1 /* 2 * Core IEEE1394 transaction logic 3 * 4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 #include <linux/bug.h> 22 #include <linux/completion.h> 23 #include <linux/device.h> 24 #include <linux/errno.h> 25 #include <linux/firewire.h> 26 #include <linux/firewire-constants.h> 27 #include <linux/fs.h> 28 #include <linux/init.h> 29 #include <linux/idr.h> 30 #include <linux/jiffies.h> 31 #include <linux/kernel.h> 32 #include <linux/list.h> 33 #include <linux/module.h> 34 #include <linux/slab.h> 35 #include <linux/spinlock.h> 36 #include <linux/string.h> 37 #include <linux/timer.h> 38 #include <linux/types.h> 39 #include <linux/workqueue.h> 40 41 #include <asm/byteorder.h> 42 43 #include "core.h" 44 45 #define HEADER_PRI(pri) ((pri) << 0) 46 #define HEADER_TCODE(tcode) ((tcode) << 4) 47 #define HEADER_RETRY(retry) ((retry) << 8) 48 #define HEADER_TLABEL(tlabel) ((tlabel) << 10) 49 #define HEADER_DESTINATION(destination) ((destination) << 16) 50 #define HEADER_SOURCE(source) ((source) << 16) 51 #define HEADER_RCODE(rcode) ((rcode) << 12) 52 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0) 53 #define HEADER_DATA_LENGTH(length) ((length) << 16) 54 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0) 55 56 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f) 57 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f) 58 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f) 59 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff) 60 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff) 61 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff) 62 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff) 63 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff) 64 65 #define HEADER_DESTINATION_IS_BROADCAST(q) \ 66 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f)) 67 68 #define PHY_PACKET_CONFIG 0x0 69 #define PHY_PACKET_LINK_ON 0x1 70 #define PHY_PACKET_SELF_ID 0x2 71 72 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22)) 73 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23)) 74 #define PHY_IDENTIFIER(id) ((id) << 30) 75 76 /* returns 0 if the split timeout handler is already running */ 77 static int try_cancel_split_timeout(struct fw_transaction *t) 78 { 79 if (t->is_split_transaction) 80 return del_timer(&t->split_timeout_timer); 81 else 82 return 1; 83 } 84 85 static int close_transaction(struct fw_transaction *transaction, 86 struct fw_card *card, int rcode) 87 { 88 struct fw_transaction *t; 89 unsigned long flags; 90 91 spin_lock_irqsave(&card->lock, flags); 92 list_for_each_entry(t, &card->transaction_list, link) { 93 if (t == transaction) { 94 if (!try_cancel_split_timeout(t)) { 95 spin_unlock_irqrestore(&card->lock, flags); 96 goto timed_out; 97 } 98 list_del_init(&t->link); 99 card->tlabel_mask &= ~(1ULL << t->tlabel); 100 break; 101 } 102 } 103 spin_unlock_irqrestore(&card->lock, flags); 104 105 if (&t->link != &card->transaction_list) { 106 t->callback(card, rcode, NULL, 0, t->callback_data); 107 return 0; 108 } 109 110 timed_out: 111 return -ENOENT; 112 } 113 114 /* 115 * Only valid for transactions that are potentially pending (ie have 116 * been sent). 117 */ 118 int fw_cancel_transaction(struct fw_card *card, 119 struct fw_transaction *transaction) 120 { 121 /* 122 * Cancel the packet transmission if it's still queued. That 123 * will call the packet transmission callback which cancels 124 * the transaction. 125 */ 126 127 if (card->driver->cancel_packet(card, &transaction->packet) == 0) 128 return 0; 129 130 /* 131 * If the request packet has already been sent, we need to see 132 * if the transaction is still pending and remove it in that case. 133 */ 134 135 return close_transaction(transaction, card, RCODE_CANCELLED); 136 } 137 EXPORT_SYMBOL(fw_cancel_transaction); 138 139 static void split_transaction_timeout_callback(unsigned long data) 140 { 141 struct fw_transaction *t = (struct fw_transaction *)data; 142 struct fw_card *card = t->card; 143 unsigned long flags; 144 145 spin_lock_irqsave(&card->lock, flags); 146 if (list_empty(&t->link)) { 147 spin_unlock_irqrestore(&card->lock, flags); 148 return; 149 } 150 list_del(&t->link); 151 card->tlabel_mask &= ~(1ULL << t->tlabel); 152 spin_unlock_irqrestore(&card->lock, flags); 153 154 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data); 155 } 156 157 static void start_split_transaction_timeout(struct fw_transaction *t, 158 struct fw_card *card) 159 { 160 unsigned long flags; 161 162 spin_lock_irqsave(&card->lock, flags); 163 164 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) { 165 spin_unlock_irqrestore(&card->lock, flags); 166 return; 167 } 168 169 t->is_split_transaction = true; 170 mod_timer(&t->split_timeout_timer, 171 jiffies + card->split_timeout_jiffies); 172 173 spin_unlock_irqrestore(&card->lock, flags); 174 } 175 176 static void transmit_complete_callback(struct fw_packet *packet, 177 struct fw_card *card, int status) 178 { 179 struct fw_transaction *t = 180 container_of(packet, struct fw_transaction, packet); 181 182 switch (status) { 183 case ACK_COMPLETE: 184 close_transaction(t, card, RCODE_COMPLETE); 185 break; 186 case ACK_PENDING: 187 start_split_transaction_timeout(t, card); 188 break; 189 case ACK_BUSY_X: 190 case ACK_BUSY_A: 191 case ACK_BUSY_B: 192 close_transaction(t, card, RCODE_BUSY); 193 break; 194 case ACK_DATA_ERROR: 195 close_transaction(t, card, RCODE_DATA_ERROR); 196 break; 197 case ACK_TYPE_ERROR: 198 close_transaction(t, card, RCODE_TYPE_ERROR); 199 break; 200 default: 201 /* 202 * In this case the ack is really a juju specific 203 * rcode, so just forward that to the callback. 204 */ 205 close_transaction(t, card, status); 206 break; 207 } 208 } 209 210 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel, 211 int destination_id, int source_id, int generation, int speed, 212 unsigned long long offset, void *payload, size_t length) 213 { 214 int ext_tcode; 215 216 if (tcode == TCODE_STREAM_DATA) { 217 packet->header[0] = 218 HEADER_DATA_LENGTH(length) | 219 destination_id | 220 HEADER_TCODE(TCODE_STREAM_DATA); 221 packet->header_length = 4; 222 packet->payload = payload; 223 packet->payload_length = length; 224 225 goto common; 226 } 227 228 if (tcode > 0x10) { 229 ext_tcode = tcode & ~0x10; 230 tcode = TCODE_LOCK_REQUEST; 231 } else 232 ext_tcode = 0; 233 234 packet->header[0] = 235 HEADER_RETRY(RETRY_X) | 236 HEADER_TLABEL(tlabel) | 237 HEADER_TCODE(tcode) | 238 HEADER_DESTINATION(destination_id); 239 packet->header[1] = 240 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id); 241 packet->header[2] = 242 offset; 243 244 switch (tcode) { 245 case TCODE_WRITE_QUADLET_REQUEST: 246 packet->header[3] = *(u32 *)payload; 247 packet->header_length = 16; 248 packet->payload_length = 0; 249 break; 250 251 case TCODE_LOCK_REQUEST: 252 case TCODE_WRITE_BLOCK_REQUEST: 253 packet->header[3] = 254 HEADER_DATA_LENGTH(length) | 255 HEADER_EXTENDED_TCODE(ext_tcode); 256 packet->header_length = 16; 257 packet->payload = payload; 258 packet->payload_length = length; 259 break; 260 261 case TCODE_READ_QUADLET_REQUEST: 262 packet->header_length = 12; 263 packet->payload_length = 0; 264 break; 265 266 case TCODE_READ_BLOCK_REQUEST: 267 packet->header[3] = 268 HEADER_DATA_LENGTH(length) | 269 HEADER_EXTENDED_TCODE(ext_tcode); 270 packet->header_length = 16; 271 packet->payload_length = 0; 272 break; 273 274 default: 275 WARN(1, "wrong tcode %d\n", tcode); 276 } 277 common: 278 packet->speed = speed; 279 packet->generation = generation; 280 packet->ack = 0; 281 packet->payload_mapped = false; 282 } 283 284 static int allocate_tlabel(struct fw_card *card) 285 { 286 int tlabel; 287 288 tlabel = card->current_tlabel; 289 while (card->tlabel_mask & (1ULL << tlabel)) { 290 tlabel = (tlabel + 1) & 0x3f; 291 if (tlabel == card->current_tlabel) 292 return -EBUSY; 293 } 294 295 card->current_tlabel = (tlabel + 1) & 0x3f; 296 card->tlabel_mask |= 1ULL << tlabel; 297 298 return tlabel; 299 } 300 301 /** 302 * fw_send_request() - submit a request packet for transmission 303 * @card: interface to send the request at 304 * @t: transaction instance to which the request belongs 305 * @tcode: transaction code 306 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 307 * @generation: bus generation in which request and response are valid 308 * @speed: transmission speed 309 * @offset: 48bit wide offset into destination's address space 310 * @payload: data payload for the request subaction 311 * @length: length of the payload, in bytes 312 * @callback: function to be called when the transaction is completed 313 * @callback_data: data to be passed to the transaction completion callback 314 * 315 * Submit a request packet into the asynchronous request transmission queue. 316 * Can be called from atomic context. If you prefer a blocking API, use 317 * fw_run_transaction() in a context that can sleep. 318 * 319 * In case of lock requests, specify one of the firewire-core specific %TCODE_ 320 * constants instead of %TCODE_LOCK_REQUEST in @tcode. 321 * 322 * Make sure that the value in @destination_id is not older than the one in 323 * @generation. Otherwise the request is in danger to be sent to a wrong node. 324 * 325 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller 326 * needs to synthesize @destination_id with fw_stream_packet_destination_id(). 327 * It will contain tag, channel, and sy data instead of a node ID then. 328 * 329 * The payload buffer at @data is going to be DMA-mapped except in case of 330 * @length <= 8 or of local (loopback) requests. Hence make sure that the 331 * buffer complies with the restrictions of the streaming DMA mapping API. 332 * @payload must not be freed before the @callback is called. 333 * 334 * In case of request types without payload, @data is NULL and @length is 0. 335 * 336 * After the transaction is completed successfully or unsuccessfully, the 337 * @callback will be called. Among its parameters is the response code which 338 * is either one of the rcodes per IEEE 1394 or, in case of internal errors, 339 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core 340 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION, 341 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request 342 * generation, or missing ACK respectively. 343 * 344 * Note some timing corner cases: fw_send_request() may complete much earlier 345 * than when the request packet actually hits the wire. On the other hand, 346 * transaction completion and hence execution of @callback may happen even 347 * before fw_send_request() returns. 348 */ 349 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, 350 int destination_id, int generation, int speed, 351 unsigned long long offset, void *payload, size_t length, 352 fw_transaction_callback_t callback, void *callback_data) 353 { 354 unsigned long flags; 355 int tlabel; 356 357 /* 358 * Allocate tlabel from the bitmap and put the transaction on 359 * the list while holding the card spinlock. 360 */ 361 362 spin_lock_irqsave(&card->lock, flags); 363 364 tlabel = allocate_tlabel(card); 365 if (tlabel < 0) { 366 spin_unlock_irqrestore(&card->lock, flags); 367 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data); 368 return; 369 } 370 371 t->node_id = destination_id; 372 t->tlabel = tlabel; 373 t->card = card; 374 t->is_split_transaction = false; 375 setup_timer(&t->split_timeout_timer, 376 split_transaction_timeout_callback, (unsigned long)t); 377 t->callback = callback; 378 t->callback_data = callback_data; 379 380 fw_fill_request(&t->packet, tcode, t->tlabel, 381 destination_id, card->node_id, generation, 382 speed, offset, payload, length); 383 t->packet.callback = transmit_complete_callback; 384 385 list_add_tail(&t->link, &card->transaction_list); 386 387 spin_unlock_irqrestore(&card->lock, flags); 388 389 card->driver->send_request(card, &t->packet); 390 } 391 EXPORT_SYMBOL(fw_send_request); 392 393 struct transaction_callback_data { 394 struct completion done; 395 void *payload; 396 int rcode; 397 }; 398 399 static void transaction_callback(struct fw_card *card, int rcode, 400 void *payload, size_t length, void *data) 401 { 402 struct transaction_callback_data *d = data; 403 404 if (rcode == RCODE_COMPLETE) 405 memcpy(d->payload, payload, length); 406 d->rcode = rcode; 407 complete(&d->done); 408 } 409 410 /** 411 * fw_run_transaction() - send request and sleep until transaction is completed 412 * 413 * Returns the RCODE. See fw_send_request() for parameter documentation. 414 * Unlike fw_send_request(), @data points to the payload of the request or/and 415 * to the payload of the response. DMA mapping restrictions apply to outbound 416 * request payloads of >= 8 bytes but not to inbound response payloads. 417 */ 418 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, 419 int generation, int speed, unsigned long long offset, 420 void *payload, size_t length) 421 { 422 struct transaction_callback_data d; 423 struct fw_transaction t; 424 425 init_timer_on_stack(&t.split_timeout_timer); 426 init_completion(&d.done); 427 d.payload = payload; 428 fw_send_request(card, &t, tcode, destination_id, generation, speed, 429 offset, payload, length, transaction_callback, &d); 430 wait_for_completion(&d.done); 431 destroy_timer_on_stack(&t.split_timeout_timer); 432 433 return d.rcode; 434 } 435 EXPORT_SYMBOL(fw_run_transaction); 436 437 static DEFINE_MUTEX(phy_config_mutex); 438 static DECLARE_COMPLETION(phy_config_done); 439 440 static void transmit_phy_packet_callback(struct fw_packet *packet, 441 struct fw_card *card, int status) 442 { 443 complete(&phy_config_done); 444 } 445 446 static struct fw_packet phy_config_packet = { 447 .header_length = 12, 448 .header[0] = TCODE_LINK_INTERNAL << 4, 449 .payload_length = 0, 450 .speed = SCODE_100, 451 .callback = transmit_phy_packet_callback, 452 }; 453 454 void fw_send_phy_config(struct fw_card *card, 455 int node_id, int generation, int gap_count) 456 { 457 long timeout = DIV_ROUND_UP(HZ, 10); 458 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG); 459 460 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) 461 data |= PHY_CONFIG_ROOT_ID(node_id); 462 463 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) { 464 gap_count = card->driver->read_phy_reg(card, 1); 465 if (gap_count < 0) 466 return; 467 468 gap_count &= 63; 469 if (gap_count == 63) 470 return; 471 } 472 data |= PHY_CONFIG_GAP_COUNT(gap_count); 473 474 mutex_lock(&phy_config_mutex); 475 476 phy_config_packet.header[1] = data; 477 phy_config_packet.header[2] = ~data; 478 phy_config_packet.generation = generation; 479 INIT_COMPLETION(phy_config_done); 480 481 card->driver->send_request(card, &phy_config_packet); 482 wait_for_completion_timeout(&phy_config_done, timeout); 483 484 mutex_unlock(&phy_config_mutex); 485 } 486 487 static struct fw_address_handler *lookup_overlapping_address_handler( 488 struct list_head *list, unsigned long long offset, size_t length) 489 { 490 struct fw_address_handler *handler; 491 492 list_for_each_entry(handler, list, link) { 493 if (handler->offset < offset + length && 494 offset < handler->offset + handler->length) 495 return handler; 496 } 497 498 return NULL; 499 } 500 501 static bool is_enclosing_handler(struct fw_address_handler *handler, 502 unsigned long long offset, size_t length) 503 { 504 return handler->offset <= offset && 505 offset + length <= handler->offset + handler->length; 506 } 507 508 static struct fw_address_handler *lookup_enclosing_address_handler( 509 struct list_head *list, unsigned long long offset, size_t length) 510 { 511 struct fw_address_handler *handler; 512 513 list_for_each_entry(handler, list, link) { 514 if (is_enclosing_handler(handler, offset, length)) 515 return handler; 516 } 517 518 return NULL; 519 } 520 521 static DEFINE_SPINLOCK(address_handler_lock); 522 static LIST_HEAD(address_handler_list); 523 524 const struct fw_address_region fw_high_memory_region = 525 { .start = 0x000100000000ULL, .end = 0xffffe0000000ULL, }; 526 EXPORT_SYMBOL(fw_high_memory_region); 527 528 #if 0 529 const struct fw_address_region fw_low_memory_region = 530 { .start = 0x000000000000ULL, .end = 0x000100000000ULL, }; 531 const struct fw_address_region fw_private_region = 532 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, }; 533 const struct fw_address_region fw_csr_region = 534 { .start = CSR_REGISTER_BASE, 535 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, }; 536 const struct fw_address_region fw_unit_space_region = 537 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, }; 538 #endif /* 0 */ 539 540 static bool is_in_fcp_region(u64 offset, size_t length) 541 { 542 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 543 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END); 544 } 545 546 /** 547 * fw_core_add_address_handler() - register for incoming requests 548 * @handler: callback 549 * @region: region in the IEEE 1212 node space address range 550 * 551 * region->start, ->end, and handler->length have to be quadlet-aligned. 552 * 553 * When a request is received that falls within the specified address range, 554 * the specified callback is invoked. The parameters passed to the callback 555 * give the details of the particular request. 556 * 557 * Return value: 0 on success, non-zero otherwise. 558 * 559 * The start offset of the handler's address region is determined by 560 * fw_core_add_address_handler() and is returned in handler->offset. 561 * 562 * Address allocations are exclusive, except for the FCP registers. 563 */ 564 int fw_core_add_address_handler(struct fw_address_handler *handler, 565 const struct fw_address_region *region) 566 { 567 struct fw_address_handler *other; 568 unsigned long flags; 569 int ret = -EBUSY; 570 571 if (region->start & 0xffff000000000003ULL || 572 region->start >= region->end || 573 region->end > 0x0001000000000000ULL || 574 handler->length & 3 || 575 handler->length == 0) 576 return -EINVAL; 577 578 spin_lock_irqsave(&address_handler_lock, flags); 579 580 handler->offset = region->start; 581 while (handler->offset + handler->length <= region->end) { 582 if (is_in_fcp_region(handler->offset, handler->length)) 583 other = NULL; 584 else 585 other = lookup_overlapping_address_handler 586 (&address_handler_list, 587 handler->offset, handler->length); 588 if (other != NULL) { 589 handler->offset += other->length; 590 } else { 591 list_add_tail(&handler->link, &address_handler_list); 592 ret = 0; 593 break; 594 } 595 } 596 597 spin_unlock_irqrestore(&address_handler_lock, flags); 598 599 return ret; 600 } 601 EXPORT_SYMBOL(fw_core_add_address_handler); 602 603 /** 604 * fw_core_remove_address_handler() - unregister an address handler 605 */ 606 void fw_core_remove_address_handler(struct fw_address_handler *handler) 607 { 608 unsigned long flags; 609 610 spin_lock_irqsave(&address_handler_lock, flags); 611 list_del(&handler->link); 612 spin_unlock_irqrestore(&address_handler_lock, flags); 613 } 614 EXPORT_SYMBOL(fw_core_remove_address_handler); 615 616 struct fw_request { 617 struct fw_packet response; 618 u32 request_header[4]; 619 int ack; 620 u32 length; 621 u32 data[0]; 622 }; 623 624 static void free_response_callback(struct fw_packet *packet, 625 struct fw_card *card, int status) 626 { 627 struct fw_request *request; 628 629 request = container_of(packet, struct fw_request, response); 630 kfree(request); 631 } 632 633 int fw_get_response_length(struct fw_request *r) 634 { 635 int tcode, ext_tcode, data_length; 636 637 tcode = HEADER_GET_TCODE(r->request_header[0]); 638 639 switch (tcode) { 640 case TCODE_WRITE_QUADLET_REQUEST: 641 case TCODE_WRITE_BLOCK_REQUEST: 642 return 0; 643 644 case TCODE_READ_QUADLET_REQUEST: 645 return 4; 646 647 case TCODE_READ_BLOCK_REQUEST: 648 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); 649 return data_length; 650 651 case TCODE_LOCK_REQUEST: 652 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]); 653 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); 654 switch (ext_tcode) { 655 case EXTCODE_FETCH_ADD: 656 case EXTCODE_LITTLE_ADD: 657 return data_length; 658 default: 659 return data_length / 2; 660 } 661 662 default: 663 WARN(1, "wrong tcode %d\n", tcode); 664 return 0; 665 } 666 } 667 668 void fw_fill_response(struct fw_packet *response, u32 *request_header, 669 int rcode, void *payload, size_t length) 670 { 671 int tcode, tlabel, extended_tcode, source, destination; 672 673 tcode = HEADER_GET_TCODE(request_header[0]); 674 tlabel = HEADER_GET_TLABEL(request_header[0]); 675 source = HEADER_GET_DESTINATION(request_header[0]); 676 destination = HEADER_GET_SOURCE(request_header[1]); 677 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]); 678 679 response->header[0] = 680 HEADER_RETRY(RETRY_1) | 681 HEADER_TLABEL(tlabel) | 682 HEADER_DESTINATION(destination); 683 response->header[1] = 684 HEADER_SOURCE(source) | 685 HEADER_RCODE(rcode); 686 response->header[2] = 0; 687 688 switch (tcode) { 689 case TCODE_WRITE_QUADLET_REQUEST: 690 case TCODE_WRITE_BLOCK_REQUEST: 691 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE); 692 response->header_length = 12; 693 response->payload_length = 0; 694 break; 695 696 case TCODE_READ_QUADLET_REQUEST: 697 response->header[0] |= 698 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE); 699 if (payload != NULL) 700 response->header[3] = *(u32 *)payload; 701 else 702 response->header[3] = 0; 703 response->header_length = 16; 704 response->payload_length = 0; 705 break; 706 707 case TCODE_READ_BLOCK_REQUEST: 708 case TCODE_LOCK_REQUEST: 709 response->header[0] |= HEADER_TCODE(tcode + 2); 710 response->header[3] = 711 HEADER_DATA_LENGTH(length) | 712 HEADER_EXTENDED_TCODE(extended_tcode); 713 response->header_length = 16; 714 response->payload = payload; 715 response->payload_length = length; 716 break; 717 718 default: 719 WARN(1, "wrong tcode %d\n", tcode); 720 } 721 722 response->payload_mapped = false; 723 } 724 EXPORT_SYMBOL(fw_fill_response); 725 726 static u32 compute_split_timeout_timestamp(struct fw_card *card, 727 u32 request_timestamp) 728 { 729 unsigned int cycles; 730 u32 timestamp; 731 732 cycles = card->split_timeout_cycles; 733 cycles += request_timestamp & 0x1fff; 734 735 timestamp = request_timestamp & ~0x1fff; 736 timestamp += (cycles / 8000) << 13; 737 timestamp |= cycles % 8000; 738 739 return timestamp; 740 } 741 742 static struct fw_request *allocate_request(struct fw_card *card, 743 struct fw_packet *p) 744 { 745 struct fw_request *request; 746 u32 *data, length; 747 int request_tcode; 748 749 request_tcode = HEADER_GET_TCODE(p->header[0]); 750 switch (request_tcode) { 751 case TCODE_WRITE_QUADLET_REQUEST: 752 data = &p->header[3]; 753 length = 4; 754 break; 755 756 case TCODE_WRITE_BLOCK_REQUEST: 757 case TCODE_LOCK_REQUEST: 758 data = p->payload; 759 length = HEADER_GET_DATA_LENGTH(p->header[3]); 760 break; 761 762 case TCODE_READ_QUADLET_REQUEST: 763 data = NULL; 764 length = 4; 765 break; 766 767 case TCODE_READ_BLOCK_REQUEST: 768 data = NULL; 769 length = HEADER_GET_DATA_LENGTH(p->header[3]); 770 break; 771 772 default: 773 fw_error("ERROR - corrupt request received - %08x %08x %08x\n", 774 p->header[0], p->header[1], p->header[2]); 775 return NULL; 776 } 777 778 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC); 779 if (request == NULL) 780 return NULL; 781 782 request->response.speed = p->speed; 783 request->response.timestamp = 784 compute_split_timeout_timestamp(card, p->timestamp); 785 request->response.generation = p->generation; 786 request->response.ack = 0; 787 request->response.callback = free_response_callback; 788 request->ack = p->ack; 789 request->length = length; 790 if (data) 791 memcpy(request->data, data, length); 792 793 memcpy(request->request_header, p->header, sizeof(p->header)); 794 795 return request; 796 } 797 798 void fw_send_response(struct fw_card *card, 799 struct fw_request *request, int rcode) 800 { 801 if (WARN_ONCE(!request, "invalid for FCP address handlers")) 802 return; 803 804 /* unified transaction or broadcast transaction: don't respond */ 805 if (request->ack != ACK_PENDING || 806 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) { 807 kfree(request); 808 return; 809 } 810 811 if (rcode == RCODE_COMPLETE) 812 fw_fill_response(&request->response, request->request_header, 813 rcode, request->data, 814 fw_get_response_length(request)); 815 else 816 fw_fill_response(&request->response, request->request_header, 817 rcode, NULL, 0); 818 819 card->driver->send_response(card, &request->response); 820 } 821 EXPORT_SYMBOL(fw_send_response); 822 823 static void handle_exclusive_region_request(struct fw_card *card, 824 struct fw_packet *p, 825 struct fw_request *request, 826 unsigned long long offset) 827 { 828 struct fw_address_handler *handler; 829 unsigned long flags; 830 int tcode, destination, source; 831 832 destination = HEADER_GET_DESTINATION(p->header[0]); 833 source = HEADER_GET_SOURCE(p->header[1]); 834 tcode = HEADER_GET_TCODE(p->header[0]); 835 if (tcode == TCODE_LOCK_REQUEST) 836 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]); 837 838 spin_lock_irqsave(&address_handler_lock, flags); 839 handler = lookup_enclosing_address_handler(&address_handler_list, 840 offset, request->length); 841 spin_unlock_irqrestore(&address_handler_lock, flags); 842 843 /* 844 * FIXME: lookup the fw_node corresponding to the sender of 845 * this request and pass that to the address handler instead 846 * of the node ID. We may also want to move the address 847 * allocations to fw_node so we only do this callback if the 848 * upper layers registered it for this node. 849 */ 850 851 if (handler == NULL) 852 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 853 else 854 handler->address_callback(card, request, 855 tcode, destination, source, 856 p->generation, offset, 857 request->data, request->length, 858 handler->callback_data); 859 } 860 861 static void handle_fcp_region_request(struct fw_card *card, 862 struct fw_packet *p, 863 struct fw_request *request, 864 unsigned long long offset) 865 { 866 struct fw_address_handler *handler; 867 unsigned long flags; 868 int tcode, destination, source; 869 870 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 871 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) || 872 request->length > 0x200) { 873 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 874 875 return; 876 } 877 878 tcode = HEADER_GET_TCODE(p->header[0]); 879 destination = HEADER_GET_DESTINATION(p->header[0]); 880 source = HEADER_GET_SOURCE(p->header[1]); 881 882 if (tcode != TCODE_WRITE_QUADLET_REQUEST && 883 tcode != TCODE_WRITE_BLOCK_REQUEST) { 884 fw_send_response(card, request, RCODE_TYPE_ERROR); 885 886 return; 887 } 888 889 spin_lock_irqsave(&address_handler_lock, flags); 890 list_for_each_entry(handler, &address_handler_list, link) { 891 if (is_enclosing_handler(handler, offset, request->length)) 892 handler->address_callback(card, NULL, tcode, 893 destination, source, 894 p->generation, offset, 895 request->data, 896 request->length, 897 handler->callback_data); 898 } 899 spin_unlock_irqrestore(&address_handler_lock, flags); 900 901 fw_send_response(card, request, RCODE_COMPLETE); 902 } 903 904 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p) 905 { 906 struct fw_request *request; 907 unsigned long long offset; 908 909 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE) 910 return; 911 912 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) { 913 fw_cdev_handle_phy_packet(card, p); 914 return; 915 } 916 917 request = allocate_request(card, p); 918 if (request == NULL) { 919 /* FIXME: send statically allocated busy packet. */ 920 return; 921 } 922 923 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) | 924 p->header[2]; 925 926 if (!is_in_fcp_region(offset, request->length)) 927 handle_exclusive_region_request(card, p, request, offset); 928 else 929 handle_fcp_region_request(card, p, request, offset); 930 931 } 932 EXPORT_SYMBOL(fw_core_handle_request); 933 934 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p) 935 { 936 struct fw_transaction *t; 937 unsigned long flags; 938 u32 *data; 939 size_t data_length; 940 int tcode, tlabel, source, rcode; 941 942 tcode = HEADER_GET_TCODE(p->header[0]); 943 tlabel = HEADER_GET_TLABEL(p->header[0]); 944 source = HEADER_GET_SOURCE(p->header[1]); 945 rcode = HEADER_GET_RCODE(p->header[1]); 946 947 spin_lock_irqsave(&card->lock, flags); 948 list_for_each_entry(t, &card->transaction_list, link) { 949 if (t->node_id == source && t->tlabel == tlabel) { 950 if (!try_cancel_split_timeout(t)) { 951 spin_unlock_irqrestore(&card->lock, flags); 952 goto timed_out; 953 } 954 list_del_init(&t->link); 955 card->tlabel_mask &= ~(1ULL << t->tlabel); 956 break; 957 } 958 } 959 spin_unlock_irqrestore(&card->lock, flags); 960 961 if (&t->link == &card->transaction_list) { 962 timed_out: 963 fw_notify("Unsolicited response (source %x, tlabel %x)\n", 964 source, tlabel); 965 return; 966 } 967 968 /* 969 * FIXME: sanity check packet, is length correct, does tcodes 970 * and addresses match. 971 */ 972 973 switch (tcode) { 974 case TCODE_READ_QUADLET_RESPONSE: 975 data = (u32 *) &p->header[3]; 976 data_length = 4; 977 break; 978 979 case TCODE_WRITE_RESPONSE: 980 data = NULL; 981 data_length = 0; 982 break; 983 984 case TCODE_READ_BLOCK_RESPONSE: 985 case TCODE_LOCK_RESPONSE: 986 data = p->payload; 987 data_length = HEADER_GET_DATA_LENGTH(p->header[3]); 988 break; 989 990 default: 991 /* Should never happen, this is just to shut up gcc. */ 992 data = NULL; 993 data_length = 0; 994 break; 995 } 996 997 /* 998 * The response handler may be executed while the request handler 999 * is still pending. Cancel the request handler. 1000 */ 1001 card->driver->cancel_packet(card, &t->packet); 1002 1003 t->callback(card, rcode, data, data_length, t->callback_data); 1004 } 1005 EXPORT_SYMBOL(fw_core_handle_response); 1006 1007 static const struct fw_address_region topology_map_region = 1008 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP, 1009 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, }; 1010 1011 static void handle_topology_map(struct fw_card *card, struct fw_request *request, 1012 int tcode, int destination, int source, int generation, 1013 unsigned long long offset, void *payload, size_t length, 1014 void *callback_data) 1015 { 1016 int start; 1017 1018 if (!TCODE_IS_READ_REQUEST(tcode)) { 1019 fw_send_response(card, request, RCODE_TYPE_ERROR); 1020 return; 1021 } 1022 1023 if ((offset & 3) > 0 || (length & 3) > 0) { 1024 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 1025 return; 1026 } 1027 1028 start = (offset - topology_map_region.start) / 4; 1029 memcpy(payload, &card->topology_map[start], length); 1030 1031 fw_send_response(card, request, RCODE_COMPLETE); 1032 } 1033 1034 static struct fw_address_handler topology_map = { 1035 .length = 0x400, 1036 .address_callback = handle_topology_map, 1037 }; 1038 1039 static const struct fw_address_region registers_region = 1040 { .start = CSR_REGISTER_BASE, 1041 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, }; 1042 1043 static void update_split_timeout(struct fw_card *card) 1044 { 1045 unsigned int cycles; 1046 1047 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19); 1048 1049 cycles = max(cycles, 800u); /* minimum as per the spec */ 1050 cycles = min(cycles, 3u * 8000u); /* maximum OHCI timeout */ 1051 1052 card->split_timeout_cycles = cycles; 1053 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000); 1054 } 1055 1056 static void handle_registers(struct fw_card *card, struct fw_request *request, 1057 int tcode, int destination, int source, int generation, 1058 unsigned long long offset, void *payload, size_t length, 1059 void *callback_data) 1060 { 1061 int reg = offset & ~CSR_REGISTER_BASE; 1062 __be32 *data = payload; 1063 int rcode = RCODE_COMPLETE; 1064 unsigned long flags; 1065 1066 switch (reg) { 1067 case CSR_PRIORITY_BUDGET: 1068 if (!card->priority_budget_implemented) { 1069 rcode = RCODE_ADDRESS_ERROR; 1070 break; 1071 } 1072 /* else fall through */ 1073 1074 case CSR_NODE_IDS: 1075 /* 1076 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8 1077 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges 1078 */ 1079 /* fall through */ 1080 1081 case CSR_STATE_CLEAR: 1082 case CSR_STATE_SET: 1083 case CSR_CYCLE_TIME: 1084 case CSR_BUS_TIME: 1085 case CSR_BUSY_TIMEOUT: 1086 if (tcode == TCODE_READ_QUADLET_REQUEST) 1087 *data = cpu_to_be32(card->driver->read_csr(card, reg)); 1088 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1089 card->driver->write_csr(card, reg, be32_to_cpu(*data)); 1090 else 1091 rcode = RCODE_TYPE_ERROR; 1092 break; 1093 1094 case CSR_RESET_START: 1095 if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1096 card->driver->write_csr(card, CSR_STATE_CLEAR, 1097 CSR_STATE_BIT_ABDICATE); 1098 else 1099 rcode = RCODE_TYPE_ERROR; 1100 break; 1101 1102 case CSR_SPLIT_TIMEOUT_HI: 1103 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1104 *data = cpu_to_be32(card->split_timeout_hi); 1105 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1106 spin_lock_irqsave(&card->lock, flags); 1107 card->split_timeout_hi = be32_to_cpu(*data) & 7; 1108 update_split_timeout(card); 1109 spin_unlock_irqrestore(&card->lock, flags); 1110 } else { 1111 rcode = RCODE_TYPE_ERROR; 1112 } 1113 break; 1114 1115 case CSR_SPLIT_TIMEOUT_LO: 1116 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1117 *data = cpu_to_be32(card->split_timeout_lo); 1118 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1119 spin_lock_irqsave(&card->lock, flags); 1120 card->split_timeout_lo = 1121 be32_to_cpu(*data) & 0xfff80000; 1122 update_split_timeout(card); 1123 spin_unlock_irqrestore(&card->lock, flags); 1124 } else { 1125 rcode = RCODE_TYPE_ERROR; 1126 } 1127 break; 1128 1129 case CSR_MAINT_UTILITY: 1130 if (tcode == TCODE_READ_QUADLET_REQUEST) 1131 *data = card->maint_utility_register; 1132 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1133 card->maint_utility_register = *data; 1134 else 1135 rcode = RCODE_TYPE_ERROR; 1136 break; 1137 1138 case CSR_BROADCAST_CHANNEL: 1139 if (tcode == TCODE_READ_QUADLET_REQUEST) 1140 *data = cpu_to_be32(card->broadcast_channel); 1141 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1142 card->broadcast_channel = 1143 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) | 1144 BROADCAST_CHANNEL_INITIAL; 1145 else 1146 rcode = RCODE_TYPE_ERROR; 1147 break; 1148 1149 case CSR_BUS_MANAGER_ID: 1150 case CSR_BANDWIDTH_AVAILABLE: 1151 case CSR_CHANNELS_AVAILABLE_HI: 1152 case CSR_CHANNELS_AVAILABLE_LO: 1153 /* 1154 * FIXME: these are handled by the OHCI hardware and 1155 * the stack never sees these request. If we add 1156 * support for a new type of controller that doesn't 1157 * handle this in hardware we need to deal with these 1158 * transactions. 1159 */ 1160 BUG(); 1161 break; 1162 1163 default: 1164 rcode = RCODE_ADDRESS_ERROR; 1165 break; 1166 } 1167 1168 fw_send_response(card, request, rcode); 1169 } 1170 1171 static struct fw_address_handler registers = { 1172 .length = 0x400, 1173 .address_callback = handle_registers, 1174 }; 1175 1176 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1177 MODULE_DESCRIPTION("Core IEEE1394 transaction logic"); 1178 MODULE_LICENSE("GPL"); 1179 1180 static const u32 vendor_textual_descriptor[] = { 1181 /* textual descriptor leaf () */ 1182 0x00060000, 1183 0x00000000, 1184 0x00000000, 1185 0x4c696e75, /* L i n u */ 1186 0x78204669, /* x F i */ 1187 0x72657769, /* r e w i */ 1188 0x72650000, /* r e */ 1189 }; 1190 1191 static const u32 model_textual_descriptor[] = { 1192 /* model descriptor leaf () */ 1193 0x00030000, 1194 0x00000000, 1195 0x00000000, 1196 0x4a756a75, /* J u j u */ 1197 }; 1198 1199 static struct fw_descriptor vendor_id_descriptor = { 1200 .length = ARRAY_SIZE(vendor_textual_descriptor), 1201 .immediate = 0x03d00d1e, 1202 .key = 0x81000000, 1203 .data = vendor_textual_descriptor, 1204 }; 1205 1206 static struct fw_descriptor model_id_descriptor = { 1207 .length = ARRAY_SIZE(model_textual_descriptor), 1208 .immediate = 0x17000001, 1209 .key = 0x81000000, 1210 .data = model_textual_descriptor, 1211 }; 1212 1213 static int __init fw_core_init(void) 1214 { 1215 int ret; 1216 1217 fw_workqueue = alloc_workqueue("firewire", 1218 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); 1219 if (!fw_workqueue) 1220 return -ENOMEM; 1221 1222 ret = bus_register(&fw_bus_type); 1223 if (ret < 0) { 1224 destroy_workqueue(fw_workqueue); 1225 return ret; 1226 } 1227 1228 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops); 1229 if (fw_cdev_major < 0) { 1230 bus_unregister(&fw_bus_type); 1231 destroy_workqueue(fw_workqueue); 1232 return fw_cdev_major; 1233 } 1234 1235 fw_core_add_address_handler(&topology_map, &topology_map_region); 1236 fw_core_add_address_handler(®isters, ®isters_region); 1237 fw_core_add_descriptor(&vendor_id_descriptor); 1238 fw_core_add_descriptor(&model_id_descriptor); 1239 1240 return 0; 1241 } 1242 1243 static void __exit fw_core_cleanup(void) 1244 { 1245 unregister_chrdev(fw_cdev_major, "firewire"); 1246 bus_unregister(&fw_bus_type); 1247 destroy_workqueue(fw_workqueue); 1248 idr_destroy(&fw_device_idr); 1249 } 1250 1251 module_init(fw_core_init); 1252 module_exit(fw_core_cleanup); 1253