1 /* 2 * Core IEEE1394 transaction logic 3 * 4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 #include <linux/bug.h> 22 #include <linux/completion.h> 23 #include <linux/device.h> 24 #include <linux/errno.h> 25 #include <linux/firewire.h> 26 #include <linux/firewire-constants.h> 27 #include <linux/fs.h> 28 #include <linux/init.h> 29 #include <linux/idr.h> 30 #include <linux/jiffies.h> 31 #include <linux/kernel.h> 32 #include <linux/list.h> 33 #include <linux/module.h> 34 #include <linux/rculist.h> 35 #include <linux/slab.h> 36 #include <linux/spinlock.h> 37 #include <linux/string.h> 38 #include <linux/timer.h> 39 #include <linux/types.h> 40 #include <linux/workqueue.h> 41 42 #include <asm/byteorder.h> 43 44 #include "core.h" 45 46 #define HEADER_PRI(pri) ((pri) << 0) 47 #define HEADER_TCODE(tcode) ((tcode) << 4) 48 #define HEADER_RETRY(retry) ((retry) << 8) 49 #define HEADER_TLABEL(tlabel) ((tlabel) << 10) 50 #define HEADER_DESTINATION(destination) ((destination) << 16) 51 #define HEADER_SOURCE(source) ((source) << 16) 52 #define HEADER_RCODE(rcode) ((rcode) << 12) 53 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0) 54 #define HEADER_DATA_LENGTH(length) ((length) << 16) 55 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0) 56 57 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f) 58 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f) 59 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f) 60 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff) 61 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff) 62 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff) 63 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff) 64 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff) 65 66 #define HEADER_DESTINATION_IS_BROADCAST(q) \ 67 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f)) 68 69 #define PHY_PACKET_CONFIG 0x0 70 #define PHY_PACKET_LINK_ON 0x1 71 #define PHY_PACKET_SELF_ID 0x2 72 73 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22)) 74 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23)) 75 #define PHY_IDENTIFIER(id) ((id) << 30) 76 77 /* returns 0 if the split timeout handler is already running */ 78 static int try_cancel_split_timeout(struct fw_transaction *t) 79 { 80 if (t->is_split_transaction) 81 return del_timer(&t->split_timeout_timer); 82 else 83 return 1; 84 } 85 86 static int close_transaction(struct fw_transaction *transaction, 87 struct fw_card *card, int rcode) 88 { 89 struct fw_transaction *t; 90 unsigned long flags; 91 92 spin_lock_irqsave(&card->lock, flags); 93 list_for_each_entry(t, &card->transaction_list, link) { 94 if (t == transaction) { 95 if (!try_cancel_split_timeout(t)) { 96 spin_unlock_irqrestore(&card->lock, flags); 97 goto timed_out; 98 } 99 list_del_init(&t->link); 100 card->tlabel_mask &= ~(1ULL << t->tlabel); 101 break; 102 } 103 } 104 spin_unlock_irqrestore(&card->lock, flags); 105 106 if (&t->link != &card->transaction_list) { 107 t->callback(card, rcode, NULL, 0, t->callback_data); 108 return 0; 109 } 110 111 timed_out: 112 return -ENOENT; 113 } 114 115 /* 116 * Only valid for transactions that are potentially pending (ie have 117 * been sent). 118 */ 119 int fw_cancel_transaction(struct fw_card *card, 120 struct fw_transaction *transaction) 121 { 122 /* 123 * Cancel the packet transmission if it's still queued. That 124 * will call the packet transmission callback which cancels 125 * the transaction. 126 */ 127 128 if (card->driver->cancel_packet(card, &transaction->packet) == 0) 129 return 0; 130 131 /* 132 * If the request packet has already been sent, we need to see 133 * if the transaction is still pending and remove it in that case. 134 */ 135 136 return close_transaction(transaction, card, RCODE_CANCELLED); 137 } 138 EXPORT_SYMBOL(fw_cancel_transaction); 139 140 static void split_transaction_timeout_callback(struct timer_list *timer) 141 { 142 struct fw_transaction *t = from_timer(t, timer, split_timeout_timer); 143 struct fw_card *card = t->card; 144 unsigned long flags; 145 146 spin_lock_irqsave(&card->lock, flags); 147 if (list_empty(&t->link)) { 148 spin_unlock_irqrestore(&card->lock, flags); 149 return; 150 } 151 list_del(&t->link); 152 card->tlabel_mask &= ~(1ULL << t->tlabel); 153 spin_unlock_irqrestore(&card->lock, flags); 154 155 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data); 156 } 157 158 static void start_split_transaction_timeout(struct fw_transaction *t, 159 struct fw_card *card) 160 { 161 unsigned long flags; 162 163 spin_lock_irqsave(&card->lock, flags); 164 165 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) { 166 spin_unlock_irqrestore(&card->lock, flags); 167 return; 168 } 169 170 t->is_split_transaction = true; 171 mod_timer(&t->split_timeout_timer, 172 jiffies + card->split_timeout_jiffies); 173 174 spin_unlock_irqrestore(&card->lock, flags); 175 } 176 177 static void transmit_complete_callback(struct fw_packet *packet, 178 struct fw_card *card, int status) 179 { 180 struct fw_transaction *t = 181 container_of(packet, struct fw_transaction, packet); 182 183 switch (status) { 184 case ACK_COMPLETE: 185 close_transaction(t, card, RCODE_COMPLETE); 186 break; 187 case ACK_PENDING: 188 start_split_transaction_timeout(t, card); 189 break; 190 case ACK_BUSY_X: 191 case ACK_BUSY_A: 192 case ACK_BUSY_B: 193 close_transaction(t, card, RCODE_BUSY); 194 break; 195 case ACK_DATA_ERROR: 196 close_transaction(t, card, RCODE_DATA_ERROR); 197 break; 198 case ACK_TYPE_ERROR: 199 close_transaction(t, card, RCODE_TYPE_ERROR); 200 break; 201 default: 202 /* 203 * In this case the ack is really a juju specific 204 * rcode, so just forward that to the callback. 205 */ 206 close_transaction(t, card, status); 207 break; 208 } 209 } 210 211 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel, 212 int destination_id, int source_id, int generation, int speed, 213 unsigned long long offset, void *payload, size_t length) 214 { 215 int ext_tcode; 216 217 if (tcode == TCODE_STREAM_DATA) { 218 packet->header[0] = 219 HEADER_DATA_LENGTH(length) | 220 destination_id | 221 HEADER_TCODE(TCODE_STREAM_DATA); 222 packet->header_length = 4; 223 packet->payload = payload; 224 packet->payload_length = length; 225 226 goto common; 227 } 228 229 if (tcode > 0x10) { 230 ext_tcode = tcode & ~0x10; 231 tcode = TCODE_LOCK_REQUEST; 232 } else 233 ext_tcode = 0; 234 235 packet->header[0] = 236 HEADER_RETRY(RETRY_X) | 237 HEADER_TLABEL(tlabel) | 238 HEADER_TCODE(tcode) | 239 HEADER_DESTINATION(destination_id); 240 packet->header[1] = 241 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id); 242 packet->header[2] = 243 offset; 244 245 switch (tcode) { 246 case TCODE_WRITE_QUADLET_REQUEST: 247 packet->header[3] = *(u32 *)payload; 248 packet->header_length = 16; 249 packet->payload_length = 0; 250 break; 251 252 case TCODE_LOCK_REQUEST: 253 case TCODE_WRITE_BLOCK_REQUEST: 254 packet->header[3] = 255 HEADER_DATA_LENGTH(length) | 256 HEADER_EXTENDED_TCODE(ext_tcode); 257 packet->header_length = 16; 258 packet->payload = payload; 259 packet->payload_length = length; 260 break; 261 262 case TCODE_READ_QUADLET_REQUEST: 263 packet->header_length = 12; 264 packet->payload_length = 0; 265 break; 266 267 case TCODE_READ_BLOCK_REQUEST: 268 packet->header[3] = 269 HEADER_DATA_LENGTH(length) | 270 HEADER_EXTENDED_TCODE(ext_tcode); 271 packet->header_length = 16; 272 packet->payload_length = 0; 273 break; 274 275 default: 276 WARN(1, "wrong tcode %d\n", tcode); 277 } 278 common: 279 packet->speed = speed; 280 packet->generation = generation; 281 packet->ack = 0; 282 packet->payload_mapped = false; 283 } 284 285 static int allocate_tlabel(struct fw_card *card) 286 { 287 int tlabel; 288 289 tlabel = card->current_tlabel; 290 while (card->tlabel_mask & (1ULL << tlabel)) { 291 tlabel = (tlabel + 1) & 0x3f; 292 if (tlabel == card->current_tlabel) 293 return -EBUSY; 294 } 295 296 card->current_tlabel = (tlabel + 1) & 0x3f; 297 card->tlabel_mask |= 1ULL << tlabel; 298 299 return tlabel; 300 } 301 302 /** 303 * fw_send_request() - submit a request packet for transmission 304 * @card: interface to send the request at 305 * @t: transaction instance to which the request belongs 306 * @tcode: transaction code 307 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 308 * @generation: bus generation in which request and response are valid 309 * @speed: transmission speed 310 * @offset: 48bit wide offset into destination's address space 311 * @payload: data payload for the request subaction 312 * @length: length of the payload, in bytes 313 * @callback: function to be called when the transaction is completed 314 * @callback_data: data to be passed to the transaction completion callback 315 * 316 * Submit a request packet into the asynchronous request transmission queue. 317 * Can be called from atomic context. If you prefer a blocking API, use 318 * fw_run_transaction() in a context that can sleep. 319 * 320 * In case of lock requests, specify one of the firewire-core specific %TCODE_ 321 * constants instead of %TCODE_LOCK_REQUEST in @tcode. 322 * 323 * Make sure that the value in @destination_id is not older than the one in 324 * @generation. Otherwise the request is in danger to be sent to a wrong node. 325 * 326 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller 327 * needs to synthesize @destination_id with fw_stream_packet_destination_id(). 328 * It will contain tag, channel, and sy data instead of a node ID then. 329 * 330 * The payload buffer at @data is going to be DMA-mapped except in case of 331 * @length <= 8 or of local (loopback) requests. Hence make sure that the 332 * buffer complies with the restrictions of the streaming DMA mapping API. 333 * @payload must not be freed before the @callback is called. 334 * 335 * In case of request types without payload, @data is NULL and @length is 0. 336 * 337 * After the transaction is completed successfully or unsuccessfully, the 338 * @callback will be called. Among its parameters is the response code which 339 * is either one of the rcodes per IEEE 1394 or, in case of internal errors, 340 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core 341 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION, 342 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request 343 * generation, or missing ACK respectively. 344 * 345 * Note some timing corner cases: fw_send_request() may complete much earlier 346 * than when the request packet actually hits the wire. On the other hand, 347 * transaction completion and hence execution of @callback may happen even 348 * before fw_send_request() returns. 349 */ 350 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, 351 int destination_id, int generation, int speed, 352 unsigned long long offset, void *payload, size_t length, 353 fw_transaction_callback_t callback, void *callback_data) 354 { 355 unsigned long flags; 356 int tlabel; 357 358 /* 359 * Allocate tlabel from the bitmap and put the transaction on 360 * the list while holding the card spinlock. 361 */ 362 363 spin_lock_irqsave(&card->lock, flags); 364 365 tlabel = allocate_tlabel(card); 366 if (tlabel < 0) { 367 spin_unlock_irqrestore(&card->lock, flags); 368 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data); 369 return; 370 } 371 372 t->node_id = destination_id; 373 t->tlabel = tlabel; 374 t->card = card; 375 t->is_split_transaction = false; 376 timer_setup(&t->split_timeout_timer, 377 split_transaction_timeout_callback, 0); 378 t->callback = callback; 379 t->callback_data = callback_data; 380 381 fw_fill_request(&t->packet, tcode, t->tlabel, 382 destination_id, card->node_id, generation, 383 speed, offset, payload, length); 384 t->packet.callback = transmit_complete_callback; 385 386 list_add_tail(&t->link, &card->transaction_list); 387 388 spin_unlock_irqrestore(&card->lock, flags); 389 390 card->driver->send_request(card, &t->packet); 391 } 392 EXPORT_SYMBOL(fw_send_request); 393 394 struct transaction_callback_data { 395 struct completion done; 396 void *payload; 397 int rcode; 398 }; 399 400 static void transaction_callback(struct fw_card *card, int rcode, 401 void *payload, size_t length, void *data) 402 { 403 struct transaction_callback_data *d = data; 404 405 if (rcode == RCODE_COMPLETE) 406 memcpy(d->payload, payload, length); 407 d->rcode = rcode; 408 complete(&d->done); 409 } 410 411 /** 412 * fw_run_transaction() - send request and sleep until transaction is completed 413 * @card: card interface for this request 414 * @tcode: transaction code 415 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 416 * @generation: bus generation in which request and response are valid 417 * @speed: transmission speed 418 * @offset: 48bit wide offset into destination's address space 419 * @payload: data payload for the request subaction 420 * @length: length of the payload, in bytes 421 * 422 * Returns the RCODE. See fw_send_request() for parameter documentation. 423 * Unlike fw_send_request(), @data points to the payload of the request or/and 424 * to the payload of the response. DMA mapping restrictions apply to outbound 425 * request payloads of >= 8 bytes but not to inbound response payloads. 426 */ 427 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, 428 int generation, int speed, unsigned long long offset, 429 void *payload, size_t length) 430 { 431 struct transaction_callback_data d; 432 struct fw_transaction t; 433 434 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0); 435 init_completion(&d.done); 436 d.payload = payload; 437 fw_send_request(card, &t, tcode, destination_id, generation, speed, 438 offset, payload, length, transaction_callback, &d); 439 wait_for_completion(&d.done); 440 destroy_timer_on_stack(&t.split_timeout_timer); 441 442 return d.rcode; 443 } 444 EXPORT_SYMBOL(fw_run_transaction); 445 446 static DEFINE_MUTEX(phy_config_mutex); 447 static DECLARE_COMPLETION(phy_config_done); 448 449 static void transmit_phy_packet_callback(struct fw_packet *packet, 450 struct fw_card *card, int status) 451 { 452 complete(&phy_config_done); 453 } 454 455 static struct fw_packet phy_config_packet = { 456 .header_length = 12, 457 .header[0] = TCODE_LINK_INTERNAL << 4, 458 .payload_length = 0, 459 .speed = SCODE_100, 460 .callback = transmit_phy_packet_callback, 461 }; 462 463 void fw_send_phy_config(struct fw_card *card, 464 int node_id, int generation, int gap_count) 465 { 466 long timeout = DIV_ROUND_UP(HZ, 10); 467 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG); 468 469 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) 470 data |= PHY_CONFIG_ROOT_ID(node_id); 471 472 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) { 473 gap_count = card->driver->read_phy_reg(card, 1); 474 if (gap_count < 0) 475 return; 476 477 gap_count &= 63; 478 if (gap_count == 63) 479 return; 480 } 481 data |= PHY_CONFIG_GAP_COUNT(gap_count); 482 483 mutex_lock(&phy_config_mutex); 484 485 phy_config_packet.header[1] = data; 486 phy_config_packet.header[2] = ~data; 487 phy_config_packet.generation = generation; 488 reinit_completion(&phy_config_done); 489 490 card->driver->send_request(card, &phy_config_packet); 491 wait_for_completion_timeout(&phy_config_done, timeout); 492 493 mutex_unlock(&phy_config_mutex); 494 } 495 496 static struct fw_address_handler *lookup_overlapping_address_handler( 497 struct list_head *list, unsigned long long offset, size_t length) 498 { 499 struct fw_address_handler *handler; 500 501 list_for_each_entry_rcu(handler, list, link) { 502 if (handler->offset < offset + length && 503 offset < handler->offset + handler->length) 504 return handler; 505 } 506 507 return NULL; 508 } 509 510 static bool is_enclosing_handler(struct fw_address_handler *handler, 511 unsigned long long offset, size_t length) 512 { 513 return handler->offset <= offset && 514 offset + length <= handler->offset + handler->length; 515 } 516 517 static struct fw_address_handler *lookup_enclosing_address_handler( 518 struct list_head *list, unsigned long long offset, size_t length) 519 { 520 struct fw_address_handler *handler; 521 522 list_for_each_entry_rcu(handler, list, link) { 523 if (is_enclosing_handler(handler, offset, length)) 524 return handler; 525 } 526 527 return NULL; 528 } 529 530 static DEFINE_SPINLOCK(address_handler_list_lock); 531 static LIST_HEAD(address_handler_list); 532 533 const struct fw_address_region fw_high_memory_region = 534 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, }; 535 EXPORT_SYMBOL(fw_high_memory_region); 536 537 static const struct fw_address_region low_memory_region = 538 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, }; 539 540 #if 0 541 const struct fw_address_region fw_private_region = 542 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, }; 543 const struct fw_address_region fw_csr_region = 544 { .start = CSR_REGISTER_BASE, 545 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, }; 546 const struct fw_address_region fw_unit_space_region = 547 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, }; 548 #endif /* 0 */ 549 550 static bool is_in_fcp_region(u64 offset, size_t length) 551 { 552 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 553 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END); 554 } 555 556 /** 557 * fw_core_add_address_handler() - register for incoming requests 558 * @handler: callback 559 * @region: region in the IEEE 1212 node space address range 560 * 561 * region->start, ->end, and handler->length have to be quadlet-aligned. 562 * 563 * When a request is received that falls within the specified address range, 564 * the specified callback is invoked. The parameters passed to the callback 565 * give the details of the particular request. 566 * 567 * To be called in process context. 568 * Return value: 0 on success, non-zero otherwise. 569 * 570 * The start offset of the handler's address region is determined by 571 * fw_core_add_address_handler() and is returned in handler->offset. 572 * 573 * Address allocations are exclusive, except for the FCP registers. 574 */ 575 int fw_core_add_address_handler(struct fw_address_handler *handler, 576 const struct fw_address_region *region) 577 { 578 struct fw_address_handler *other; 579 int ret = -EBUSY; 580 581 if (region->start & 0xffff000000000003ULL || 582 region->start >= region->end || 583 region->end > 0x0001000000000000ULL || 584 handler->length & 3 || 585 handler->length == 0) 586 return -EINVAL; 587 588 spin_lock(&address_handler_list_lock); 589 590 handler->offset = region->start; 591 while (handler->offset + handler->length <= region->end) { 592 if (is_in_fcp_region(handler->offset, handler->length)) 593 other = NULL; 594 else 595 other = lookup_overlapping_address_handler 596 (&address_handler_list, 597 handler->offset, handler->length); 598 if (other != NULL) { 599 handler->offset += other->length; 600 } else { 601 list_add_tail_rcu(&handler->link, &address_handler_list); 602 ret = 0; 603 break; 604 } 605 } 606 607 spin_unlock(&address_handler_list_lock); 608 609 return ret; 610 } 611 EXPORT_SYMBOL(fw_core_add_address_handler); 612 613 /** 614 * fw_core_remove_address_handler() - unregister an address handler 615 * @handler: callback 616 * 617 * To be called in process context. 618 * 619 * When fw_core_remove_address_handler() returns, @handler->callback() is 620 * guaranteed to not run on any CPU anymore. 621 */ 622 void fw_core_remove_address_handler(struct fw_address_handler *handler) 623 { 624 spin_lock(&address_handler_list_lock); 625 list_del_rcu(&handler->link); 626 spin_unlock(&address_handler_list_lock); 627 synchronize_rcu(); 628 } 629 EXPORT_SYMBOL(fw_core_remove_address_handler); 630 631 struct fw_request { 632 struct fw_packet response; 633 u32 request_header[4]; 634 int ack; 635 u32 length; 636 u32 data[0]; 637 }; 638 639 static void free_response_callback(struct fw_packet *packet, 640 struct fw_card *card, int status) 641 { 642 struct fw_request *request; 643 644 request = container_of(packet, struct fw_request, response); 645 kfree(request); 646 } 647 648 int fw_get_response_length(struct fw_request *r) 649 { 650 int tcode, ext_tcode, data_length; 651 652 tcode = HEADER_GET_TCODE(r->request_header[0]); 653 654 switch (tcode) { 655 case TCODE_WRITE_QUADLET_REQUEST: 656 case TCODE_WRITE_BLOCK_REQUEST: 657 return 0; 658 659 case TCODE_READ_QUADLET_REQUEST: 660 return 4; 661 662 case TCODE_READ_BLOCK_REQUEST: 663 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); 664 return data_length; 665 666 case TCODE_LOCK_REQUEST: 667 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]); 668 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); 669 switch (ext_tcode) { 670 case EXTCODE_FETCH_ADD: 671 case EXTCODE_LITTLE_ADD: 672 return data_length; 673 default: 674 return data_length / 2; 675 } 676 677 default: 678 WARN(1, "wrong tcode %d\n", tcode); 679 return 0; 680 } 681 } 682 683 void fw_fill_response(struct fw_packet *response, u32 *request_header, 684 int rcode, void *payload, size_t length) 685 { 686 int tcode, tlabel, extended_tcode, source, destination; 687 688 tcode = HEADER_GET_TCODE(request_header[0]); 689 tlabel = HEADER_GET_TLABEL(request_header[0]); 690 source = HEADER_GET_DESTINATION(request_header[0]); 691 destination = HEADER_GET_SOURCE(request_header[1]); 692 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]); 693 694 response->header[0] = 695 HEADER_RETRY(RETRY_1) | 696 HEADER_TLABEL(tlabel) | 697 HEADER_DESTINATION(destination); 698 response->header[1] = 699 HEADER_SOURCE(source) | 700 HEADER_RCODE(rcode); 701 response->header[2] = 0; 702 703 switch (tcode) { 704 case TCODE_WRITE_QUADLET_REQUEST: 705 case TCODE_WRITE_BLOCK_REQUEST: 706 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE); 707 response->header_length = 12; 708 response->payload_length = 0; 709 break; 710 711 case TCODE_READ_QUADLET_REQUEST: 712 response->header[0] |= 713 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE); 714 if (payload != NULL) 715 response->header[3] = *(u32 *)payload; 716 else 717 response->header[3] = 0; 718 response->header_length = 16; 719 response->payload_length = 0; 720 break; 721 722 case TCODE_READ_BLOCK_REQUEST: 723 case TCODE_LOCK_REQUEST: 724 response->header[0] |= HEADER_TCODE(tcode + 2); 725 response->header[3] = 726 HEADER_DATA_LENGTH(length) | 727 HEADER_EXTENDED_TCODE(extended_tcode); 728 response->header_length = 16; 729 response->payload = payload; 730 response->payload_length = length; 731 break; 732 733 default: 734 WARN(1, "wrong tcode %d\n", tcode); 735 } 736 737 response->payload_mapped = false; 738 } 739 EXPORT_SYMBOL(fw_fill_response); 740 741 static u32 compute_split_timeout_timestamp(struct fw_card *card, 742 u32 request_timestamp) 743 { 744 unsigned int cycles; 745 u32 timestamp; 746 747 cycles = card->split_timeout_cycles; 748 cycles += request_timestamp & 0x1fff; 749 750 timestamp = request_timestamp & ~0x1fff; 751 timestamp += (cycles / 8000) << 13; 752 timestamp |= cycles % 8000; 753 754 return timestamp; 755 } 756 757 static struct fw_request *allocate_request(struct fw_card *card, 758 struct fw_packet *p) 759 { 760 struct fw_request *request; 761 u32 *data, length; 762 int request_tcode; 763 764 request_tcode = HEADER_GET_TCODE(p->header[0]); 765 switch (request_tcode) { 766 case TCODE_WRITE_QUADLET_REQUEST: 767 data = &p->header[3]; 768 length = 4; 769 break; 770 771 case TCODE_WRITE_BLOCK_REQUEST: 772 case TCODE_LOCK_REQUEST: 773 data = p->payload; 774 length = HEADER_GET_DATA_LENGTH(p->header[3]); 775 break; 776 777 case TCODE_READ_QUADLET_REQUEST: 778 data = NULL; 779 length = 4; 780 break; 781 782 case TCODE_READ_BLOCK_REQUEST: 783 data = NULL; 784 length = HEADER_GET_DATA_LENGTH(p->header[3]); 785 break; 786 787 default: 788 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n", 789 p->header[0], p->header[1], p->header[2]); 790 return NULL; 791 } 792 793 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC); 794 if (request == NULL) 795 return NULL; 796 797 request->response.speed = p->speed; 798 request->response.timestamp = 799 compute_split_timeout_timestamp(card, p->timestamp); 800 request->response.generation = p->generation; 801 request->response.ack = 0; 802 request->response.callback = free_response_callback; 803 request->ack = p->ack; 804 request->length = length; 805 if (data) 806 memcpy(request->data, data, length); 807 808 memcpy(request->request_header, p->header, sizeof(p->header)); 809 810 return request; 811 } 812 813 void fw_send_response(struct fw_card *card, 814 struct fw_request *request, int rcode) 815 { 816 if (WARN_ONCE(!request, "invalid for FCP address handlers")) 817 return; 818 819 /* unified transaction or broadcast transaction: don't respond */ 820 if (request->ack != ACK_PENDING || 821 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) { 822 kfree(request); 823 return; 824 } 825 826 if (rcode == RCODE_COMPLETE) 827 fw_fill_response(&request->response, request->request_header, 828 rcode, request->data, 829 fw_get_response_length(request)); 830 else 831 fw_fill_response(&request->response, request->request_header, 832 rcode, NULL, 0); 833 834 card->driver->send_response(card, &request->response); 835 } 836 EXPORT_SYMBOL(fw_send_response); 837 838 /** 839 * fw_get_request_speed() - returns speed at which the @request was received 840 * @request: firewire request data 841 */ 842 int fw_get_request_speed(struct fw_request *request) 843 { 844 return request->response.speed; 845 } 846 EXPORT_SYMBOL(fw_get_request_speed); 847 848 static void handle_exclusive_region_request(struct fw_card *card, 849 struct fw_packet *p, 850 struct fw_request *request, 851 unsigned long long offset) 852 { 853 struct fw_address_handler *handler; 854 int tcode, destination, source; 855 856 destination = HEADER_GET_DESTINATION(p->header[0]); 857 source = HEADER_GET_SOURCE(p->header[1]); 858 tcode = HEADER_GET_TCODE(p->header[0]); 859 if (tcode == TCODE_LOCK_REQUEST) 860 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]); 861 862 rcu_read_lock(); 863 handler = lookup_enclosing_address_handler(&address_handler_list, 864 offset, request->length); 865 if (handler) 866 handler->address_callback(card, request, 867 tcode, destination, source, 868 p->generation, offset, 869 request->data, request->length, 870 handler->callback_data); 871 rcu_read_unlock(); 872 873 if (!handler) 874 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 875 } 876 877 static void handle_fcp_region_request(struct fw_card *card, 878 struct fw_packet *p, 879 struct fw_request *request, 880 unsigned long long offset) 881 { 882 struct fw_address_handler *handler; 883 int tcode, destination, source; 884 885 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 886 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) || 887 request->length > 0x200) { 888 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 889 890 return; 891 } 892 893 tcode = HEADER_GET_TCODE(p->header[0]); 894 destination = HEADER_GET_DESTINATION(p->header[0]); 895 source = HEADER_GET_SOURCE(p->header[1]); 896 897 if (tcode != TCODE_WRITE_QUADLET_REQUEST && 898 tcode != TCODE_WRITE_BLOCK_REQUEST) { 899 fw_send_response(card, request, RCODE_TYPE_ERROR); 900 901 return; 902 } 903 904 rcu_read_lock(); 905 list_for_each_entry_rcu(handler, &address_handler_list, link) { 906 if (is_enclosing_handler(handler, offset, request->length)) 907 handler->address_callback(card, NULL, tcode, 908 destination, source, 909 p->generation, offset, 910 request->data, 911 request->length, 912 handler->callback_data); 913 } 914 rcu_read_unlock(); 915 916 fw_send_response(card, request, RCODE_COMPLETE); 917 } 918 919 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p) 920 { 921 struct fw_request *request; 922 unsigned long long offset; 923 924 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE) 925 return; 926 927 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) { 928 fw_cdev_handle_phy_packet(card, p); 929 return; 930 } 931 932 request = allocate_request(card, p); 933 if (request == NULL) { 934 /* FIXME: send statically allocated busy packet. */ 935 return; 936 } 937 938 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) | 939 p->header[2]; 940 941 if (!is_in_fcp_region(offset, request->length)) 942 handle_exclusive_region_request(card, p, request, offset); 943 else 944 handle_fcp_region_request(card, p, request, offset); 945 946 } 947 EXPORT_SYMBOL(fw_core_handle_request); 948 949 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p) 950 { 951 struct fw_transaction *t; 952 unsigned long flags; 953 u32 *data; 954 size_t data_length; 955 int tcode, tlabel, source, rcode; 956 957 tcode = HEADER_GET_TCODE(p->header[0]); 958 tlabel = HEADER_GET_TLABEL(p->header[0]); 959 source = HEADER_GET_SOURCE(p->header[1]); 960 rcode = HEADER_GET_RCODE(p->header[1]); 961 962 spin_lock_irqsave(&card->lock, flags); 963 list_for_each_entry(t, &card->transaction_list, link) { 964 if (t->node_id == source && t->tlabel == tlabel) { 965 if (!try_cancel_split_timeout(t)) { 966 spin_unlock_irqrestore(&card->lock, flags); 967 goto timed_out; 968 } 969 list_del_init(&t->link); 970 card->tlabel_mask &= ~(1ULL << t->tlabel); 971 break; 972 } 973 } 974 spin_unlock_irqrestore(&card->lock, flags); 975 976 if (&t->link == &card->transaction_list) { 977 timed_out: 978 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n", 979 source, tlabel); 980 return; 981 } 982 983 /* 984 * FIXME: sanity check packet, is length correct, does tcodes 985 * and addresses match. 986 */ 987 988 switch (tcode) { 989 case TCODE_READ_QUADLET_RESPONSE: 990 data = (u32 *) &p->header[3]; 991 data_length = 4; 992 break; 993 994 case TCODE_WRITE_RESPONSE: 995 data = NULL; 996 data_length = 0; 997 break; 998 999 case TCODE_READ_BLOCK_RESPONSE: 1000 case TCODE_LOCK_RESPONSE: 1001 data = p->payload; 1002 data_length = HEADER_GET_DATA_LENGTH(p->header[3]); 1003 break; 1004 1005 default: 1006 /* Should never happen, this is just to shut up gcc. */ 1007 data = NULL; 1008 data_length = 0; 1009 break; 1010 } 1011 1012 /* 1013 * The response handler may be executed while the request handler 1014 * is still pending. Cancel the request handler. 1015 */ 1016 card->driver->cancel_packet(card, &t->packet); 1017 1018 t->callback(card, rcode, data, data_length, t->callback_data); 1019 } 1020 EXPORT_SYMBOL(fw_core_handle_response); 1021 1022 /** 1023 * fw_rcode_string - convert a firewire result code to an error description 1024 * @rcode: the result code 1025 */ 1026 const char *fw_rcode_string(int rcode) 1027 { 1028 static const char *const names[] = { 1029 [RCODE_COMPLETE] = "no error", 1030 [RCODE_CONFLICT_ERROR] = "conflict error", 1031 [RCODE_DATA_ERROR] = "data error", 1032 [RCODE_TYPE_ERROR] = "type error", 1033 [RCODE_ADDRESS_ERROR] = "address error", 1034 [RCODE_SEND_ERROR] = "send error", 1035 [RCODE_CANCELLED] = "timeout", 1036 [RCODE_BUSY] = "busy", 1037 [RCODE_GENERATION] = "bus reset", 1038 [RCODE_NO_ACK] = "no ack", 1039 }; 1040 1041 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode]) 1042 return names[rcode]; 1043 else 1044 return "unknown"; 1045 } 1046 EXPORT_SYMBOL(fw_rcode_string); 1047 1048 static const struct fw_address_region topology_map_region = 1049 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP, 1050 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, }; 1051 1052 static void handle_topology_map(struct fw_card *card, struct fw_request *request, 1053 int tcode, int destination, int source, int generation, 1054 unsigned long long offset, void *payload, size_t length, 1055 void *callback_data) 1056 { 1057 int start; 1058 1059 if (!TCODE_IS_READ_REQUEST(tcode)) { 1060 fw_send_response(card, request, RCODE_TYPE_ERROR); 1061 return; 1062 } 1063 1064 if ((offset & 3) > 0 || (length & 3) > 0) { 1065 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 1066 return; 1067 } 1068 1069 start = (offset - topology_map_region.start) / 4; 1070 memcpy(payload, &card->topology_map[start], length); 1071 1072 fw_send_response(card, request, RCODE_COMPLETE); 1073 } 1074 1075 static struct fw_address_handler topology_map = { 1076 .length = 0x400, 1077 .address_callback = handle_topology_map, 1078 }; 1079 1080 static const struct fw_address_region registers_region = 1081 { .start = CSR_REGISTER_BASE, 1082 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, }; 1083 1084 static void update_split_timeout(struct fw_card *card) 1085 { 1086 unsigned int cycles; 1087 1088 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19); 1089 1090 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */ 1091 cycles = clamp(cycles, 800u, 3u * 8000u); 1092 1093 card->split_timeout_cycles = cycles; 1094 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000); 1095 } 1096 1097 static void handle_registers(struct fw_card *card, struct fw_request *request, 1098 int tcode, int destination, int source, int generation, 1099 unsigned long long offset, void *payload, size_t length, 1100 void *callback_data) 1101 { 1102 int reg = offset & ~CSR_REGISTER_BASE; 1103 __be32 *data = payload; 1104 int rcode = RCODE_COMPLETE; 1105 unsigned long flags; 1106 1107 switch (reg) { 1108 case CSR_PRIORITY_BUDGET: 1109 if (!card->priority_budget_implemented) { 1110 rcode = RCODE_ADDRESS_ERROR; 1111 break; 1112 } 1113 /* else fall through */ 1114 1115 case CSR_NODE_IDS: 1116 /* 1117 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8 1118 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges 1119 */ 1120 /* fall through */ 1121 1122 case CSR_STATE_CLEAR: 1123 case CSR_STATE_SET: 1124 case CSR_CYCLE_TIME: 1125 case CSR_BUS_TIME: 1126 case CSR_BUSY_TIMEOUT: 1127 if (tcode == TCODE_READ_QUADLET_REQUEST) 1128 *data = cpu_to_be32(card->driver->read_csr(card, reg)); 1129 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1130 card->driver->write_csr(card, reg, be32_to_cpu(*data)); 1131 else 1132 rcode = RCODE_TYPE_ERROR; 1133 break; 1134 1135 case CSR_RESET_START: 1136 if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1137 card->driver->write_csr(card, CSR_STATE_CLEAR, 1138 CSR_STATE_BIT_ABDICATE); 1139 else 1140 rcode = RCODE_TYPE_ERROR; 1141 break; 1142 1143 case CSR_SPLIT_TIMEOUT_HI: 1144 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1145 *data = cpu_to_be32(card->split_timeout_hi); 1146 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1147 spin_lock_irqsave(&card->lock, flags); 1148 card->split_timeout_hi = be32_to_cpu(*data) & 7; 1149 update_split_timeout(card); 1150 spin_unlock_irqrestore(&card->lock, flags); 1151 } else { 1152 rcode = RCODE_TYPE_ERROR; 1153 } 1154 break; 1155 1156 case CSR_SPLIT_TIMEOUT_LO: 1157 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1158 *data = cpu_to_be32(card->split_timeout_lo); 1159 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1160 spin_lock_irqsave(&card->lock, flags); 1161 card->split_timeout_lo = 1162 be32_to_cpu(*data) & 0xfff80000; 1163 update_split_timeout(card); 1164 spin_unlock_irqrestore(&card->lock, flags); 1165 } else { 1166 rcode = RCODE_TYPE_ERROR; 1167 } 1168 break; 1169 1170 case CSR_MAINT_UTILITY: 1171 if (tcode == TCODE_READ_QUADLET_REQUEST) 1172 *data = card->maint_utility_register; 1173 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1174 card->maint_utility_register = *data; 1175 else 1176 rcode = RCODE_TYPE_ERROR; 1177 break; 1178 1179 case CSR_BROADCAST_CHANNEL: 1180 if (tcode == TCODE_READ_QUADLET_REQUEST) 1181 *data = cpu_to_be32(card->broadcast_channel); 1182 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1183 card->broadcast_channel = 1184 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) | 1185 BROADCAST_CHANNEL_INITIAL; 1186 else 1187 rcode = RCODE_TYPE_ERROR; 1188 break; 1189 1190 case CSR_BUS_MANAGER_ID: 1191 case CSR_BANDWIDTH_AVAILABLE: 1192 case CSR_CHANNELS_AVAILABLE_HI: 1193 case CSR_CHANNELS_AVAILABLE_LO: 1194 /* 1195 * FIXME: these are handled by the OHCI hardware and 1196 * the stack never sees these request. If we add 1197 * support for a new type of controller that doesn't 1198 * handle this in hardware we need to deal with these 1199 * transactions. 1200 */ 1201 BUG(); 1202 break; 1203 1204 default: 1205 rcode = RCODE_ADDRESS_ERROR; 1206 break; 1207 } 1208 1209 fw_send_response(card, request, rcode); 1210 } 1211 1212 static struct fw_address_handler registers = { 1213 .length = 0x400, 1214 .address_callback = handle_registers, 1215 }; 1216 1217 static void handle_low_memory(struct fw_card *card, struct fw_request *request, 1218 int tcode, int destination, int source, int generation, 1219 unsigned long long offset, void *payload, size_t length, 1220 void *callback_data) 1221 { 1222 /* 1223 * This catches requests not handled by the physical DMA unit, 1224 * i.e., wrong transaction types or unauthorized source nodes. 1225 */ 1226 fw_send_response(card, request, RCODE_TYPE_ERROR); 1227 } 1228 1229 static struct fw_address_handler low_memory = { 1230 .length = FW_MAX_PHYSICAL_RANGE, 1231 .address_callback = handle_low_memory, 1232 }; 1233 1234 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1235 MODULE_DESCRIPTION("Core IEEE1394 transaction logic"); 1236 MODULE_LICENSE("GPL"); 1237 1238 static const u32 vendor_textual_descriptor[] = { 1239 /* textual descriptor leaf () */ 1240 0x00060000, 1241 0x00000000, 1242 0x00000000, 1243 0x4c696e75, /* L i n u */ 1244 0x78204669, /* x F i */ 1245 0x72657769, /* r e w i */ 1246 0x72650000, /* r e */ 1247 }; 1248 1249 static const u32 model_textual_descriptor[] = { 1250 /* model descriptor leaf () */ 1251 0x00030000, 1252 0x00000000, 1253 0x00000000, 1254 0x4a756a75, /* J u j u */ 1255 }; 1256 1257 static struct fw_descriptor vendor_id_descriptor = { 1258 .length = ARRAY_SIZE(vendor_textual_descriptor), 1259 .immediate = 0x03001f11, 1260 .key = 0x81000000, 1261 .data = vendor_textual_descriptor, 1262 }; 1263 1264 static struct fw_descriptor model_id_descriptor = { 1265 .length = ARRAY_SIZE(model_textual_descriptor), 1266 .immediate = 0x17023901, 1267 .key = 0x81000000, 1268 .data = model_textual_descriptor, 1269 }; 1270 1271 static int __init fw_core_init(void) 1272 { 1273 int ret; 1274 1275 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0); 1276 if (!fw_workqueue) 1277 return -ENOMEM; 1278 1279 ret = bus_register(&fw_bus_type); 1280 if (ret < 0) { 1281 destroy_workqueue(fw_workqueue); 1282 return ret; 1283 } 1284 1285 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops); 1286 if (fw_cdev_major < 0) { 1287 bus_unregister(&fw_bus_type); 1288 destroy_workqueue(fw_workqueue); 1289 return fw_cdev_major; 1290 } 1291 1292 fw_core_add_address_handler(&topology_map, &topology_map_region); 1293 fw_core_add_address_handler(®isters, ®isters_region); 1294 fw_core_add_address_handler(&low_memory, &low_memory_region); 1295 fw_core_add_descriptor(&vendor_id_descriptor); 1296 fw_core_add_descriptor(&model_id_descriptor); 1297 1298 return 0; 1299 } 1300 1301 static void __exit fw_core_cleanup(void) 1302 { 1303 unregister_chrdev(fw_cdev_major, "firewire"); 1304 bus_unregister(&fw_bus_type); 1305 destroy_workqueue(fw_workqueue); 1306 idr_destroy(&fw_device_idr); 1307 } 1308 1309 module_init(fw_core_init); 1310 module_exit(fw_core_cleanup); 1311