1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core IEEE1394 transaction logic
4  *
5  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/fs.h>
15 #include <linux/init.h>
16 #include <linux/idr.h>
17 #include <linux/jiffies.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/rculist.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/types.h>
27 #include <linux/workqueue.h>
28 
29 #include <asm/byteorder.h>
30 
31 #include "core.h"
32 
33 #define HEADER_PRI(pri)			((pri) << 0)
34 #define HEADER_TCODE(tcode)		((tcode) << 4)
35 #define HEADER_RETRY(retry)		((retry) << 8)
36 #define HEADER_TLABEL(tlabel)		((tlabel) << 10)
37 #define HEADER_DESTINATION(destination)	((destination) << 16)
38 #define HEADER_SOURCE(source)		((source) << 16)
39 #define HEADER_RCODE(rcode)		((rcode) << 12)
40 #define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
41 #define HEADER_DATA_LENGTH(length)	((length) << 16)
42 #define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
43 
44 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
45 #define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
46 #define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
47 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
48 #define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
49 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
50 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
51 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
52 
53 #define HEADER_DESTINATION_IS_BROADCAST(q) \
54 	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
55 
56 #define PHY_PACKET_CONFIG	0x0
57 #define PHY_PACKET_LINK_ON	0x1
58 #define PHY_PACKET_SELF_ID	0x2
59 
60 #define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
61 #define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
62 #define PHY_IDENTIFIER(id)		((id) << 30)
63 
64 /* returns 0 if the split timeout handler is already running */
65 static int try_cancel_split_timeout(struct fw_transaction *t)
66 {
67 	if (t->is_split_transaction)
68 		return del_timer(&t->split_timeout_timer);
69 	else
70 		return 1;
71 }
72 
73 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
74 			     u32 response_tstamp)
75 {
76 	struct fw_transaction *t = NULL, *iter;
77 	unsigned long flags;
78 
79 	spin_lock_irqsave(&card->lock, flags);
80 	list_for_each_entry(iter, &card->transaction_list, link) {
81 		if (iter == transaction) {
82 			if (!try_cancel_split_timeout(iter)) {
83 				spin_unlock_irqrestore(&card->lock, flags);
84 				goto timed_out;
85 			}
86 			list_del_init(&iter->link);
87 			card->tlabel_mask &= ~(1ULL << iter->tlabel);
88 			t = iter;
89 			break;
90 		}
91 	}
92 	spin_unlock_irqrestore(&card->lock, flags);
93 
94 	if (t) {
95 		if (!t->with_tstamp) {
96 			t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
97 		} else {
98 			t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp,
99 						NULL, 0, t->callback_data);
100 		}
101 		return 0;
102 	}
103 
104  timed_out:
105 	return -ENOENT;
106 }
107 
108 /*
109  * Only valid for transactions that are potentially pending (ie have
110  * been sent).
111  */
112 int fw_cancel_transaction(struct fw_card *card,
113 			  struct fw_transaction *transaction)
114 {
115 	u32 tstamp;
116 
117 	/*
118 	 * Cancel the packet transmission if it's still queued.  That
119 	 * will call the packet transmission callback which cancels
120 	 * the transaction.
121 	 */
122 
123 	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
124 		return 0;
125 
126 	/*
127 	 * If the request packet has already been sent, we need to see
128 	 * if the transaction is still pending and remove it in that case.
129 	 */
130 
131 	if (transaction->packet.ack == 0) {
132 		// The timestamp is reused since it was just read now.
133 		tstamp = transaction->packet.timestamp;
134 	} else {
135 		u32 curr_cycle_time = 0;
136 
137 		(void)fw_card_read_cycle_time(card, &curr_cycle_time);
138 		tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
139 	}
140 
141 	return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
142 }
143 EXPORT_SYMBOL(fw_cancel_transaction);
144 
145 static void split_transaction_timeout_callback(struct timer_list *timer)
146 {
147 	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
148 	struct fw_card *card = t->card;
149 	unsigned long flags;
150 
151 	spin_lock_irqsave(&card->lock, flags);
152 	if (list_empty(&t->link)) {
153 		spin_unlock_irqrestore(&card->lock, flags);
154 		return;
155 	}
156 	list_del(&t->link);
157 	card->tlabel_mask &= ~(1ULL << t->tlabel);
158 	spin_unlock_irqrestore(&card->lock, flags);
159 
160 	if (!t->with_tstamp) {
161 		t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
162 	} else {
163 		t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
164 					t->split_timeout_cycle, NULL, 0, t->callback_data);
165 	}
166 }
167 
168 static void start_split_transaction_timeout(struct fw_transaction *t,
169 					    struct fw_card *card)
170 {
171 	unsigned long flags;
172 
173 	spin_lock_irqsave(&card->lock, flags);
174 
175 	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
176 		spin_unlock_irqrestore(&card->lock, flags);
177 		return;
178 	}
179 
180 	t->is_split_transaction = true;
181 	mod_timer(&t->split_timeout_timer,
182 		  jiffies + card->split_timeout_jiffies);
183 
184 	spin_unlock_irqrestore(&card->lock, flags);
185 }
186 
187 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
188 
189 static void transmit_complete_callback(struct fw_packet *packet,
190 				       struct fw_card *card, int status)
191 {
192 	struct fw_transaction *t =
193 	    container_of(packet, struct fw_transaction, packet);
194 
195 	switch (status) {
196 	case ACK_COMPLETE:
197 		close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
198 		break;
199 	case ACK_PENDING:
200 	{
201 		t->split_timeout_cycle =
202 			compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
203 		start_split_transaction_timeout(t, card);
204 		break;
205 	}
206 	case ACK_BUSY_X:
207 	case ACK_BUSY_A:
208 	case ACK_BUSY_B:
209 		close_transaction(t, card, RCODE_BUSY, packet->timestamp);
210 		break;
211 	case ACK_DATA_ERROR:
212 		close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
213 		break;
214 	case ACK_TYPE_ERROR:
215 		close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
216 		break;
217 	default:
218 		/*
219 		 * In this case the ack is really a juju specific
220 		 * rcode, so just forward that to the callback.
221 		 */
222 		close_transaction(t, card, status, packet->timestamp);
223 		break;
224 	}
225 }
226 
227 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
228 		int destination_id, int source_id, int generation, int speed,
229 		unsigned long long offset, void *payload, size_t length)
230 {
231 	int ext_tcode;
232 
233 	if (tcode == TCODE_STREAM_DATA) {
234 		packet->header[0] =
235 			HEADER_DATA_LENGTH(length) |
236 			destination_id |
237 			HEADER_TCODE(TCODE_STREAM_DATA);
238 		packet->header_length = 4;
239 		packet->payload = payload;
240 		packet->payload_length = length;
241 
242 		goto common;
243 	}
244 
245 	if (tcode > 0x10) {
246 		ext_tcode = tcode & ~0x10;
247 		tcode = TCODE_LOCK_REQUEST;
248 	} else
249 		ext_tcode = 0;
250 
251 	packet->header[0] =
252 		HEADER_RETRY(RETRY_X) |
253 		HEADER_TLABEL(tlabel) |
254 		HEADER_TCODE(tcode) |
255 		HEADER_DESTINATION(destination_id);
256 	packet->header[1] =
257 		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
258 	packet->header[2] =
259 		offset;
260 
261 	switch (tcode) {
262 	case TCODE_WRITE_QUADLET_REQUEST:
263 		packet->header[3] = *(u32 *)payload;
264 		packet->header_length = 16;
265 		packet->payload_length = 0;
266 		break;
267 
268 	case TCODE_LOCK_REQUEST:
269 	case TCODE_WRITE_BLOCK_REQUEST:
270 		packet->header[3] =
271 			HEADER_DATA_LENGTH(length) |
272 			HEADER_EXTENDED_TCODE(ext_tcode);
273 		packet->header_length = 16;
274 		packet->payload = payload;
275 		packet->payload_length = length;
276 		break;
277 
278 	case TCODE_READ_QUADLET_REQUEST:
279 		packet->header_length = 12;
280 		packet->payload_length = 0;
281 		break;
282 
283 	case TCODE_READ_BLOCK_REQUEST:
284 		packet->header[3] =
285 			HEADER_DATA_LENGTH(length) |
286 			HEADER_EXTENDED_TCODE(ext_tcode);
287 		packet->header_length = 16;
288 		packet->payload_length = 0;
289 		break;
290 
291 	default:
292 		WARN(1, "wrong tcode %d\n", tcode);
293 	}
294  common:
295 	packet->speed = speed;
296 	packet->generation = generation;
297 	packet->ack = 0;
298 	packet->payload_mapped = false;
299 }
300 
301 static int allocate_tlabel(struct fw_card *card)
302 {
303 	int tlabel;
304 
305 	tlabel = card->current_tlabel;
306 	while (card->tlabel_mask & (1ULL << tlabel)) {
307 		tlabel = (tlabel + 1) & 0x3f;
308 		if (tlabel == card->current_tlabel)
309 			return -EBUSY;
310 	}
311 
312 	card->current_tlabel = (tlabel + 1) & 0x3f;
313 	card->tlabel_mask |= 1ULL << tlabel;
314 
315 	return tlabel;
316 }
317 
318 /**
319  * fw_send_request() - submit a request packet for transmission
320  * @card:		interface to send the request at
321  * @t:			transaction instance to which the request belongs
322  * @tcode:		transaction code
323  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
324  * @generation:		bus generation in which request and response are valid
325  * @speed:		transmission speed
326  * @offset:		48bit wide offset into destination's address space
327  * @payload:		data payload for the request subaction
328  * @length:		length of the payload, in bytes
329  * @callback:		function to be called when the transaction is completed
330  * @callback_data:	data to be passed to the transaction completion callback
331  *
332  * Submit a request packet into the asynchronous request transmission queue.
333  * Can be called from atomic context.  If you prefer a blocking API, use
334  * fw_run_transaction() in a context that can sleep.
335  *
336  * In case of lock requests, specify one of the firewire-core specific %TCODE_
337  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
338  *
339  * Make sure that the value in @destination_id is not older than the one in
340  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
341  *
342  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
343  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
344  * It will contain tag, channel, and sy data instead of a node ID then.
345  *
346  * The payload buffer at @data is going to be DMA-mapped except in case of
347  * @length <= 8 or of local (loopback) requests.  Hence make sure that the
348  * buffer complies with the restrictions of the streaming DMA mapping API.
349  * @payload must not be freed before the @callback is called.
350  *
351  * In case of request types without payload, @data is NULL and @length is 0.
352  *
353  * After the transaction is completed successfully or unsuccessfully, the
354  * @callback will be called.  Among its parameters is the response code which
355  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
356  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
357  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
358  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
359  * generation, or missing ACK respectively.
360  *
361  * Note some timing corner cases:  fw_send_request() may complete much earlier
362  * than when the request packet actually hits the wire.  On the other hand,
363  * transaction completion and hence execution of @callback may happen even
364  * before fw_send_request() returns.
365  */
366 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
367 		     int destination_id, int generation, int speed,
368 		     unsigned long long offset, void *payload, size_t length,
369 		     fw_transaction_callback_t callback, void *callback_data)
370 {
371 	unsigned long flags;
372 	int tlabel;
373 
374 	/*
375 	 * Allocate tlabel from the bitmap and put the transaction on
376 	 * the list while holding the card spinlock.
377 	 */
378 
379 	spin_lock_irqsave(&card->lock, flags);
380 
381 	tlabel = allocate_tlabel(card);
382 	if (tlabel < 0) {
383 		spin_unlock_irqrestore(&card->lock, flags);
384 		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
385 		return;
386 	}
387 
388 	t->node_id = destination_id;
389 	t->tlabel = tlabel;
390 	t->card = card;
391 	t->is_split_transaction = false;
392 	timer_setup(&t->split_timeout_timer,
393 		    split_transaction_timeout_callback, 0);
394 	t->callback.without_tstamp = callback;
395 	t->with_tstamp = false;
396 	t->callback_data = callback_data;
397 
398 	fw_fill_request(&t->packet, tcode, t->tlabel,
399 			destination_id, card->node_id, generation,
400 			speed, offset, payload, length);
401 	t->packet.callback = transmit_complete_callback;
402 
403 	list_add_tail(&t->link, &card->transaction_list);
404 
405 	spin_unlock_irqrestore(&card->lock, flags);
406 
407 	card->driver->send_request(card, &t->packet);
408 }
409 EXPORT_SYMBOL(fw_send_request);
410 
411 struct transaction_callback_data {
412 	struct completion done;
413 	void *payload;
414 	int rcode;
415 };
416 
417 static void transaction_callback(struct fw_card *card, int rcode,
418 				 void *payload, size_t length, void *data)
419 {
420 	struct transaction_callback_data *d = data;
421 
422 	if (rcode == RCODE_COMPLETE)
423 		memcpy(d->payload, payload, length);
424 	d->rcode = rcode;
425 	complete(&d->done);
426 }
427 
428 /**
429  * fw_run_transaction() - send request and sleep until transaction is completed
430  * @card:		card interface for this request
431  * @tcode:		transaction code
432  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
433  * @generation:		bus generation in which request and response are valid
434  * @speed:		transmission speed
435  * @offset:		48bit wide offset into destination's address space
436  * @payload:		data payload for the request subaction
437  * @length:		length of the payload, in bytes
438  *
439  * Returns the RCODE.  See fw_send_request() for parameter documentation.
440  * Unlike fw_send_request(), @data points to the payload of the request or/and
441  * to the payload of the response.  DMA mapping restrictions apply to outbound
442  * request payloads of >= 8 bytes but not to inbound response payloads.
443  */
444 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
445 		       int generation, int speed, unsigned long long offset,
446 		       void *payload, size_t length)
447 {
448 	struct transaction_callback_data d;
449 	struct fw_transaction t;
450 
451 	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
452 	init_completion(&d.done);
453 	d.payload = payload;
454 	fw_send_request(card, &t, tcode, destination_id, generation, speed,
455 			offset, payload, length, transaction_callback, &d);
456 	wait_for_completion(&d.done);
457 	destroy_timer_on_stack(&t.split_timeout_timer);
458 
459 	return d.rcode;
460 }
461 EXPORT_SYMBOL(fw_run_transaction);
462 
463 static DEFINE_MUTEX(phy_config_mutex);
464 static DECLARE_COMPLETION(phy_config_done);
465 
466 static void transmit_phy_packet_callback(struct fw_packet *packet,
467 					 struct fw_card *card, int status)
468 {
469 	complete(&phy_config_done);
470 }
471 
472 static struct fw_packet phy_config_packet = {
473 	.header_length	= 12,
474 	.header[0]	= TCODE_LINK_INTERNAL << 4,
475 	.payload_length	= 0,
476 	.speed		= SCODE_100,
477 	.callback	= transmit_phy_packet_callback,
478 };
479 
480 void fw_send_phy_config(struct fw_card *card,
481 			int node_id, int generation, int gap_count)
482 {
483 	long timeout = DIV_ROUND_UP(HZ, 10);
484 	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
485 
486 	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
487 		data |= PHY_CONFIG_ROOT_ID(node_id);
488 
489 	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
490 		gap_count = card->driver->read_phy_reg(card, 1);
491 		if (gap_count < 0)
492 			return;
493 
494 		gap_count &= 63;
495 		if (gap_count == 63)
496 			return;
497 	}
498 	data |= PHY_CONFIG_GAP_COUNT(gap_count);
499 
500 	mutex_lock(&phy_config_mutex);
501 
502 	phy_config_packet.header[1] = data;
503 	phy_config_packet.header[2] = ~data;
504 	phy_config_packet.generation = generation;
505 	reinit_completion(&phy_config_done);
506 
507 	card->driver->send_request(card, &phy_config_packet);
508 	wait_for_completion_timeout(&phy_config_done, timeout);
509 
510 	mutex_unlock(&phy_config_mutex);
511 }
512 
513 static struct fw_address_handler *lookup_overlapping_address_handler(
514 	struct list_head *list, unsigned long long offset, size_t length)
515 {
516 	struct fw_address_handler *handler;
517 
518 	list_for_each_entry_rcu(handler, list, link) {
519 		if (handler->offset < offset + length &&
520 		    offset < handler->offset + handler->length)
521 			return handler;
522 	}
523 
524 	return NULL;
525 }
526 
527 static bool is_enclosing_handler(struct fw_address_handler *handler,
528 				 unsigned long long offset, size_t length)
529 {
530 	return handler->offset <= offset &&
531 		offset + length <= handler->offset + handler->length;
532 }
533 
534 static struct fw_address_handler *lookup_enclosing_address_handler(
535 	struct list_head *list, unsigned long long offset, size_t length)
536 {
537 	struct fw_address_handler *handler;
538 
539 	list_for_each_entry_rcu(handler, list, link) {
540 		if (is_enclosing_handler(handler, offset, length))
541 			return handler;
542 	}
543 
544 	return NULL;
545 }
546 
547 static DEFINE_SPINLOCK(address_handler_list_lock);
548 static LIST_HEAD(address_handler_list);
549 
550 const struct fw_address_region fw_high_memory_region =
551 	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
552 EXPORT_SYMBOL(fw_high_memory_region);
553 
554 static const struct fw_address_region low_memory_region =
555 	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
556 
557 #if 0
558 const struct fw_address_region fw_private_region =
559 	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
560 const struct fw_address_region fw_csr_region =
561 	{ .start = CSR_REGISTER_BASE,
562 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
563 const struct fw_address_region fw_unit_space_region =
564 	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
565 #endif  /*  0  */
566 
567 /**
568  * fw_core_add_address_handler() - register for incoming requests
569  * @handler:	callback
570  * @region:	region in the IEEE 1212 node space address range
571  *
572  * region->start, ->end, and handler->length have to be quadlet-aligned.
573  *
574  * When a request is received that falls within the specified address range,
575  * the specified callback is invoked.  The parameters passed to the callback
576  * give the details of the particular request.
577  *
578  * To be called in process context.
579  * Return value:  0 on success, non-zero otherwise.
580  *
581  * The start offset of the handler's address region is determined by
582  * fw_core_add_address_handler() and is returned in handler->offset.
583  *
584  * Address allocations are exclusive, except for the FCP registers.
585  */
586 int fw_core_add_address_handler(struct fw_address_handler *handler,
587 				const struct fw_address_region *region)
588 {
589 	struct fw_address_handler *other;
590 	int ret = -EBUSY;
591 
592 	if (region->start & 0xffff000000000003ULL ||
593 	    region->start >= region->end ||
594 	    region->end   > 0x0001000000000000ULL ||
595 	    handler->length & 3 ||
596 	    handler->length == 0)
597 		return -EINVAL;
598 
599 	spin_lock(&address_handler_list_lock);
600 
601 	handler->offset = region->start;
602 	while (handler->offset + handler->length <= region->end) {
603 		if (is_in_fcp_region(handler->offset, handler->length))
604 			other = NULL;
605 		else
606 			other = lookup_overlapping_address_handler
607 					(&address_handler_list,
608 					 handler->offset, handler->length);
609 		if (other != NULL) {
610 			handler->offset += other->length;
611 		} else {
612 			list_add_tail_rcu(&handler->link, &address_handler_list);
613 			ret = 0;
614 			break;
615 		}
616 	}
617 
618 	spin_unlock(&address_handler_list_lock);
619 
620 	return ret;
621 }
622 EXPORT_SYMBOL(fw_core_add_address_handler);
623 
624 /**
625  * fw_core_remove_address_handler() - unregister an address handler
626  * @handler: callback
627  *
628  * To be called in process context.
629  *
630  * When fw_core_remove_address_handler() returns, @handler->callback() is
631  * guaranteed to not run on any CPU anymore.
632  */
633 void fw_core_remove_address_handler(struct fw_address_handler *handler)
634 {
635 	spin_lock(&address_handler_list_lock);
636 	list_del_rcu(&handler->link);
637 	spin_unlock(&address_handler_list_lock);
638 	synchronize_rcu();
639 }
640 EXPORT_SYMBOL(fw_core_remove_address_handler);
641 
642 struct fw_request {
643 	struct kref kref;
644 	struct fw_packet response;
645 	u32 request_header[4];
646 	int ack;
647 	u32 timestamp;
648 	u32 length;
649 	u32 data[];
650 };
651 
652 void fw_request_get(struct fw_request *request)
653 {
654 	kref_get(&request->kref);
655 }
656 
657 static void release_request(struct kref *kref)
658 {
659 	struct fw_request *request = container_of(kref, struct fw_request, kref);
660 
661 	kfree(request);
662 }
663 
664 void fw_request_put(struct fw_request *request)
665 {
666 	kref_put(&request->kref, release_request);
667 }
668 
669 static void free_response_callback(struct fw_packet *packet,
670 				   struct fw_card *card, int status)
671 {
672 	struct fw_request *request = container_of(packet, struct fw_request, response);
673 
674 	// Decrease the reference count since not at in-flight.
675 	fw_request_put(request);
676 
677 	// Decrease the reference count to release the object.
678 	fw_request_put(request);
679 }
680 
681 int fw_get_response_length(struct fw_request *r)
682 {
683 	int tcode, ext_tcode, data_length;
684 
685 	tcode = HEADER_GET_TCODE(r->request_header[0]);
686 
687 	switch (tcode) {
688 	case TCODE_WRITE_QUADLET_REQUEST:
689 	case TCODE_WRITE_BLOCK_REQUEST:
690 		return 0;
691 
692 	case TCODE_READ_QUADLET_REQUEST:
693 		return 4;
694 
695 	case TCODE_READ_BLOCK_REQUEST:
696 		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
697 		return data_length;
698 
699 	case TCODE_LOCK_REQUEST:
700 		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
701 		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
702 		switch (ext_tcode) {
703 		case EXTCODE_FETCH_ADD:
704 		case EXTCODE_LITTLE_ADD:
705 			return data_length;
706 		default:
707 			return data_length / 2;
708 		}
709 
710 	default:
711 		WARN(1, "wrong tcode %d\n", tcode);
712 		return 0;
713 	}
714 }
715 
716 void fw_fill_response(struct fw_packet *response, u32 *request_header,
717 		      int rcode, void *payload, size_t length)
718 {
719 	int tcode, tlabel, extended_tcode, source, destination;
720 
721 	tcode          = HEADER_GET_TCODE(request_header[0]);
722 	tlabel         = HEADER_GET_TLABEL(request_header[0]);
723 	source         = HEADER_GET_DESTINATION(request_header[0]);
724 	destination    = HEADER_GET_SOURCE(request_header[1]);
725 	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
726 
727 	response->header[0] =
728 		HEADER_RETRY(RETRY_1) |
729 		HEADER_TLABEL(tlabel) |
730 		HEADER_DESTINATION(destination);
731 	response->header[1] =
732 		HEADER_SOURCE(source) |
733 		HEADER_RCODE(rcode);
734 	response->header[2] = 0;
735 
736 	switch (tcode) {
737 	case TCODE_WRITE_QUADLET_REQUEST:
738 	case TCODE_WRITE_BLOCK_REQUEST:
739 		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
740 		response->header_length = 12;
741 		response->payload_length = 0;
742 		break;
743 
744 	case TCODE_READ_QUADLET_REQUEST:
745 		response->header[0] |=
746 			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
747 		if (payload != NULL)
748 			response->header[3] = *(u32 *)payload;
749 		else
750 			response->header[3] = 0;
751 		response->header_length = 16;
752 		response->payload_length = 0;
753 		break;
754 
755 	case TCODE_READ_BLOCK_REQUEST:
756 	case TCODE_LOCK_REQUEST:
757 		response->header[0] |= HEADER_TCODE(tcode + 2);
758 		response->header[3] =
759 			HEADER_DATA_LENGTH(length) |
760 			HEADER_EXTENDED_TCODE(extended_tcode);
761 		response->header_length = 16;
762 		response->payload = payload;
763 		response->payload_length = length;
764 		break;
765 
766 	default:
767 		WARN(1, "wrong tcode %d\n", tcode);
768 	}
769 
770 	response->payload_mapped = false;
771 }
772 EXPORT_SYMBOL(fw_fill_response);
773 
774 static u32 compute_split_timeout_timestamp(struct fw_card *card,
775 					   u32 request_timestamp)
776 {
777 	unsigned int cycles;
778 	u32 timestamp;
779 
780 	cycles = card->split_timeout_cycles;
781 	cycles += request_timestamp & 0x1fff;
782 
783 	timestamp = request_timestamp & ~0x1fff;
784 	timestamp += (cycles / 8000) << 13;
785 	timestamp |= cycles % 8000;
786 
787 	return timestamp;
788 }
789 
790 static struct fw_request *allocate_request(struct fw_card *card,
791 					   struct fw_packet *p)
792 {
793 	struct fw_request *request;
794 	u32 *data, length;
795 	int request_tcode;
796 
797 	request_tcode = HEADER_GET_TCODE(p->header[0]);
798 	switch (request_tcode) {
799 	case TCODE_WRITE_QUADLET_REQUEST:
800 		data = &p->header[3];
801 		length = 4;
802 		break;
803 
804 	case TCODE_WRITE_BLOCK_REQUEST:
805 	case TCODE_LOCK_REQUEST:
806 		data = p->payload;
807 		length = HEADER_GET_DATA_LENGTH(p->header[3]);
808 		break;
809 
810 	case TCODE_READ_QUADLET_REQUEST:
811 		data = NULL;
812 		length = 4;
813 		break;
814 
815 	case TCODE_READ_BLOCK_REQUEST:
816 		data = NULL;
817 		length = HEADER_GET_DATA_LENGTH(p->header[3]);
818 		break;
819 
820 	default:
821 		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
822 			 p->header[0], p->header[1], p->header[2]);
823 		return NULL;
824 	}
825 
826 	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
827 	if (request == NULL)
828 		return NULL;
829 	kref_init(&request->kref);
830 
831 	request->response.speed = p->speed;
832 	request->response.timestamp =
833 			compute_split_timeout_timestamp(card, p->timestamp);
834 	request->response.generation = p->generation;
835 	request->response.ack = 0;
836 	request->response.callback = free_response_callback;
837 	request->ack = p->ack;
838 	request->timestamp = p->timestamp;
839 	request->length = length;
840 	if (data)
841 		memcpy(request->data, data, length);
842 
843 	memcpy(request->request_header, p->header, sizeof(p->header));
844 
845 	return request;
846 }
847 
848 /**
849  * fw_send_response: - send response packet for asynchronous transaction.
850  * @card:	interface to send the response at.
851  * @request:	firewire request data for the transaction.
852  * @rcode:	response code to send.
853  *
854  * Submit a response packet into the asynchronous response transmission queue. The @request
855  * is going to be released when the transmission successfully finishes later.
856  */
857 void fw_send_response(struct fw_card *card,
858 		      struct fw_request *request, int rcode)
859 {
860 	/* unified transaction or broadcast transaction: don't respond */
861 	if (request->ack != ACK_PENDING ||
862 	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
863 		fw_request_put(request);
864 		return;
865 	}
866 
867 	if (rcode == RCODE_COMPLETE)
868 		fw_fill_response(&request->response, request->request_header,
869 				 rcode, request->data,
870 				 fw_get_response_length(request));
871 	else
872 		fw_fill_response(&request->response, request->request_header,
873 				 rcode, NULL, 0);
874 
875 	// Increase the reference count so that the object is kept during in-flight.
876 	fw_request_get(request);
877 
878 	card->driver->send_response(card, &request->response);
879 }
880 EXPORT_SYMBOL(fw_send_response);
881 
882 /**
883  * fw_get_request_speed() - returns speed at which the @request was received
884  * @request: firewire request data
885  */
886 int fw_get_request_speed(struct fw_request *request)
887 {
888 	return request->response.speed;
889 }
890 EXPORT_SYMBOL(fw_get_request_speed);
891 
892 /**
893  * fw_request_get_timestamp: Get timestamp of the request.
894  * @request: The opaque pointer to request structure.
895  *
896  * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
897  * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
898  * field of isochronous cycle time register.
899  *
900  * Returns: timestamp of the request.
901  */
902 u32 fw_request_get_timestamp(const struct fw_request *request)
903 {
904 	return request->timestamp;
905 }
906 EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
907 
908 static void handle_exclusive_region_request(struct fw_card *card,
909 					    struct fw_packet *p,
910 					    struct fw_request *request,
911 					    unsigned long long offset)
912 {
913 	struct fw_address_handler *handler;
914 	int tcode, destination, source;
915 
916 	destination = HEADER_GET_DESTINATION(p->header[0]);
917 	source      = HEADER_GET_SOURCE(p->header[1]);
918 	tcode       = HEADER_GET_TCODE(p->header[0]);
919 	if (tcode == TCODE_LOCK_REQUEST)
920 		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
921 
922 	rcu_read_lock();
923 	handler = lookup_enclosing_address_handler(&address_handler_list,
924 						   offset, request->length);
925 	if (handler)
926 		handler->address_callback(card, request,
927 					  tcode, destination, source,
928 					  p->generation, offset,
929 					  request->data, request->length,
930 					  handler->callback_data);
931 	rcu_read_unlock();
932 
933 	if (!handler)
934 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
935 }
936 
937 static void handle_fcp_region_request(struct fw_card *card,
938 				      struct fw_packet *p,
939 				      struct fw_request *request,
940 				      unsigned long long offset)
941 {
942 	struct fw_address_handler *handler;
943 	int tcode, destination, source;
944 
945 	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
946 	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
947 	    request->length > 0x200) {
948 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
949 
950 		return;
951 	}
952 
953 	tcode       = HEADER_GET_TCODE(p->header[0]);
954 	destination = HEADER_GET_DESTINATION(p->header[0]);
955 	source      = HEADER_GET_SOURCE(p->header[1]);
956 
957 	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
958 	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
959 		fw_send_response(card, request, RCODE_TYPE_ERROR);
960 
961 		return;
962 	}
963 
964 	rcu_read_lock();
965 	list_for_each_entry_rcu(handler, &address_handler_list, link) {
966 		if (is_enclosing_handler(handler, offset, request->length))
967 			handler->address_callback(card, request, tcode,
968 						  destination, source,
969 						  p->generation, offset,
970 						  request->data,
971 						  request->length,
972 						  handler->callback_data);
973 	}
974 	rcu_read_unlock();
975 
976 	fw_send_response(card, request, RCODE_COMPLETE);
977 }
978 
979 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
980 {
981 	struct fw_request *request;
982 	unsigned long long offset;
983 
984 	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
985 		return;
986 
987 	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
988 		fw_cdev_handle_phy_packet(card, p);
989 		return;
990 	}
991 
992 	request = allocate_request(card, p);
993 	if (request == NULL) {
994 		/* FIXME: send statically allocated busy packet. */
995 		return;
996 	}
997 
998 	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
999 		p->header[2];
1000 
1001 	if (!is_in_fcp_region(offset, request->length))
1002 		handle_exclusive_region_request(card, p, request, offset);
1003 	else
1004 		handle_fcp_region_request(card, p, request, offset);
1005 
1006 }
1007 EXPORT_SYMBOL(fw_core_handle_request);
1008 
1009 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1010 {
1011 	struct fw_transaction *t = NULL, *iter;
1012 	unsigned long flags;
1013 	u32 *data;
1014 	size_t data_length;
1015 	int tcode, tlabel, source, rcode;
1016 
1017 	tcode	= HEADER_GET_TCODE(p->header[0]);
1018 	tlabel	= HEADER_GET_TLABEL(p->header[0]);
1019 	source	= HEADER_GET_SOURCE(p->header[1]);
1020 	rcode	= HEADER_GET_RCODE(p->header[1]);
1021 
1022 	spin_lock_irqsave(&card->lock, flags);
1023 	list_for_each_entry(iter, &card->transaction_list, link) {
1024 		if (iter->node_id == source && iter->tlabel == tlabel) {
1025 			if (!try_cancel_split_timeout(iter)) {
1026 				spin_unlock_irqrestore(&card->lock, flags);
1027 				goto timed_out;
1028 			}
1029 			list_del_init(&iter->link);
1030 			card->tlabel_mask &= ~(1ULL << iter->tlabel);
1031 			t = iter;
1032 			break;
1033 		}
1034 	}
1035 	spin_unlock_irqrestore(&card->lock, flags);
1036 
1037 	if (!t) {
1038  timed_out:
1039 		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1040 			  source, tlabel);
1041 		return;
1042 	}
1043 
1044 	/*
1045 	 * FIXME: sanity check packet, is length correct, does tcodes
1046 	 * and addresses match.
1047 	 */
1048 
1049 	switch (tcode) {
1050 	case TCODE_READ_QUADLET_RESPONSE:
1051 		data = (u32 *) &p->header[3];
1052 		data_length = 4;
1053 		break;
1054 
1055 	case TCODE_WRITE_RESPONSE:
1056 		data = NULL;
1057 		data_length = 0;
1058 		break;
1059 
1060 	case TCODE_READ_BLOCK_RESPONSE:
1061 	case TCODE_LOCK_RESPONSE:
1062 		data = p->payload;
1063 		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
1064 		break;
1065 
1066 	default:
1067 		/* Should never happen, this is just to shut up gcc. */
1068 		data = NULL;
1069 		data_length = 0;
1070 		break;
1071 	}
1072 
1073 	/*
1074 	 * The response handler may be executed while the request handler
1075 	 * is still pending.  Cancel the request handler.
1076 	 */
1077 	card->driver->cancel_packet(card, &t->packet);
1078 
1079 	if (!t->with_tstamp) {
1080 		t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1081 	} else {
1082 		t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1083 					data_length, t->callback_data);
1084 	}
1085 }
1086 EXPORT_SYMBOL(fw_core_handle_response);
1087 
1088 /**
1089  * fw_rcode_string - convert a firewire result code to an error description
1090  * @rcode: the result code
1091  */
1092 const char *fw_rcode_string(int rcode)
1093 {
1094 	static const char *const names[] = {
1095 		[RCODE_COMPLETE]       = "no error",
1096 		[RCODE_CONFLICT_ERROR] = "conflict error",
1097 		[RCODE_DATA_ERROR]     = "data error",
1098 		[RCODE_TYPE_ERROR]     = "type error",
1099 		[RCODE_ADDRESS_ERROR]  = "address error",
1100 		[RCODE_SEND_ERROR]     = "send error",
1101 		[RCODE_CANCELLED]      = "timeout",
1102 		[RCODE_BUSY]           = "busy",
1103 		[RCODE_GENERATION]     = "bus reset",
1104 		[RCODE_NO_ACK]         = "no ack",
1105 	};
1106 
1107 	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1108 		return names[rcode];
1109 	else
1110 		return "unknown";
1111 }
1112 EXPORT_SYMBOL(fw_rcode_string);
1113 
1114 static const struct fw_address_region topology_map_region =
1115 	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1116 	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1117 
1118 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1119 		int tcode, int destination, int source, int generation,
1120 		unsigned long long offset, void *payload, size_t length,
1121 		void *callback_data)
1122 {
1123 	int start;
1124 
1125 	if (!TCODE_IS_READ_REQUEST(tcode)) {
1126 		fw_send_response(card, request, RCODE_TYPE_ERROR);
1127 		return;
1128 	}
1129 
1130 	if ((offset & 3) > 0 || (length & 3) > 0) {
1131 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1132 		return;
1133 	}
1134 
1135 	start = (offset - topology_map_region.start) / 4;
1136 	memcpy(payload, &card->topology_map[start], length);
1137 
1138 	fw_send_response(card, request, RCODE_COMPLETE);
1139 }
1140 
1141 static struct fw_address_handler topology_map = {
1142 	.length			= 0x400,
1143 	.address_callback	= handle_topology_map,
1144 };
1145 
1146 static const struct fw_address_region registers_region =
1147 	{ .start = CSR_REGISTER_BASE,
1148 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1149 
1150 static void update_split_timeout(struct fw_card *card)
1151 {
1152 	unsigned int cycles;
1153 
1154 	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1155 
1156 	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1157 	cycles = clamp(cycles, 800u, 3u * 8000u);
1158 
1159 	card->split_timeout_cycles = cycles;
1160 	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1161 }
1162 
1163 static void handle_registers(struct fw_card *card, struct fw_request *request,
1164 		int tcode, int destination, int source, int generation,
1165 		unsigned long long offset, void *payload, size_t length,
1166 		void *callback_data)
1167 {
1168 	int reg = offset & ~CSR_REGISTER_BASE;
1169 	__be32 *data = payload;
1170 	int rcode = RCODE_COMPLETE;
1171 	unsigned long flags;
1172 
1173 	switch (reg) {
1174 	case CSR_PRIORITY_BUDGET:
1175 		if (!card->priority_budget_implemented) {
1176 			rcode = RCODE_ADDRESS_ERROR;
1177 			break;
1178 		}
1179 		fallthrough;
1180 
1181 	case CSR_NODE_IDS:
1182 		/*
1183 		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1184 		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1185 		 */
1186 		fallthrough;
1187 
1188 	case CSR_STATE_CLEAR:
1189 	case CSR_STATE_SET:
1190 	case CSR_CYCLE_TIME:
1191 	case CSR_BUS_TIME:
1192 	case CSR_BUSY_TIMEOUT:
1193 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1194 			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1195 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1196 			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1197 		else
1198 			rcode = RCODE_TYPE_ERROR;
1199 		break;
1200 
1201 	case CSR_RESET_START:
1202 		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1203 			card->driver->write_csr(card, CSR_STATE_CLEAR,
1204 						CSR_STATE_BIT_ABDICATE);
1205 		else
1206 			rcode = RCODE_TYPE_ERROR;
1207 		break;
1208 
1209 	case CSR_SPLIT_TIMEOUT_HI:
1210 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1211 			*data = cpu_to_be32(card->split_timeout_hi);
1212 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1213 			spin_lock_irqsave(&card->lock, flags);
1214 			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1215 			update_split_timeout(card);
1216 			spin_unlock_irqrestore(&card->lock, flags);
1217 		} else {
1218 			rcode = RCODE_TYPE_ERROR;
1219 		}
1220 		break;
1221 
1222 	case CSR_SPLIT_TIMEOUT_LO:
1223 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1224 			*data = cpu_to_be32(card->split_timeout_lo);
1225 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1226 			spin_lock_irqsave(&card->lock, flags);
1227 			card->split_timeout_lo =
1228 					be32_to_cpu(*data) & 0xfff80000;
1229 			update_split_timeout(card);
1230 			spin_unlock_irqrestore(&card->lock, flags);
1231 		} else {
1232 			rcode = RCODE_TYPE_ERROR;
1233 		}
1234 		break;
1235 
1236 	case CSR_MAINT_UTILITY:
1237 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1238 			*data = card->maint_utility_register;
1239 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1240 			card->maint_utility_register = *data;
1241 		else
1242 			rcode = RCODE_TYPE_ERROR;
1243 		break;
1244 
1245 	case CSR_BROADCAST_CHANNEL:
1246 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1247 			*data = cpu_to_be32(card->broadcast_channel);
1248 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1249 			card->broadcast_channel =
1250 			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1251 			    BROADCAST_CHANNEL_INITIAL;
1252 		else
1253 			rcode = RCODE_TYPE_ERROR;
1254 		break;
1255 
1256 	case CSR_BUS_MANAGER_ID:
1257 	case CSR_BANDWIDTH_AVAILABLE:
1258 	case CSR_CHANNELS_AVAILABLE_HI:
1259 	case CSR_CHANNELS_AVAILABLE_LO:
1260 		/*
1261 		 * FIXME: these are handled by the OHCI hardware and
1262 		 * the stack never sees these request. If we add
1263 		 * support for a new type of controller that doesn't
1264 		 * handle this in hardware we need to deal with these
1265 		 * transactions.
1266 		 */
1267 		BUG();
1268 		break;
1269 
1270 	default:
1271 		rcode = RCODE_ADDRESS_ERROR;
1272 		break;
1273 	}
1274 
1275 	fw_send_response(card, request, rcode);
1276 }
1277 
1278 static struct fw_address_handler registers = {
1279 	.length			= 0x400,
1280 	.address_callback	= handle_registers,
1281 };
1282 
1283 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1284 		int tcode, int destination, int source, int generation,
1285 		unsigned long long offset, void *payload, size_t length,
1286 		void *callback_data)
1287 {
1288 	/*
1289 	 * This catches requests not handled by the physical DMA unit,
1290 	 * i.e., wrong transaction types or unauthorized source nodes.
1291 	 */
1292 	fw_send_response(card, request, RCODE_TYPE_ERROR);
1293 }
1294 
1295 static struct fw_address_handler low_memory = {
1296 	.length			= FW_MAX_PHYSICAL_RANGE,
1297 	.address_callback	= handle_low_memory,
1298 };
1299 
1300 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1301 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1302 MODULE_LICENSE("GPL");
1303 
1304 static const u32 vendor_textual_descriptor[] = {
1305 	/* textual descriptor leaf () */
1306 	0x00060000,
1307 	0x00000000,
1308 	0x00000000,
1309 	0x4c696e75,		/* L i n u */
1310 	0x78204669,		/* x   F i */
1311 	0x72657769,		/* r e w i */
1312 	0x72650000,		/* r e     */
1313 };
1314 
1315 static const u32 model_textual_descriptor[] = {
1316 	/* model descriptor leaf () */
1317 	0x00030000,
1318 	0x00000000,
1319 	0x00000000,
1320 	0x4a756a75,		/* J u j u */
1321 };
1322 
1323 static struct fw_descriptor vendor_id_descriptor = {
1324 	.length = ARRAY_SIZE(vendor_textual_descriptor),
1325 	.immediate = 0x03001f11,
1326 	.key = 0x81000000,
1327 	.data = vendor_textual_descriptor,
1328 };
1329 
1330 static struct fw_descriptor model_id_descriptor = {
1331 	.length = ARRAY_SIZE(model_textual_descriptor),
1332 	.immediate = 0x17023901,
1333 	.key = 0x81000000,
1334 	.data = model_textual_descriptor,
1335 };
1336 
1337 static int __init fw_core_init(void)
1338 {
1339 	int ret;
1340 
1341 	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1342 	if (!fw_workqueue)
1343 		return -ENOMEM;
1344 
1345 	ret = bus_register(&fw_bus_type);
1346 	if (ret < 0) {
1347 		destroy_workqueue(fw_workqueue);
1348 		return ret;
1349 	}
1350 
1351 	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1352 	if (fw_cdev_major < 0) {
1353 		bus_unregister(&fw_bus_type);
1354 		destroy_workqueue(fw_workqueue);
1355 		return fw_cdev_major;
1356 	}
1357 
1358 	fw_core_add_address_handler(&topology_map, &topology_map_region);
1359 	fw_core_add_address_handler(&registers, &registers_region);
1360 	fw_core_add_address_handler(&low_memory, &low_memory_region);
1361 	fw_core_add_descriptor(&vendor_id_descriptor);
1362 	fw_core_add_descriptor(&model_id_descriptor);
1363 
1364 	return 0;
1365 }
1366 
1367 static void __exit fw_core_cleanup(void)
1368 {
1369 	unregister_chrdev(fw_cdev_major, "firewire");
1370 	bus_unregister(&fw_bus_type);
1371 	destroy_workqueue(fw_workqueue);
1372 	idr_destroy(&fw_device_idr);
1373 }
1374 
1375 module_init(fw_core_init);
1376 module_exit(fw_core_cleanup);
1377