1 /* 2 * Core IEEE1394 transaction logic 3 * 4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 #include <linux/bug.h> 22 #include <linux/completion.h> 23 #include <linux/device.h> 24 #include <linux/errno.h> 25 #include <linux/firewire.h> 26 #include <linux/firewire-constants.h> 27 #include <linux/fs.h> 28 #include <linux/init.h> 29 #include <linux/idr.h> 30 #include <linux/jiffies.h> 31 #include <linux/kernel.h> 32 #include <linux/list.h> 33 #include <linux/module.h> 34 #include <linux/rculist.h> 35 #include <linux/slab.h> 36 #include <linux/spinlock.h> 37 #include <linux/string.h> 38 #include <linux/timer.h> 39 #include <linux/types.h> 40 #include <linux/workqueue.h> 41 42 #include <asm/byteorder.h> 43 44 #include "core.h" 45 46 #define HEADER_PRI(pri) ((pri) << 0) 47 #define HEADER_TCODE(tcode) ((tcode) << 4) 48 #define HEADER_RETRY(retry) ((retry) << 8) 49 #define HEADER_TLABEL(tlabel) ((tlabel) << 10) 50 #define HEADER_DESTINATION(destination) ((destination) << 16) 51 #define HEADER_SOURCE(source) ((source) << 16) 52 #define HEADER_RCODE(rcode) ((rcode) << 12) 53 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0) 54 #define HEADER_DATA_LENGTH(length) ((length) << 16) 55 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0) 56 57 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f) 58 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f) 59 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f) 60 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff) 61 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff) 62 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff) 63 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff) 64 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff) 65 66 #define HEADER_DESTINATION_IS_BROADCAST(q) \ 67 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f)) 68 69 #define PHY_PACKET_CONFIG 0x0 70 #define PHY_PACKET_LINK_ON 0x1 71 #define PHY_PACKET_SELF_ID 0x2 72 73 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22)) 74 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23)) 75 #define PHY_IDENTIFIER(id) ((id) << 30) 76 77 /* returns 0 if the split timeout handler is already running */ 78 static int try_cancel_split_timeout(struct fw_transaction *t) 79 { 80 if (t->is_split_transaction) 81 return del_timer(&t->split_timeout_timer); 82 else 83 return 1; 84 } 85 86 static int close_transaction(struct fw_transaction *transaction, 87 struct fw_card *card, int rcode) 88 { 89 struct fw_transaction *t; 90 unsigned long flags; 91 92 spin_lock_irqsave(&card->lock, flags); 93 list_for_each_entry(t, &card->transaction_list, link) { 94 if (t == transaction) { 95 if (!try_cancel_split_timeout(t)) { 96 spin_unlock_irqrestore(&card->lock, flags); 97 goto timed_out; 98 } 99 list_del_init(&t->link); 100 card->tlabel_mask &= ~(1ULL << t->tlabel); 101 break; 102 } 103 } 104 spin_unlock_irqrestore(&card->lock, flags); 105 106 if (&t->link != &card->transaction_list) { 107 t->callback(card, rcode, NULL, 0, t->callback_data); 108 return 0; 109 } 110 111 timed_out: 112 return -ENOENT; 113 } 114 115 /* 116 * Only valid for transactions that are potentially pending (ie have 117 * been sent). 118 */ 119 int fw_cancel_transaction(struct fw_card *card, 120 struct fw_transaction *transaction) 121 { 122 /* 123 * Cancel the packet transmission if it's still queued. That 124 * will call the packet transmission callback which cancels 125 * the transaction. 126 */ 127 128 if (card->driver->cancel_packet(card, &transaction->packet) == 0) 129 return 0; 130 131 /* 132 * If the request packet has already been sent, we need to see 133 * if the transaction is still pending and remove it in that case. 134 */ 135 136 return close_transaction(transaction, card, RCODE_CANCELLED); 137 } 138 EXPORT_SYMBOL(fw_cancel_transaction); 139 140 static void split_transaction_timeout_callback(struct timer_list *timer) 141 { 142 struct fw_transaction *t = from_timer(t, timer, split_timeout_timer); 143 struct fw_card *card = t->card; 144 unsigned long flags; 145 146 spin_lock_irqsave(&card->lock, flags); 147 if (list_empty(&t->link)) { 148 spin_unlock_irqrestore(&card->lock, flags); 149 return; 150 } 151 list_del(&t->link); 152 card->tlabel_mask &= ~(1ULL << t->tlabel); 153 spin_unlock_irqrestore(&card->lock, flags); 154 155 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data); 156 } 157 158 static void start_split_transaction_timeout(struct fw_transaction *t, 159 struct fw_card *card) 160 { 161 unsigned long flags; 162 163 spin_lock_irqsave(&card->lock, flags); 164 165 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) { 166 spin_unlock_irqrestore(&card->lock, flags); 167 return; 168 } 169 170 t->is_split_transaction = true; 171 mod_timer(&t->split_timeout_timer, 172 jiffies + card->split_timeout_jiffies); 173 174 spin_unlock_irqrestore(&card->lock, flags); 175 } 176 177 static void transmit_complete_callback(struct fw_packet *packet, 178 struct fw_card *card, int status) 179 { 180 struct fw_transaction *t = 181 container_of(packet, struct fw_transaction, packet); 182 183 switch (status) { 184 case ACK_COMPLETE: 185 close_transaction(t, card, RCODE_COMPLETE); 186 break; 187 case ACK_PENDING: 188 start_split_transaction_timeout(t, card); 189 break; 190 case ACK_BUSY_X: 191 case ACK_BUSY_A: 192 case ACK_BUSY_B: 193 close_transaction(t, card, RCODE_BUSY); 194 break; 195 case ACK_DATA_ERROR: 196 close_transaction(t, card, RCODE_DATA_ERROR); 197 break; 198 case ACK_TYPE_ERROR: 199 close_transaction(t, card, RCODE_TYPE_ERROR); 200 break; 201 default: 202 /* 203 * In this case the ack is really a juju specific 204 * rcode, so just forward that to the callback. 205 */ 206 close_transaction(t, card, status); 207 break; 208 } 209 } 210 211 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel, 212 int destination_id, int source_id, int generation, int speed, 213 unsigned long long offset, void *payload, size_t length) 214 { 215 int ext_tcode; 216 217 if (tcode == TCODE_STREAM_DATA) { 218 packet->header[0] = 219 HEADER_DATA_LENGTH(length) | 220 destination_id | 221 HEADER_TCODE(TCODE_STREAM_DATA); 222 packet->header_length = 4; 223 packet->payload = payload; 224 packet->payload_length = length; 225 226 goto common; 227 } 228 229 if (tcode > 0x10) { 230 ext_tcode = tcode & ~0x10; 231 tcode = TCODE_LOCK_REQUEST; 232 } else 233 ext_tcode = 0; 234 235 packet->header[0] = 236 HEADER_RETRY(RETRY_X) | 237 HEADER_TLABEL(tlabel) | 238 HEADER_TCODE(tcode) | 239 HEADER_DESTINATION(destination_id); 240 packet->header[1] = 241 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id); 242 packet->header[2] = 243 offset; 244 245 switch (tcode) { 246 case TCODE_WRITE_QUADLET_REQUEST: 247 packet->header[3] = *(u32 *)payload; 248 packet->header_length = 16; 249 packet->payload_length = 0; 250 break; 251 252 case TCODE_LOCK_REQUEST: 253 case TCODE_WRITE_BLOCK_REQUEST: 254 packet->header[3] = 255 HEADER_DATA_LENGTH(length) | 256 HEADER_EXTENDED_TCODE(ext_tcode); 257 packet->header_length = 16; 258 packet->payload = payload; 259 packet->payload_length = length; 260 break; 261 262 case TCODE_READ_QUADLET_REQUEST: 263 packet->header_length = 12; 264 packet->payload_length = 0; 265 break; 266 267 case TCODE_READ_BLOCK_REQUEST: 268 packet->header[3] = 269 HEADER_DATA_LENGTH(length) | 270 HEADER_EXTENDED_TCODE(ext_tcode); 271 packet->header_length = 16; 272 packet->payload_length = 0; 273 break; 274 275 default: 276 WARN(1, "wrong tcode %d\n", tcode); 277 } 278 common: 279 packet->speed = speed; 280 packet->generation = generation; 281 packet->ack = 0; 282 packet->payload_mapped = false; 283 } 284 285 static int allocate_tlabel(struct fw_card *card) 286 { 287 int tlabel; 288 289 tlabel = card->current_tlabel; 290 while (card->tlabel_mask & (1ULL << tlabel)) { 291 tlabel = (tlabel + 1) & 0x3f; 292 if (tlabel == card->current_tlabel) 293 return -EBUSY; 294 } 295 296 card->current_tlabel = (tlabel + 1) & 0x3f; 297 card->tlabel_mask |= 1ULL << tlabel; 298 299 return tlabel; 300 } 301 302 /** 303 * fw_send_request() - submit a request packet for transmission 304 * @card: interface to send the request at 305 * @t: transaction instance to which the request belongs 306 * @tcode: transaction code 307 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 308 * @generation: bus generation in which request and response are valid 309 * @speed: transmission speed 310 * @offset: 48bit wide offset into destination's address space 311 * @payload: data payload for the request subaction 312 * @length: length of the payload, in bytes 313 * @callback: function to be called when the transaction is completed 314 * @callback_data: data to be passed to the transaction completion callback 315 * 316 * Submit a request packet into the asynchronous request transmission queue. 317 * Can be called from atomic context. If you prefer a blocking API, use 318 * fw_run_transaction() in a context that can sleep. 319 * 320 * In case of lock requests, specify one of the firewire-core specific %TCODE_ 321 * constants instead of %TCODE_LOCK_REQUEST in @tcode. 322 * 323 * Make sure that the value in @destination_id is not older than the one in 324 * @generation. Otherwise the request is in danger to be sent to a wrong node. 325 * 326 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller 327 * needs to synthesize @destination_id with fw_stream_packet_destination_id(). 328 * It will contain tag, channel, and sy data instead of a node ID then. 329 * 330 * The payload buffer at @data is going to be DMA-mapped except in case of 331 * @length <= 8 or of local (loopback) requests. Hence make sure that the 332 * buffer complies with the restrictions of the streaming DMA mapping API. 333 * @payload must not be freed before the @callback is called. 334 * 335 * In case of request types without payload, @data is NULL and @length is 0. 336 * 337 * After the transaction is completed successfully or unsuccessfully, the 338 * @callback will be called. Among its parameters is the response code which 339 * is either one of the rcodes per IEEE 1394 or, in case of internal errors, 340 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core 341 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION, 342 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request 343 * generation, or missing ACK respectively. 344 * 345 * Note some timing corner cases: fw_send_request() may complete much earlier 346 * than when the request packet actually hits the wire. On the other hand, 347 * transaction completion and hence execution of @callback may happen even 348 * before fw_send_request() returns. 349 */ 350 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, 351 int destination_id, int generation, int speed, 352 unsigned long long offset, void *payload, size_t length, 353 fw_transaction_callback_t callback, void *callback_data) 354 { 355 unsigned long flags; 356 int tlabel; 357 358 /* 359 * Allocate tlabel from the bitmap and put the transaction on 360 * the list while holding the card spinlock. 361 */ 362 363 spin_lock_irqsave(&card->lock, flags); 364 365 tlabel = allocate_tlabel(card); 366 if (tlabel < 0) { 367 spin_unlock_irqrestore(&card->lock, flags); 368 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data); 369 return; 370 } 371 372 t->node_id = destination_id; 373 t->tlabel = tlabel; 374 t->card = card; 375 t->is_split_transaction = false; 376 timer_setup(&t->split_timeout_timer, 377 split_transaction_timeout_callback, 0); 378 t->callback = callback; 379 t->callback_data = callback_data; 380 381 fw_fill_request(&t->packet, tcode, t->tlabel, 382 destination_id, card->node_id, generation, 383 speed, offset, payload, length); 384 t->packet.callback = transmit_complete_callback; 385 386 list_add_tail(&t->link, &card->transaction_list); 387 388 spin_unlock_irqrestore(&card->lock, flags); 389 390 card->driver->send_request(card, &t->packet); 391 } 392 EXPORT_SYMBOL(fw_send_request); 393 394 struct transaction_callback_data { 395 struct completion done; 396 void *payload; 397 int rcode; 398 }; 399 400 static void transaction_callback(struct fw_card *card, int rcode, 401 void *payload, size_t length, void *data) 402 { 403 struct transaction_callback_data *d = data; 404 405 if (rcode == RCODE_COMPLETE) 406 memcpy(d->payload, payload, length); 407 d->rcode = rcode; 408 complete(&d->done); 409 } 410 411 /** 412 * fw_run_transaction() - send request and sleep until transaction is completed 413 * 414 * Returns the RCODE. See fw_send_request() for parameter documentation. 415 * Unlike fw_send_request(), @data points to the payload of the request or/and 416 * to the payload of the response. DMA mapping restrictions apply to outbound 417 * request payloads of >= 8 bytes but not to inbound response payloads. 418 */ 419 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, 420 int generation, int speed, unsigned long long offset, 421 void *payload, size_t length) 422 { 423 struct transaction_callback_data d; 424 struct fw_transaction t; 425 426 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0); 427 init_completion(&d.done); 428 d.payload = payload; 429 fw_send_request(card, &t, tcode, destination_id, generation, speed, 430 offset, payload, length, transaction_callback, &d); 431 wait_for_completion(&d.done); 432 destroy_timer_on_stack(&t.split_timeout_timer); 433 434 return d.rcode; 435 } 436 EXPORT_SYMBOL(fw_run_transaction); 437 438 static DEFINE_MUTEX(phy_config_mutex); 439 static DECLARE_COMPLETION(phy_config_done); 440 441 static void transmit_phy_packet_callback(struct fw_packet *packet, 442 struct fw_card *card, int status) 443 { 444 complete(&phy_config_done); 445 } 446 447 static struct fw_packet phy_config_packet = { 448 .header_length = 12, 449 .header[0] = TCODE_LINK_INTERNAL << 4, 450 .payload_length = 0, 451 .speed = SCODE_100, 452 .callback = transmit_phy_packet_callback, 453 }; 454 455 void fw_send_phy_config(struct fw_card *card, 456 int node_id, int generation, int gap_count) 457 { 458 long timeout = DIV_ROUND_UP(HZ, 10); 459 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG); 460 461 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) 462 data |= PHY_CONFIG_ROOT_ID(node_id); 463 464 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) { 465 gap_count = card->driver->read_phy_reg(card, 1); 466 if (gap_count < 0) 467 return; 468 469 gap_count &= 63; 470 if (gap_count == 63) 471 return; 472 } 473 data |= PHY_CONFIG_GAP_COUNT(gap_count); 474 475 mutex_lock(&phy_config_mutex); 476 477 phy_config_packet.header[1] = data; 478 phy_config_packet.header[2] = ~data; 479 phy_config_packet.generation = generation; 480 reinit_completion(&phy_config_done); 481 482 card->driver->send_request(card, &phy_config_packet); 483 wait_for_completion_timeout(&phy_config_done, timeout); 484 485 mutex_unlock(&phy_config_mutex); 486 } 487 488 static struct fw_address_handler *lookup_overlapping_address_handler( 489 struct list_head *list, unsigned long long offset, size_t length) 490 { 491 struct fw_address_handler *handler; 492 493 list_for_each_entry_rcu(handler, list, link) { 494 if (handler->offset < offset + length && 495 offset < handler->offset + handler->length) 496 return handler; 497 } 498 499 return NULL; 500 } 501 502 static bool is_enclosing_handler(struct fw_address_handler *handler, 503 unsigned long long offset, size_t length) 504 { 505 return handler->offset <= offset && 506 offset + length <= handler->offset + handler->length; 507 } 508 509 static struct fw_address_handler *lookup_enclosing_address_handler( 510 struct list_head *list, unsigned long long offset, size_t length) 511 { 512 struct fw_address_handler *handler; 513 514 list_for_each_entry_rcu(handler, list, link) { 515 if (is_enclosing_handler(handler, offset, length)) 516 return handler; 517 } 518 519 return NULL; 520 } 521 522 static DEFINE_SPINLOCK(address_handler_list_lock); 523 static LIST_HEAD(address_handler_list); 524 525 const struct fw_address_region fw_high_memory_region = 526 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, }; 527 EXPORT_SYMBOL(fw_high_memory_region); 528 529 static const struct fw_address_region low_memory_region = 530 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, }; 531 532 #if 0 533 const struct fw_address_region fw_private_region = 534 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, }; 535 const struct fw_address_region fw_csr_region = 536 { .start = CSR_REGISTER_BASE, 537 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, }; 538 const struct fw_address_region fw_unit_space_region = 539 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, }; 540 #endif /* 0 */ 541 542 static bool is_in_fcp_region(u64 offset, size_t length) 543 { 544 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 545 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END); 546 } 547 548 /** 549 * fw_core_add_address_handler() - register for incoming requests 550 * @handler: callback 551 * @region: region in the IEEE 1212 node space address range 552 * 553 * region->start, ->end, and handler->length have to be quadlet-aligned. 554 * 555 * When a request is received that falls within the specified address range, 556 * the specified callback is invoked. The parameters passed to the callback 557 * give the details of the particular request. 558 * 559 * To be called in process context. 560 * Return value: 0 on success, non-zero otherwise. 561 * 562 * The start offset of the handler's address region is determined by 563 * fw_core_add_address_handler() and is returned in handler->offset. 564 * 565 * Address allocations are exclusive, except for the FCP registers. 566 */ 567 int fw_core_add_address_handler(struct fw_address_handler *handler, 568 const struct fw_address_region *region) 569 { 570 struct fw_address_handler *other; 571 int ret = -EBUSY; 572 573 if (region->start & 0xffff000000000003ULL || 574 region->start >= region->end || 575 region->end > 0x0001000000000000ULL || 576 handler->length & 3 || 577 handler->length == 0) 578 return -EINVAL; 579 580 spin_lock(&address_handler_list_lock); 581 582 handler->offset = region->start; 583 while (handler->offset + handler->length <= region->end) { 584 if (is_in_fcp_region(handler->offset, handler->length)) 585 other = NULL; 586 else 587 other = lookup_overlapping_address_handler 588 (&address_handler_list, 589 handler->offset, handler->length); 590 if (other != NULL) { 591 handler->offset += other->length; 592 } else { 593 list_add_tail_rcu(&handler->link, &address_handler_list); 594 ret = 0; 595 break; 596 } 597 } 598 599 spin_unlock(&address_handler_list_lock); 600 601 return ret; 602 } 603 EXPORT_SYMBOL(fw_core_add_address_handler); 604 605 /** 606 * fw_core_remove_address_handler() - unregister an address handler 607 * 608 * To be called in process context. 609 * 610 * When fw_core_remove_address_handler() returns, @handler->callback() is 611 * guaranteed to not run on any CPU anymore. 612 */ 613 void fw_core_remove_address_handler(struct fw_address_handler *handler) 614 { 615 spin_lock(&address_handler_list_lock); 616 list_del_rcu(&handler->link); 617 spin_unlock(&address_handler_list_lock); 618 synchronize_rcu(); 619 } 620 EXPORT_SYMBOL(fw_core_remove_address_handler); 621 622 struct fw_request { 623 struct fw_packet response; 624 u32 request_header[4]; 625 int ack; 626 u32 length; 627 u32 data[0]; 628 }; 629 630 static void free_response_callback(struct fw_packet *packet, 631 struct fw_card *card, int status) 632 { 633 struct fw_request *request; 634 635 request = container_of(packet, struct fw_request, response); 636 kfree(request); 637 } 638 639 int fw_get_response_length(struct fw_request *r) 640 { 641 int tcode, ext_tcode, data_length; 642 643 tcode = HEADER_GET_TCODE(r->request_header[0]); 644 645 switch (tcode) { 646 case TCODE_WRITE_QUADLET_REQUEST: 647 case TCODE_WRITE_BLOCK_REQUEST: 648 return 0; 649 650 case TCODE_READ_QUADLET_REQUEST: 651 return 4; 652 653 case TCODE_READ_BLOCK_REQUEST: 654 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); 655 return data_length; 656 657 case TCODE_LOCK_REQUEST: 658 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]); 659 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); 660 switch (ext_tcode) { 661 case EXTCODE_FETCH_ADD: 662 case EXTCODE_LITTLE_ADD: 663 return data_length; 664 default: 665 return data_length / 2; 666 } 667 668 default: 669 WARN(1, "wrong tcode %d\n", tcode); 670 return 0; 671 } 672 } 673 674 void fw_fill_response(struct fw_packet *response, u32 *request_header, 675 int rcode, void *payload, size_t length) 676 { 677 int tcode, tlabel, extended_tcode, source, destination; 678 679 tcode = HEADER_GET_TCODE(request_header[0]); 680 tlabel = HEADER_GET_TLABEL(request_header[0]); 681 source = HEADER_GET_DESTINATION(request_header[0]); 682 destination = HEADER_GET_SOURCE(request_header[1]); 683 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]); 684 685 response->header[0] = 686 HEADER_RETRY(RETRY_1) | 687 HEADER_TLABEL(tlabel) | 688 HEADER_DESTINATION(destination); 689 response->header[1] = 690 HEADER_SOURCE(source) | 691 HEADER_RCODE(rcode); 692 response->header[2] = 0; 693 694 switch (tcode) { 695 case TCODE_WRITE_QUADLET_REQUEST: 696 case TCODE_WRITE_BLOCK_REQUEST: 697 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE); 698 response->header_length = 12; 699 response->payload_length = 0; 700 break; 701 702 case TCODE_READ_QUADLET_REQUEST: 703 response->header[0] |= 704 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE); 705 if (payload != NULL) 706 response->header[3] = *(u32 *)payload; 707 else 708 response->header[3] = 0; 709 response->header_length = 16; 710 response->payload_length = 0; 711 break; 712 713 case TCODE_READ_BLOCK_REQUEST: 714 case TCODE_LOCK_REQUEST: 715 response->header[0] |= HEADER_TCODE(tcode + 2); 716 response->header[3] = 717 HEADER_DATA_LENGTH(length) | 718 HEADER_EXTENDED_TCODE(extended_tcode); 719 response->header_length = 16; 720 response->payload = payload; 721 response->payload_length = length; 722 break; 723 724 default: 725 WARN(1, "wrong tcode %d\n", tcode); 726 } 727 728 response->payload_mapped = false; 729 } 730 EXPORT_SYMBOL(fw_fill_response); 731 732 static u32 compute_split_timeout_timestamp(struct fw_card *card, 733 u32 request_timestamp) 734 { 735 unsigned int cycles; 736 u32 timestamp; 737 738 cycles = card->split_timeout_cycles; 739 cycles += request_timestamp & 0x1fff; 740 741 timestamp = request_timestamp & ~0x1fff; 742 timestamp += (cycles / 8000) << 13; 743 timestamp |= cycles % 8000; 744 745 return timestamp; 746 } 747 748 static struct fw_request *allocate_request(struct fw_card *card, 749 struct fw_packet *p) 750 { 751 struct fw_request *request; 752 u32 *data, length; 753 int request_tcode; 754 755 request_tcode = HEADER_GET_TCODE(p->header[0]); 756 switch (request_tcode) { 757 case TCODE_WRITE_QUADLET_REQUEST: 758 data = &p->header[3]; 759 length = 4; 760 break; 761 762 case TCODE_WRITE_BLOCK_REQUEST: 763 case TCODE_LOCK_REQUEST: 764 data = p->payload; 765 length = HEADER_GET_DATA_LENGTH(p->header[3]); 766 break; 767 768 case TCODE_READ_QUADLET_REQUEST: 769 data = NULL; 770 length = 4; 771 break; 772 773 case TCODE_READ_BLOCK_REQUEST: 774 data = NULL; 775 length = HEADER_GET_DATA_LENGTH(p->header[3]); 776 break; 777 778 default: 779 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n", 780 p->header[0], p->header[1], p->header[2]); 781 return NULL; 782 } 783 784 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC); 785 if (request == NULL) 786 return NULL; 787 788 request->response.speed = p->speed; 789 request->response.timestamp = 790 compute_split_timeout_timestamp(card, p->timestamp); 791 request->response.generation = p->generation; 792 request->response.ack = 0; 793 request->response.callback = free_response_callback; 794 request->ack = p->ack; 795 request->length = length; 796 if (data) 797 memcpy(request->data, data, length); 798 799 memcpy(request->request_header, p->header, sizeof(p->header)); 800 801 return request; 802 } 803 804 void fw_send_response(struct fw_card *card, 805 struct fw_request *request, int rcode) 806 { 807 if (WARN_ONCE(!request, "invalid for FCP address handlers")) 808 return; 809 810 /* unified transaction or broadcast transaction: don't respond */ 811 if (request->ack != ACK_PENDING || 812 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) { 813 kfree(request); 814 return; 815 } 816 817 if (rcode == RCODE_COMPLETE) 818 fw_fill_response(&request->response, request->request_header, 819 rcode, request->data, 820 fw_get_response_length(request)); 821 else 822 fw_fill_response(&request->response, request->request_header, 823 rcode, NULL, 0); 824 825 card->driver->send_response(card, &request->response); 826 } 827 EXPORT_SYMBOL(fw_send_response); 828 829 /** 830 * fw_get_request_speed() - returns speed at which the @request was received 831 */ 832 int fw_get_request_speed(struct fw_request *request) 833 { 834 return request->response.speed; 835 } 836 EXPORT_SYMBOL(fw_get_request_speed); 837 838 static void handle_exclusive_region_request(struct fw_card *card, 839 struct fw_packet *p, 840 struct fw_request *request, 841 unsigned long long offset) 842 { 843 struct fw_address_handler *handler; 844 int tcode, destination, source; 845 846 destination = HEADER_GET_DESTINATION(p->header[0]); 847 source = HEADER_GET_SOURCE(p->header[1]); 848 tcode = HEADER_GET_TCODE(p->header[0]); 849 if (tcode == TCODE_LOCK_REQUEST) 850 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]); 851 852 rcu_read_lock(); 853 handler = lookup_enclosing_address_handler(&address_handler_list, 854 offset, request->length); 855 if (handler) 856 handler->address_callback(card, request, 857 tcode, destination, source, 858 p->generation, offset, 859 request->data, request->length, 860 handler->callback_data); 861 rcu_read_unlock(); 862 863 if (!handler) 864 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 865 } 866 867 static void handle_fcp_region_request(struct fw_card *card, 868 struct fw_packet *p, 869 struct fw_request *request, 870 unsigned long long offset) 871 { 872 struct fw_address_handler *handler; 873 int tcode, destination, source; 874 875 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 876 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) || 877 request->length > 0x200) { 878 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 879 880 return; 881 } 882 883 tcode = HEADER_GET_TCODE(p->header[0]); 884 destination = HEADER_GET_DESTINATION(p->header[0]); 885 source = HEADER_GET_SOURCE(p->header[1]); 886 887 if (tcode != TCODE_WRITE_QUADLET_REQUEST && 888 tcode != TCODE_WRITE_BLOCK_REQUEST) { 889 fw_send_response(card, request, RCODE_TYPE_ERROR); 890 891 return; 892 } 893 894 rcu_read_lock(); 895 list_for_each_entry_rcu(handler, &address_handler_list, link) { 896 if (is_enclosing_handler(handler, offset, request->length)) 897 handler->address_callback(card, NULL, tcode, 898 destination, source, 899 p->generation, offset, 900 request->data, 901 request->length, 902 handler->callback_data); 903 } 904 rcu_read_unlock(); 905 906 fw_send_response(card, request, RCODE_COMPLETE); 907 } 908 909 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p) 910 { 911 struct fw_request *request; 912 unsigned long long offset; 913 914 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE) 915 return; 916 917 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) { 918 fw_cdev_handle_phy_packet(card, p); 919 return; 920 } 921 922 request = allocate_request(card, p); 923 if (request == NULL) { 924 /* FIXME: send statically allocated busy packet. */ 925 return; 926 } 927 928 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) | 929 p->header[2]; 930 931 if (!is_in_fcp_region(offset, request->length)) 932 handle_exclusive_region_request(card, p, request, offset); 933 else 934 handle_fcp_region_request(card, p, request, offset); 935 936 } 937 EXPORT_SYMBOL(fw_core_handle_request); 938 939 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p) 940 { 941 struct fw_transaction *t; 942 unsigned long flags; 943 u32 *data; 944 size_t data_length; 945 int tcode, tlabel, source, rcode; 946 947 tcode = HEADER_GET_TCODE(p->header[0]); 948 tlabel = HEADER_GET_TLABEL(p->header[0]); 949 source = HEADER_GET_SOURCE(p->header[1]); 950 rcode = HEADER_GET_RCODE(p->header[1]); 951 952 spin_lock_irqsave(&card->lock, flags); 953 list_for_each_entry(t, &card->transaction_list, link) { 954 if (t->node_id == source && t->tlabel == tlabel) { 955 if (!try_cancel_split_timeout(t)) { 956 spin_unlock_irqrestore(&card->lock, flags); 957 goto timed_out; 958 } 959 list_del_init(&t->link); 960 card->tlabel_mask &= ~(1ULL << t->tlabel); 961 break; 962 } 963 } 964 spin_unlock_irqrestore(&card->lock, flags); 965 966 if (&t->link == &card->transaction_list) { 967 timed_out: 968 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n", 969 source, tlabel); 970 return; 971 } 972 973 /* 974 * FIXME: sanity check packet, is length correct, does tcodes 975 * and addresses match. 976 */ 977 978 switch (tcode) { 979 case TCODE_READ_QUADLET_RESPONSE: 980 data = (u32 *) &p->header[3]; 981 data_length = 4; 982 break; 983 984 case TCODE_WRITE_RESPONSE: 985 data = NULL; 986 data_length = 0; 987 break; 988 989 case TCODE_READ_BLOCK_RESPONSE: 990 case TCODE_LOCK_RESPONSE: 991 data = p->payload; 992 data_length = HEADER_GET_DATA_LENGTH(p->header[3]); 993 break; 994 995 default: 996 /* Should never happen, this is just to shut up gcc. */ 997 data = NULL; 998 data_length = 0; 999 break; 1000 } 1001 1002 /* 1003 * The response handler may be executed while the request handler 1004 * is still pending. Cancel the request handler. 1005 */ 1006 card->driver->cancel_packet(card, &t->packet); 1007 1008 t->callback(card, rcode, data, data_length, t->callback_data); 1009 } 1010 EXPORT_SYMBOL(fw_core_handle_response); 1011 1012 /** 1013 * fw_rcode_string - convert a firewire result code to an error description 1014 * @rcode: the result code 1015 */ 1016 const char *fw_rcode_string(int rcode) 1017 { 1018 static const char *const names[] = { 1019 [RCODE_COMPLETE] = "no error", 1020 [RCODE_CONFLICT_ERROR] = "conflict error", 1021 [RCODE_DATA_ERROR] = "data error", 1022 [RCODE_TYPE_ERROR] = "type error", 1023 [RCODE_ADDRESS_ERROR] = "address error", 1024 [RCODE_SEND_ERROR] = "send error", 1025 [RCODE_CANCELLED] = "timeout", 1026 [RCODE_BUSY] = "busy", 1027 [RCODE_GENERATION] = "bus reset", 1028 [RCODE_NO_ACK] = "no ack", 1029 }; 1030 1031 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode]) 1032 return names[rcode]; 1033 else 1034 return "unknown"; 1035 } 1036 EXPORT_SYMBOL(fw_rcode_string); 1037 1038 static const struct fw_address_region topology_map_region = 1039 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP, 1040 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, }; 1041 1042 static void handle_topology_map(struct fw_card *card, struct fw_request *request, 1043 int tcode, int destination, int source, int generation, 1044 unsigned long long offset, void *payload, size_t length, 1045 void *callback_data) 1046 { 1047 int start; 1048 1049 if (!TCODE_IS_READ_REQUEST(tcode)) { 1050 fw_send_response(card, request, RCODE_TYPE_ERROR); 1051 return; 1052 } 1053 1054 if ((offset & 3) > 0 || (length & 3) > 0) { 1055 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 1056 return; 1057 } 1058 1059 start = (offset - topology_map_region.start) / 4; 1060 memcpy(payload, &card->topology_map[start], length); 1061 1062 fw_send_response(card, request, RCODE_COMPLETE); 1063 } 1064 1065 static struct fw_address_handler topology_map = { 1066 .length = 0x400, 1067 .address_callback = handle_topology_map, 1068 }; 1069 1070 static const struct fw_address_region registers_region = 1071 { .start = CSR_REGISTER_BASE, 1072 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, }; 1073 1074 static void update_split_timeout(struct fw_card *card) 1075 { 1076 unsigned int cycles; 1077 1078 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19); 1079 1080 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */ 1081 cycles = clamp(cycles, 800u, 3u * 8000u); 1082 1083 card->split_timeout_cycles = cycles; 1084 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000); 1085 } 1086 1087 static void handle_registers(struct fw_card *card, struct fw_request *request, 1088 int tcode, int destination, int source, int generation, 1089 unsigned long long offset, void *payload, size_t length, 1090 void *callback_data) 1091 { 1092 int reg = offset & ~CSR_REGISTER_BASE; 1093 __be32 *data = payload; 1094 int rcode = RCODE_COMPLETE; 1095 unsigned long flags; 1096 1097 switch (reg) { 1098 case CSR_PRIORITY_BUDGET: 1099 if (!card->priority_budget_implemented) { 1100 rcode = RCODE_ADDRESS_ERROR; 1101 break; 1102 } 1103 /* else fall through */ 1104 1105 case CSR_NODE_IDS: 1106 /* 1107 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8 1108 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges 1109 */ 1110 /* fall through */ 1111 1112 case CSR_STATE_CLEAR: 1113 case CSR_STATE_SET: 1114 case CSR_CYCLE_TIME: 1115 case CSR_BUS_TIME: 1116 case CSR_BUSY_TIMEOUT: 1117 if (tcode == TCODE_READ_QUADLET_REQUEST) 1118 *data = cpu_to_be32(card->driver->read_csr(card, reg)); 1119 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1120 card->driver->write_csr(card, reg, be32_to_cpu(*data)); 1121 else 1122 rcode = RCODE_TYPE_ERROR; 1123 break; 1124 1125 case CSR_RESET_START: 1126 if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1127 card->driver->write_csr(card, CSR_STATE_CLEAR, 1128 CSR_STATE_BIT_ABDICATE); 1129 else 1130 rcode = RCODE_TYPE_ERROR; 1131 break; 1132 1133 case CSR_SPLIT_TIMEOUT_HI: 1134 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1135 *data = cpu_to_be32(card->split_timeout_hi); 1136 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1137 spin_lock_irqsave(&card->lock, flags); 1138 card->split_timeout_hi = be32_to_cpu(*data) & 7; 1139 update_split_timeout(card); 1140 spin_unlock_irqrestore(&card->lock, flags); 1141 } else { 1142 rcode = RCODE_TYPE_ERROR; 1143 } 1144 break; 1145 1146 case CSR_SPLIT_TIMEOUT_LO: 1147 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1148 *data = cpu_to_be32(card->split_timeout_lo); 1149 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1150 spin_lock_irqsave(&card->lock, flags); 1151 card->split_timeout_lo = 1152 be32_to_cpu(*data) & 0xfff80000; 1153 update_split_timeout(card); 1154 spin_unlock_irqrestore(&card->lock, flags); 1155 } else { 1156 rcode = RCODE_TYPE_ERROR; 1157 } 1158 break; 1159 1160 case CSR_MAINT_UTILITY: 1161 if (tcode == TCODE_READ_QUADLET_REQUEST) 1162 *data = card->maint_utility_register; 1163 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1164 card->maint_utility_register = *data; 1165 else 1166 rcode = RCODE_TYPE_ERROR; 1167 break; 1168 1169 case CSR_BROADCAST_CHANNEL: 1170 if (tcode == TCODE_READ_QUADLET_REQUEST) 1171 *data = cpu_to_be32(card->broadcast_channel); 1172 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1173 card->broadcast_channel = 1174 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) | 1175 BROADCAST_CHANNEL_INITIAL; 1176 else 1177 rcode = RCODE_TYPE_ERROR; 1178 break; 1179 1180 case CSR_BUS_MANAGER_ID: 1181 case CSR_BANDWIDTH_AVAILABLE: 1182 case CSR_CHANNELS_AVAILABLE_HI: 1183 case CSR_CHANNELS_AVAILABLE_LO: 1184 /* 1185 * FIXME: these are handled by the OHCI hardware and 1186 * the stack never sees these request. If we add 1187 * support for a new type of controller that doesn't 1188 * handle this in hardware we need to deal with these 1189 * transactions. 1190 */ 1191 BUG(); 1192 break; 1193 1194 default: 1195 rcode = RCODE_ADDRESS_ERROR; 1196 break; 1197 } 1198 1199 fw_send_response(card, request, rcode); 1200 } 1201 1202 static struct fw_address_handler registers = { 1203 .length = 0x400, 1204 .address_callback = handle_registers, 1205 }; 1206 1207 static void handle_low_memory(struct fw_card *card, struct fw_request *request, 1208 int tcode, int destination, int source, int generation, 1209 unsigned long long offset, void *payload, size_t length, 1210 void *callback_data) 1211 { 1212 /* 1213 * This catches requests not handled by the physical DMA unit, 1214 * i.e., wrong transaction types or unauthorized source nodes. 1215 */ 1216 fw_send_response(card, request, RCODE_TYPE_ERROR); 1217 } 1218 1219 static struct fw_address_handler low_memory = { 1220 .length = FW_MAX_PHYSICAL_RANGE, 1221 .address_callback = handle_low_memory, 1222 }; 1223 1224 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1225 MODULE_DESCRIPTION("Core IEEE1394 transaction logic"); 1226 MODULE_LICENSE("GPL"); 1227 1228 static const u32 vendor_textual_descriptor[] = { 1229 /* textual descriptor leaf () */ 1230 0x00060000, 1231 0x00000000, 1232 0x00000000, 1233 0x4c696e75, /* L i n u */ 1234 0x78204669, /* x F i */ 1235 0x72657769, /* r e w i */ 1236 0x72650000, /* r e */ 1237 }; 1238 1239 static const u32 model_textual_descriptor[] = { 1240 /* model descriptor leaf () */ 1241 0x00030000, 1242 0x00000000, 1243 0x00000000, 1244 0x4a756a75, /* J u j u */ 1245 }; 1246 1247 static struct fw_descriptor vendor_id_descriptor = { 1248 .length = ARRAY_SIZE(vendor_textual_descriptor), 1249 .immediate = 0x03001f11, 1250 .key = 0x81000000, 1251 .data = vendor_textual_descriptor, 1252 }; 1253 1254 static struct fw_descriptor model_id_descriptor = { 1255 .length = ARRAY_SIZE(model_textual_descriptor), 1256 .immediate = 0x17023901, 1257 .key = 0x81000000, 1258 .data = model_textual_descriptor, 1259 }; 1260 1261 static int __init fw_core_init(void) 1262 { 1263 int ret; 1264 1265 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0); 1266 if (!fw_workqueue) 1267 return -ENOMEM; 1268 1269 ret = bus_register(&fw_bus_type); 1270 if (ret < 0) { 1271 destroy_workqueue(fw_workqueue); 1272 return ret; 1273 } 1274 1275 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops); 1276 if (fw_cdev_major < 0) { 1277 bus_unregister(&fw_bus_type); 1278 destroy_workqueue(fw_workqueue); 1279 return fw_cdev_major; 1280 } 1281 1282 fw_core_add_address_handler(&topology_map, &topology_map_region); 1283 fw_core_add_address_handler(®isters, ®isters_region); 1284 fw_core_add_address_handler(&low_memory, &low_memory_region); 1285 fw_core_add_descriptor(&vendor_id_descriptor); 1286 fw_core_add_descriptor(&model_id_descriptor); 1287 1288 return 0; 1289 } 1290 1291 static void __exit fw_core_cleanup(void) 1292 { 1293 unregister_chrdev(fw_cdev_major, "firewire"); 1294 bus_unregister(&fw_bus_type); 1295 destroy_workqueue(fw_workqueue); 1296 idr_destroy(&fw_device_idr); 1297 } 1298 1299 module_init(fw_core_init); 1300 module_exit(fw_core_cleanup); 1301