xref: /openbmc/linux/drivers/firewire/core-transaction.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Core IEEE1394 transaction logic
3  *
4  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bug.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/fs.h>
28 #include <linux/init.h>
29 #include <linux/idr.h>
30 #include <linux/jiffies.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/timer.h>
38 #include <linux/types.h>
39 
40 #include <asm/byteorder.h>
41 
42 #include "core.h"
43 
44 #define HEADER_PRI(pri)			((pri) << 0)
45 #define HEADER_TCODE(tcode)		((tcode) << 4)
46 #define HEADER_RETRY(retry)		((retry) << 8)
47 #define HEADER_TLABEL(tlabel)		((tlabel) << 10)
48 #define HEADER_DESTINATION(destination)	((destination) << 16)
49 #define HEADER_SOURCE(source)		((source) << 16)
50 #define HEADER_RCODE(rcode)		((rcode) << 12)
51 #define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
52 #define HEADER_DATA_LENGTH(length)	((length) << 16)
53 #define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
54 
55 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
56 #define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
57 #define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
58 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
59 #define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
60 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
61 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
62 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
63 
64 #define HEADER_DESTINATION_IS_BROADCAST(q) \
65 	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
66 
67 #define PHY_PACKET_CONFIG	0x0
68 #define PHY_PACKET_LINK_ON	0x1
69 #define PHY_PACKET_SELF_ID	0x2
70 
71 #define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
72 #define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
73 #define PHY_IDENTIFIER(id)		((id) << 30)
74 
75 static int close_transaction(struct fw_transaction *transaction,
76 			     struct fw_card *card, int rcode)
77 {
78 	struct fw_transaction *t;
79 	unsigned long flags;
80 
81 	spin_lock_irqsave(&card->lock, flags);
82 	list_for_each_entry(t, &card->transaction_list, link) {
83 		if (t == transaction) {
84 			if (!del_timer(&t->split_timeout_timer)) {
85 				spin_unlock_irqrestore(&card->lock, flags);
86 				goto timed_out;
87 			}
88 			list_del_init(&t->link);
89 			card->tlabel_mask &= ~(1ULL << t->tlabel);
90 			break;
91 		}
92 	}
93 	spin_unlock_irqrestore(&card->lock, flags);
94 
95 	if (&t->link != &card->transaction_list) {
96 		t->callback(card, rcode, NULL, 0, t->callback_data);
97 		return 0;
98 	}
99 
100  timed_out:
101 	return -ENOENT;
102 }
103 
104 /*
105  * Only valid for transactions that are potentially pending (ie have
106  * been sent).
107  */
108 int fw_cancel_transaction(struct fw_card *card,
109 			  struct fw_transaction *transaction)
110 {
111 	/*
112 	 * Cancel the packet transmission if it's still queued.  That
113 	 * will call the packet transmission callback which cancels
114 	 * the transaction.
115 	 */
116 
117 	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
118 		return 0;
119 
120 	/*
121 	 * If the request packet has already been sent, we need to see
122 	 * if the transaction is still pending and remove it in that case.
123 	 */
124 
125 	return close_transaction(transaction, card, RCODE_CANCELLED);
126 }
127 EXPORT_SYMBOL(fw_cancel_transaction);
128 
129 static void split_transaction_timeout_callback(unsigned long data)
130 {
131 	struct fw_transaction *t = (struct fw_transaction *)data;
132 	struct fw_card *card = t->card;
133 	unsigned long flags;
134 
135 	spin_lock_irqsave(&card->lock, flags);
136 	if (list_empty(&t->link)) {
137 		spin_unlock_irqrestore(&card->lock, flags);
138 		return;
139 	}
140 	list_del(&t->link);
141 	card->tlabel_mask &= ~(1ULL << t->tlabel);
142 	spin_unlock_irqrestore(&card->lock, flags);
143 
144 	card->driver->cancel_packet(card, &t->packet);
145 
146 	/*
147 	 * At this point cancel_packet will never call the transaction
148 	 * callback, since we just took the transaction out of the list.
149 	 * So do it here.
150 	 */
151 	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
152 }
153 
154 static void transmit_complete_callback(struct fw_packet *packet,
155 				       struct fw_card *card, int status)
156 {
157 	struct fw_transaction *t =
158 	    container_of(packet, struct fw_transaction, packet);
159 
160 	switch (status) {
161 	case ACK_COMPLETE:
162 		close_transaction(t, card, RCODE_COMPLETE);
163 		break;
164 	case ACK_PENDING:
165 		t->timestamp = packet->timestamp;
166 		break;
167 	case ACK_BUSY_X:
168 	case ACK_BUSY_A:
169 	case ACK_BUSY_B:
170 		close_transaction(t, card, RCODE_BUSY);
171 		break;
172 	case ACK_DATA_ERROR:
173 		close_transaction(t, card, RCODE_DATA_ERROR);
174 		break;
175 	case ACK_TYPE_ERROR:
176 		close_transaction(t, card, RCODE_TYPE_ERROR);
177 		break;
178 	default:
179 		/*
180 		 * In this case the ack is really a juju specific
181 		 * rcode, so just forward that to the callback.
182 		 */
183 		close_transaction(t, card, status);
184 		break;
185 	}
186 }
187 
188 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
189 		int destination_id, int source_id, int generation, int speed,
190 		unsigned long long offset, void *payload, size_t length)
191 {
192 	int ext_tcode;
193 
194 	if (tcode == TCODE_STREAM_DATA) {
195 		packet->header[0] =
196 			HEADER_DATA_LENGTH(length) |
197 			destination_id |
198 			HEADER_TCODE(TCODE_STREAM_DATA);
199 		packet->header_length = 4;
200 		packet->payload = payload;
201 		packet->payload_length = length;
202 
203 		goto common;
204 	}
205 
206 	if (tcode > 0x10) {
207 		ext_tcode = tcode & ~0x10;
208 		tcode = TCODE_LOCK_REQUEST;
209 	} else
210 		ext_tcode = 0;
211 
212 	packet->header[0] =
213 		HEADER_RETRY(RETRY_X) |
214 		HEADER_TLABEL(tlabel) |
215 		HEADER_TCODE(tcode) |
216 		HEADER_DESTINATION(destination_id);
217 	packet->header[1] =
218 		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
219 	packet->header[2] =
220 		offset;
221 
222 	switch (tcode) {
223 	case TCODE_WRITE_QUADLET_REQUEST:
224 		packet->header[3] = *(u32 *)payload;
225 		packet->header_length = 16;
226 		packet->payload_length = 0;
227 		break;
228 
229 	case TCODE_LOCK_REQUEST:
230 	case TCODE_WRITE_BLOCK_REQUEST:
231 		packet->header[3] =
232 			HEADER_DATA_LENGTH(length) |
233 			HEADER_EXTENDED_TCODE(ext_tcode);
234 		packet->header_length = 16;
235 		packet->payload = payload;
236 		packet->payload_length = length;
237 		break;
238 
239 	case TCODE_READ_QUADLET_REQUEST:
240 		packet->header_length = 12;
241 		packet->payload_length = 0;
242 		break;
243 
244 	case TCODE_READ_BLOCK_REQUEST:
245 		packet->header[3] =
246 			HEADER_DATA_LENGTH(length) |
247 			HEADER_EXTENDED_TCODE(ext_tcode);
248 		packet->header_length = 16;
249 		packet->payload_length = 0;
250 		break;
251 
252 	default:
253 		WARN(1, "wrong tcode %d", tcode);
254 	}
255  common:
256 	packet->speed = speed;
257 	packet->generation = generation;
258 	packet->ack = 0;
259 	packet->payload_mapped = false;
260 }
261 
262 static int allocate_tlabel(struct fw_card *card)
263 {
264 	int tlabel;
265 
266 	tlabel = card->current_tlabel;
267 	while (card->tlabel_mask & (1ULL << tlabel)) {
268 		tlabel = (tlabel + 1) & 0x3f;
269 		if (tlabel == card->current_tlabel)
270 			return -EBUSY;
271 	}
272 
273 	card->current_tlabel = (tlabel + 1) & 0x3f;
274 	card->tlabel_mask |= 1ULL << tlabel;
275 
276 	return tlabel;
277 }
278 
279 /**
280  * fw_send_request() - submit a request packet for transmission
281  * @card:		interface to send the request at
282  * @t:			transaction instance to which the request belongs
283  * @tcode:		transaction code
284  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
285  * @generation:		bus generation in which request and response are valid
286  * @speed:		transmission speed
287  * @offset:		48bit wide offset into destination's address space
288  * @payload:		data payload for the request subaction
289  * @length:		length of the payload, in bytes
290  * @callback:		function to be called when the transaction is completed
291  * @callback_data:	data to be passed to the transaction completion callback
292  *
293  * Submit a request packet into the asynchronous request transmission queue.
294  * Can be called from atomic context.  If you prefer a blocking API, use
295  * fw_run_transaction() in a context that can sleep.
296  *
297  * In case of lock requests, specify one of the firewire-core specific %TCODE_
298  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
299  *
300  * Make sure that the value in @destination_id is not older than the one in
301  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
302  *
303  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
304  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
305  * It will contain tag, channel, and sy data instead of a node ID then.
306  *
307  * The payload buffer at @data is going to be DMA-mapped except in case of
308  * quadlet-sized payload or of local (loopback) requests.  Hence make sure that
309  * the buffer complies with the restrictions for DMA-mapped memory.  The
310  * @payload must not be freed before the @callback is called.
311  *
312  * In case of request types without payload, @data is NULL and @length is 0.
313  *
314  * After the transaction is completed successfully or unsuccessfully, the
315  * @callback will be called.  Among its parameters is the response code which
316  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
317  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
318  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
319  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
320  * generation, or missing ACK respectively.
321  *
322  * Note some timing corner cases:  fw_send_request() may complete much earlier
323  * than when the request packet actually hits the wire.  On the other hand,
324  * transaction completion and hence execution of @callback may happen even
325  * before fw_send_request() returns.
326  */
327 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
328 		     int destination_id, int generation, int speed,
329 		     unsigned long long offset, void *payload, size_t length,
330 		     fw_transaction_callback_t callback, void *callback_data)
331 {
332 	unsigned long flags;
333 	int tlabel;
334 
335 	/*
336 	 * Allocate tlabel from the bitmap and put the transaction on
337 	 * the list while holding the card spinlock.
338 	 */
339 
340 	spin_lock_irqsave(&card->lock, flags);
341 
342 	tlabel = allocate_tlabel(card);
343 	if (tlabel < 0) {
344 		spin_unlock_irqrestore(&card->lock, flags);
345 		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
346 		return;
347 	}
348 
349 	t->node_id = destination_id;
350 	t->tlabel = tlabel;
351 	t->card = card;
352 	setup_timer(&t->split_timeout_timer,
353 		    split_transaction_timeout_callback, (unsigned long)t);
354 	/* FIXME: start this timer later, relative to t->timestamp */
355 	mod_timer(&t->split_timeout_timer,
356 		  jiffies + card->split_timeout_jiffies);
357 	t->callback = callback;
358 	t->callback_data = callback_data;
359 
360 	fw_fill_request(&t->packet, tcode, t->tlabel,
361 			destination_id, card->node_id, generation,
362 			speed, offset, payload, length);
363 	t->packet.callback = transmit_complete_callback;
364 
365 	list_add_tail(&t->link, &card->transaction_list);
366 
367 	spin_unlock_irqrestore(&card->lock, flags);
368 
369 	card->driver->send_request(card, &t->packet);
370 }
371 EXPORT_SYMBOL(fw_send_request);
372 
373 struct transaction_callback_data {
374 	struct completion done;
375 	void *payload;
376 	int rcode;
377 };
378 
379 static void transaction_callback(struct fw_card *card, int rcode,
380 				 void *payload, size_t length, void *data)
381 {
382 	struct transaction_callback_data *d = data;
383 
384 	if (rcode == RCODE_COMPLETE)
385 		memcpy(d->payload, payload, length);
386 	d->rcode = rcode;
387 	complete(&d->done);
388 }
389 
390 /**
391  * fw_run_transaction() - send request and sleep until transaction is completed
392  *
393  * Returns the RCODE.  See fw_send_request() for parameter documentation.
394  * Unlike fw_send_request(), @data points to the payload of the request or/and
395  * to the payload of the response.
396  */
397 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
398 		       int generation, int speed, unsigned long long offset,
399 		       void *payload, size_t length)
400 {
401 	struct transaction_callback_data d;
402 	struct fw_transaction t;
403 
404 	init_timer_on_stack(&t.split_timeout_timer);
405 	init_completion(&d.done);
406 	d.payload = payload;
407 	fw_send_request(card, &t, tcode, destination_id, generation, speed,
408 			offset, payload, length, transaction_callback, &d);
409 	wait_for_completion(&d.done);
410 	destroy_timer_on_stack(&t.split_timeout_timer);
411 
412 	return d.rcode;
413 }
414 EXPORT_SYMBOL(fw_run_transaction);
415 
416 static DEFINE_MUTEX(phy_config_mutex);
417 static DECLARE_COMPLETION(phy_config_done);
418 
419 static void transmit_phy_packet_callback(struct fw_packet *packet,
420 					 struct fw_card *card, int status)
421 {
422 	complete(&phy_config_done);
423 }
424 
425 static struct fw_packet phy_config_packet = {
426 	.header_length	= 8,
427 	.payload_length	= 0,
428 	.speed		= SCODE_100,
429 	.callback	= transmit_phy_packet_callback,
430 };
431 
432 void fw_send_phy_config(struct fw_card *card,
433 			int node_id, int generation, int gap_count)
434 {
435 	long timeout = DIV_ROUND_UP(HZ, 10);
436 	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
437 
438 	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
439 		data |= PHY_CONFIG_ROOT_ID(node_id);
440 
441 	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
442 		gap_count = card->driver->read_phy_reg(card, 1);
443 		if (gap_count < 0)
444 			return;
445 
446 		gap_count &= 63;
447 		if (gap_count == 63)
448 			return;
449 	}
450 	data |= PHY_CONFIG_GAP_COUNT(gap_count);
451 
452 	mutex_lock(&phy_config_mutex);
453 
454 	phy_config_packet.header[0] = data;
455 	phy_config_packet.header[1] = ~data;
456 	phy_config_packet.generation = generation;
457 	INIT_COMPLETION(phy_config_done);
458 
459 	card->driver->send_request(card, &phy_config_packet);
460 	wait_for_completion_timeout(&phy_config_done, timeout);
461 
462 	mutex_unlock(&phy_config_mutex);
463 }
464 
465 static struct fw_address_handler *lookup_overlapping_address_handler(
466 	struct list_head *list, unsigned long long offset, size_t length)
467 {
468 	struct fw_address_handler *handler;
469 
470 	list_for_each_entry(handler, list, link) {
471 		if (handler->offset < offset + length &&
472 		    offset < handler->offset + handler->length)
473 			return handler;
474 	}
475 
476 	return NULL;
477 }
478 
479 static bool is_enclosing_handler(struct fw_address_handler *handler,
480 				 unsigned long long offset, size_t length)
481 {
482 	return handler->offset <= offset &&
483 		offset + length <= handler->offset + handler->length;
484 }
485 
486 static struct fw_address_handler *lookup_enclosing_address_handler(
487 	struct list_head *list, unsigned long long offset, size_t length)
488 {
489 	struct fw_address_handler *handler;
490 
491 	list_for_each_entry(handler, list, link) {
492 		if (is_enclosing_handler(handler, offset, length))
493 			return handler;
494 	}
495 
496 	return NULL;
497 }
498 
499 static DEFINE_SPINLOCK(address_handler_lock);
500 static LIST_HEAD(address_handler_list);
501 
502 const struct fw_address_region fw_high_memory_region =
503 	{ .start = 0x000100000000ULL, .end = 0xffffe0000000ULL,  };
504 EXPORT_SYMBOL(fw_high_memory_region);
505 
506 #if 0
507 const struct fw_address_region fw_low_memory_region =
508 	{ .start = 0x000000000000ULL, .end = 0x000100000000ULL,  };
509 const struct fw_address_region fw_private_region =
510 	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
511 const struct fw_address_region fw_csr_region =
512 	{ .start = CSR_REGISTER_BASE,
513 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
514 const struct fw_address_region fw_unit_space_region =
515 	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
516 #endif  /*  0  */
517 
518 static bool is_in_fcp_region(u64 offset, size_t length)
519 {
520 	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
521 		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
522 }
523 
524 /**
525  * fw_core_add_address_handler() - register for incoming requests
526  * @handler:	callback
527  * @region:	region in the IEEE 1212 node space address range
528  *
529  * region->start, ->end, and handler->length have to be quadlet-aligned.
530  *
531  * When a request is received that falls within the specified address range,
532  * the specified callback is invoked.  The parameters passed to the callback
533  * give the details of the particular request.
534  *
535  * Return value:  0 on success, non-zero otherwise.
536  *
537  * The start offset of the handler's address region is determined by
538  * fw_core_add_address_handler() and is returned in handler->offset.
539  *
540  * Address allocations are exclusive, except for the FCP registers.
541  */
542 int fw_core_add_address_handler(struct fw_address_handler *handler,
543 				const struct fw_address_region *region)
544 {
545 	struct fw_address_handler *other;
546 	unsigned long flags;
547 	int ret = -EBUSY;
548 
549 	if (region->start & 0xffff000000000003ULL ||
550 	    region->start >= region->end ||
551 	    region->end   > 0x0001000000000000ULL ||
552 	    handler->length & 3 ||
553 	    handler->length == 0)
554 		return -EINVAL;
555 
556 	spin_lock_irqsave(&address_handler_lock, flags);
557 
558 	handler->offset = region->start;
559 	while (handler->offset + handler->length <= region->end) {
560 		if (is_in_fcp_region(handler->offset, handler->length))
561 			other = NULL;
562 		else
563 			other = lookup_overlapping_address_handler
564 					(&address_handler_list,
565 					 handler->offset, handler->length);
566 		if (other != NULL) {
567 			handler->offset += other->length;
568 		} else {
569 			list_add_tail(&handler->link, &address_handler_list);
570 			ret = 0;
571 			break;
572 		}
573 	}
574 
575 	spin_unlock_irqrestore(&address_handler_lock, flags);
576 
577 	return ret;
578 }
579 EXPORT_SYMBOL(fw_core_add_address_handler);
580 
581 /**
582  * fw_core_remove_address_handler() - unregister an address handler
583  */
584 void fw_core_remove_address_handler(struct fw_address_handler *handler)
585 {
586 	unsigned long flags;
587 
588 	spin_lock_irqsave(&address_handler_lock, flags);
589 	list_del(&handler->link);
590 	spin_unlock_irqrestore(&address_handler_lock, flags);
591 }
592 EXPORT_SYMBOL(fw_core_remove_address_handler);
593 
594 struct fw_request {
595 	struct fw_packet response;
596 	u32 request_header[4];
597 	int ack;
598 	u32 length;
599 	u32 data[0];
600 };
601 
602 static void free_response_callback(struct fw_packet *packet,
603 				   struct fw_card *card, int status)
604 {
605 	struct fw_request *request;
606 
607 	request = container_of(packet, struct fw_request, response);
608 	kfree(request);
609 }
610 
611 int fw_get_response_length(struct fw_request *r)
612 {
613 	int tcode, ext_tcode, data_length;
614 
615 	tcode = HEADER_GET_TCODE(r->request_header[0]);
616 
617 	switch (tcode) {
618 	case TCODE_WRITE_QUADLET_REQUEST:
619 	case TCODE_WRITE_BLOCK_REQUEST:
620 		return 0;
621 
622 	case TCODE_READ_QUADLET_REQUEST:
623 		return 4;
624 
625 	case TCODE_READ_BLOCK_REQUEST:
626 		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
627 		return data_length;
628 
629 	case TCODE_LOCK_REQUEST:
630 		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
631 		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
632 		switch (ext_tcode) {
633 		case EXTCODE_FETCH_ADD:
634 		case EXTCODE_LITTLE_ADD:
635 			return data_length;
636 		default:
637 			return data_length / 2;
638 		}
639 
640 	default:
641 		WARN(1, "wrong tcode %d", tcode);
642 		return 0;
643 	}
644 }
645 
646 void fw_fill_response(struct fw_packet *response, u32 *request_header,
647 		      int rcode, void *payload, size_t length)
648 {
649 	int tcode, tlabel, extended_tcode, source, destination;
650 
651 	tcode          = HEADER_GET_TCODE(request_header[0]);
652 	tlabel         = HEADER_GET_TLABEL(request_header[0]);
653 	source         = HEADER_GET_DESTINATION(request_header[0]);
654 	destination    = HEADER_GET_SOURCE(request_header[1]);
655 	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
656 
657 	response->header[0] =
658 		HEADER_RETRY(RETRY_1) |
659 		HEADER_TLABEL(tlabel) |
660 		HEADER_DESTINATION(destination);
661 	response->header[1] =
662 		HEADER_SOURCE(source) |
663 		HEADER_RCODE(rcode);
664 	response->header[2] = 0;
665 
666 	switch (tcode) {
667 	case TCODE_WRITE_QUADLET_REQUEST:
668 	case TCODE_WRITE_BLOCK_REQUEST:
669 		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
670 		response->header_length = 12;
671 		response->payload_length = 0;
672 		break;
673 
674 	case TCODE_READ_QUADLET_REQUEST:
675 		response->header[0] |=
676 			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
677 		if (payload != NULL)
678 			response->header[3] = *(u32 *)payload;
679 		else
680 			response->header[3] = 0;
681 		response->header_length = 16;
682 		response->payload_length = 0;
683 		break;
684 
685 	case TCODE_READ_BLOCK_REQUEST:
686 	case TCODE_LOCK_REQUEST:
687 		response->header[0] |= HEADER_TCODE(tcode + 2);
688 		response->header[3] =
689 			HEADER_DATA_LENGTH(length) |
690 			HEADER_EXTENDED_TCODE(extended_tcode);
691 		response->header_length = 16;
692 		response->payload = payload;
693 		response->payload_length = length;
694 		break;
695 
696 	default:
697 		WARN(1, "wrong tcode %d", tcode);
698 	}
699 
700 	response->payload_mapped = false;
701 }
702 EXPORT_SYMBOL(fw_fill_response);
703 
704 static u32 compute_split_timeout_timestamp(struct fw_card *card,
705 					   u32 request_timestamp)
706 {
707 	unsigned int cycles;
708 	u32 timestamp;
709 
710 	cycles = card->split_timeout_cycles;
711 	cycles += request_timestamp & 0x1fff;
712 
713 	timestamp = request_timestamp & ~0x1fff;
714 	timestamp += (cycles / 8000) << 13;
715 	timestamp |= cycles % 8000;
716 
717 	return timestamp;
718 }
719 
720 static struct fw_request *allocate_request(struct fw_card *card,
721 					   struct fw_packet *p)
722 {
723 	struct fw_request *request;
724 	u32 *data, length;
725 	int request_tcode;
726 
727 	request_tcode = HEADER_GET_TCODE(p->header[0]);
728 	switch (request_tcode) {
729 	case TCODE_WRITE_QUADLET_REQUEST:
730 		data = &p->header[3];
731 		length = 4;
732 		break;
733 
734 	case TCODE_WRITE_BLOCK_REQUEST:
735 	case TCODE_LOCK_REQUEST:
736 		data = p->payload;
737 		length = HEADER_GET_DATA_LENGTH(p->header[3]);
738 		break;
739 
740 	case TCODE_READ_QUADLET_REQUEST:
741 		data = NULL;
742 		length = 4;
743 		break;
744 
745 	case TCODE_READ_BLOCK_REQUEST:
746 		data = NULL;
747 		length = HEADER_GET_DATA_LENGTH(p->header[3]);
748 		break;
749 
750 	default:
751 		fw_error("ERROR - corrupt request received - %08x %08x %08x\n",
752 			 p->header[0], p->header[1], p->header[2]);
753 		return NULL;
754 	}
755 
756 	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
757 	if (request == NULL)
758 		return NULL;
759 
760 	request->response.speed = p->speed;
761 	request->response.timestamp =
762 			compute_split_timeout_timestamp(card, p->timestamp);
763 	request->response.generation = p->generation;
764 	request->response.ack = 0;
765 	request->response.callback = free_response_callback;
766 	request->ack = p->ack;
767 	request->length = length;
768 	if (data)
769 		memcpy(request->data, data, length);
770 
771 	memcpy(request->request_header, p->header, sizeof(p->header));
772 
773 	return request;
774 }
775 
776 void fw_send_response(struct fw_card *card,
777 		      struct fw_request *request, int rcode)
778 {
779 	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
780 		return;
781 
782 	/* unified transaction or broadcast transaction: don't respond */
783 	if (request->ack != ACK_PENDING ||
784 	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
785 		kfree(request);
786 		return;
787 	}
788 
789 	if (rcode == RCODE_COMPLETE)
790 		fw_fill_response(&request->response, request->request_header,
791 				 rcode, request->data,
792 				 fw_get_response_length(request));
793 	else
794 		fw_fill_response(&request->response, request->request_header,
795 				 rcode, NULL, 0);
796 
797 	card->driver->send_response(card, &request->response);
798 }
799 EXPORT_SYMBOL(fw_send_response);
800 
801 static void handle_exclusive_region_request(struct fw_card *card,
802 					    struct fw_packet *p,
803 					    struct fw_request *request,
804 					    unsigned long long offset)
805 {
806 	struct fw_address_handler *handler;
807 	unsigned long flags;
808 	int tcode, destination, source;
809 
810 	destination = HEADER_GET_DESTINATION(p->header[0]);
811 	source      = HEADER_GET_SOURCE(p->header[1]);
812 	tcode       = HEADER_GET_TCODE(p->header[0]);
813 	if (tcode == TCODE_LOCK_REQUEST)
814 		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
815 
816 	spin_lock_irqsave(&address_handler_lock, flags);
817 	handler = lookup_enclosing_address_handler(&address_handler_list,
818 						   offset, request->length);
819 	spin_unlock_irqrestore(&address_handler_lock, flags);
820 
821 	/*
822 	 * FIXME: lookup the fw_node corresponding to the sender of
823 	 * this request and pass that to the address handler instead
824 	 * of the node ID.  We may also want to move the address
825 	 * allocations to fw_node so we only do this callback if the
826 	 * upper layers registered it for this node.
827 	 */
828 
829 	if (handler == NULL)
830 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
831 	else
832 		handler->address_callback(card, request,
833 					  tcode, destination, source,
834 					  p->generation, offset,
835 					  request->data, request->length,
836 					  handler->callback_data);
837 }
838 
839 static void handle_fcp_region_request(struct fw_card *card,
840 				      struct fw_packet *p,
841 				      struct fw_request *request,
842 				      unsigned long long offset)
843 {
844 	struct fw_address_handler *handler;
845 	unsigned long flags;
846 	int tcode, destination, source;
847 
848 	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
849 	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
850 	    request->length > 0x200) {
851 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
852 
853 		return;
854 	}
855 
856 	tcode       = HEADER_GET_TCODE(p->header[0]);
857 	destination = HEADER_GET_DESTINATION(p->header[0]);
858 	source      = HEADER_GET_SOURCE(p->header[1]);
859 
860 	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
861 	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
862 		fw_send_response(card, request, RCODE_TYPE_ERROR);
863 
864 		return;
865 	}
866 
867 	spin_lock_irqsave(&address_handler_lock, flags);
868 	list_for_each_entry(handler, &address_handler_list, link) {
869 		if (is_enclosing_handler(handler, offset, request->length))
870 			handler->address_callback(card, NULL, tcode,
871 						  destination, source,
872 						  p->generation, offset,
873 						  request->data,
874 						  request->length,
875 						  handler->callback_data);
876 	}
877 	spin_unlock_irqrestore(&address_handler_lock, flags);
878 
879 	fw_send_response(card, request, RCODE_COMPLETE);
880 }
881 
882 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
883 {
884 	struct fw_request *request;
885 	unsigned long long offset;
886 
887 	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
888 		return;
889 
890 	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
891 		fw_cdev_handle_phy_packet(card, p);
892 		return;
893 	}
894 
895 	request = allocate_request(card, p);
896 	if (request == NULL) {
897 		/* FIXME: send statically allocated busy packet. */
898 		return;
899 	}
900 
901 	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
902 		p->header[2];
903 
904 	if (!is_in_fcp_region(offset, request->length))
905 		handle_exclusive_region_request(card, p, request, offset);
906 	else
907 		handle_fcp_region_request(card, p, request, offset);
908 
909 }
910 EXPORT_SYMBOL(fw_core_handle_request);
911 
912 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
913 {
914 	struct fw_transaction *t;
915 	unsigned long flags;
916 	u32 *data;
917 	size_t data_length;
918 	int tcode, tlabel, source, rcode;
919 
920 	tcode	= HEADER_GET_TCODE(p->header[0]);
921 	tlabel	= HEADER_GET_TLABEL(p->header[0]);
922 	source	= HEADER_GET_SOURCE(p->header[1]);
923 	rcode	= HEADER_GET_RCODE(p->header[1]);
924 
925 	spin_lock_irqsave(&card->lock, flags);
926 	list_for_each_entry(t, &card->transaction_list, link) {
927 		if (t->node_id == source && t->tlabel == tlabel) {
928 			if (!del_timer(&t->split_timeout_timer)) {
929 				spin_unlock_irqrestore(&card->lock, flags);
930 				goto timed_out;
931 			}
932 			list_del_init(&t->link);
933 			card->tlabel_mask &= ~(1ULL << t->tlabel);
934 			break;
935 		}
936 	}
937 	spin_unlock_irqrestore(&card->lock, flags);
938 
939 	if (&t->link == &card->transaction_list) {
940  timed_out:
941 		fw_notify("Unsolicited response (source %x, tlabel %x)\n",
942 			  source, tlabel);
943 		return;
944 	}
945 
946 	/*
947 	 * FIXME: sanity check packet, is length correct, does tcodes
948 	 * and addresses match.
949 	 */
950 
951 	switch (tcode) {
952 	case TCODE_READ_QUADLET_RESPONSE:
953 		data = (u32 *) &p->header[3];
954 		data_length = 4;
955 		break;
956 
957 	case TCODE_WRITE_RESPONSE:
958 		data = NULL;
959 		data_length = 0;
960 		break;
961 
962 	case TCODE_READ_BLOCK_RESPONSE:
963 	case TCODE_LOCK_RESPONSE:
964 		data = p->payload;
965 		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
966 		break;
967 
968 	default:
969 		/* Should never happen, this is just to shut up gcc. */
970 		data = NULL;
971 		data_length = 0;
972 		break;
973 	}
974 
975 	/*
976 	 * The response handler may be executed while the request handler
977 	 * is still pending.  Cancel the request handler.
978 	 */
979 	card->driver->cancel_packet(card, &t->packet);
980 
981 	t->callback(card, rcode, data, data_length, t->callback_data);
982 }
983 EXPORT_SYMBOL(fw_core_handle_response);
984 
985 static const struct fw_address_region topology_map_region =
986 	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
987 	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
988 
989 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
990 		int tcode, int destination, int source, int generation,
991 		unsigned long long offset, void *payload, size_t length,
992 		void *callback_data)
993 {
994 	int start;
995 
996 	if (!TCODE_IS_READ_REQUEST(tcode)) {
997 		fw_send_response(card, request, RCODE_TYPE_ERROR);
998 		return;
999 	}
1000 
1001 	if ((offset & 3) > 0 || (length & 3) > 0) {
1002 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1003 		return;
1004 	}
1005 
1006 	start = (offset - topology_map_region.start) / 4;
1007 	memcpy(payload, &card->topology_map[start], length);
1008 
1009 	fw_send_response(card, request, RCODE_COMPLETE);
1010 }
1011 
1012 static struct fw_address_handler topology_map = {
1013 	.length			= 0x400,
1014 	.address_callback	= handle_topology_map,
1015 };
1016 
1017 static const struct fw_address_region registers_region =
1018 	{ .start = CSR_REGISTER_BASE,
1019 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1020 
1021 static void update_split_timeout(struct fw_card *card)
1022 {
1023 	unsigned int cycles;
1024 
1025 	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1026 
1027 	cycles = max(cycles, 800u); /* minimum as per the spec */
1028 	cycles = min(cycles, 3u * 8000u); /* maximum OHCI timeout */
1029 
1030 	card->split_timeout_cycles = cycles;
1031 	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1032 }
1033 
1034 static void handle_registers(struct fw_card *card, struct fw_request *request,
1035 		int tcode, int destination, int source, int generation,
1036 		unsigned long long offset, void *payload, size_t length,
1037 		void *callback_data)
1038 {
1039 	int reg = offset & ~CSR_REGISTER_BASE;
1040 	__be32 *data = payload;
1041 	int rcode = RCODE_COMPLETE;
1042 	unsigned long flags;
1043 
1044 	switch (reg) {
1045 	case CSR_PRIORITY_BUDGET:
1046 		if (!card->priority_budget_implemented) {
1047 			rcode = RCODE_ADDRESS_ERROR;
1048 			break;
1049 		}
1050 		/* else fall through */
1051 
1052 	case CSR_NODE_IDS:
1053 		/*
1054 		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1055 		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1056 		 */
1057 		/* fall through */
1058 
1059 	case CSR_STATE_CLEAR:
1060 	case CSR_STATE_SET:
1061 	case CSR_CYCLE_TIME:
1062 	case CSR_BUS_TIME:
1063 	case CSR_BUSY_TIMEOUT:
1064 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1065 			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1066 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1067 			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1068 		else
1069 			rcode = RCODE_TYPE_ERROR;
1070 		break;
1071 
1072 	case CSR_RESET_START:
1073 		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1074 			card->driver->write_csr(card, CSR_STATE_CLEAR,
1075 						CSR_STATE_BIT_ABDICATE);
1076 		else
1077 			rcode = RCODE_TYPE_ERROR;
1078 		break;
1079 
1080 	case CSR_SPLIT_TIMEOUT_HI:
1081 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1082 			*data = cpu_to_be32(card->split_timeout_hi);
1083 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1084 			spin_lock_irqsave(&card->lock, flags);
1085 			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1086 			update_split_timeout(card);
1087 			spin_unlock_irqrestore(&card->lock, flags);
1088 		} else {
1089 			rcode = RCODE_TYPE_ERROR;
1090 		}
1091 		break;
1092 
1093 	case CSR_SPLIT_TIMEOUT_LO:
1094 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1095 			*data = cpu_to_be32(card->split_timeout_lo);
1096 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1097 			spin_lock_irqsave(&card->lock, flags);
1098 			card->split_timeout_lo =
1099 					be32_to_cpu(*data) & 0xfff80000;
1100 			update_split_timeout(card);
1101 			spin_unlock_irqrestore(&card->lock, flags);
1102 		} else {
1103 			rcode = RCODE_TYPE_ERROR;
1104 		}
1105 		break;
1106 
1107 	case CSR_MAINT_UTILITY:
1108 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1109 			*data = card->maint_utility_register;
1110 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1111 			card->maint_utility_register = *data;
1112 		else
1113 			rcode = RCODE_TYPE_ERROR;
1114 		break;
1115 
1116 	case CSR_BROADCAST_CHANNEL:
1117 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1118 			*data = cpu_to_be32(card->broadcast_channel);
1119 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1120 			card->broadcast_channel =
1121 			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1122 			    BROADCAST_CHANNEL_INITIAL;
1123 		else
1124 			rcode = RCODE_TYPE_ERROR;
1125 		break;
1126 
1127 	case CSR_BUS_MANAGER_ID:
1128 	case CSR_BANDWIDTH_AVAILABLE:
1129 	case CSR_CHANNELS_AVAILABLE_HI:
1130 	case CSR_CHANNELS_AVAILABLE_LO:
1131 		/*
1132 		 * FIXME: these are handled by the OHCI hardware and
1133 		 * the stack never sees these request. If we add
1134 		 * support for a new type of controller that doesn't
1135 		 * handle this in hardware we need to deal with these
1136 		 * transactions.
1137 		 */
1138 		BUG();
1139 		break;
1140 
1141 	default:
1142 		rcode = RCODE_ADDRESS_ERROR;
1143 		break;
1144 	}
1145 
1146 	fw_send_response(card, request, rcode);
1147 }
1148 
1149 static struct fw_address_handler registers = {
1150 	.length			= 0x400,
1151 	.address_callback	= handle_registers,
1152 };
1153 
1154 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1155 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1156 MODULE_LICENSE("GPL");
1157 
1158 static const u32 vendor_textual_descriptor[] = {
1159 	/* textual descriptor leaf () */
1160 	0x00060000,
1161 	0x00000000,
1162 	0x00000000,
1163 	0x4c696e75,		/* L i n u */
1164 	0x78204669,		/* x   F i */
1165 	0x72657769,		/* r e w i */
1166 	0x72650000,		/* r e     */
1167 };
1168 
1169 static const u32 model_textual_descriptor[] = {
1170 	/* model descriptor leaf () */
1171 	0x00030000,
1172 	0x00000000,
1173 	0x00000000,
1174 	0x4a756a75,		/* J u j u */
1175 };
1176 
1177 static struct fw_descriptor vendor_id_descriptor = {
1178 	.length = ARRAY_SIZE(vendor_textual_descriptor),
1179 	.immediate = 0x03d00d1e,
1180 	.key = 0x81000000,
1181 	.data = vendor_textual_descriptor,
1182 };
1183 
1184 static struct fw_descriptor model_id_descriptor = {
1185 	.length = ARRAY_SIZE(model_textual_descriptor),
1186 	.immediate = 0x17000001,
1187 	.key = 0x81000000,
1188 	.data = model_textual_descriptor,
1189 };
1190 
1191 static int __init fw_core_init(void)
1192 {
1193 	int ret;
1194 
1195 	ret = bus_register(&fw_bus_type);
1196 	if (ret < 0)
1197 		return ret;
1198 
1199 	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1200 	if (fw_cdev_major < 0) {
1201 		bus_unregister(&fw_bus_type);
1202 		return fw_cdev_major;
1203 	}
1204 
1205 	fw_core_add_address_handler(&topology_map, &topology_map_region);
1206 	fw_core_add_address_handler(&registers, &registers_region);
1207 	fw_core_add_descriptor(&vendor_id_descriptor);
1208 	fw_core_add_descriptor(&model_id_descriptor);
1209 
1210 	return 0;
1211 }
1212 
1213 static void __exit fw_core_cleanup(void)
1214 {
1215 	unregister_chrdev(fw_cdev_major, "firewire");
1216 	bus_unregister(&fw_bus_type);
1217 	idr_destroy(&fw_device_idr);
1218 }
1219 
1220 module_init(fw_core_init);
1221 module_exit(fw_core_cleanup);
1222