1 /*
2  * Core IEEE1394 transaction logic
3  *
4  * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bug.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/fs.h>
28 #include <linux/init.h>
29 #include <linux/idr.h>
30 #include <linux/jiffies.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/timer.h>
38 #include <linux/types.h>
39 
40 #include <asm/byteorder.h>
41 
42 #include "core.h"
43 
44 #define HEADER_PRI(pri)			((pri) << 0)
45 #define HEADER_TCODE(tcode)		((tcode) << 4)
46 #define HEADER_RETRY(retry)		((retry) << 8)
47 #define HEADER_TLABEL(tlabel)		((tlabel) << 10)
48 #define HEADER_DESTINATION(destination)	((destination) << 16)
49 #define HEADER_SOURCE(source)		((source) << 16)
50 #define HEADER_RCODE(rcode)		((rcode) << 12)
51 #define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
52 #define HEADER_DATA_LENGTH(length)	((length) << 16)
53 #define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
54 
55 #define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
56 #define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
57 #define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
58 #define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
59 #define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
60 #define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
61 #define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
62 #define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
63 
64 #define HEADER_DESTINATION_IS_BROADCAST(q) \
65 	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
66 
67 #define PHY_PACKET_CONFIG	0x0
68 #define PHY_PACKET_LINK_ON	0x1
69 #define PHY_PACKET_SELF_ID	0x2
70 
71 #define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
72 #define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
73 #define PHY_IDENTIFIER(id)		((id) << 30)
74 
75 static int close_transaction(struct fw_transaction *transaction,
76 			     struct fw_card *card, int rcode)
77 {
78 	struct fw_transaction *t;
79 	unsigned long flags;
80 
81 	spin_lock_irqsave(&card->lock, flags);
82 	list_for_each_entry(t, &card->transaction_list, link) {
83 		if (t == transaction) {
84 			list_del_init(&t->link);
85 			card->tlabel_mask &= ~(1ULL << t->tlabel);
86 			break;
87 		}
88 	}
89 	spin_unlock_irqrestore(&card->lock, flags);
90 
91 	if (&t->link != &card->transaction_list) {
92 		del_timer_sync(&t->split_timeout_timer);
93 		t->callback(card, rcode, NULL, 0, t->callback_data);
94 		return 0;
95 	}
96 
97 	return -ENOENT;
98 }
99 
100 /*
101  * Only valid for transactions that are potentially pending (ie have
102  * been sent).
103  */
104 int fw_cancel_transaction(struct fw_card *card,
105 			  struct fw_transaction *transaction)
106 {
107 	/*
108 	 * Cancel the packet transmission if it's still queued.  That
109 	 * will call the packet transmission callback which cancels
110 	 * the transaction.
111 	 */
112 
113 	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
114 		return 0;
115 
116 	/*
117 	 * If the request packet has already been sent, we need to see
118 	 * if the transaction is still pending and remove it in that case.
119 	 */
120 
121 	return close_transaction(transaction, card, RCODE_CANCELLED);
122 }
123 EXPORT_SYMBOL(fw_cancel_transaction);
124 
125 static void split_transaction_timeout_callback(unsigned long data)
126 {
127 	struct fw_transaction *t = (struct fw_transaction *)data;
128 	struct fw_card *card = t->card;
129 	unsigned long flags;
130 
131 	spin_lock_irqsave(&card->lock, flags);
132 	if (list_empty(&t->link)) {
133 		spin_unlock_irqrestore(&card->lock, flags);
134 		return;
135 	}
136 	list_del(&t->link);
137 	card->tlabel_mask &= ~(1ULL << t->tlabel);
138 	spin_unlock_irqrestore(&card->lock, flags);
139 
140 	card->driver->cancel_packet(card, &t->packet);
141 
142 	/*
143 	 * At this point cancel_packet will never call the transaction
144 	 * callback, since we just took the transaction out of the list.
145 	 * So do it here.
146 	 */
147 	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
148 }
149 
150 static void transmit_complete_callback(struct fw_packet *packet,
151 				       struct fw_card *card, int status)
152 {
153 	struct fw_transaction *t =
154 	    container_of(packet, struct fw_transaction, packet);
155 
156 	switch (status) {
157 	case ACK_COMPLETE:
158 		close_transaction(t, card, RCODE_COMPLETE);
159 		break;
160 	case ACK_PENDING:
161 		t->timestamp = packet->timestamp;
162 		break;
163 	case ACK_BUSY_X:
164 	case ACK_BUSY_A:
165 	case ACK_BUSY_B:
166 		close_transaction(t, card, RCODE_BUSY);
167 		break;
168 	case ACK_DATA_ERROR:
169 		close_transaction(t, card, RCODE_DATA_ERROR);
170 		break;
171 	case ACK_TYPE_ERROR:
172 		close_transaction(t, card, RCODE_TYPE_ERROR);
173 		break;
174 	default:
175 		/*
176 		 * In this case the ack is really a juju specific
177 		 * rcode, so just forward that to the callback.
178 		 */
179 		close_transaction(t, card, status);
180 		break;
181 	}
182 }
183 
184 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
185 		int destination_id, int source_id, int generation, int speed,
186 		unsigned long long offset, void *payload, size_t length)
187 {
188 	int ext_tcode;
189 
190 	if (tcode == TCODE_STREAM_DATA) {
191 		packet->header[0] =
192 			HEADER_DATA_LENGTH(length) |
193 			destination_id |
194 			HEADER_TCODE(TCODE_STREAM_DATA);
195 		packet->header_length = 4;
196 		packet->payload = payload;
197 		packet->payload_length = length;
198 
199 		goto common;
200 	}
201 
202 	if (tcode > 0x10) {
203 		ext_tcode = tcode & ~0x10;
204 		tcode = TCODE_LOCK_REQUEST;
205 	} else
206 		ext_tcode = 0;
207 
208 	packet->header[0] =
209 		HEADER_RETRY(RETRY_X) |
210 		HEADER_TLABEL(tlabel) |
211 		HEADER_TCODE(tcode) |
212 		HEADER_DESTINATION(destination_id);
213 	packet->header[1] =
214 		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
215 	packet->header[2] =
216 		offset;
217 
218 	switch (tcode) {
219 	case TCODE_WRITE_QUADLET_REQUEST:
220 		packet->header[3] = *(u32 *)payload;
221 		packet->header_length = 16;
222 		packet->payload_length = 0;
223 		break;
224 
225 	case TCODE_LOCK_REQUEST:
226 	case TCODE_WRITE_BLOCK_REQUEST:
227 		packet->header[3] =
228 			HEADER_DATA_LENGTH(length) |
229 			HEADER_EXTENDED_TCODE(ext_tcode);
230 		packet->header_length = 16;
231 		packet->payload = payload;
232 		packet->payload_length = length;
233 		break;
234 
235 	case TCODE_READ_QUADLET_REQUEST:
236 		packet->header_length = 12;
237 		packet->payload_length = 0;
238 		break;
239 
240 	case TCODE_READ_BLOCK_REQUEST:
241 		packet->header[3] =
242 			HEADER_DATA_LENGTH(length) |
243 			HEADER_EXTENDED_TCODE(ext_tcode);
244 		packet->header_length = 16;
245 		packet->payload_length = 0;
246 		break;
247 
248 	default:
249 		WARN(1, "wrong tcode %d", tcode);
250 	}
251  common:
252 	packet->speed = speed;
253 	packet->generation = generation;
254 	packet->ack = 0;
255 	packet->payload_mapped = false;
256 }
257 
258 static int allocate_tlabel(struct fw_card *card)
259 {
260 	int tlabel;
261 
262 	tlabel = card->current_tlabel;
263 	while (card->tlabel_mask & (1ULL << tlabel)) {
264 		tlabel = (tlabel + 1) & 0x3f;
265 		if (tlabel == card->current_tlabel)
266 			return -EBUSY;
267 	}
268 
269 	card->current_tlabel = (tlabel + 1) & 0x3f;
270 	card->tlabel_mask |= 1ULL << tlabel;
271 
272 	return tlabel;
273 }
274 
275 /**
276  * This function provides low-level access to the IEEE1394 transaction
277  * logic.  Most C programs would use either fw_read(), fw_write() or
278  * fw_lock() instead - those function are convenience wrappers for
279  * this function.  The fw_send_request() function is primarily
280  * provided as a flexible, one-stop entry point for languages bindings
281  * and protocol bindings.
282  *
283  * FIXME: Document this function further, in particular the possible
284  * values for rcode in the callback.  In short, we map ACK_COMPLETE to
285  * RCODE_COMPLETE, internal errors set errno and set rcode to
286  * RCODE_SEND_ERROR (which is out of range for standard ieee1394
287  * rcodes).  All other rcodes are forwarded unchanged.  For all
288  * errors, payload is NULL, length is 0.
289  *
290  * Can not expect the callback to be called before the function
291  * returns, though this does happen in some cases (ACK_COMPLETE and
292  * errors).
293  *
294  * The payload is only used for write requests and must not be freed
295  * until the callback has been called.
296  *
297  * @param card the card from which to send the request
298  * @param tcode the tcode for this transaction.  Do not use
299  *   TCODE_LOCK_REQUEST directly, instead use TCODE_LOCK_MASK_SWAP
300  *   etc. to specify tcode and ext_tcode.
301  * @param node_id the destination node ID (bus ID and PHY ID concatenated)
302  * @param generation the generation for which node_id is valid
303  * @param speed the speed to use for sending the request
304  * @param offset the 48 bit offset on the destination node
305  * @param payload the data payload for the request subaction
306  * @param length the length in bytes of the data to read
307  * @param callback function to be called when the transaction is completed
308  * @param callback_data pointer to arbitrary data, which will be
309  *   passed to the callback
310  *
311  * In case of asynchronous stream packets i.e. TCODE_STREAM_DATA, the caller
312  * needs to synthesize @destination_id with fw_stream_packet_destination_id().
313  */
314 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
315 		     int destination_id, int generation, int speed,
316 		     unsigned long long offset, void *payload, size_t length,
317 		     fw_transaction_callback_t callback, void *callback_data)
318 {
319 	unsigned long flags;
320 	int tlabel;
321 
322 	/*
323 	 * Allocate tlabel from the bitmap and put the transaction on
324 	 * the list while holding the card spinlock.
325 	 */
326 
327 	spin_lock_irqsave(&card->lock, flags);
328 
329 	tlabel = allocate_tlabel(card);
330 	if (tlabel < 0) {
331 		spin_unlock_irqrestore(&card->lock, flags);
332 		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
333 		return;
334 	}
335 
336 	t->node_id = destination_id;
337 	t->tlabel = tlabel;
338 	t->card = card;
339 	setup_timer(&t->split_timeout_timer,
340 		    split_transaction_timeout_callback, (unsigned long)t);
341 	/* FIXME: start this timer later, relative to t->timestamp */
342 	mod_timer(&t->split_timeout_timer,
343 		  jiffies + card->split_timeout_jiffies);
344 	t->callback = callback;
345 	t->callback_data = callback_data;
346 
347 	fw_fill_request(&t->packet, tcode, t->tlabel,
348 			destination_id, card->node_id, generation,
349 			speed, offset, payload, length);
350 	t->packet.callback = transmit_complete_callback;
351 
352 	list_add_tail(&t->link, &card->transaction_list);
353 
354 	spin_unlock_irqrestore(&card->lock, flags);
355 
356 	card->driver->send_request(card, &t->packet);
357 }
358 EXPORT_SYMBOL(fw_send_request);
359 
360 struct transaction_callback_data {
361 	struct completion done;
362 	void *payload;
363 	int rcode;
364 };
365 
366 static void transaction_callback(struct fw_card *card, int rcode,
367 				 void *payload, size_t length, void *data)
368 {
369 	struct transaction_callback_data *d = data;
370 
371 	if (rcode == RCODE_COMPLETE)
372 		memcpy(d->payload, payload, length);
373 	d->rcode = rcode;
374 	complete(&d->done);
375 }
376 
377 /**
378  * fw_run_transaction - send request and sleep until transaction is completed
379  *
380  * Returns the RCODE.
381  */
382 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
383 		       int generation, int speed, unsigned long long offset,
384 		       void *payload, size_t length)
385 {
386 	struct transaction_callback_data d;
387 	struct fw_transaction t;
388 
389 	init_timer_on_stack(&t.split_timeout_timer);
390 	init_completion(&d.done);
391 	d.payload = payload;
392 	fw_send_request(card, &t, tcode, destination_id, generation, speed,
393 			offset, payload, length, transaction_callback, &d);
394 	wait_for_completion(&d.done);
395 	destroy_timer_on_stack(&t.split_timeout_timer);
396 
397 	return d.rcode;
398 }
399 EXPORT_SYMBOL(fw_run_transaction);
400 
401 static DEFINE_MUTEX(phy_config_mutex);
402 static DECLARE_COMPLETION(phy_config_done);
403 
404 static void transmit_phy_packet_callback(struct fw_packet *packet,
405 					 struct fw_card *card, int status)
406 {
407 	complete(&phy_config_done);
408 }
409 
410 static struct fw_packet phy_config_packet = {
411 	.header_length	= 8,
412 	.payload_length	= 0,
413 	.speed		= SCODE_100,
414 	.callback	= transmit_phy_packet_callback,
415 };
416 
417 void fw_send_phy_config(struct fw_card *card,
418 			int node_id, int generation, int gap_count)
419 {
420 	long timeout = DIV_ROUND_UP(HZ, 10);
421 	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG) |
422 		   PHY_CONFIG_ROOT_ID(node_id) |
423 		   PHY_CONFIG_GAP_COUNT(gap_count);
424 
425 	mutex_lock(&phy_config_mutex);
426 
427 	phy_config_packet.header[0] = data;
428 	phy_config_packet.header[1] = ~data;
429 	phy_config_packet.generation = generation;
430 	INIT_COMPLETION(phy_config_done);
431 
432 	card->driver->send_request(card, &phy_config_packet);
433 	wait_for_completion_timeout(&phy_config_done, timeout);
434 
435 	mutex_unlock(&phy_config_mutex);
436 }
437 
438 static struct fw_address_handler *lookup_overlapping_address_handler(
439 	struct list_head *list, unsigned long long offset, size_t length)
440 {
441 	struct fw_address_handler *handler;
442 
443 	list_for_each_entry(handler, list, link) {
444 		if (handler->offset < offset + length &&
445 		    offset < handler->offset + handler->length)
446 			return handler;
447 	}
448 
449 	return NULL;
450 }
451 
452 static bool is_enclosing_handler(struct fw_address_handler *handler,
453 				 unsigned long long offset, size_t length)
454 {
455 	return handler->offset <= offset &&
456 		offset + length <= handler->offset + handler->length;
457 }
458 
459 static struct fw_address_handler *lookup_enclosing_address_handler(
460 	struct list_head *list, unsigned long long offset, size_t length)
461 {
462 	struct fw_address_handler *handler;
463 
464 	list_for_each_entry(handler, list, link) {
465 		if (is_enclosing_handler(handler, offset, length))
466 			return handler;
467 	}
468 
469 	return NULL;
470 }
471 
472 static DEFINE_SPINLOCK(address_handler_lock);
473 static LIST_HEAD(address_handler_list);
474 
475 const struct fw_address_region fw_high_memory_region =
476 	{ .start = 0x000100000000ULL, .end = 0xffffe0000000ULL,  };
477 EXPORT_SYMBOL(fw_high_memory_region);
478 
479 #if 0
480 const struct fw_address_region fw_low_memory_region =
481 	{ .start = 0x000000000000ULL, .end = 0x000100000000ULL,  };
482 const struct fw_address_region fw_private_region =
483 	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
484 const struct fw_address_region fw_csr_region =
485 	{ .start = CSR_REGISTER_BASE,
486 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
487 const struct fw_address_region fw_unit_space_region =
488 	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
489 #endif  /*  0  */
490 
491 static bool is_in_fcp_region(u64 offset, size_t length)
492 {
493 	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
494 		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
495 }
496 
497 /**
498  * fw_core_add_address_handler - register for incoming requests
499  * @handler: callback
500  * @region: region in the IEEE 1212 node space address range
501  *
502  * region->start, ->end, and handler->length have to be quadlet-aligned.
503  *
504  * When a request is received that falls within the specified address range,
505  * the specified callback is invoked.  The parameters passed to the callback
506  * give the details of the particular request.
507  *
508  * Return value:  0 on success, non-zero otherwise.
509  *
510  * The start offset of the handler's address region is determined by
511  * fw_core_add_address_handler() and is returned in handler->offset.
512  *
513  * Address allocations are exclusive, except for the FCP registers.
514  */
515 int fw_core_add_address_handler(struct fw_address_handler *handler,
516 				const struct fw_address_region *region)
517 {
518 	struct fw_address_handler *other;
519 	unsigned long flags;
520 	int ret = -EBUSY;
521 
522 	if (region->start & 0xffff000000000003ULL ||
523 	    region->end   & 0xffff000000000003ULL ||
524 	    region->start >= region->end ||
525 	    handler->length & 3 ||
526 	    handler->length == 0)
527 		return -EINVAL;
528 
529 	spin_lock_irqsave(&address_handler_lock, flags);
530 
531 	handler->offset = region->start;
532 	while (handler->offset + handler->length <= region->end) {
533 		if (is_in_fcp_region(handler->offset, handler->length))
534 			other = NULL;
535 		else
536 			other = lookup_overlapping_address_handler
537 					(&address_handler_list,
538 					 handler->offset, handler->length);
539 		if (other != NULL) {
540 			handler->offset += other->length;
541 		} else {
542 			list_add_tail(&handler->link, &address_handler_list);
543 			ret = 0;
544 			break;
545 		}
546 	}
547 
548 	spin_unlock_irqrestore(&address_handler_lock, flags);
549 
550 	return ret;
551 }
552 EXPORT_SYMBOL(fw_core_add_address_handler);
553 
554 /**
555  * fw_core_remove_address_handler - unregister an address handler
556  */
557 void fw_core_remove_address_handler(struct fw_address_handler *handler)
558 {
559 	unsigned long flags;
560 
561 	spin_lock_irqsave(&address_handler_lock, flags);
562 	list_del(&handler->link);
563 	spin_unlock_irqrestore(&address_handler_lock, flags);
564 }
565 EXPORT_SYMBOL(fw_core_remove_address_handler);
566 
567 struct fw_request {
568 	struct fw_packet response;
569 	u32 request_header[4];
570 	int ack;
571 	u32 length;
572 	u32 data[0];
573 };
574 
575 static void free_response_callback(struct fw_packet *packet,
576 				   struct fw_card *card, int status)
577 {
578 	struct fw_request *request;
579 
580 	request = container_of(packet, struct fw_request, response);
581 	kfree(request);
582 }
583 
584 int fw_get_response_length(struct fw_request *r)
585 {
586 	int tcode, ext_tcode, data_length;
587 
588 	tcode = HEADER_GET_TCODE(r->request_header[0]);
589 
590 	switch (tcode) {
591 	case TCODE_WRITE_QUADLET_REQUEST:
592 	case TCODE_WRITE_BLOCK_REQUEST:
593 		return 0;
594 
595 	case TCODE_READ_QUADLET_REQUEST:
596 		return 4;
597 
598 	case TCODE_READ_BLOCK_REQUEST:
599 		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
600 		return data_length;
601 
602 	case TCODE_LOCK_REQUEST:
603 		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
604 		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
605 		switch (ext_tcode) {
606 		case EXTCODE_FETCH_ADD:
607 		case EXTCODE_LITTLE_ADD:
608 			return data_length;
609 		default:
610 			return data_length / 2;
611 		}
612 
613 	default:
614 		WARN(1, "wrong tcode %d", tcode);
615 		return 0;
616 	}
617 }
618 
619 void fw_fill_response(struct fw_packet *response, u32 *request_header,
620 		      int rcode, void *payload, size_t length)
621 {
622 	int tcode, tlabel, extended_tcode, source, destination;
623 
624 	tcode          = HEADER_GET_TCODE(request_header[0]);
625 	tlabel         = HEADER_GET_TLABEL(request_header[0]);
626 	source         = HEADER_GET_DESTINATION(request_header[0]);
627 	destination    = HEADER_GET_SOURCE(request_header[1]);
628 	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
629 
630 	response->header[0] =
631 		HEADER_RETRY(RETRY_1) |
632 		HEADER_TLABEL(tlabel) |
633 		HEADER_DESTINATION(destination);
634 	response->header[1] =
635 		HEADER_SOURCE(source) |
636 		HEADER_RCODE(rcode);
637 	response->header[2] = 0;
638 
639 	switch (tcode) {
640 	case TCODE_WRITE_QUADLET_REQUEST:
641 	case TCODE_WRITE_BLOCK_REQUEST:
642 		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
643 		response->header_length = 12;
644 		response->payload_length = 0;
645 		break;
646 
647 	case TCODE_READ_QUADLET_REQUEST:
648 		response->header[0] |=
649 			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
650 		if (payload != NULL)
651 			response->header[3] = *(u32 *)payload;
652 		else
653 			response->header[3] = 0;
654 		response->header_length = 16;
655 		response->payload_length = 0;
656 		break;
657 
658 	case TCODE_READ_BLOCK_REQUEST:
659 	case TCODE_LOCK_REQUEST:
660 		response->header[0] |= HEADER_TCODE(tcode + 2);
661 		response->header[3] =
662 			HEADER_DATA_LENGTH(length) |
663 			HEADER_EXTENDED_TCODE(extended_tcode);
664 		response->header_length = 16;
665 		response->payload = payload;
666 		response->payload_length = length;
667 		break;
668 
669 	default:
670 		WARN(1, "wrong tcode %d", tcode);
671 	}
672 
673 	response->payload_mapped = false;
674 }
675 EXPORT_SYMBOL(fw_fill_response);
676 
677 static u32 compute_split_timeout_timestamp(struct fw_card *card,
678 					   u32 request_timestamp)
679 {
680 	unsigned int cycles;
681 	u32 timestamp;
682 
683 	cycles = card->split_timeout_cycles;
684 	cycles += request_timestamp & 0x1fff;
685 
686 	timestamp = request_timestamp & ~0x1fff;
687 	timestamp += (cycles / 8000) << 13;
688 	timestamp |= cycles % 8000;
689 
690 	return timestamp;
691 }
692 
693 static struct fw_request *allocate_request(struct fw_card *card,
694 					   struct fw_packet *p)
695 {
696 	struct fw_request *request;
697 	u32 *data, length;
698 	int request_tcode;
699 
700 	request_tcode = HEADER_GET_TCODE(p->header[0]);
701 	switch (request_tcode) {
702 	case TCODE_WRITE_QUADLET_REQUEST:
703 		data = &p->header[3];
704 		length = 4;
705 		break;
706 
707 	case TCODE_WRITE_BLOCK_REQUEST:
708 	case TCODE_LOCK_REQUEST:
709 		data = p->payload;
710 		length = HEADER_GET_DATA_LENGTH(p->header[3]);
711 		break;
712 
713 	case TCODE_READ_QUADLET_REQUEST:
714 		data = NULL;
715 		length = 4;
716 		break;
717 
718 	case TCODE_READ_BLOCK_REQUEST:
719 		data = NULL;
720 		length = HEADER_GET_DATA_LENGTH(p->header[3]);
721 		break;
722 
723 	default:
724 		fw_error("ERROR - corrupt request received - %08x %08x %08x\n",
725 			 p->header[0], p->header[1], p->header[2]);
726 		return NULL;
727 	}
728 
729 	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
730 	if (request == NULL)
731 		return NULL;
732 
733 	request->response.speed = p->speed;
734 	request->response.timestamp =
735 			compute_split_timeout_timestamp(card, p->timestamp);
736 	request->response.generation = p->generation;
737 	request->response.ack = 0;
738 	request->response.callback = free_response_callback;
739 	request->ack = p->ack;
740 	request->length = length;
741 	if (data)
742 		memcpy(request->data, data, length);
743 
744 	memcpy(request->request_header, p->header, sizeof(p->header));
745 
746 	return request;
747 }
748 
749 void fw_send_response(struct fw_card *card,
750 		      struct fw_request *request, int rcode)
751 {
752 	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
753 		return;
754 
755 	/* unified transaction or broadcast transaction: don't respond */
756 	if (request->ack != ACK_PENDING ||
757 	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
758 		kfree(request);
759 		return;
760 	}
761 
762 	if (rcode == RCODE_COMPLETE)
763 		fw_fill_response(&request->response, request->request_header,
764 				 rcode, request->data,
765 				 fw_get_response_length(request));
766 	else
767 		fw_fill_response(&request->response, request->request_header,
768 				 rcode, NULL, 0);
769 
770 	card->driver->send_response(card, &request->response);
771 }
772 EXPORT_SYMBOL(fw_send_response);
773 
774 static void handle_exclusive_region_request(struct fw_card *card,
775 					    struct fw_packet *p,
776 					    struct fw_request *request,
777 					    unsigned long long offset)
778 {
779 	struct fw_address_handler *handler;
780 	unsigned long flags;
781 	int tcode, destination, source;
782 
783 	tcode       = HEADER_GET_TCODE(p->header[0]);
784 	destination = HEADER_GET_DESTINATION(p->header[0]);
785 	source      = HEADER_GET_SOURCE(p->header[1]);
786 
787 	spin_lock_irqsave(&address_handler_lock, flags);
788 	handler = lookup_enclosing_address_handler(&address_handler_list,
789 						   offset, request->length);
790 	spin_unlock_irqrestore(&address_handler_lock, flags);
791 
792 	/*
793 	 * FIXME: lookup the fw_node corresponding to the sender of
794 	 * this request and pass that to the address handler instead
795 	 * of the node ID.  We may also want to move the address
796 	 * allocations to fw_node so we only do this callback if the
797 	 * upper layers registered it for this node.
798 	 */
799 
800 	if (handler == NULL)
801 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
802 	else
803 		handler->address_callback(card, request,
804 					  tcode, destination, source,
805 					  p->generation, p->speed, offset,
806 					  request->data, request->length,
807 					  handler->callback_data);
808 }
809 
810 static void handle_fcp_region_request(struct fw_card *card,
811 				      struct fw_packet *p,
812 				      struct fw_request *request,
813 				      unsigned long long offset)
814 {
815 	struct fw_address_handler *handler;
816 	unsigned long flags;
817 	int tcode, destination, source;
818 
819 	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
820 	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
821 	    request->length > 0x200) {
822 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
823 
824 		return;
825 	}
826 
827 	tcode       = HEADER_GET_TCODE(p->header[0]);
828 	destination = HEADER_GET_DESTINATION(p->header[0]);
829 	source      = HEADER_GET_SOURCE(p->header[1]);
830 
831 	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
832 	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
833 		fw_send_response(card, request, RCODE_TYPE_ERROR);
834 
835 		return;
836 	}
837 
838 	spin_lock_irqsave(&address_handler_lock, flags);
839 	list_for_each_entry(handler, &address_handler_list, link) {
840 		if (is_enclosing_handler(handler, offset, request->length))
841 			handler->address_callback(card, NULL, tcode,
842 						  destination, source,
843 						  p->generation, p->speed,
844 						  offset, request->data,
845 						  request->length,
846 						  handler->callback_data);
847 	}
848 	spin_unlock_irqrestore(&address_handler_lock, flags);
849 
850 	fw_send_response(card, request, RCODE_COMPLETE);
851 }
852 
853 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
854 {
855 	struct fw_request *request;
856 	unsigned long long offset;
857 
858 	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
859 		return;
860 
861 	request = allocate_request(card, p);
862 	if (request == NULL) {
863 		/* FIXME: send statically allocated busy packet. */
864 		return;
865 	}
866 
867 	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
868 		p->header[2];
869 
870 	if (!is_in_fcp_region(offset, request->length))
871 		handle_exclusive_region_request(card, p, request, offset);
872 	else
873 		handle_fcp_region_request(card, p, request, offset);
874 
875 }
876 EXPORT_SYMBOL(fw_core_handle_request);
877 
878 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
879 {
880 	struct fw_transaction *t;
881 	unsigned long flags;
882 	u32 *data;
883 	size_t data_length;
884 	int tcode, tlabel, destination, source, rcode;
885 
886 	tcode       = HEADER_GET_TCODE(p->header[0]);
887 	tlabel      = HEADER_GET_TLABEL(p->header[0]);
888 	destination = HEADER_GET_DESTINATION(p->header[0]);
889 	source      = HEADER_GET_SOURCE(p->header[1]);
890 	rcode       = HEADER_GET_RCODE(p->header[1]);
891 
892 	spin_lock_irqsave(&card->lock, flags);
893 	list_for_each_entry(t, &card->transaction_list, link) {
894 		if (t->node_id == source && t->tlabel == tlabel) {
895 			list_del_init(&t->link);
896 			card->tlabel_mask &= ~(1ULL << t->tlabel);
897 			break;
898 		}
899 	}
900 	spin_unlock_irqrestore(&card->lock, flags);
901 
902 	if (&t->link == &card->transaction_list) {
903 		fw_notify("Unsolicited response (source %x, tlabel %x)\n",
904 			  source, tlabel);
905 		return;
906 	}
907 
908 	/*
909 	 * FIXME: sanity check packet, is length correct, does tcodes
910 	 * and addresses match.
911 	 */
912 
913 	switch (tcode) {
914 	case TCODE_READ_QUADLET_RESPONSE:
915 		data = (u32 *) &p->header[3];
916 		data_length = 4;
917 		break;
918 
919 	case TCODE_WRITE_RESPONSE:
920 		data = NULL;
921 		data_length = 0;
922 		break;
923 
924 	case TCODE_READ_BLOCK_RESPONSE:
925 	case TCODE_LOCK_RESPONSE:
926 		data = p->payload;
927 		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
928 		break;
929 
930 	default:
931 		/* Should never happen, this is just to shut up gcc. */
932 		data = NULL;
933 		data_length = 0;
934 		break;
935 	}
936 
937 	del_timer_sync(&t->split_timeout_timer);
938 
939 	/*
940 	 * The response handler may be executed while the request handler
941 	 * is still pending.  Cancel the request handler.
942 	 */
943 	card->driver->cancel_packet(card, &t->packet);
944 
945 	t->callback(card, rcode, data, data_length, t->callback_data);
946 }
947 EXPORT_SYMBOL(fw_core_handle_response);
948 
949 static const struct fw_address_region topology_map_region =
950 	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
951 	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
952 
953 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
954 		int tcode, int destination, int source, int generation,
955 		int speed, unsigned long long offset,
956 		void *payload, size_t length, void *callback_data)
957 {
958 	int start;
959 
960 	if (!TCODE_IS_READ_REQUEST(tcode)) {
961 		fw_send_response(card, request, RCODE_TYPE_ERROR);
962 		return;
963 	}
964 
965 	if ((offset & 3) > 0 || (length & 3) > 0) {
966 		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
967 		return;
968 	}
969 
970 	start = (offset - topology_map_region.start) / 4;
971 	memcpy(payload, &card->topology_map[start], length);
972 
973 	fw_send_response(card, request, RCODE_COMPLETE);
974 }
975 
976 static struct fw_address_handler topology_map = {
977 	.length			= 0x400,
978 	.address_callback	= handle_topology_map,
979 };
980 
981 static const struct fw_address_region registers_region =
982 	{ .start = CSR_REGISTER_BASE,
983 	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
984 
985 static u32 read_state_register(struct fw_card *card)
986 {
987 	/*
988 	 * Fixed bits (IEEE 1394-2008 8.3.2.2.1):
989 	 * Bits 0-1 (state) always read 00=running.
990 	 * Bits 2,3 (off, atn) are not implemented as per the spec.
991 	 * Bit 4 (elog) is not implemented because there is no error log.
992 	 * Bit 6 (dreq) cannot be set.  It is intended to "disable requests
993 	 *      from unreliable nodes"; however, IEEE 1212 states that devices
994 	 *      may "clear their own dreq bit when it has been improperly set".
995 	 *      Our implementation might be seen as an improperly extensive
996 	 *      interpretation of "improperly", but the 1212-2001 revision
997 	 *      dropped this bit altogether, so we're in the clear.  :o)
998 	 * Bit 7 (lost) always reads 0 because a power reset has never occurred
999 	 *      during normal operation.
1000 	 * Bit 9 (linkoff) is not implemented because the PC is not powered
1001 	 *      from the FireWire cable.
1002 	 * Bit 15 (gone) always reads 0.  It must be set at a power/command/bus
1003 	 *      reset, but then cleared when the units are ready again, which
1004 	 *      happens immediately for us.
1005 	 */
1006 	return 0;
1007 }
1008 
1009 static void update_split_timeout(struct fw_card *card)
1010 {
1011 	unsigned int cycles;
1012 
1013 	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1014 
1015 	cycles = max(cycles, 800u); /* minimum as per the spec */
1016 	cycles = min(cycles, 3u * 8000u); /* maximum OHCI timeout */
1017 
1018 	card->split_timeout_cycles = cycles;
1019 	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1020 }
1021 
1022 static void handle_registers(struct fw_card *card, struct fw_request *request,
1023 		int tcode, int destination, int source, int generation,
1024 		int speed, unsigned long long offset,
1025 		void *payload, size_t length, void *callback_data)
1026 {
1027 	int reg = offset & ~CSR_REGISTER_BASE;
1028 	__be32 *data = payload;
1029 	int rcode = RCODE_COMPLETE;
1030 	unsigned long flags;
1031 
1032 	switch (reg) {
1033 	case CSR_STATE_CLEAR:
1034 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1035 			*data = cpu_to_be32(read_state_register(card));
1036 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1037 		} else {
1038 			rcode = RCODE_TYPE_ERROR;
1039 		}
1040 		break;
1041 
1042 	case CSR_STATE_SET:
1043 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1044 			*data = cpu_to_be32(read_state_register(card));
1045 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1046 			/* FIXME: implement cmstr */
1047 			/* FIXME: implement abdicate */
1048 		} else {
1049 			rcode = RCODE_TYPE_ERROR;
1050 		}
1051 		break;
1052 
1053 	case CSR_NODE_IDS:
1054 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1055 			*data = cpu_to_be32(card->driver->
1056 					read_csr_reg(card, CSR_NODE_IDS));
1057 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1058 			card->driver->write_csr_reg(card, CSR_NODE_IDS,
1059 						    be32_to_cpu(*data));
1060 		else
1061 			rcode = RCODE_TYPE_ERROR;
1062 		break;
1063 
1064 	case CSR_RESET_START:
1065 		if (tcode != TCODE_WRITE_QUADLET_REQUEST)
1066 			rcode = RCODE_TYPE_ERROR;
1067 		break;
1068 
1069 	case CSR_SPLIT_TIMEOUT_HI:
1070 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1071 			*data = cpu_to_be32(card->split_timeout_hi);
1072 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1073 			spin_lock_irqsave(&card->lock, flags);
1074 			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1075 			update_split_timeout(card);
1076 			spin_unlock_irqrestore(&card->lock, flags);
1077 		} else {
1078 			rcode = RCODE_TYPE_ERROR;
1079 		}
1080 		break;
1081 
1082 	case CSR_SPLIT_TIMEOUT_LO:
1083 		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1084 			*data = cpu_to_be32(card->split_timeout_lo);
1085 		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1086 			spin_lock_irqsave(&card->lock, flags);
1087 			card->split_timeout_lo =
1088 					be32_to_cpu(*data) & 0xfff80000;
1089 			update_split_timeout(card);
1090 			spin_unlock_irqrestore(&card->lock, flags);
1091 		} else {
1092 			rcode = RCODE_TYPE_ERROR;
1093 		}
1094 		break;
1095 
1096 	case CSR_CYCLE_TIME:
1097 		if (TCODE_IS_READ_REQUEST(tcode) && length == 4)
1098 			*data = cpu_to_be32(card->driver->
1099 					read_csr_reg(card, CSR_CYCLE_TIME));
1100 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1101 			card->driver->write_csr_reg(card, CSR_CYCLE_TIME,
1102 						    be32_to_cpu(*data));
1103 		else
1104 			rcode = RCODE_TYPE_ERROR;
1105 		break;
1106 
1107 	case CSR_BROADCAST_CHANNEL:
1108 		if (tcode == TCODE_READ_QUADLET_REQUEST)
1109 			*data = cpu_to_be32(card->broadcast_channel);
1110 		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1111 			card->broadcast_channel =
1112 			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1113 			    BROADCAST_CHANNEL_INITIAL;
1114 		else
1115 			rcode = RCODE_TYPE_ERROR;
1116 		break;
1117 
1118 	case CSR_BUS_MANAGER_ID:
1119 	case CSR_BANDWIDTH_AVAILABLE:
1120 	case CSR_CHANNELS_AVAILABLE_HI:
1121 	case CSR_CHANNELS_AVAILABLE_LO:
1122 		/*
1123 		 * FIXME: these are handled by the OHCI hardware and
1124 		 * the stack never sees these request. If we add
1125 		 * support for a new type of controller that doesn't
1126 		 * handle this in hardware we need to deal with these
1127 		 * transactions.
1128 		 */
1129 		BUG();
1130 		break;
1131 
1132 	case CSR_BUSY_TIMEOUT:
1133 		/* FIXME: Implement this. */
1134 
1135 	case CSR_BUS_TIME:
1136 		/* Useless without initialization by the bus manager. */
1137 
1138 	default:
1139 		rcode = RCODE_ADDRESS_ERROR;
1140 		break;
1141 	}
1142 
1143 	fw_send_response(card, request, rcode);
1144 }
1145 
1146 static struct fw_address_handler registers = {
1147 	.length			= 0x400,
1148 	.address_callback	= handle_registers,
1149 };
1150 
1151 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1152 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1153 MODULE_LICENSE("GPL");
1154 
1155 static const u32 vendor_textual_descriptor[] = {
1156 	/* textual descriptor leaf () */
1157 	0x00060000,
1158 	0x00000000,
1159 	0x00000000,
1160 	0x4c696e75,		/* L i n u */
1161 	0x78204669,		/* x   F i */
1162 	0x72657769,		/* r e w i */
1163 	0x72650000,		/* r e     */
1164 };
1165 
1166 static const u32 model_textual_descriptor[] = {
1167 	/* model descriptor leaf () */
1168 	0x00030000,
1169 	0x00000000,
1170 	0x00000000,
1171 	0x4a756a75,		/* J u j u */
1172 };
1173 
1174 static struct fw_descriptor vendor_id_descriptor = {
1175 	.length = ARRAY_SIZE(vendor_textual_descriptor),
1176 	.immediate = 0x03d00d1e,
1177 	.key = 0x81000000,
1178 	.data = vendor_textual_descriptor,
1179 };
1180 
1181 static struct fw_descriptor model_id_descriptor = {
1182 	.length = ARRAY_SIZE(model_textual_descriptor),
1183 	.immediate = 0x17000001,
1184 	.key = 0x81000000,
1185 	.data = model_textual_descriptor,
1186 };
1187 
1188 static int __init fw_core_init(void)
1189 {
1190 	int ret;
1191 
1192 	ret = bus_register(&fw_bus_type);
1193 	if (ret < 0)
1194 		return ret;
1195 
1196 	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1197 	if (fw_cdev_major < 0) {
1198 		bus_unregister(&fw_bus_type);
1199 		return fw_cdev_major;
1200 	}
1201 
1202 	fw_core_add_address_handler(&topology_map, &topology_map_region);
1203 	fw_core_add_address_handler(&registers, &registers_region);
1204 	fw_core_add_descriptor(&vendor_id_descriptor);
1205 	fw_core_add_descriptor(&model_id_descriptor);
1206 
1207 	return 0;
1208 }
1209 
1210 static void __exit fw_core_cleanup(void)
1211 {
1212 	unregister_chrdev(fw_cdev_major, "firewire");
1213 	bus_unregister(&fw_bus_type);
1214 	idr_destroy(&fw_device_idr);
1215 }
1216 
1217 module_init(fw_core_init);
1218 module_exit(fw_core_cleanup);
1219