1 /*
2  * Core IEEE1394 transaction logic
3  *
4  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bug.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/fs.h>
28 #include <linux/init.h>
29 #include <linux/idr.h>
30 #include <linux/jiffies.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/module.h>
34 #include <linux/rculist.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/timer.h>
39 #include <linux/types.h>
40 #include <linux/workqueue.h>
41 
42 #include <asm/byteorder.h>
43 
44 #include "core.h"
45 
46 #define HEADER_PRI(pri)			((pri) << 0)
47 #define HEADER_TCODE(tcode)		((tcode) << 4)
48 #define HEADER_RETRY(retry)		((retry) << 8)
49 #define HEADER_TLABEL(tlabel)		((tlabel) << 10)
50 #define HEADER_DESTINATION(destination)	((destination) << 16)
51 #define HEADER_SOURCE(source)		((source) << 16)
52 #define HEADER_RCODE(rcode)		((rcode) << 12)
53 #define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
54 #define HEADER_DATA_LENGTH(length)	((length) << 16)
55 #define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
56 
57 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
58 #define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
59 #define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
60 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
61 #define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
62 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
63 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
64 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
65 
66 #define HEADER_DESTINATION_IS_BROADCAST(q) \
67 	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
68 
69 #define PHY_PACKET_CONFIG	0x0
70 #define PHY_PACKET_LINK_ON	0x1
71 #define PHY_PACKET_SELF_ID	0x2
72 
73 #define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
74 #define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
75 #define PHY_IDENTIFIER(id)		((id) << 30)
76 
77 /* returns 0 if the split timeout handler is already running */
78 static int try_cancel_split_timeout(struct fw_transaction *t)
79 {
80 	if (t->is_split_transaction)
81 		return del_timer(&t->split_timeout_timer);
82 	else
83 		return 1;
84 }
85 
86 static int close_transaction(struct fw_transaction *transaction,
87 			     struct fw_card *card, int rcode)
88 {
89 	struct fw_transaction *t;
90 	unsigned long flags;
91 
92 	spin_lock_irqsave(&card->lock, flags);
93 	list_for_each_entry(t, &card->transaction_list, link) {
94 		if (t == transaction) {
95 			if (!try_cancel_split_timeout(t)) {
96 				spin_unlock_irqrestore(&card->lock, flags);
97 				goto timed_out;
98 			}
99 			list_del_init(&t->link);
100 			card->tlabel_mask &= ~(1ULL << t->tlabel);
101 			break;
102 		}
103 	}
104 	spin_unlock_irqrestore(&card->lock, flags);
105 
106 	if (&t->link != &card->transaction_list) {
107 		t->callback(card, rcode, NULL, 0, t->callback_data);
108 		return 0;
109 	}
110 
111  timed_out:
112 	return -ENOENT;
113 }
114 
115 /*
116  * Only valid for transactions that are potentially pending (ie have
117  * been sent).
118  */
119 int fw_cancel_transaction(struct fw_card *card,
120 			  struct fw_transaction *transaction)
121 {
122 	/*
123 	 * Cancel the packet transmission if it's still queued.  That
124 	 * will call the packet transmission callback which cancels
125 	 * the transaction.
126 	 */
127 
128 	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
129 		return 0;
130 
131 	/*
132 	 * If the request packet has already been sent, we need to see
133 	 * if the transaction is still pending and remove it in that case.
134 	 */
135 
136 	return close_transaction(transaction, card, RCODE_CANCELLED);
137 }
138 EXPORT_SYMBOL(fw_cancel_transaction);
139 
140 static void split_transaction_timeout_callback(struct timer_list *timer)
141 {
142 	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
143 	struct fw_card *card = t->card;
144 	unsigned long flags;
145 
146 	spin_lock_irqsave(&card->lock, flags);
147 	if (list_empty(&t->link)) {
148 		spin_unlock_irqrestore(&card->lock, flags);
149 		return;
150 	}
151 	list_del(&t->link);
152 	card->tlabel_mask &= ~(1ULL << t->tlabel);
153 	spin_unlock_irqrestore(&card->lock, flags);
154 
155 	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
156 }
157 
158 static void start_split_transaction_timeout(struct fw_transaction *t,
159 					    struct fw_card *card)
160 {
161 	unsigned long flags;
162 
163 	spin_lock_irqsave(&card->lock, flags);
164 
165 	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
166 		spin_unlock_irqrestore(&card->lock, flags);
167 		return;
168 	}
169 
170 	t->is_split_transaction = true;
171 	mod_timer(&t->split_timeout_timer,
172 		  jiffies + card->split_timeout_jiffies);
173 
174 	spin_unlock_irqrestore(&card->lock, flags);
175 }
176 
177 static void transmit_complete_callback(struct fw_packet *packet,
178 				       struct fw_card *card, int status)
179 {
180 	struct fw_transaction *t =
181 	    container_of(packet, struct fw_transaction, packet);
182 
183 	switch (status) {
184 	case ACK_COMPLETE:
185 		close_transaction(t, card, RCODE_COMPLETE);
186 		break;
187 	case ACK_PENDING:
188 		start_split_transaction_timeout(t, card);
189 		break;
190 	case ACK_BUSY_X:
191 	case ACK_BUSY_A:
192 	case ACK_BUSY_B:
193 		close_transaction(t, card, RCODE_BUSY);
194 		break;
195 	case ACK_DATA_ERROR:
196 		close_transaction(t, card, RCODE_DATA_ERROR);
197 		break;
198 	case ACK_TYPE_ERROR:
199 		close_transaction(t, card, RCODE_TYPE_ERROR);
200 		break;
201 	default:
202 		/*
203 		 * In this case the ack is really a juju specific
204 		 * rcode, so just forward that to the callback.
205 		 */
206 		close_transaction(t, card, status);
207 		break;
208 	}
209 }
210 
211 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
212 		int destination_id, int source_id, int generation, int speed,
213 		unsigned long long offset, void *payload, size_t length)
214 {
215 	int ext_tcode;
216 
217 	if (tcode == TCODE_STREAM_DATA) {
218 		packet->header[0] =
219 			HEADER_DATA_LENGTH(length) |
220 			destination_id |
221 			HEADER_TCODE(TCODE_STREAM_DATA);
222 		packet->header_length = 4;
223 		packet->payload = payload;
224 		packet->payload_length = length;
225 
226 		goto common;
227 	}
228 
229 	if (tcode > 0x10) {
230 		ext_tcode = tcode & ~0x10;
231 		tcode = TCODE_LOCK_REQUEST;
232 	} else
233 		ext_tcode = 0;
234 
235 	packet->header[0] =
236 		HEADER_RETRY(RETRY_X) |
237 		HEADER_TLABEL(tlabel) |
238 		HEADER_TCODE(tcode) |
239 		HEADER_DESTINATION(destination_id);
240 	packet->header[1] =
241 		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
242 	packet->header[2] =
243 		offset;
244 
245 	switch (tcode) {
246 	case TCODE_WRITE_QUADLET_REQUEST:
247 		packet->header[3] = *(u32 *)payload;
248 		packet->header_length = 16;
249 		packet->payload_length = 0;
250 		break;
251 
252 	case TCODE_LOCK_REQUEST:
253 	case TCODE_WRITE_BLOCK_REQUEST:
254 		packet->header[3] =
255 			HEADER_DATA_LENGTH(length) |
256 			HEADER_EXTENDED_TCODE(ext_tcode);
257 		packet->header_length = 16;
258 		packet->payload = payload;
259 		packet->payload_length = length;
260 		break;
261 
262 	case TCODE_READ_QUADLET_REQUEST:
263 		packet->header_length = 12;
264 		packet->payload_length = 0;
265 		break;
266 
267 	case TCODE_READ_BLOCK_REQUEST:
268 		packet->header[3] =
269 			HEADER_DATA_LENGTH(length) |
270 			HEADER_EXTENDED_TCODE(ext_tcode);
271 		packet->header_length = 16;
272 		packet->payload_length = 0;
273 		break;
274 
275 	default:
276 		WARN(1, "wrong tcode %d\n", tcode);
277 	}
278  common:
279 	packet->speed = speed;
280 	packet->generation = generation;
281 	packet->ack = 0;
282 	packet->payload_mapped = false;
283 }
284 
285 static int allocate_tlabel(struct fw_card *card)
286 {
287 	int tlabel;
288 
289 	tlabel = card->current_tlabel;
290 	while (card->tlabel_mask & (1ULL << tlabel)) {
291 		tlabel = (tlabel + 1) & 0x3f;
292 		if (tlabel == card->current_tlabel)
293 			return -EBUSY;
294 	}
295 
296 	card->current_tlabel = (tlabel + 1) & 0x3f;
297 	card->tlabel_mask |= 1ULL << tlabel;
298 
299 	return tlabel;
300 }
301 
302 /**
303  * fw_send_request() - submit a request packet for transmission
304  * @card:		interface to send the request at
305  * @t:			transaction instance to which the request belongs
306  * @tcode:		transaction code
307  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
308  * @generation:		bus generation in which request and response are valid
309  * @speed:		transmission speed
310  * @offset:		48bit wide offset into destination's address space
311  * @payload:		data payload for the request subaction
312  * @length:		length of the payload, in bytes
313  * @callback:		function to be called when the transaction is completed
314  * @callback_data:	data to be passed to the transaction completion callback
315  *
316  * Submit a request packet into the asynchronous request transmission queue.
317  * Can be called from atomic context.  If you prefer a blocking API, use
318  * fw_run_transaction() in a context that can sleep.
319  *
320  * In case of lock requests, specify one of the firewire-core specific %TCODE_
321  * constants instead of %TCODE_LOCK_REQUEST in @tcode.
322  *
323  * Make sure that the value in @destination_id is not older than the one in
324  * @generation.  Otherwise the request is in danger to be sent to a wrong node.
325  *
326  * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
327  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
328  * It will contain tag, channel, and sy data instead of a node ID then.
329  *
330  * The payload buffer at @data is going to be DMA-mapped except in case of
331  * @length <= 8 or of local (loopback) requests.  Hence make sure that the
332  * buffer complies with the restrictions of the streaming DMA mapping API.
333  * @payload must not be freed before the @callback is called.
334  *
335  * In case of request types without payload, @data is NULL and @length is 0.
336  *
337  * After the transaction is completed successfully or unsuccessfully, the
338  * @callback will be called.  Among its parameters is the response code which
339  * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
340  * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
341  * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
342  * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
343  * generation, or missing ACK respectively.
344  *
345  * Note some timing corner cases:  fw_send_request() may complete much earlier
346  * than when the request packet actually hits the wire.  On the other hand,
347  * transaction completion and hence execution of @callback may happen even
348  * before fw_send_request() returns.
349  */
350 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
351 		     int destination_id, int generation, int speed,
352 		     unsigned long long offset, void *payload, size_t length,
353 		     fw_transaction_callback_t callback, void *callback_data)
354 {
355 	unsigned long flags;
356 	int tlabel;
357 
358 	/*
359 	 * Allocate tlabel from the bitmap and put the transaction on
360 	 * the list while holding the card spinlock.
361 	 */
362 
363 	spin_lock_irqsave(&card->lock, flags);
364 
365 	tlabel = allocate_tlabel(card);
366 	if (tlabel < 0) {
367 		spin_unlock_irqrestore(&card->lock, flags);
368 		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
369 		return;
370 	}
371 
372 	t->node_id = destination_id;
373 	t->tlabel = tlabel;
374 	t->card = card;
375 	t->is_split_transaction = false;
376 	timer_setup(&t->split_timeout_timer,
377 		    split_transaction_timeout_callback, 0);
378 	t->callback = callback;
379 	t->callback_data = callback_data;
380 
381 	fw_fill_request(&t->packet, tcode, t->tlabel,
382 			destination_id, card->node_id, generation,
383 			speed, offset, payload, length);
384 	t->packet.callback = transmit_complete_callback;
385 
386 	list_add_tail(&t->link, &card->transaction_list);
387 
388 	spin_unlock_irqrestore(&card->lock, flags);
389 
390 	card->driver->send_request(card, &t->packet);
391 }
392 EXPORT_SYMBOL(fw_send_request);
393 
394 struct transaction_callback_data {
395 	struct completion done;
396 	void *payload;
397 	int rcode;
398 };
399 
400 static void transaction_callback(struct fw_card *card, int rcode,
401 				 void *payload, size_t length, void *data)
402 {
403 	struct transaction_callback_data *d = data;
404 
405 	if (rcode == RCODE_COMPLETE)
406 		memcpy(d->payload, payload, length);
407 	d->rcode = rcode;
408 	complete(&d->done);
409 }
410 
411 /**
412  * fw_run_transaction() - send request and sleep until transaction is completed
413  * @card:		card interface for this request
414  * @tcode:		transaction code
415  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
416  * @generation:		bus generation in which request and response are valid
417  * @speed:		transmission speed
418  * @offset:		48bit wide offset into destination's address space
419  * @payload:		data payload for the request subaction
420  * @length:		length of the payload, in bytes
421  *
422  * Returns the RCODE.  See fw_send_request() for parameter documentation.
423  * Unlike fw_send_request(), @data points to the payload of the request or/and
424  * to the payload of the response.  DMA mapping restrictions apply to outbound
425  * request payloads of >= 8 bytes but not to inbound response payloads.
426  */
427 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
428 		       int generation, int speed, unsigned long long offset,
429 		       void *payload, size_t length)
430 {
431 	struct transaction_callback_data d;
432 	struct fw_transaction t;
433 
434 	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
435 	init_completion(&d.done);
436 	d.payload = payload;
437 	fw_send_request(card, &t, tcode, destination_id, generation, speed,
438 			offset, payload, length, transaction_callback, &d);
439 	wait_for_completion(&d.done);
440 	destroy_timer_on_stack(&t.split_timeout_timer);
441 
442 	return d.rcode;
443 }
444 EXPORT_SYMBOL(fw_run_transaction);
445 
446 static DEFINE_MUTEX(phy_config_mutex);
447 static DECLARE_COMPLETION(phy_config_done);
448 
449 static void transmit_phy_packet_callback(struct fw_packet *packet,
450 					 struct fw_card *card, int status)
451 {
452 	complete(&phy_config_done);
453 }
454 
455 static struct fw_packet phy_config_packet = {
456 	.header_length	= 12,
457 	.header[0]	= TCODE_LINK_INTERNAL << 4,
458 	.payload_length	= 0,
459 	.speed		= SCODE_100,
460 	.callback	= transmit_phy_packet_callback,
461 };
462 
463 void fw_send_phy_config(struct fw_card *card,
464 			int node_id, int generation, int gap_count)
465 {
466 	long timeout = DIV_ROUND_UP(HZ, 10);
467 	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
468 
469 	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
470 		data |= PHY_CONFIG_ROOT_ID(node_id);
471 
472 	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
473 		gap_count = card->driver->read_phy_reg(card, 1);
474 		if (gap_count < 0)
475 			return;
476 
477 		gap_count &= 63;
478 		if (gap_count == 63)
479 			return;
480 	}
481 	data |= PHY_CONFIG_GAP_COUNT(gap_count);
482 
483 	mutex_lock(&phy_config_mutex);
484 
485 	phy_config_packet.header[1] = data;
486 	phy_config_packet.header[2] = ~data;
487 	phy_config_packet.generation = generation;
488 	reinit_completion(&phy_config_done);
489 
490 	card->driver->send_request(card, &phy_config_packet);
491 	wait_for_completion_timeout(&phy_config_done, timeout);
492 
493 	mutex_unlock(&phy_config_mutex);
494 }
495 
496 static struct fw_address_handler *lookup_overlapping_address_handler(
497 	struct list_head *list, unsigned long long offset, size_t length)
498 {
499 	struct fw_address_handler *handler;
500 
501 	list_for_each_entry_rcu(handler, list, link) {
502 		if (handler->offset < offset + length &&
503 		    offset < handler->offset + handler->length)
504 			return handler;
505 	}
506 
507 	return NULL;
508 }
509 
510 static bool is_enclosing_handler(struct fw_address_handler *handler,
511 				 unsigned long long offset, size_t length)
512 {
513 	return handler->offset <= offset &&
514 		offset + length <= handler->offset + handler->length;
515 }
516 
517 static struct fw_address_handler *lookup_enclosing_address_handler(
518 	struct list_head *list, unsigned long long offset, size_t length)
519 {
520 	struct fw_address_handler *handler;
521 
522 	list_for_each_entry_rcu(handler, list, link) {
523 		if (is_enclosing_handler(handler, offset, length))
524 			return handler;
525 	}
526 
527 	return NULL;
528 }
529 
530 static DEFINE_SPINLOCK(address_handler_list_lock);
531 static LIST_HEAD(address_handler_list);
532 
533 const struct fw_address_region fw_high_memory_region =
534 	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
535 EXPORT_SYMBOL(fw_high_memory_region);
536 
537 static const struct fw_address_region low_memory_region =
538 	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
539 
540 #if 0
541 const struct fw_address_region fw_private_region =
542 	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
543 const struct fw_address_region fw_csr_region =
544 	{ .start = CSR_REGISTER_BASE,
545 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
546 const struct fw_address_region fw_unit_space_region =
547 	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
548 #endif  /*  0  */
549 
550 static bool is_in_fcp_region(u64 offset, size_t length)
551 {
552 	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
553 		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
554 }
555 
556 /**
557  * fw_core_add_address_handler() - register for incoming requests
558  * @handler:	callback
559  * @region:	region in the IEEE 1212 node space address range
560  *
561  * region->start, ->end, and handler->length have to be quadlet-aligned.
562  *
563  * When a request is received that falls within the specified address range,
564  * the specified callback is invoked.  The parameters passed to the callback
565  * give the details of the particular request.
566  *
567  * To be called in process context.
568  * Return value:  0 on success, non-zero otherwise.
569  *
570  * The start offset of the handler's address region is determined by
571  * fw_core_add_address_handler() and is returned in handler->offset.
572  *
573  * Address allocations are exclusive, except for the FCP registers.
574  */
575 int fw_core_add_address_handler(struct fw_address_handler *handler,
576 				const struct fw_address_region *region)
577 {
578 	struct fw_address_handler *other;
579 	int ret = -EBUSY;
580 
581 	if (region->start & 0xffff000000000003ULL ||
582 	    region->start >= region->end ||
583 	    region->end   > 0x0001000000000000ULL ||
584 	    handler->length & 3 ||
585 	    handler->length == 0)
586 		return -EINVAL;
587 
588 	spin_lock(&address_handler_list_lock);
589 
590 	handler->offset = region->start;
591 	while (handler->offset + handler->length <= region->end) {
592 		if (is_in_fcp_region(handler->offset, handler->length))
593 			other = NULL;
594 		else
595 			other = lookup_overlapping_address_handler
596 					(&address_handler_list,
597 					 handler->offset, handler->length);
598 		if (other != NULL) {
599 			handler->offset += other->length;
600 		} else {
601 			list_add_tail_rcu(&handler->link, &address_handler_list);
602 			ret = 0;
603 			break;
604 		}
605 	}
606 
607 	spin_unlock(&address_handler_list_lock);
608 
609 	return ret;
610 }
611 EXPORT_SYMBOL(fw_core_add_address_handler);
612 
613 /**
614  * fw_core_remove_address_handler() - unregister an address handler
615  * @handler: callback
616  *
617  * To be called in process context.
618  *
619  * When fw_core_remove_address_handler() returns, @handler->callback() is
620  * guaranteed to not run on any CPU anymore.
621  */
622 void fw_core_remove_address_handler(struct fw_address_handler *handler)
623 {
624 	spin_lock(&address_handler_list_lock);
625 	list_del_rcu(&handler->link);
626 	spin_unlock(&address_handler_list_lock);
627 	synchronize_rcu();
628 }
629 EXPORT_SYMBOL(fw_core_remove_address_handler);
630 
631 struct fw_request {
632 	struct fw_packet response;
633 	u32 request_header[4];
634 	int ack;
635 	u32 length;
636 	u32 data[0];
637 };
638 
639 static void free_response_callback(struct fw_packet *packet,
640 				   struct fw_card *card, int status)
641 {
642 	struct fw_request *request;
643 
644 	request = container_of(packet, struct fw_request, response);
645 	kfree(request);
646 }
647 
648 int fw_get_response_length(struct fw_request *r)
649 {
650 	int tcode, ext_tcode, data_length;
651 
652 	tcode = HEADER_GET_TCODE(r->request_header[0]);
653 
654 	switch (tcode) {
655 	case TCODE_WRITE_QUADLET_REQUEST:
656 	case TCODE_WRITE_BLOCK_REQUEST:
657 		return 0;
658 
659 	case TCODE_READ_QUADLET_REQUEST:
660 		return 4;
661 
662 	case TCODE_READ_BLOCK_REQUEST:
663 		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
664 		return data_length;
665 
666 	case TCODE_LOCK_REQUEST:
667 		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
668 		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
669 		switch (ext_tcode) {
670 		case EXTCODE_FETCH_ADD:
671 		case EXTCODE_LITTLE_ADD:
672 			return data_length;
673 		default:
674 			return data_length / 2;
675 		}
676 
677 	default:
678 		WARN(1, "wrong tcode %d\n", tcode);
679 		return 0;
680 	}
681 }
682 
683 void fw_fill_response(struct fw_packet *response, u32 *request_header,
684 		      int rcode, void *payload, size_t length)
685 {
686 	int tcode, tlabel, extended_tcode, source, destination;
687 
688 	tcode          = HEADER_GET_TCODE(request_header[0]);
689 	tlabel         = HEADER_GET_TLABEL(request_header[0]);
690 	source         = HEADER_GET_DESTINATION(request_header[0]);
691 	destination    = HEADER_GET_SOURCE(request_header[1]);
692 	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
693 
694 	response->header[0] =
695 		HEADER_RETRY(RETRY_1) |
696 		HEADER_TLABEL(tlabel) |
697 		HEADER_DESTINATION(destination);
698 	response->header[1] =
699 		HEADER_SOURCE(source) |
700 		HEADER_RCODE(rcode);
701 	response->header[2] = 0;
702 
703 	switch (tcode) {
704 	case TCODE_WRITE_QUADLET_REQUEST:
705 	case TCODE_WRITE_BLOCK_REQUEST:
706 		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
707 		response->header_length = 12;
708 		response->payload_length = 0;
709 		break;
710 
711 	case TCODE_READ_QUADLET_REQUEST:
712 		response->header[0] |=
713 			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
714 		if (payload != NULL)
715 			response->header[3] = *(u32 *)payload;
716 		else
717 			response->header[3] = 0;
718 		response->header_length = 16;
719 		response->payload_length = 0;
720 		break;
721 
722 	case TCODE_READ_BLOCK_REQUEST:
723 	case TCODE_LOCK_REQUEST:
724 		response->header[0] |= HEADER_TCODE(tcode + 2);
725 		response->header[3] =
726 			HEADER_DATA_LENGTH(length) |
727 			HEADER_EXTENDED_TCODE(extended_tcode);
728 		response->header_length = 16;
729 		response->payload = payload;
730 		response->payload_length = length;
731 		break;
732 
733 	default:
734 		WARN(1, "wrong tcode %d\n", tcode);
735 	}
736 
737 	response->payload_mapped = false;
738 }
739 EXPORT_SYMBOL(fw_fill_response);
740 
741 static u32 compute_split_timeout_timestamp(struct fw_card *card,
742 					   u32 request_timestamp)
743 {
744 	unsigned int cycles;
745 	u32 timestamp;
746 
747 	cycles = card->split_timeout_cycles;
748 	cycles += request_timestamp & 0x1fff;
749 
750 	timestamp = request_timestamp & ~0x1fff;
751 	timestamp += (cycles / 8000) << 13;
752 	timestamp |= cycles % 8000;
753 
754 	return timestamp;
755 }
756 
757 static struct fw_request *allocate_request(struct fw_card *card,
758 					   struct fw_packet *p)
759 {
760 	struct fw_request *request;
761 	u32 *data, length;
762 	int request_tcode;
763 
764 	request_tcode = HEADER_GET_TCODE(p->header[0]);
765 	switch (request_tcode) {
766 	case TCODE_WRITE_QUADLET_REQUEST:
767 		data = &p->header[3];
768 		length = 4;
769 		break;
770 
771 	case TCODE_WRITE_BLOCK_REQUEST:
772 	case TCODE_LOCK_REQUEST:
773 		data = p->payload;
774 		length = HEADER_GET_DATA_LENGTH(p->header[3]);
775 		break;
776 
777 	case TCODE_READ_QUADLET_REQUEST:
778 		data = NULL;
779 		length = 4;
780 		break;
781 
782 	case TCODE_READ_BLOCK_REQUEST:
783 		data = NULL;
784 		length = HEADER_GET_DATA_LENGTH(p->header[3]);
785 		break;
786 
787 	default:
788 		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
789 			 p->header[0], p->header[1], p->header[2]);
790 		return NULL;
791 	}
792 
793 	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
794 	if (request == NULL)
795 		return NULL;
796 
797 	request->response.speed = p->speed;
798 	request->response.timestamp =
799 			compute_split_timeout_timestamp(card, p->timestamp);
800 	request->response.generation = p->generation;
801 	request->response.ack = 0;
802 	request->response.callback = free_response_callback;
803 	request->ack = p->ack;
804 	request->length = length;
805 	if (data)
806 		memcpy(request->data, data, length);
807 
808 	memcpy(request->request_header, p->header, sizeof(p->header));
809 
810 	return request;
811 }
812 
813 void fw_send_response(struct fw_card *card,
814 		      struct fw_request *request, int rcode)
815 {
816 	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
817 		return;
818 
819 	/* unified transaction or broadcast transaction: don't respond */
820 	if (request->ack != ACK_PENDING ||
821 	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
822 		kfree(request);
823 		return;
824 	}
825 
826 	if (rcode == RCODE_COMPLETE)
827 		fw_fill_response(&request->response, request->request_header,
828 				 rcode, request->data,
829 				 fw_get_response_length(request));
830 	else
831 		fw_fill_response(&request->response, request->request_header,
832 				 rcode, NULL, 0);
833 
834 	card->driver->send_response(card, &request->response);
835 }
836 EXPORT_SYMBOL(fw_send_response);
837 
838 /**
839  * fw_get_request_speed() - returns speed at which the @request was received
840  * @request: firewire request data
841  */
842 int fw_get_request_speed(struct fw_request *request)
843 {
844 	return request->response.speed;
845 }
846 EXPORT_SYMBOL(fw_get_request_speed);
847 
848 static void handle_exclusive_region_request(struct fw_card *card,
849 					    struct fw_packet *p,
850 					    struct fw_request *request,
851 					    unsigned long long offset)
852 {
853 	struct fw_address_handler *handler;
854 	int tcode, destination, source;
855 
856 	destination = HEADER_GET_DESTINATION(p->header[0]);
857 	source      = HEADER_GET_SOURCE(p->header[1]);
858 	tcode       = HEADER_GET_TCODE(p->header[0]);
859 	if (tcode == TCODE_LOCK_REQUEST)
860 		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
861 
862 	rcu_read_lock();
863 	handler = lookup_enclosing_address_handler(&address_handler_list,
864 						   offset, request->length);
865 	if (handler)
866 		handler->address_callback(card, request,
867 					  tcode, destination, source,
868 					  p->generation, offset,
869 					  request->data, request->length,
870 					  handler->callback_data);
871 	rcu_read_unlock();
872 
873 	if (!handler)
874 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
875 }
876 
877 static void handle_fcp_region_request(struct fw_card *card,
878 				      struct fw_packet *p,
879 				      struct fw_request *request,
880 				      unsigned long long offset)
881 {
882 	struct fw_address_handler *handler;
883 	int tcode, destination, source;
884 
885 	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
886 	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
887 	    request->length > 0x200) {
888 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
889 
890 		return;
891 	}
892 
893 	tcode       = HEADER_GET_TCODE(p->header[0]);
894 	destination = HEADER_GET_DESTINATION(p->header[0]);
895 	source      = HEADER_GET_SOURCE(p->header[1]);
896 
897 	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
898 	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
899 		fw_send_response(card, request, RCODE_TYPE_ERROR);
900 
901 		return;
902 	}
903 
904 	rcu_read_lock();
905 	list_for_each_entry_rcu(handler, &address_handler_list, link) {
906 		if (is_enclosing_handler(handler, offset, request->length))
907 			handler->address_callback(card, NULL, tcode,
908 						  destination, source,
909 						  p->generation, offset,
910 						  request->data,
911 						  request->length,
912 						  handler->callback_data);
913 	}
914 	rcu_read_unlock();
915 
916 	fw_send_response(card, request, RCODE_COMPLETE);
917 }
918 
919 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
920 {
921 	struct fw_request *request;
922 	unsigned long long offset;
923 
924 	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
925 		return;
926 
927 	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
928 		fw_cdev_handle_phy_packet(card, p);
929 		return;
930 	}
931 
932 	request = allocate_request(card, p);
933 	if (request == NULL) {
934 		/* FIXME: send statically allocated busy packet. */
935 		return;
936 	}
937 
938 	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
939 		p->header[2];
940 
941 	if (!is_in_fcp_region(offset, request->length))
942 		handle_exclusive_region_request(card, p, request, offset);
943 	else
944 		handle_fcp_region_request(card, p, request, offset);
945 
946 }
947 EXPORT_SYMBOL(fw_core_handle_request);
948 
949 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
950 {
951 	struct fw_transaction *t;
952 	unsigned long flags;
953 	u32 *data;
954 	size_t data_length;
955 	int tcode, tlabel, source, rcode;
956 
957 	tcode	= HEADER_GET_TCODE(p->header[0]);
958 	tlabel	= HEADER_GET_TLABEL(p->header[0]);
959 	source	= HEADER_GET_SOURCE(p->header[1]);
960 	rcode	= HEADER_GET_RCODE(p->header[1]);
961 
962 	spin_lock_irqsave(&card->lock, flags);
963 	list_for_each_entry(t, &card->transaction_list, link) {
964 		if (t->node_id == source && t->tlabel == tlabel) {
965 			if (!try_cancel_split_timeout(t)) {
966 				spin_unlock_irqrestore(&card->lock, flags);
967 				goto timed_out;
968 			}
969 			list_del_init(&t->link);
970 			card->tlabel_mask &= ~(1ULL << t->tlabel);
971 			break;
972 		}
973 	}
974 	spin_unlock_irqrestore(&card->lock, flags);
975 
976 	if (&t->link == &card->transaction_list) {
977  timed_out:
978 		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
979 			  source, tlabel);
980 		return;
981 	}
982 
983 	/*
984 	 * FIXME: sanity check packet, is length correct, does tcodes
985 	 * and addresses match.
986 	 */
987 
988 	switch (tcode) {
989 	case TCODE_READ_QUADLET_RESPONSE:
990 		data = (u32 *) &p->header[3];
991 		data_length = 4;
992 		break;
993 
994 	case TCODE_WRITE_RESPONSE:
995 		data = NULL;
996 		data_length = 0;
997 		break;
998 
999 	case TCODE_READ_BLOCK_RESPONSE:
1000 	case TCODE_LOCK_RESPONSE:
1001 		data = p->payload;
1002 		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
1003 		break;
1004 
1005 	default:
1006 		/* Should never happen, this is just to shut up gcc. */
1007 		data = NULL;
1008 		data_length = 0;
1009 		break;
1010 	}
1011 
1012 	/*
1013 	 * The response handler may be executed while the request handler
1014 	 * is still pending.  Cancel the request handler.
1015 	 */
1016 	card->driver->cancel_packet(card, &t->packet);
1017 
1018 	t->callback(card, rcode, data, data_length, t->callback_data);
1019 }
1020 EXPORT_SYMBOL(fw_core_handle_response);
1021 
1022 /**
1023  * fw_rcode_string - convert a firewire result code to an error description
1024  * @rcode: the result code
1025  */
1026 const char *fw_rcode_string(int rcode)
1027 {
1028 	static const char *const names[] = {
1029 		[RCODE_COMPLETE]       = "no error",
1030 		[RCODE_CONFLICT_ERROR] = "conflict error",
1031 		[RCODE_DATA_ERROR]     = "data error",
1032 		[RCODE_TYPE_ERROR]     = "type error",
1033 		[RCODE_ADDRESS_ERROR]  = "address error",
1034 		[RCODE_SEND_ERROR]     = "send error",
1035 		[RCODE_CANCELLED]      = "timeout",
1036 		[RCODE_BUSY]           = "busy",
1037 		[RCODE_GENERATION]     = "bus reset",
1038 		[RCODE_NO_ACK]         = "no ack",
1039 	};
1040 
1041 	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1042 		return names[rcode];
1043 	else
1044 		return "unknown";
1045 }
1046 EXPORT_SYMBOL(fw_rcode_string);
1047 
1048 static const struct fw_address_region topology_map_region =
1049 	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1050 	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1051 
1052 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1053 		int tcode, int destination, int source, int generation,
1054 		unsigned long long offset, void *payload, size_t length,
1055 		void *callback_data)
1056 {
1057 	int start;
1058 
1059 	if (!TCODE_IS_READ_REQUEST(tcode)) {
1060 		fw_send_response(card, request, RCODE_TYPE_ERROR);
1061 		return;
1062 	}
1063 
1064 	if ((offset & 3) > 0 || (length & 3) > 0) {
1065 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1066 		return;
1067 	}
1068 
1069 	start = (offset - topology_map_region.start) / 4;
1070 	memcpy(payload, &card->topology_map[start], length);
1071 
1072 	fw_send_response(card, request, RCODE_COMPLETE);
1073 }
1074 
1075 static struct fw_address_handler topology_map = {
1076 	.length			= 0x400,
1077 	.address_callback	= handle_topology_map,
1078 };
1079 
1080 static const struct fw_address_region registers_region =
1081 	{ .start = CSR_REGISTER_BASE,
1082 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1083 
1084 static void update_split_timeout(struct fw_card *card)
1085 {
1086 	unsigned int cycles;
1087 
1088 	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1089 
1090 	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1091 	cycles = clamp(cycles, 800u, 3u * 8000u);
1092 
1093 	card->split_timeout_cycles = cycles;
1094 	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1095 }
1096 
1097 static void handle_registers(struct fw_card *card, struct fw_request *request,
1098 		int tcode, int destination, int source, int generation,
1099 		unsigned long long offset, void *payload, size_t length,
1100 		void *callback_data)
1101 {
1102 	int reg = offset & ~CSR_REGISTER_BASE;
1103 	__be32 *data = payload;
1104 	int rcode = RCODE_COMPLETE;
1105 	unsigned long flags;
1106 
1107 	switch (reg) {
1108 	case CSR_PRIORITY_BUDGET:
1109 		if (!card->priority_budget_implemented) {
1110 			rcode = RCODE_ADDRESS_ERROR;
1111 			break;
1112 		}
1113 		/* else fall through */
1114 
1115 	case CSR_NODE_IDS:
1116 		/*
1117 		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1118 		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1119 		 */
1120 		/* fall through */
1121 
1122 	case CSR_STATE_CLEAR:
1123 	case CSR_STATE_SET:
1124 	case CSR_CYCLE_TIME:
1125 	case CSR_BUS_TIME:
1126 	case CSR_BUSY_TIMEOUT:
1127 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1128 			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1129 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1130 			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1131 		else
1132 			rcode = RCODE_TYPE_ERROR;
1133 		break;
1134 
1135 	case CSR_RESET_START:
1136 		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1137 			card->driver->write_csr(card, CSR_STATE_CLEAR,
1138 						CSR_STATE_BIT_ABDICATE);
1139 		else
1140 			rcode = RCODE_TYPE_ERROR;
1141 		break;
1142 
1143 	case CSR_SPLIT_TIMEOUT_HI:
1144 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1145 			*data = cpu_to_be32(card->split_timeout_hi);
1146 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1147 			spin_lock_irqsave(&card->lock, flags);
1148 			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1149 			update_split_timeout(card);
1150 			spin_unlock_irqrestore(&card->lock, flags);
1151 		} else {
1152 			rcode = RCODE_TYPE_ERROR;
1153 		}
1154 		break;
1155 
1156 	case CSR_SPLIT_TIMEOUT_LO:
1157 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1158 			*data = cpu_to_be32(card->split_timeout_lo);
1159 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1160 			spin_lock_irqsave(&card->lock, flags);
1161 			card->split_timeout_lo =
1162 					be32_to_cpu(*data) & 0xfff80000;
1163 			update_split_timeout(card);
1164 			spin_unlock_irqrestore(&card->lock, flags);
1165 		} else {
1166 			rcode = RCODE_TYPE_ERROR;
1167 		}
1168 		break;
1169 
1170 	case CSR_MAINT_UTILITY:
1171 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1172 			*data = card->maint_utility_register;
1173 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1174 			card->maint_utility_register = *data;
1175 		else
1176 			rcode = RCODE_TYPE_ERROR;
1177 		break;
1178 
1179 	case CSR_BROADCAST_CHANNEL:
1180 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1181 			*data = cpu_to_be32(card->broadcast_channel);
1182 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1183 			card->broadcast_channel =
1184 			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1185 			    BROADCAST_CHANNEL_INITIAL;
1186 		else
1187 			rcode = RCODE_TYPE_ERROR;
1188 		break;
1189 
1190 	case CSR_BUS_MANAGER_ID:
1191 	case CSR_BANDWIDTH_AVAILABLE:
1192 	case CSR_CHANNELS_AVAILABLE_HI:
1193 	case CSR_CHANNELS_AVAILABLE_LO:
1194 		/*
1195 		 * FIXME: these are handled by the OHCI hardware and
1196 		 * the stack never sees these request. If we add
1197 		 * support for a new type of controller that doesn't
1198 		 * handle this in hardware we need to deal with these
1199 		 * transactions.
1200 		 */
1201 		BUG();
1202 		break;
1203 
1204 	default:
1205 		rcode = RCODE_ADDRESS_ERROR;
1206 		break;
1207 	}
1208 
1209 	fw_send_response(card, request, rcode);
1210 }
1211 
1212 static struct fw_address_handler registers = {
1213 	.length			= 0x400,
1214 	.address_callback	= handle_registers,
1215 };
1216 
1217 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1218 		int tcode, int destination, int source, int generation,
1219 		unsigned long long offset, void *payload, size_t length,
1220 		void *callback_data)
1221 {
1222 	/*
1223 	 * This catches requests not handled by the physical DMA unit,
1224 	 * i.e., wrong transaction types or unauthorized source nodes.
1225 	 */
1226 	fw_send_response(card, request, RCODE_TYPE_ERROR);
1227 }
1228 
1229 static struct fw_address_handler low_memory = {
1230 	.length			= FW_MAX_PHYSICAL_RANGE,
1231 	.address_callback	= handle_low_memory,
1232 };
1233 
1234 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1235 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1236 MODULE_LICENSE("GPL");
1237 
1238 static const u32 vendor_textual_descriptor[] = {
1239 	/* textual descriptor leaf () */
1240 	0x00060000,
1241 	0x00000000,
1242 	0x00000000,
1243 	0x4c696e75,		/* L i n u */
1244 	0x78204669,		/* x   F i */
1245 	0x72657769,		/* r e w i */
1246 	0x72650000,		/* r e     */
1247 };
1248 
1249 static const u32 model_textual_descriptor[] = {
1250 	/* model descriptor leaf () */
1251 	0x00030000,
1252 	0x00000000,
1253 	0x00000000,
1254 	0x4a756a75,		/* J u j u */
1255 };
1256 
1257 static struct fw_descriptor vendor_id_descriptor = {
1258 	.length = ARRAY_SIZE(vendor_textual_descriptor),
1259 	.immediate = 0x03001f11,
1260 	.key = 0x81000000,
1261 	.data = vendor_textual_descriptor,
1262 };
1263 
1264 static struct fw_descriptor model_id_descriptor = {
1265 	.length = ARRAY_SIZE(model_textual_descriptor),
1266 	.immediate = 0x17023901,
1267 	.key = 0x81000000,
1268 	.data = model_textual_descriptor,
1269 };
1270 
1271 static int __init fw_core_init(void)
1272 {
1273 	int ret;
1274 
1275 	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1276 	if (!fw_workqueue)
1277 		return -ENOMEM;
1278 
1279 	ret = bus_register(&fw_bus_type);
1280 	if (ret < 0) {
1281 		destroy_workqueue(fw_workqueue);
1282 		return ret;
1283 	}
1284 
1285 	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1286 	if (fw_cdev_major < 0) {
1287 		bus_unregister(&fw_bus_type);
1288 		destroy_workqueue(fw_workqueue);
1289 		return fw_cdev_major;
1290 	}
1291 
1292 	fw_core_add_address_handler(&topology_map, &topology_map_region);
1293 	fw_core_add_address_handler(&registers, &registers_region);
1294 	fw_core_add_address_handler(&low_memory, &low_memory_region);
1295 	fw_core_add_descriptor(&vendor_id_descriptor);
1296 	fw_core_add_descriptor(&model_id_descriptor);
1297 
1298 	return 0;
1299 }
1300 
1301 static void __exit fw_core_cleanup(void)
1302 {
1303 	unregister_chrdev(fw_cdev_major, "firewire");
1304 	bus_unregister(&fw_bus_type);
1305 	destroy_workqueue(fw_workqueue);
1306 	idr_destroy(&fw_device_idr);
1307 }
1308 
1309 module_init(fw_core_init);
1310 module_exit(fw_core_cleanup);
1311