1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core IEEE1394 transaction logic 4 * 5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bug.h> 9 #include <linux/completion.h> 10 #include <linux/device.h> 11 #include <linux/errno.h> 12 #include <linux/firewire.h> 13 #include <linux/firewire-constants.h> 14 #include <linux/fs.h> 15 #include <linux/init.h> 16 #include <linux/idr.h> 17 #include <linux/jiffies.h> 18 #include <linux/kernel.h> 19 #include <linux/list.h> 20 #include <linux/module.h> 21 #include <linux/rculist.h> 22 #include <linux/slab.h> 23 #include <linux/spinlock.h> 24 #include <linux/string.h> 25 #include <linux/timer.h> 26 #include <linux/types.h> 27 #include <linux/workqueue.h> 28 29 #include <asm/byteorder.h> 30 31 #include "core.h" 32 33 #define HEADER_PRI(pri) ((pri) << 0) 34 #define HEADER_TCODE(tcode) ((tcode) << 4) 35 #define HEADER_RETRY(retry) ((retry) << 8) 36 #define HEADER_TLABEL(tlabel) ((tlabel) << 10) 37 #define HEADER_DESTINATION(destination) ((destination) << 16) 38 #define HEADER_SOURCE(source) ((source) << 16) 39 #define HEADER_RCODE(rcode) ((rcode) << 12) 40 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0) 41 #define HEADER_DATA_LENGTH(length) ((length) << 16) 42 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0) 43 44 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f) 45 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f) 46 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f) 47 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff) 48 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff) 49 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff) 50 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff) 51 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff) 52 53 #define HEADER_DESTINATION_IS_BROADCAST(q) \ 54 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f)) 55 56 #define PHY_PACKET_CONFIG 0x0 57 #define PHY_PACKET_LINK_ON 0x1 58 #define PHY_PACKET_SELF_ID 0x2 59 60 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22)) 61 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23)) 62 #define PHY_IDENTIFIER(id) ((id) << 30) 63 64 /* returns 0 if the split timeout handler is already running */ 65 static int try_cancel_split_timeout(struct fw_transaction *t) 66 { 67 if (t->is_split_transaction) 68 return del_timer(&t->split_timeout_timer); 69 else 70 return 1; 71 } 72 73 static int close_transaction(struct fw_transaction *transaction, 74 struct fw_card *card, int rcode) 75 { 76 struct fw_transaction *t = NULL, *iter; 77 unsigned long flags; 78 79 spin_lock_irqsave(&card->lock, flags); 80 list_for_each_entry(iter, &card->transaction_list, link) { 81 if (iter == transaction) { 82 if (!try_cancel_split_timeout(iter)) { 83 spin_unlock_irqrestore(&card->lock, flags); 84 goto timed_out; 85 } 86 list_del_init(&iter->link); 87 card->tlabel_mask &= ~(1ULL << iter->tlabel); 88 t = iter; 89 break; 90 } 91 } 92 spin_unlock_irqrestore(&card->lock, flags); 93 94 if (t) { 95 t->callback(card, rcode, NULL, 0, t->callback_data); 96 return 0; 97 } 98 99 timed_out: 100 return -ENOENT; 101 } 102 103 /* 104 * Only valid for transactions that are potentially pending (ie have 105 * been sent). 106 */ 107 int fw_cancel_transaction(struct fw_card *card, 108 struct fw_transaction *transaction) 109 { 110 /* 111 * Cancel the packet transmission if it's still queued. That 112 * will call the packet transmission callback which cancels 113 * the transaction. 114 */ 115 116 if (card->driver->cancel_packet(card, &transaction->packet) == 0) 117 return 0; 118 119 /* 120 * If the request packet has already been sent, we need to see 121 * if the transaction is still pending and remove it in that case. 122 */ 123 124 return close_transaction(transaction, card, RCODE_CANCELLED); 125 } 126 EXPORT_SYMBOL(fw_cancel_transaction); 127 128 static void split_transaction_timeout_callback(struct timer_list *timer) 129 { 130 struct fw_transaction *t = from_timer(t, timer, split_timeout_timer); 131 struct fw_card *card = t->card; 132 unsigned long flags; 133 134 spin_lock_irqsave(&card->lock, flags); 135 if (list_empty(&t->link)) { 136 spin_unlock_irqrestore(&card->lock, flags); 137 return; 138 } 139 list_del(&t->link); 140 card->tlabel_mask &= ~(1ULL << t->tlabel); 141 spin_unlock_irqrestore(&card->lock, flags); 142 143 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data); 144 } 145 146 static void start_split_transaction_timeout(struct fw_transaction *t, 147 struct fw_card *card) 148 { 149 unsigned long flags; 150 151 spin_lock_irqsave(&card->lock, flags); 152 153 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) { 154 spin_unlock_irqrestore(&card->lock, flags); 155 return; 156 } 157 158 t->is_split_transaction = true; 159 mod_timer(&t->split_timeout_timer, 160 jiffies + card->split_timeout_jiffies); 161 162 spin_unlock_irqrestore(&card->lock, flags); 163 } 164 165 static void transmit_complete_callback(struct fw_packet *packet, 166 struct fw_card *card, int status) 167 { 168 struct fw_transaction *t = 169 container_of(packet, struct fw_transaction, packet); 170 171 switch (status) { 172 case ACK_COMPLETE: 173 close_transaction(t, card, RCODE_COMPLETE); 174 break; 175 case ACK_PENDING: 176 start_split_transaction_timeout(t, card); 177 break; 178 case ACK_BUSY_X: 179 case ACK_BUSY_A: 180 case ACK_BUSY_B: 181 close_transaction(t, card, RCODE_BUSY); 182 break; 183 case ACK_DATA_ERROR: 184 close_transaction(t, card, RCODE_DATA_ERROR); 185 break; 186 case ACK_TYPE_ERROR: 187 close_transaction(t, card, RCODE_TYPE_ERROR); 188 break; 189 default: 190 /* 191 * In this case the ack is really a juju specific 192 * rcode, so just forward that to the callback. 193 */ 194 close_transaction(t, card, status); 195 break; 196 } 197 } 198 199 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel, 200 int destination_id, int source_id, int generation, int speed, 201 unsigned long long offset, void *payload, size_t length) 202 { 203 int ext_tcode; 204 205 if (tcode == TCODE_STREAM_DATA) { 206 packet->header[0] = 207 HEADER_DATA_LENGTH(length) | 208 destination_id | 209 HEADER_TCODE(TCODE_STREAM_DATA); 210 packet->header_length = 4; 211 packet->payload = payload; 212 packet->payload_length = length; 213 214 goto common; 215 } 216 217 if (tcode > 0x10) { 218 ext_tcode = tcode & ~0x10; 219 tcode = TCODE_LOCK_REQUEST; 220 } else 221 ext_tcode = 0; 222 223 packet->header[0] = 224 HEADER_RETRY(RETRY_X) | 225 HEADER_TLABEL(tlabel) | 226 HEADER_TCODE(tcode) | 227 HEADER_DESTINATION(destination_id); 228 packet->header[1] = 229 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id); 230 packet->header[2] = 231 offset; 232 233 switch (tcode) { 234 case TCODE_WRITE_QUADLET_REQUEST: 235 packet->header[3] = *(u32 *)payload; 236 packet->header_length = 16; 237 packet->payload_length = 0; 238 break; 239 240 case TCODE_LOCK_REQUEST: 241 case TCODE_WRITE_BLOCK_REQUEST: 242 packet->header[3] = 243 HEADER_DATA_LENGTH(length) | 244 HEADER_EXTENDED_TCODE(ext_tcode); 245 packet->header_length = 16; 246 packet->payload = payload; 247 packet->payload_length = length; 248 break; 249 250 case TCODE_READ_QUADLET_REQUEST: 251 packet->header_length = 12; 252 packet->payload_length = 0; 253 break; 254 255 case TCODE_READ_BLOCK_REQUEST: 256 packet->header[3] = 257 HEADER_DATA_LENGTH(length) | 258 HEADER_EXTENDED_TCODE(ext_tcode); 259 packet->header_length = 16; 260 packet->payload_length = 0; 261 break; 262 263 default: 264 WARN(1, "wrong tcode %d\n", tcode); 265 } 266 common: 267 packet->speed = speed; 268 packet->generation = generation; 269 packet->ack = 0; 270 packet->payload_mapped = false; 271 } 272 273 static int allocate_tlabel(struct fw_card *card) 274 { 275 int tlabel; 276 277 tlabel = card->current_tlabel; 278 while (card->tlabel_mask & (1ULL << tlabel)) { 279 tlabel = (tlabel + 1) & 0x3f; 280 if (tlabel == card->current_tlabel) 281 return -EBUSY; 282 } 283 284 card->current_tlabel = (tlabel + 1) & 0x3f; 285 card->tlabel_mask |= 1ULL << tlabel; 286 287 return tlabel; 288 } 289 290 /** 291 * fw_send_request() - submit a request packet for transmission 292 * @card: interface to send the request at 293 * @t: transaction instance to which the request belongs 294 * @tcode: transaction code 295 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 296 * @generation: bus generation in which request and response are valid 297 * @speed: transmission speed 298 * @offset: 48bit wide offset into destination's address space 299 * @payload: data payload for the request subaction 300 * @length: length of the payload, in bytes 301 * @callback: function to be called when the transaction is completed 302 * @callback_data: data to be passed to the transaction completion callback 303 * 304 * Submit a request packet into the asynchronous request transmission queue. 305 * Can be called from atomic context. If you prefer a blocking API, use 306 * fw_run_transaction() in a context that can sleep. 307 * 308 * In case of lock requests, specify one of the firewire-core specific %TCODE_ 309 * constants instead of %TCODE_LOCK_REQUEST in @tcode. 310 * 311 * Make sure that the value in @destination_id is not older than the one in 312 * @generation. Otherwise the request is in danger to be sent to a wrong node. 313 * 314 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller 315 * needs to synthesize @destination_id with fw_stream_packet_destination_id(). 316 * It will contain tag, channel, and sy data instead of a node ID then. 317 * 318 * The payload buffer at @data is going to be DMA-mapped except in case of 319 * @length <= 8 or of local (loopback) requests. Hence make sure that the 320 * buffer complies with the restrictions of the streaming DMA mapping API. 321 * @payload must not be freed before the @callback is called. 322 * 323 * In case of request types without payload, @data is NULL and @length is 0. 324 * 325 * After the transaction is completed successfully or unsuccessfully, the 326 * @callback will be called. Among its parameters is the response code which 327 * is either one of the rcodes per IEEE 1394 or, in case of internal errors, 328 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core 329 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION, 330 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request 331 * generation, or missing ACK respectively. 332 * 333 * Note some timing corner cases: fw_send_request() may complete much earlier 334 * than when the request packet actually hits the wire. On the other hand, 335 * transaction completion and hence execution of @callback may happen even 336 * before fw_send_request() returns. 337 */ 338 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, 339 int destination_id, int generation, int speed, 340 unsigned long long offset, void *payload, size_t length, 341 fw_transaction_callback_t callback, void *callback_data) 342 { 343 unsigned long flags; 344 int tlabel; 345 346 /* 347 * Allocate tlabel from the bitmap and put the transaction on 348 * the list while holding the card spinlock. 349 */ 350 351 spin_lock_irqsave(&card->lock, flags); 352 353 tlabel = allocate_tlabel(card); 354 if (tlabel < 0) { 355 spin_unlock_irqrestore(&card->lock, flags); 356 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data); 357 return; 358 } 359 360 t->node_id = destination_id; 361 t->tlabel = tlabel; 362 t->card = card; 363 t->is_split_transaction = false; 364 timer_setup(&t->split_timeout_timer, 365 split_transaction_timeout_callback, 0); 366 t->callback = callback; 367 t->callback_data = callback_data; 368 369 fw_fill_request(&t->packet, tcode, t->tlabel, 370 destination_id, card->node_id, generation, 371 speed, offset, payload, length); 372 t->packet.callback = transmit_complete_callback; 373 374 list_add_tail(&t->link, &card->transaction_list); 375 376 spin_unlock_irqrestore(&card->lock, flags); 377 378 card->driver->send_request(card, &t->packet); 379 } 380 EXPORT_SYMBOL(fw_send_request); 381 382 struct transaction_callback_data { 383 struct completion done; 384 void *payload; 385 int rcode; 386 }; 387 388 static void transaction_callback(struct fw_card *card, int rcode, 389 void *payload, size_t length, void *data) 390 { 391 struct transaction_callback_data *d = data; 392 393 if (rcode == RCODE_COMPLETE) 394 memcpy(d->payload, payload, length); 395 d->rcode = rcode; 396 complete(&d->done); 397 } 398 399 /** 400 * fw_run_transaction() - send request and sleep until transaction is completed 401 * @card: card interface for this request 402 * @tcode: transaction code 403 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 404 * @generation: bus generation in which request and response are valid 405 * @speed: transmission speed 406 * @offset: 48bit wide offset into destination's address space 407 * @payload: data payload for the request subaction 408 * @length: length of the payload, in bytes 409 * 410 * Returns the RCODE. See fw_send_request() for parameter documentation. 411 * Unlike fw_send_request(), @data points to the payload of the request or/and 412 * to the payload of the response. DMA mapping restrictions apply to outbound 413 * request payloads of >= 8 bytes but not to inbound response payloads. 414 */ 415 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, 416 int generation, int speed, unsigned long long offset, 417 void *payload, size_t length) 418 { 419 struct transaction_callback_data d; 420 struct fw_transaction t; 421 422 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0); 423 init_completion(&d.done); 424 d.payload = payload; 425 fw_send_request(card, &t, tcode, destination_id, generation, speed, 426 offset, payload, length, transaction_callback, &d); 427 wait_for_completion(&d.done); 428 destroy_timer_on_stack(&t.split_timeout_timer); 429 430 return d.rcode; 431 } 432 EXPORT_SYMBOL(fw_run_transaction); 433 434 static DEFINE_MUTEX(phy_config_mutex); 435 static DECLARE_COMPLETION(phy_config_done); 436 437 static void transmit_phy_packet_callback(struct fw_packet *packet, 438 struct fw_card *card, int status) 439 { 440 complete(&phy_config_done); 441 } 442 443 static struct fw_packet phy_config_packet = { 444 .header_length = 12, 445 .header[0] = TCODE_LINK_INTERNAL << 4, 446 .payload_length = 0, 447 .speed = SCODE_100, 448 .callback = transmit_phy_packet_callback, 449 }; 450 451 void fw_send_phy_config(struct fw_card *card, 452 int node_id, int generation, int gap_count) 453 { 454 long timeout = DIV_ROUND_UP(HZ, 10); 455 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG); 456 457 if (node_id != FW_PHY_CONFIG_NO_NODE_ID) 458 data |= PHY_CONFIG_ROOT_ID(node_id); 459 460 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) { 461 gap_count = card->driver->read_phy_reg(card, 1); 462 if (gap_count < 0) 463 return; 464 465 gap_count &= 63; 466 if (gap_count == 63) 467 return; 468 } 469 data |= PHY_CONFIG_GAP_COUNT(gap_count); 470 471 mutex_lock(&phy_config_mutex); 472 473 phy_config_packet.header[1] = data; 474 phy_config_packet.header[2] = ~data; 475 phy_config_packet.generation = generation; 476 reinit_completion(&phy_config_done); 477 478 card->driver->send_request(card, &phy_config_packet); 479 wait_for_completion_timeout(&phy_config_done, timeout); 480 481 mutex_unlock(&phy_config_mutex); 482 } 483 484 static struct fw_address_handler *lookup_overlapping_address_handler( 485 struct list_head *list, unsigned long long offset, size_t length) 486 { 487 struct fw_address_handler *handler; 488 489 list_for_each_entry_rcu(handler, list, link) { 490 if (handler->offset < offset + length && 491 offset < handler->offset + handler->length) 492 return handler; 493 } 494 495 return NULL; 496 } 497 498 static bool is_enclosing_handler(struct fw_address_handler *handler, 499 unsigned long long offset, size_t length) 500 { 501 return handler->offset <= offset && 502 offset + length <= handler->offset + handler->length; 503 } 504 505 static struct fw_address_handler *lookup_enclosing_address_handler( 506 struct list_head *list, unsigned long long offset, size_t length) 507 { 508 struct fw_address_handler *handler; 509 510 list_for_each_entry_rcu(handler, list, link) { 511 if (is_enclosing_handler(handler, offset, length)) 512 return handler; 513 } 514 515 return NULL; 516 } 517 518 static DEFINE_SPINLOCK(address_handler_list_lock); 519 static LIST_HEAD(address_handler_list); 520 521 const struct fw_address_region fw_high_memory_region = 522 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, }; 523 EXPORT_SYMBOL(fw_high_memory_region); 524 525 static const struct fw_address_region low_memory_region = 526 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, }; 527 528 #if 0 529 const struct fw_address_region fw_private_region = 530 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, }; 531 const struct fw_address_region fw_csr_region = 532 { .start = CSR_REGISTER_BASE, 533 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, }; 534 const struct fw_address_region fw_unit_space_region = 535 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, }; 536 #endif /* 0 */ 537 538 /** 539 * fw_core_add_address_handler() - register for incoming requests 540 * @handler: callback 541 * @region: region in the IEEE 1212 node space address range 542 * 543 * region->start, ->end, and handler->length have to be quadlet-aligned. 544 * 545 * When a request is received that falls within the specified address range, 546 * the specified callback is invoked. The parameters passed to the callback 547 * give the details of the particular request. 548 * 549 * To be called in process context. 550 * Return value: 0 on success, non-zero otherwise. 551 * 552 * The start offset of the handler's address region is determined by 553 * fw_core_add_address_handler() and is returned in handler->offset. 554 * 555 * Address allocations are exclusive, except for the FCP registers. 556 */ 557 int fw_core_add_address_handler(struct fw_address_handler *handler, 558 const struct fw_address_region *region) 559 { 560 struct fw_address_handler *other; 561 int ret = -EBUSY; 562 563 if (region->start & 0xffff000000000003ULL || 564 region->start >= region->end || 565 region->end > 0x0001000000000000ULL || 566 handler->length & 3 || 567 handler->length == 0) 568 return -EINVAL; 569 570 spin_lock(&address_handler_list_lock); 571 572 handler->offset = region->start; 573 while (handler->offset + handler->length <= region->end) { 574 if (is_in_fcp_region(handler->offset, handler->length)) 575 other = NULL; 576 else 577 other = lookup_overlapping_address_handler 578 (&address_handler_list, 579 handler->offset, handler->length); 580 if (other != NULL) { 581 handler->offset += other->length; 582 } else { 583 list_add_tail_rcu(&handler->link, &address_handler_list); 584 ret = 0; 585 break; 586 } 587 } 588 589 spin_unlock(&address_handler_list_lock); 590 591 return ret; 592 } 593 EXPORT_SYMBOL(fw_core_add_address_handler); 594 595 /** 596 * fw_core_remove_address_handler() - unregister an address handler 597 * @handler: callback 598 * 599 * To be called in process context. 600 * 601 * When fw_core_remove_address_handler() returns, @handler->callback() is 602 * guaranteed to not run on any CPU anymore. 603 */ 604 void fw_core_remove_address_handler(struct fw_address_handler *handler) 605 { 606 spin_lock(&address_handler_list_lock); 607 list_del_rcu(&handler->link); 608 spin_unlock(&address_handler_list_lock); 609 synchronize_rcu(); 610 } 611 EXPORT_SYMBOL(fw_core_remove_address_handler); 612 613 struct fw_request { 614 struct kref kref; 615 struct fw_packet response; 616 u32 request_header[4]; 617 int ack; 618 u32 timestamp; 619 u32 length; 620 u32 data[]; 621 }; 622 623 void fw_request_get(struct fw_request *request) 624 { 625 kref_get(&request->kref); 626 } 627 628 static void release_request(struct kref *kref) 629 { 630 struct fw_request *request = container_of(kref, struct fw_request, kref); 631 632 kfree(request); 633 } 634 635 void fw_request_put(struct fw_request *request) 636 { 637 kref_put(&request->kref, release_request); 638 } 639 640 static void free_response_callback(struct fw_packet *packet, 641 struct fw_card *card, int status) 642 { 643 struct fw_request *request = container_of(packet, struct fw_request, response); 644 645 // Decrease the reference count since not at in-flight. 646 fw_request_put(request); 647 648 // Decrease the reference count to release the object. 649 fw_request_put(request); 650 } 651 652 int fw_get_response_length(struct fw_request *r) 653 { 654 int tcode, ext_tcode, data_length; 655 656 tcode = HEADER_GET_TCODE(r->request_header[0]); 657 658 switch (tcode) { 659 case TCODE_WRITE_QUADLET_REQUEST: 660 case TCODE_WRITE_BLOCK_REQUEST: 661 return 0; 662 663 case TCODE_READ_QUADLET_REQUEST: 664 return 4; 665 666 case TCODE_READ_BLOCK_REQUEST: 667 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); 668 return data_length; 669 670 case TCODE_LOCK_REQUEST: 671 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]); 672 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]); 673 switch (ext_tcode) { 674 case EXTCODE_FETCH_ADD: 675 case EXTCODE_LITTLE_ADD: 676 return data_length; 677 default: 678 return data_length / 2; 679 } 680 681 default: 682 WARN(1, "wrong tcode %d\n", tcode); 683 return 0; 684 } 685 } 686 687 void fw_fill_response(struct fw_packet *response, u32 *request_header, 688 int rcode, void *payload, size_t length) 689 { 690 int tcode, tlabel, extended_tcode, source, destination; 691 692 tcode = HEADER_GET_TCODE(request_header[0]); 693 tlabel = HEADER_GET_TLABEL(request_header[0]); 694 source = HEADER_GET_DESTINATION(request_header[0]); 695 destination = HEADER_GET_SOURCE(request_header[1]); 696 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]); 697 698 response->header[0] = 699 HEADER_RETRY(RETRY_1) | 700 HEADER_TLABEL(tlabel) | 701 HEADER_DESTINATION(destination); 702 response->header[1] = 703 HEADER_SOURCE(source) | 704 HEADER_RCODE(rcode); 705 response->header[2] = 0; 706 707 switch (tcode) { 708 case TCODE_WRITE_QUADLET_REQUEST: 709 case TCODE_WRITE_BLOCK_REQUEST: 710 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE); 711 response->header_length = 12; 712 response->payload_length = 0; 713 break; 714 715 case TCODE_READ_QUADLET_REQUEST: 716 response->header[0] |= 717 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE); 718 if (payload != NULL) 719 response->header[3] = *(u32 *)payload; 720 else 721 response->header[3] = 0; 722 response->header_length = 16; 723 response->payload_length = 0; 724 break; 725 726 case TCODE_READ_BLOCK_REQUEST: 727 case TCODE_LOCK_REQUEST: 728 response->header[0] |= HEADER_TCODE(tcode + 2); 729 response->header[3] = 730 HEADER_DATA_LENGTH(length) | 731 HEADER_EXTENDED_TCODE(extended_tcode); 732 response->header_length = 16; 733 response->payload = payload; 734 response->payload_length = length; 735 break; 736 737 default: 738 WARN(1, "wrong tcode %d\n", tcode); 739 } 740 741 response->payload_mapped = false; 742 } 743 EXPORT_SYMBOL(fw_fill_response); 744 745 static u32 compute_split_timeout_timestamp(struct fw_card *card, 746 u32 request_timestamp) 747 { 748 unsigned int cycles; 749 u32 timestamp; 750 751 cycles = card->split_timeout_cycles; 752 cycles += request_timestamp & 0x1fff; 753 754 timestamp = request_timestamp & ~0x1fff; 755 timestamp += (cycles / 8000) << 13; 756 timestamp |= cycles % 8000; 757 758 return timestamp; 759 } 760 761 static struct fw_request *allocate_request(struct fw_card *card, 762 struct fw_packet *p) 763 { 764 struct fw_request *request; 765 u32 *data, length; 766 int request_tcode; 767 768 request_tcode = HEADER_GET_TCODE(p->header[0]); 769 switch (request_tcode) { 770 case TCODE_WRITE_QUADLET_REQUEST: 771 data = &p->header[3]; 772 length = 4; 773 break; 774 775 case TCODE_WRITE_BLOCK_REQUEST: 776 case TCODE_LOCK_REQUEST: 777 data = p->payload; 778 length = HEADER_GET_DATA_LENGTH(p->header[3]); 779 break; 780 781 case TCODE_READ_QUADLET_REQUEST: 782 data = NULL; 783 length = 4; 784 break; 785 786 case TCODE_READ_BLOCK_REQUEST: 787 data = NULL; 788 length = HEADER_GET_DATA_LENGTH(p->header[3]); 789 break; 790 791 default: 792 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n", 793 p->header[0], p->header[1], p->header[2]); 794 return NULL; 795 } 796 797 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC); 798 if (request == NULL) 799 return NULL; 800 kref_init(&request->kref); 801 802 request->response.speed = p->speed; 803 request->response.timestamp = 804 compute_split_timeout_timestamp(card, p->timestamp); 805 request->response.generation = p->generation; 806 request->response.ack = 0; 807 request->response.callback = free_response_callback; 808 request->ack = p->ack; 809 request->timestamp = p->timestamp; 810 request->length = length; 811 if (data) 812 memcpy(request->data, data, length); 813 814 memcpy(request->request_header, p->header, sizeof(p->header)); 815 816 return request; 817 } 818 819 /** 820 * fw_send_response: - send response packet for asynchronous transaction. 821 * @card: interface to send the response at. 822 * @request: firewire request data for the transaction. 823 * @rcode: response code to send. 824 * 825 * Submit a response packet into the asynchronous response transmission queue. The @request 826 * is going to be released when the transmission successfully finishes later. 827 */ 828 void fw_send_response(struct fw_card *card, 829 struct fw_request *request, int rcode) 830 { 831 /* unified transaction or broadcast transaction: don't respond */ 832 if (request->ack != ACK_PENDING || 833 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) { 834 fw_request_put(request); 835 return; 836 } 837 838 if (rcode == RCODE_COMPLETE) 839 fw_fill_response(&request->response, request->request_header, 840 rcode, request->data, 841 fw_get_response_length(request)); 842 else 843 fw_fill_response(&request->response, request->request_header, 844 rcode, NULL, 0); 845 846 // Increase the reference count so that the object is kept during in-flight. 847 fw_request_get(request); 848 849 card->driver->send_response(card, &request->response); 850 } 851 EXPORT_SYMBOL(fw_send_response); 852 853 /** 854 * fw_get_request_speed() - returns speed at which the @request was received 855 * @request: firewire request data 856 */ 857 int fw_get_request_speed(struct fw_request *request) 858 { 859 return request->response.speed; 860 } 861 EXPORT_SYMBOL(fw_get_request_speed); 862 863 /** 864 * fw_request_get_timestamp: Get timestamp of the request. 865 * @request: The opaque pointer to request structure. 866 * 867 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The 868 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count 869 * field of isochronous cycle time register. 870 * 871 * Returns: timestamp of the request. 872 */ 873 u32 fw_request_get_timestamp(const struct fw_request *request) 874 { 875 return request->timestamp; 876 } 877 EXPORT_SYMBOL_GPL(fw_request_get_timestamp); 878 879 static void handle_exclusive_region_request(struct fw_card *card, 880 struct fw_packet *p, 881 struct fw_request *request, 882 unsigned long long offset) 883 { 884 struct fw_address_handler *handler; 885 int tcode, destination, source; 886 887 destination = HEADER_GET_DESTINATION(p->header[0]); 888 source = HEADER_GET_SOURCE(p->header[1]); 889 tcode = HEADER_GET_TCODE(p->header[0]); 890 if (tcode == TCODE_LOCK_REQUEST) 891 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]); 892 893 rcu_read_lock(); 894 handler = lookup_enclosing_address_handler(&address_handler_list, 895 offset, request->length); 896 if (handler) 897 handler->address_callback(card, request, 898 tcode, destination, source, 899 p->generation, offset, 900 request->data, request->length, 901 handler->callback_data); 902 rcu_read_unlock(); 903 904 if (!handler) 905 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 906 } 907 908 static void handle_fcp_region_request(struct fw_card *card, 909 struct fw_packet *p, 910 struct fw_request *request, 911 unsigned long long offset) 912 { 913 struct fw_address_handler *handler; 914 int tcode, destination, source; 915 916 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && 917 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) || 918 request->length > 0x200) { 919 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 920 921 return; 922 } 923 924 tcode = HEADER_GET_TCODE(p->header[0]); 925 destination = HEADER_GET_DESTINATION(p->header[0]); 926 source = HEADER_GET_SOURCE(p->header[1]); 927 928 if (tcode != TCODE_WRITE_QUADLET_REQUEST && 929 tcode != TCODE_WRITE_BLOCK_REQUEST) { 930 fw_send_response(card, request, RCODE_TYPE_ERROR); 931 932 return; 933 } 934 935 rcu_read_lock(); 936 list_for_each_entry_rcu(handler, &address_handler_list, link) { 937 if (is_enclosing_handler(handler, offset, request->length)) 938 handler->address_callback(card, request, tcode, 939 destination, source, 940 p->generation, offset, 941 request->data, 942 request->length, 943 handler->callback_data); 944 } 945 rcu_read_unlock(); 946 947 fw_send_response(card, request, RCODE_COMPLETE); 948 } 949 950 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p) 951 { 952 struct fw_request *request; 953 unsigned long long offset; 954 955 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE) 956 return; 957 958 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) { 959 fw_cdev_handle_phy_packet(card, p); 960 return; 961 } 962 963 request = allocate_request(card, p); 964 if (request == NULL) { 965 /* FIXME: send statically allocated busy packet. */ 966 return; 967 } 968 969 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) | 970 p->header[2]; 971 972 if (!is_in_fcp_region(offset, request->length)) 973 handle_exclusive_region_request(card, p, request, offset); 974 else 975 handle_fcp_region_request(card, p, request, offset); 976 977 } 978 EXPORT_SYMBOL(fw_core_handle_request); 979 980 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p) 981 { 982 struct fw_transaction *t = NULL, *iter; 983 unsigned long flags; 984 u32 *data; 985 size_t data_length; 986 int tcode, tlabel, source, rcode; 987 988 tcode = HEADER_GET_TCODE(p->header[0]); 989 tlabel = HEADER_GET_TLABEL(p->header[0]); 990 source = HEADER_GET_SOURCE(p->header[1]); 991 rcode = HEADER_GET_RCODE(p->header[1]); 992 993 spin_lock_irqsave(&card->lock, flags); 994 list_for_each_entry(iter, &card->transaction_list, link) { 995 if (iter->node_id == source && iter->tlabel == tlabel) { 996 if (!try_cancel_split_timeout(iter)) { 997 spin_unlock_irqrestore(&card->lock, flags); 998 goto timed_out; 999 } 1000 list_del_init(&iter->link); 1001 card->tlabel_mask &= ~(1ULL << iter->tlabel); 1002 t = iter; 1003 break; 1004 } 1005 } 1006 spin_unlock_irqrestore(&card->lock, flags); 1007 1008 if (!t) { 1009 timed_out: 1010 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n", 1011 source, tlabel); 1012 return; 1013 } 1014 1015 /* 1016 * FIXME: sanity check packet, is length correct, does tcodes 1017 * and addresses match. 1018 */ 1019 1020 switch (tcode) { 1021 case TCODE_READ_QUADLET_RESPONSE: 1022 data = (u32 *) &p->header[3]; 1023 data_length = 4; 1024 break; 1025 1026 case TCODE_WRITE_RESPONSE: 1027 data = NULL; 1028 data_length = 0; 1029 break; 1030 1031 case TCODE_READ_BLOCK_RESPONSE: 1032 case TCODE_LOCK_RESPONSE: 1033 data = p->payload; 1034 data_length = HEADER_GET_DATA_LENGTH(p->header[3]); 1035 break; 1036 1037 default: 1038 /* Should never happen, this is just to shut up gcc. */ 1039 data = NULL; 1040 data_length = 0; 1041 break; 1042 } 1043 1044 /* 1045 * The response handler may be executed while the request handler 1046 * is still pending. Cancel the request handler. 1047 */ 1048 card->driver->cancel_packet(card, &t->packet); 1049 1050 t->callback(card, rcode, data, data_length, t->callback_data); 1051 } 1052 EXPORT_SYMBOL(fw_core_handle_response); 1053 1054 /** 1055 * fw_rcode_string - convert a firewire result code to an error description 1056 * @rcode: the result code 1057 */ 1058 const char *fw_rcode_string(int rcode) 1059 { 1060 static const char *const names[] = { 1061 [RCODE_COMPLETE] = "no error", 1062 [RCODE_CONFLICT_ERROR] = "conflict error", 1063 [RCODE_DATA_ERROR] = "data error", 1064 [RCODE_TYPE_ERROR] = "type error", 1065 [RCODE_ADDRESS_ERROR] = "address error", 1066 [RCODE_SEND_ERROR] = "send error", 1067 [RCODE_CANCELLED] = "timeout", 1068 [RCODE_BUSY] = "busy", 1069 [RCODE_GENERATION] = "bus reset", 1070 [RCODE_NO_ACK] = "no ack", 1071 }; 1072 1073 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode]) 1074 return names[rcode]; 1075 else 1076 return "unknown"; 1077 } 1078 EXPORT_SYMBOL(fw_rcode_string); 1079 1080 static const struct fw_address_region topology_map_region = 1081 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP, 1082 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, }; 1083 1084 static void handle_topology_map(struct fw_card *card, struct fw_request *request, 1085 int tcode, int destination, int source, int generation, 1086 unsigned long long offset, void *payload, size_t length, 1087 void *callback_data) 1088 { 1089 int start; 1090 1091 if (!TCODE_IS_READ_REQUEST(tcode)) { 1092 fw_send_response(card, request, RCODE_TYPE_ERROR); 1093 return; 1094 } 1095 1096 if ((offset & 3) > 0 || (length & 3) > 0) { 1097 fw_send_response(card, request, RCODE_ADDRESS_ERROR); 1098 return; 1099 } 1100 1101 start = (offset - topology_map_region.start) / 4; 1102 memcpy(payload, &card->topology_map[start], length); 1103 1104 fw_send_response(card, request, RCODE_COMPLETE); 1105 } 1106 1107 static struct fw_address_handler topology_map = { 1108 .length = 0x400, 1109 .address_callback = handle_topology_map, 1110 }; 1111 1112 static const struct fw_address_region registers_region = 1113 { .start = CSR_REGISTER_BASE, 1114 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, }; 1115 1116 static void update_split_timeout(struct fw_card *card) 1117 { 1118 unsigned int cycles; 1119 1120 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19); 1121 1122 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */ 1123 cycles = clamp(cycles, 800u, 3u * 8000u); 1124 1125 card->split_timeout_cycles = cycles; 1126 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000); 1127 } 1128 1129 static void handle_registers(struct fw_card *card, struct fw_request *request, 1130 int tcode, int destination, int source, int generation, 1131 unsigned long long offset, void *payload, size_t length, 1132 void *callback_data) 1133 { 1134 int reg = offset & ~CSR_REGISTER_BASE; 1135 __be32 *data = payload; 1136 int rcode = RCODE_COMPLETE; 1137 unsigned long flags; 1138 1139 switch (reg) { 1140 case CSR_PRIORITY_BUDGET: 1141 if (!card->priority_budget_implemented) { 1142 rcode = RCODE_ADDRESS_ERROR; 1143 break; 1144 } 1145 fallthrough; 1146 1147 case CSR_NODE_IDS: 1148 /* 1149 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8 1150 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges 1151 */ 1152 fallthrough; 1153 1154 case CSR_STATE_CLEAR: 1155 case CSR_STATE_SET: 1156 case CSR_CYCLE_TIME: 1157 case CSR_BUS_TIME: 1158 case CSR_BUSY_TIMEOUT: 1159 if (tcode == TCODE_READ_QUADLET_REQUEST) 1160 *data = cpu_to_be32(card->driver->read_csr(card, reg)); 1161 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1162 card->driver->write_csr(card, reg, be32_to_cpu(*data)); 1163 else 1164 rcode = RCODE_TYPE_ERROR; 1165 break; 1166 1167 case CSR_RESET_START: 1168 if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1169 card->driver->write_csr(card, CSR_STATE_CLEAR, 1170 CSR_STATE_BIT_ABDICATE); 1171 else 1172 rcode = RCODE_TYPE_ERROR; 1173 break; 1174 1175 case CSR_SPLIT_TIMEOUT_HI: 1176 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1177 *data = cpu_to_be32(card->split_timeout_hi); 1178 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1179 spin_lock_irqsave(&card->lock, flags); 1180 card->split_timeout_hi = be32_to_cpu(*data) & 7; 1181 update_split_timeout(card); 1182 spin_unlock_irqrestore(&card->lock, flags); 1183 } else { 1184 rcode = RCODE_TYPE_ERROR; 1185 } 1186 break; 1187 1188 case CSR_SPLIT_TIMEOUT_LO: 1189 if (tcode == TCODE_READ_QUADLET_REQUEST) { 1190 *data = cpu_to_be32(card->split_timeout_lo); 1191 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { 1192 spin_lock_irqsave(&card->lock, flags); 1193 card->split_timeout_lo = 1194 be32_to_cpu(*data) & 0xfff80000; 1195 update_split_timeout(card); 1196 spin_unlock_irqrestore(&card->lock, flags); 1197 } else { 1198 rcode = RCODE_TYPE_ERROR; 1199 } 1200 break; 1201 1202 case CSR_MAINT_UTILITY: 1203 if (tcode == TCODE_READ_QUADLET_REQUEST) 1204 *data = card->maint_utility_register; 1205 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1206 card->maint_utility_register = *data; 1207 else 1208 rcode = RCODE_TYPE_ERROR; 1209 break; 1210 1211 case CSR_BROADCAST_CHANNEL: 1212 if (tcode == TCODE_READ_QUADLET_REQUEST) 1213 *data = cpu_to_be32(card->broadcast_channel); 1214 else if (tcode == TCODE_WRITE_QUADLET_REQUEST) 1215 card->broadcast_channel = 1216 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) | 1217 BROADCAST_CHANNEL_INITIAL; 1218 else 1219 rcode = RCODE_TYPE_ERROR; 1220 break; 1221 1222 case CSR_BUS_MANAGER_ID: 1223 case CSR_BANDWIDTH_AVAILABLE: 1224 case CSR_CHANNELS_AVAILABLE_HI: 1225 case CSR_CHANNELS_AVAILABLE_LO: 1226 /* 1227 * FIXME: these are handled by the OHCI hardware and 1228 * the stack never sees these request. If we add 1229 * support for a new type of controller that doesn't 1230 * handle this in hardware we need to deal with these 1231 * transactions. 1232 */ 1233 BUG(); 1234 break; 1235 1236 default: 1237 rcode = RCODE_ADDRESS_ERROR; 1238 break; 1239 } 1240 1241 fw_send_response(card, request, rcode); 1242 } 1243 1244 static struct fw_address_handler registers = { 1245 .length = 0x400, 1246 .address_callback = handle_registers, 1247 }; 1248 1249 static void handle_low_memory(struct fw_card *card, struct fw_request *request, 1250 int tcode, int destination, int source, int generation, 1251 unsigned long long offset, void *payload, size_t length, 1252 void *callback_data) 1253 { 1254 /* 1255 * This catches requests not handled by the physical DMA unit, 1256 * i.e., wrong transaction types or unauthorized source nodes. 1257 */ 1258 fw_send_response(card, request, RCODE_TYPE_ERROR); 1259 } 1260 1261 static struct fw_address_handler low_memory = { 1262 .length = FW_MAX_PHYSICAL_RANGE, 1263 .address_callback = handle_low_memory, 1264 }; 1265 1266 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1267 MODULE_DESCRIPTION("Core IEEE1394 transaction logic"); 1268 MODULE_LICENSE("GPL"); 1269 1270 static const u32 vendor_textual_descriptor[] = { 1271 /* textual descriptor leaf () */ 1272 0x00060000, 1273 0x00000000, 1274 0x00000000, 1275 0x4c696e75, /* L i n u */ 1276 0x78204669, /* x F i */ 1277 0x72657769, /* r e w i */ 1278 0x72650000, /* r e */ 1279 }; 1280 1281 static const u32 model_textual_descriptor[] = { 1282 /* model descriptor leaf () */ 1283 0x00030000, 1284 0x00000000, 1285 0x00000000, 1286 0x4a756a75, /* J u j u */ 1287 }; 1288 1289 static struct fw_descriptor vendor_id_descriptor = { 1290 .length = ARRAY_SIZE(vendor_textual_descriptor), 1291 .immediate = 0x03001f11, 1292 .key = 0x81000000, 1293 .data = vendor_textual_descriptor, 1294 }; 1295 1296 static struct fw_descriptor model_id_descriptor = { 1297 .length = ARRAY_SIZE(model_textual_descriptor), 1298 .immediate = 0x17023901, 1299 .key = 0x81000000, 1300 .data = model_textual_descriptor, 1301 }; 1302 1303 static int __init fw_core_init(void) 1304 { 1305 int ret; 1306 1307 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0); 1308 if (!fw_workqueue) 1309 return -ENOMEM; 1310 1311 ret = bus_register(&fw_bus_type); 1312 if (ret < 0) { 1313 destroy_workqueue(fw_workqueue); 1314 return ret; 1315 } 1316 1317 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops); 1318 if (fw_cdev_major < 0) { 1319 bus_unregister(&fw_bus_type); 1320 destroy_workqueue(fw_workqueue); 1321 return fw_cdev_major; 1322 } 1323 1324 fw_core_add_address_handler(&topology_map, &topology_map_region); 1325 fw_core_add_address_handler(®isters, ®isters_region); 1326 fw_core_add_address_handler(&low_memory, &low_memory_region); 1327 fw_core_add_descriptor(&vendor_id_descriptor); 1328 fw_core_add_descriptor(&model_id_descriptor); 1329 1330 return 0; 1331 } 1332 1333 static void __exit fw_core_cleanup(void) 1334 { 1335 unregister_chrdev(fw_cdev_major, "firewire"); 1336 bus_unregister(&fw_bus_type); 1337 destroy_workqueue(fw_workqueue); 1338 idr_destroy(&fw_device_idr); 1339 } 1340 1341 module_init(fw_core_init); 1342 module_exit(fw_core_cleanup); 1343