requests. Hence make sure that 330 * the buffer complies with the restrictions for DMA-mapped memory. The 331 * @payload must not be freed before the @callback is called. 332 * 333 * In case of request types without payload, @data is NULL and @length is 0. 334 * 335 * After the transaction is completed successfully or unsuccessfully, the 336 * @callback will be called. Among its parameters is the response code which 337 * is either one of the rcodes per IEEE 1394 or, in case of internal errors, 338 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core 339 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION, 340 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request 341 * generation, or missing ACK respectively. 342 * 343 * Note some timing corner cases: fw_send_request() may complete much earlier 344 * than when the request packet actually hits the wire. On the other hand, 345 * transaction completion and hence execution of @callback may happen even 346 * before fw_send_request() returns. 347 */ 348 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, 349 int destination_id, int generation, int speed, 350 unsigned long long offset, void *payload, size_t length, 351 fw_transaction_callback_t callback, void *callback_data) 352 { 353 unsigned long flags; 354 int tlabel; 355 356 /* 357 * Allocate tlabel from the bitmap and put the transaction on 358 * the list while holding the card spinlock. 359 */ 360 361 spin_lock_irqsave(&card->lock, flags); 362 363 tlabel = allocate_tlabel(card); 364 if (tlabel < 0) { 365 spin_unlock_irqrestore(&card->lock, flags); 366 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data); 367 return; 368 } 369 370 t->node_id = destination_id; 371 t->tlabel = tlabel; 372 t->card = card; 373 t->is_split_transaction = false; 374 setup_timer(&t->split_timeout_timer, 375 split_transaction_timeout_callback, (unsigned long)t); 376 t->callback = callback; 377 t->callback_data = callback_data; 378 379 fw_fill_request(&t->packet, tcode, t->tlabel, 380 destination_id, card->node_id, generation, 381 speed, offset, payload, length); 382 t->packet.callback = transmit_complete_callback; 383 384 list_add_tail(&t->link, &card->transaction_list); 385 386 spin_unlock_irqrestore(&card->lock, flags); 387 388 card->driver->send_request(card, &t->packet); 389 } 390 EXPORT_SYMBOL(fw_send_request); 391 392 struct transaction_callback_data { 393 struct completion done; 394 void *payload; 395 int rcode; 396 }; 397 398 static void transaction_callback(struct fw_card *card, int rcode, 399 void *payload, size_t length, void *data) 400 { 401 struct transaction_callback_data *d = data; 402 403 if (rcode == RCODE_COMPLETE) 404 memcpy(d->payload, payload, length); 405 d->rcode = rcode; 406 complete(&d->done); 407 } 408 409 /** 410 * fw_run_transaction() - send request and sleep until transaction is completed 411 * 412 * Returns the RCODE. See fw_send_request() for parameter documentation. 413 * Unlike fw_send_request(), @data points to the payload of the request or/and 414 * to the payload of the response. 415 */ 416 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, 417 int generation, int speed, unsigned long long offset, 418 void *payload, size_t length) 419 { 420 struct transaction_callback_data d; 421 struct fw_transaction t; 422 423 init_timer_on_stack(&t.split_timeout_timer); 424 init_completion(&d.done); 425 d.payload = payload; 426 fw_send_request(card, &t, tcode, destination_id, generation, speed, 427 offset, payload, length, transaction_callback, &d); 428 wait_for_completion(&d.done); 429 destroy_timer_on_stack(&t.split_timeout_timer); 430 431 return d.rcode; 432 } 433 EXPORT_SYMBOL(fw_run_transaction); 434 435 static DEFINE_MUTEX(phy_config_mutex); 436 static DECLARE_COMPLETION(phy_config_done); 437 438 static void transmit_phy_packet_callback(struct fw_packet *packet, 439 struct fw_card *card, int status) 440 { 441 complete(&phy_config_done); 442 } 443 444 static struct fw_packet phy_config_packet = { 445 .header_length = 12, 446 .header[0] = TCODE_LINK_INTERNAL << 4, 447 .payload_length = 0, 448 .speed = SCODE_100, 449 .callback = transmit_phy_packet_callback, 450 }; 451 452 void fw_send_phy_config(struct fw_card *card, 453 int node_id, int generation, int gap_count) 454 { 455 long timeout = DIV_ROUND_UP(HZ, 10); 456 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG); 457 458 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) 459 data |= PHY_CONFIG_ROOT_ID(node_id); 460 461 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) { 462 gap_count = card->driver->read_phy_reg(card, 1); 463 if (gap_count < 0) 464 return; 465 466 gap_count &= 63; 467 if (gap_count == 63) 468 return; 469 } 470 data |= PHY_CONFIG_GAP_COUNT(gap_count); 471 472 mutex_lock(&phy_config_mutex); 473 474 phy_config_packet.header[1] = data; 475 phy_config_packet.header[2] = ~data; 476 phy_config_packet.generation = generation; 477 INIT_COMPLETION(phy_config_done); 478 479 card->driver->send_request(card, &phy_config_packet); 480 wait_for_completion_timeout(&phy_config_done, timeout); 481 482 mutex_unlock(&phy_config_mutex); 483 } 484 485 static struct fw_address_handler *lookup_overlapping_address_handler( 486 struct list_head *list, unsigned long long offset, size_t length) 487 { 488 struct fw_address_handler *handler; 489 490 list_for_each_entry(handler, list, link) { 491 if (handler->offset < offset + length && 492 offset < handler->offset + handler->length) 493 return handler; 494 } 495 496 return NULL; 497 } 498 499 static bool is_enclosing_handler(struct fw_address_handler *handler, 500 unsigned long long offset, size_t length) 501 { 502 return handler->offset <= offset && 503 offset + length <= handler->offset + handler->length; 504 } 505 506 static struct fw_address_handler *lookup_enclosing_address_handler( 507 struct list_head *list, unsigned long long offset, size_t length) 508 { 509 struct fw_address_handler *handler; 510 511 list_for_each_entry(handler, list, link) { 512 if (is_enclosing_handler(handler, offset, length)) 513 return handler; 514 } 515 516 return NULL; 517 } 518 519 static DEFINE_SPINLOCK(address_handler_lock); 520 static LIST_HEAD(address_handler_list); 521 522 const struct fw_address_region fw_high_memory_region = 523 { .start = 0x000100000000ULL, .end = 0xffffe0000000ULL, }; 524 EXPORT_SYMBOL(fw_high_memory_region); 525 526 #if 0 527 const struct fw_address_region fw_low_memory_region = 528 { .start = 0x000000000000ULL, .end = 0x000100000000ULL, }; 529 const struct fw_address_region fw_private_region = 530 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, }; 531 const struct fw_address_region fw_csr_region = 532 { .start = CSR_REGISTER_BASE, 533 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, }; 534 const struct fw_address_region fw_unit_space_region = 535 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, }; 536 #endif /* 0 */ 537 538 static bool is_in_fcp_region(u64 offset, size_t length) 539 { 540 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 541 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END); 542 } 543 544 /** 545 * fw_core_add_address_handler() - register for incoming requests 546 * @handler: callback 547 * @region: region in the IEEE 1212 node space address range 548 * 549 * region->start, ->end, and handler->length have to be quadlet-aligned. 550 * 551 * When a request is received that falls within the specified address range, 552 * the specified callback is invoked. The parameters passed to the callback 553 * give the details of the particular request. 554 * 555 * Return value: 0 on success, non-zero otherwise. 556 * 557 * The start offset of the handler's address region is determined by 558 * fw_core_add_address_handler() and is returned in handler->offset. 559 * 560 * Address allocations are exclusive, except for the FCP registers. 561 */ 562 int fw_core_add_address_handler(struct fw_address_handler *handler, 563 const struct fw_address_region *region) 564 { 565 struct fw_address_handler *other; 566 unsigned long flags; 567 int ret = -EBUSY; 568 569 if (region->start & 0xffff000000000003ULL || 570 region->start >= region->end || 571 region->end > 0x0001000000000000ULL || 572 handler->length & 3 || 573 handler->length == 0) 574 return -EINVAL; 575 576 spin_lock_irqsave(&address_handler_lock, flags); 577 578 handler->offset = region->start; 579 while (handler->offset + handler->length <= region->end) { 580 if (is_in_fcp_region(handler->offset, handler->length)) 581 other = NULL; 582 else 583 other = lookup_overlapping_address_handler 584 (&address_handler_list, 585 handler->offset, handler->length); 586 if (other != NULL) { 587 handler->offset += other->length; 588 } else { 589 list_add_tail(&handler->link, &address_handler_list); 590 ret = 0; 591 break; 592 } 593 } 594 595 spin_unlock_irqrestore(&address_handler_lock, flags); 596 597 return ret; 598 } 599 EXPORT_SYMBOL(fw_core_add_address_handler); 600 601 /** 602 * fw_core_remove_address_handler() - unregister an address handler 603 */ 604 void fw_core_remove_address_handler(struct fw_address_handler *handler) 605 { 606 unsigned long flags; 607 608 spin_lock_irqsave(&address_handler_lock, flags); 609 list_del(&handler->link); 610 spin_unlock_irqrestore(&address_handler_lock, flags); 611 } 612 EXPORT_SYMBOL(fw_core_remove_address_handler); 613 614 struct fw_request { 615 struct fw_packet response; 616 u32 request_header[4]; 617 int ack; 618 u32 length; 619 u32 data[0]; 620 }; 621 622 static void free_response_callback(struct fw_packet *packet, 623 struct fw_card *card, int status) 624 { 625 struct fw_request *request; 626 627 request = container_of(packet, struct fw_request, response); 628 kfree(request); 629 } 630 631 int fw_get_response_length(struct fw_request *r) 632 { 633 int tcode, ext_tcode, data_length; 634 635 tcode = HEADER_GET_TCODE(r->request_header[0]); 636 637 switch (tcode) { 638 case TCODE_WRITE_QUADLET_REQUEST: 639 case TCODE_WRITE_BLOCK_REQUEST: 640 return 0; 641 642 case TCODE_READ_QUADLET_REQUEST: 643 return 4; 644 645 case TCODE_READ_BLOCK_REQUEST: 646 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); 647 return data_length; 648 649 case TCODE_LOCK_REQUEST: 650 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]); 651 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); 652 switch (ext_tcode) { 653 case EXTCODE_FETCH_ADD: 654 case EXTCODE_LITTLE_ADD: 655 return data_length; 656 default: 657 return data_length / 2; 658 } 659 660 default: 661 WARN(1, "wrong tcode %d\n", tcode); 662 return 0; 663 } 664 } 665 666 void fw_fill_response(struct fw_packet *response, u32 *request_header, 667 int rcode, void *payload, size_t length) 668 { 669 int tcode, tlabel, extended_tcode, source, destination; 670 671 tcode = HEADER_GET_TCODE(request_header[0]); 672 tlabel = HEADER_GET_TLABEL(request_header[0]); 673 source = HEADER_GET_DESTINATION(request_header[0]); 674 destination = HEADER_GET_SOURCE(request_header[1]); 675 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]); 676 677 response->header[0] = 678 HEADER_RETRY(RETRY_1) | 679 HEADER_TLABEL(tlabel) | 680 HEADER_DESTINATION(destination); 681 response->header[1] = 682 HEADER_SOURCE(source) | 683 HEADER_RCODE(rcode); 684 response->header[2] = 0; 685 686 switch (tcode) { 687 case TCODE_WRITE_QUADLET_REQUEST: 688 case TCODE_WRITE_BLOCK_REQUEST: 689 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE); 690 response->header_length = 12; 691 response->payload_length = 0; 692 break; 693 694 case TCODE_READ_QUADLET_REQUEST: 695 response->header[0] |= 696 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE); 697 if (payload != NULL) 698 response->header[3] = *(u32 *)payload; 699 else 700 response->header[3] = 0; 701 response->header_length = 16; 702 response->payload_length = 0; 703 break; 704 705 case TCODE_READ_BLOCK_REQUEST: 706 case TCODE_LOCK_REQUEST: 707 response->header[0] |= HEADER_TCODE(tcode + 2); 708 response->header[3] = 709 HEADER_DATA_LENGTH(length) | 710 HEADER_EXTENDED_TCODE(extended_tcode); 711 response->header_length = 16; 712 response->payload = payload; 713 response->payload_length = length; 714 break; 715 716 default: 717 WARN(1, "wrong tcode %d\n", tcode); 718 } 719 720 response->payload_mapped = false; 721 } 722 EXPORT_SYMBOL(fw_fill_response); 723 724 static u32 compute_split_timeout_timestamp(struct fw_card *card, 725 u32 request_timestamp) 726 { 727 unsigned int cycles; 728 u32 timestamp; 729 730 cycles = card->split_timeout_cycles; 731 cycles += request_timestamp & 0x1fff; 732 733 timestamp = request_timestamp & ~0x1fff; 734 timestamp += (cycles / 8000) << 13; 735 timestamp |= cycles % 8000; 736 737 return timestamp; 738 } 739 740 static struct fw_request *allocate_request(struct fw_card *card, 741 struct fw_packet *p) 742 { 743 struct fw_request *request; 744 u32 *data, length; 745 int request_tcode; 746 747 request_tcode = HEADER_GET_TCODE(p->header[0]); 748 switch (request_tcode) { 749 case TCODE_WRITE_QUADLET_REQUEST: 750 data = &p->header[3]; 751 length = 4; 752 break; 753 754 case TCODE_WRITE_BLOCK_REQUEST: 755 case TCODE_LOCK_REQUEST: 756 data = p->payload; 757 length = HEADER_GET_DATA_LENGTH(p->header[3]); 758 break; 759 760 case TCODE_READ_QUADLET_REQUEST: 761 data = NULL; 762 length = 4; 763 break; 764 765 case TCODE_READ_BLOCK_REQUEST: 766 data = NULL; 767 length = HEADER_GET_DATA_LENGTH(p->header[3]); 768 break; 769 770 default: 771 fw_error("ERROR - corrupt request received - %08x %08x %08x\n", 772 p->header[0], p->header[1], p->header[2]); 773 return NULL; 774 } 775 776 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC); 777 if (request == NULL) 778 return NULL; 779 780 request->response.speed = p->speed; 781 request->response.timestamp = 782 compute_split_timeout_timestamp(card, p->timestamp); 783 request->response.generation = p->generation; 784 request->response.ack = 0; 785 request->response.callback = free_response_callback; 786 request->ack = p->ack; 787 request->length = length; 788 if (data) 789 memcpy(request->data, data, length); 790 791 memcpy(request->request_header, p->header, sizeof(p->header)); 792 793 return request; 794 } 795 796 void fw_send_response(struct fw_card *card, 797 struct fw_request *request, int rcode) 798 { 799 if (WARN_ONCE(!request, "invalid for FCP address handlers")) 800 return; 801 802 /* unified transaction or broadcast transaction: don't respond */ 803 if (request->ack != ACK_PENDING || 804 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) { 805 kfree(request); 806 return; 807 } 808 809 if (rcode == RCODE_COMPLETE) 810 fw_fill_response(&request->response, request->request_header, 811 rcode, request->data, 812 fw_get_response_length(request)); 813 else 814 fw_fill_response(&request->response, request->request_header, 815 rcode, NULL, 0); 816 817 card->driver->send_response(card, &request->response); 818 } 819 EXPORT_SYMBOL(fw_send_response); 820 821 static void handle_exclusive_region_request(struct fw_card *card, 822 struct fw_packet *p, 823 struct fw_request *request, 824 unsigned long long offset) 825 { 826 struct fw_address_handler *handler; 827 unsigned long flags; 828 int tcode, destination, source; 829 830 destination = HEADER_GET_DESTINATION(p->header[0]); 831 source = HEADER_GET_SOURCE(p->header[1]); 832 tcode = HEADER_GET_TCODE(p->header[0]); 833 if (tcode == TCODE_LOCK_REQUEST) 834 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]); 835 836 spin_lock_irqsave(&address_handler_lock, flags); 837 handler = lookup_enclosing_address_handler(&address_handler_list, 838 offset, request->length); 839 spin_unlock_irqrestore(&address_handler_lock, flags); 840 841 /* 842 * FIXME: lookup the fw_node corresponding to the sender of 843 * this request and pass that to the address handler instead 844 * of the node ID. We may also want to move the address 845 * allocations to fw_node so we only do this callback if the 846 * upper layers registered it for this node. 847 */ 848 849 if (handler == NULL) 850 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 851 else 852 handler->address_callback(card, request, 853 tcode, destination, source, 854 p->generation, offset, 855 request->data, request->length, 856 handler->callback_data); 857 } 858 859 static void handle_fcp_region_request(struct fw_card *card, 860 struct fw_packet *p, 861 struct fw_request *request, 862 unsigned long long offset) 863 { 864 struct fw_address_handler *handler; 865 unsigned long flags; 866 int tcode, destination, source; 867 868 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 869 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) || 870 request->length > 0x200) { 871 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 872 873 return; 874 } 875 876 tcode = HEADER_GET_TCODE(p->header[0]); 877 destination = HEADER_GET_DESTINATION(p->header[0]); 878 source = HEADER_GET_SOURCE(p->header[1]); 879 880 if (tcode != TCODE_WRITE_QUADLET_REQUEST && 881 tcode != TCODE_WRITE_BLOCK_REQUEST) { 882 fw_send_response(card, request, RCODE_TYPE_ERROR); 883 884 return; 885 } 886 887 spin_lock_irqsave(&address_handler_lock, flags); 888 list_for_each_entry(handler, &address_handler_list, link) { 889 if (is_enclosing_handler(handler, offset, request->length)) 890 handler->address_callback(card, NULL, tcode, 891 destination, source, 892 p->generation, offset, 893 request->data, 894 request->length, 895 handler->callback_data); 896 } 897 spin_unlock_irqrestore(&address_handler_lock, flags); 898 899 fw_send_response(card, request, RCODE_COMPLETE); 900 } 901 902 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p) 903 { 904 struct fw_request *request; 905 unsigned long long offset; 906 907 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE) 908 return; 909 910 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) { 911 fw_cdev_handle_phy_packet(card, p); 912 return; 913 } 914 915 request = allocate_request(card, p); 916 if (request == NULL) { 917 /* FIXME: send statically allocated busy packet. */ 918 return; 919 } 920 921 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) | 922 p->header[2]; 923 924 if (!is_in_fcp_region(offset, request->length)) 925 handle_exclusive_region_request(card, p, request, offset); 926 else 927 handle_fcp_region_request(card, p, request, offset); 928 929 } 930 EXPORT_SYMBOL(fw_core_handle_request); 931 932 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p) 933 { 934 struct fw_transaction *t; 935 unsigned long flags; 936 u32 *data; 937 size_t data_length; 938 int tcode, tlabel, source, rcode; 939 940 tcode = HEADER_GET_TCODE(p->header[0]); 941 tlabel = HEADER_GET_TLABEL(p->header[0]); 942 source = HEADER_GET_SOURCE(p->header[1]); 943 rcode = HEADER_GET_RCODE(p->header[1]); 944 945 spin_lock_irqsave(&card->lock, flags); 946 list_for_each_entry(t, &card->transaction_list, link) { 947 if (t->node_id == source && t->tlabel == tlabel) { 948 if (!try_cancel_split_timeout(t)) { 949 spin_unlock_irqrestore(&card->lock, flags); 950 goto timed_out; 951 } 952 list_del_init(&t->link); 953 card->tlabel_mask &= ~(1ULL << t->tlabel); 954 break; 955 } 956 } 957 spin_unlock_irqrestore(&card->lock, flags); 958 959 if (&t->link == &card->transaction_list) { 960 timed_out: 961 fw_notify("Unsolicited response (source %x, tlabel %x)\n", 962 source, tlabel); 963 return; 964 } 965 966 /* 967 * FIXME: sanity check packet, is length correct, does tcodes 968 * and addresses match. 969 */ 970 971 switch (tcode) { 972 case TCODE_READ_QUADLET_RESPONSE: 973 data = (u32 *) &p->header[3]; 974 data_length = 4; 975 break; 976 977 case TCODE_WRITE_RESPONSE: 978 data = NULL; 979 data_length = 0; 980 break; 981 982 case TCODE_READ_BLOCK_RESPONSE: 983 case TCODE_LOCK_RESPONSE: 984 data = p->payload; 985 data_length = HEADER_GET_DATA_LENGTH(p->header[3]); 986 break; 987 988 default: 989 /* Should never happen, this is just to shut up gcc. */ 990 data = NULL; 991 data_length = 0; 992 break; 993 } 994 995 /* 996 * The response handler may be executed while the request handler 997 * is still pending. Cancel the request handler. 998 */ 999 card->driver->cancel_packet(card, &t->packet); 1000 1001 t->callback(card, rcode, data, data_length, t->callback_data); 1002 } 1003 EXPORT_SYMBOL(fw_core_handle_response); 1004 1005 static const struct fw_address_region topology_map_region = 1006 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP, 1007 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, }; 1008 1009 static void handle_topology_map(struct fw_card *card, struct fw_request *request, 1010 int tcode, int destination, int source, int generation, 1011 unsigned long long offset, void *payload, size_t length, 1012 void *callback_data) 1013 { 1014 int start; 1015 1016 if (!TCODE_IS_READ_REQUEST(tcode)) { 1017 fw_send_response(card, request, RCODE_TYPE_ERROR); 1018 return; 1019 } 1020 1021 if ((offset & 3) > 0 || (length & 3) > 0) { 1022 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 1023 return; 1024 } 1025 1026 start = (offset - topology_map_region.start) / 4; 1027 memcpy(payload, &card->topology_map[start], length); 1028 1029 fw_send_response(card, request, RCODE_COMPLETE); 1030 } 1031 1032 static struct fw_address_handler topology_map = { 1033 .length = 0x400, 1034 .address_callback = handle_topology_map, 1035 }; 1036 1037 static const struct fw_address_region registers_region = 1038 { .start = CSR_REGISTER_BASE, 1039 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, }; 1040 1041 static void update_split_timeout(struct fw_card *card) 1042 { 1043 unsigned int cycles; 1044 1045 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19); 1046 1047 cycles = max(cycles, 800u); /* minimum as per the spec */ 1048 cycles = min(cycles, 3u * 8000u); /* maximum OHCI timeout */ 1049 1050 card->split_timeout_cycles = cycles; 1051 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000); 1052 } 1053 1054 static void handle_registers(struct fw_card *card, struct fw_request *request, 1055 int tcode, int destination, int source, int generation, 1056 unsigned long long offset, void *payload, size_t length, 1057 void *callback_data) 1058 { 1059 int reg = offset & ~CSR_REGISTER_BASE; 1060 __be32 *data = payload; 1061 int rcode = RCODE_COMPLETE; 1062 unsigned long flags; 1063 1064 switch (reg) { 1065 case CSR_PRIORITY_BUDGET: 1066 if (!card->priority_budget_implemented) { 1067 rcode = RCODE_ADDRESS_ERROR; 1068 break; 1069 } 1070 /* else fall through */ 1071 1072 case CSR_NODE_IDS: 1073 /* 1074 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8 1075 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges 1076 */ 1077 /* fall through */ 1078 1079 case CSR_STATE_CLEAR: 1080 case CSR_STATE_SET: 1081 case CSR_CYCLE_TIME: 1082 case CSR_BUS_TIME: 1083 case CSR_BUSY_TIMEOUT: 1084 if (tcode == TCODE_READ_QUADLET_REQUEST) 1085 *data = cpu_to_be32(card->driver->read_csr(card, reg)); 1086 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1087 card->driver->write_csr(card, reg, be32_to_cpu(*data)); 1088 else 1089 rcode = RCODE_TYPE_ERROR; 1090 break; 1091 1092 case CSR_RESET_START: 1093 if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1094 card->driver->write_csr(card, CSR_STATE_CLEAR, 1095 CSR_STATE_BIT_ABDICATE); 1096 else 1097 rcode = RCODE_TYPE_ERROR; 1098 break; 1099 1100 case CSR_SPLIT_TIMEOUT_HI: 1101 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1102 *data = cpu_to_be32(card->split_timeout_hi); 1103 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1104 spin_lock_irqsave(&card->lock, flags); 1105 card->split_timeout_hi = be32_to_cpu(*data) & 7; 1106 update_split_timeout(card); 1107 spin_unlock_irqrestore(&card->lock, flags); 1108 } else { 1109 rcode = RCODE_TYPE_ERROR; 1110 } 1111 break; 1112 1113 case CSR_SPLIT_TIMEOUT_LO: 1114 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1115 *data = cpu_to_be32(card->split_timeout_lo); 1116 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1117 spin_lock_irqsave(&card->lock, flags); 1118 card->split_timeout_lo = 1119 be32_to_cpu(*data) & 0xfff80000; 1120 update_split_timeout(card); 1121 spin_unlock_irqrestore(&card->lock, flags); 1122 } else { 1123 rcode = RCODE_TYPE_ERROR; 1124 } 1125 break; 1126 1127 case CSR_MAINT_UTILITY: 1128 if (tcode == TCODE_READ_QUADLET_REQUEST) 1129 *data = card->maint_utility_register; 1130 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1131 card->maint_utility_register = *data; 1132 else 1133 rcode = RCODE_TYPE_ERROR; 1134 break; 1135 1136 case CSR_BROADCAST_CHANNEL: 1137 if (tcode == TCODE_READ_QUADLET_REQUEST) 1138 *data = cpu_to_be32(card->broadcast_channel); 1139 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1140 card->broadcast_channel = 1141 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) | 1142 BROADCAST_CHANNEL_INITIAL; 1143 else 1144 rcode = RCODE_TYPE_ERROR; 1145 break; 1146 1147 case CSR_BUS_MANAGER_ID: 1148 case CSR_BANDWIDTH_AVAILABLE: 1149 case CSR_CHANNELS_AVAILABLE_HI: 1150 case CSR_CHANNELS_AVAILABLE_LO: 1151 /* 1152 * FIXME: these are handled by the OHCI hardware and 1153 * the stack never sees these request. If we add 1154 * support for a new type of controller that doesn't 1155 * handle this in hardware we need to deal with these 1156 * transactions. 1157 */ 1158 BUG(); 1159 break; 1160 1161 default: 1162 rcode = RCODE_ADDRESS_ERROR; 1163 break; 1164 } 1165 1166 fw_send_response(card, request, rcode); 1167 } 1168 1169 static struct fw_address_handler registers = { 1170 .length = 0x400, 1171 .address_callback = handle_registers, 1172 }; 1173 1174 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1175 MODULE_DESCRIPTION("Core IEEE1394 transaction logic"); 1176 MODULE_LICENSE("GPL"); 1177 1178 static const u32 vendor_textual_descriptor[] = { 1179 /* textual descriptor leaf () */ 1180 0x00060000, 1181 0x00000000, 1182 0x00000000, 1183 0x4c696e75, /* L i n u */ 1184 0x78204669, /* x F i */ 1185 0x72657769, /* r e w i */ 1186 0x72650000, /* r e */ 1187 }; 1188 1189 static const u32 model_textual_descriptor[] = { 1190 /* model descriptor leaf () */ 1191 0x00030000, 1192 0x00000000, 1193 0x00000000, 1194 0x4a756a75, /* J u j u */ 1195 }; 1196 1197 static struct fw_descriptor vendor_id_descriptor = { 1198 .length = ARRAY_SIZE(vendor_textual_descriptor), 1199 .immediate = 0x03d00d1e, 1200 .key = 0x81000000, 1201 .data = vendor_textual_descriptor, 1202 }; 1203 1204 static struct fw_descriptor model_id_descriptor = { 1205 .length = ARRAY_SIZE(model_textual_descriptor), 1206 .immediate = 0x17000001, 1207 .key = 0x81000000, 1208 .data = model_textual_descriptor, 1209 }; 1210 1211 static int __init fw_core_init(void) 1212 { 1213 int ret; 1214 1215 ret = bus_register(&fw_bus_type); 1216 if (ret < 0) 1217 return ret; 1218 1219 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops); 1220 if (fw_cdev_major < 0) { 1221 bus_unregister(&fw_bus_type); 1222 return fw_cdev_major; 1223 } 1224 1225 fw_core_add_address_handler(&topology_map, &topology_map_region); 1226 fw_core_add_address_handler(®isters, ®isters_region); 1227 fw_core_add_descriptor(&vendor_id_descriptor); 1228 fw_core_add_descriptor(&model_id_descriptor); 1229 1230 return 0; 1231 } 1232 1233 static void __exit fw_core_cleanup(void) 1234 { 1235 unregister_chrdev(fw_cdev_major, "firewire"); 1236 bus_unregister(&fw_bus_type); 1237 idr_destroy(&fw_device_idr); 1238 } 1239 1240 module_init(fw_core_init); 1241 module_exit(fw_core_cleanup); 1242