xref: /openbmc/linux/drivers/firewire/core-iso.c (revision a09d2831)
1 /*
2  * Isochronous I/O functionality:
3  *   - Isochronous DMA context management
4  *   - Isochronous bus resource management (channels, bandwidth), client side
5  *
6  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21  */
22 
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/spinlock.h>
30 #include <linux/vmalloc.h>
31 
32 #include <asm/byteorder.h>
33 
34 #include "core.h"
35 
36 /*
37  * Isochronous DMA context management
38  */
39 
40 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
41 		       int page_count, enum dma_data_direction direction)
42 {
43 	int i, j;
44 	dma_addr_t address;
45 
46 	buffer->page_count = page_count;
47 	buffer->direction = direction;
48 
49 	buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
50 				GFP_KERNEL);
51 	if (buffer->pages == NULL)
52 		goto out;
53 
54 	for (i = 0; i < buffer->page_count; i++) {
55 		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
56 		if (buffer->pages[i] == NULL)
57 			goto out_pages;
58 
59 		address = dma_map_page(card->device, buffer->pages[i],
60 				       0, PAGE_SIZE, direction);
61 		if (dma_mapping_error(card->device, address)) {
62 			__free_page(buffer->pages[i]);
63 			goto out_pages;
64 		}
65 		set_page_private(buffer->pages[i], address);
66 	}
67 
68 	return 0;
69 
70  out_pages:
71 	for (j = 0; j < i; j++) {
72 		address = page_private(buffer->pages[j]);
73 		dma_unmap_page(card->device, address,
74 			       PAGE_SIZE, direction);
75 		__free_page(buffer->pages[j]);
76 	}
77 	kfree(buffer->pages);
78  out:
79 	buffer->pages = NULL;
80 
81 	return -ENOMEM;
82 }
83 EXPORT_SYMBOL(fw_iso_buffer_init);
84 
85 int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
86 {
87 	unsigned long uaddr;
88 	int i, err;
89 
90 	uaddr = vma->vm_start;
91 	for (i = 0; i < buffer->page_count; i++) {
92 		err = vm_insert_page(vma, uaddr, buffer->pages[i]);
93 		if (err)
94 			return err;
95 
96 		uaddr += PAGE_SIZE;
97 	}
98 
99 	return 0;
100 }
101 
102 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
103 			   struct fw_card *card)
104 {
105 	int i;
106 	dma_addr_t address;
107 
108 	for (i = 0; i < buffer->page_count; i++) {
109 		address = page_private(buffer->pages[i]);
110 		dma_unmap_page(card->device, address,
111 			       PAGE_SIZE, buffer->direction);
112 		__free_page(buffer->pages[i]);
113 	}
114 
115 	kfree(buffer->pages);
116 	buffer->pages = NULL;
117 }
118 EXPORT_SYMBOL(fw_iso_buffer_destroy);
119 
120 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
121 		int type, int channel, int speed, size_t header_size,
122 		fw_iso_callback_t callback, void *callback_data)
123 {
124 	struct fw_iso_context *ctx;
125 
126 	ctx = card->driver->allocate_iso_context(card,
127 						 type, channel, header_size);
128 	if (IS_ERR(ctx))
129 		return ctx;
130 
131 	ctx->card = card;
132 	ctx->type = type;
133 	ctx->channel = channel;
134 	ctx->speed = speed;
135 	ctx->header_size = header_size;
136 	ctx->callback = callback;
137 	ctx->callback_data = callback_data;
138 
139 	return ctx;
140 }
141 EXPORT_SYMBOL(fw_iso_context_create);
142 
143 void fw_iso_context_destroy(struct fw_iso_context *ctx)
144 {
145 	struct fw_card *card = ctx->card;
146 
147 	card->driver->free_iso_context(ctx);
148 }
149 EXPORT_SYMBOL(fw_iso_context_destroy);
150 
151 int fw_iso_context_start(struct fw_iso_context *ctx,
152 			 int cycle, int sync, int tags)
153 {
154 	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
155 }
156 EXPORT_SYMBOL(fw_iso_context_start);
157 
158 int fw_iso_context_queue(struct fw_iso_context *ctx,
159 			 struct fw_iso_packet *packet,
160 			 struct fw_iso_buffer *buffer,
161 			 unsigned long payload)
162 {
163 	struct fw_card *card = ctx->card;
164 
165 	return card->driver->queue_iso(ctx, packet, buffer, payload);
166 }
167 EXPORT_SYMBOL(fw_iso_context_queue);
168 
169 int fw_iso_context_stop(struct fw_iso_context *ctx)
170 {
171 	return ctx->card->driver->stop_iso(ctx);
172 }
173 EXPORT_SYMBOL(fw_iso_context_stop);
174 
175 /*
176  * Isochronous bus resource management (channels, bandwidth), client side
177  */
178 
179 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
180 			    int bandwidth, bool allocate, __be32 data[2])
181 {
182 	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
183 
184 	/*
185 	 * On a 1394a IRM with low contention, try < 1 is enough.
186 	 * On a 1394-1995 IRM, we need at least try < 2.
187 	 * Let's just do try < 5.
188 	 */
189 	for (try = 0; try < 5; try++) {
190 		new = allocate ? old - bandwidth : old + bandwidth;
191 		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
192 			break;
193 
194 		data[0] = cpu_to_be32(old);
195 		data[1] = cpu_to_be32(new);
196 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
197 				irm_id, generation, SCODE_100,
198 				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
199 				data, 8)) {
200 		case RCODE_GENERATION:
201 			/* A generation change frees all bandwidth. */
202 			return allocate ? -EAGAIN : bandwidth;
203 
204 		case RCODE_COMPLETE:
205 			if (be32_to_cpup(data) == old)
206 				return bandwidth;
207 
208 			old = be32_to_cpup(data);
209 			/* Fall through. */
210 		}
211 	}
212 
213 	return -EIO;
214 }
215 
216 static int manage_channel(struct fw_card *card, int irm_id, int generation,
217 		u32 channels_mask, u64 offset, bool allocate, __be32 data[2])
218 {
219 	__be32 c, all, old;
220 	int i, retry = 5;
221 
222 	old = all = allocate ? cpu_to_be32(~0) : 0;
223 
224 	for (i = 0; i < 32; i++) {
225 		if (!(channels_mask & 1 << i))
226 			continue;
227 
228 		c = cpu_to_be32(1 << (31 - i));
229 		if ((old & c) != (all & c))
230 			continue;
231 
232 		data[0] = old;
233 		data[1] = old ^ c;
234 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
235 					   irm_id, generation, SCODE_100,
236 					   offset, data, 8)) {
237 		case RCODE_GENERATION:
238 			/* A generation change frees all channels. */
239 			return allocate ? -EAGAIN : i;
240 
241 		case RCODE_COMPLETE:
242 			if (data[0] == old)
243 				return i;
244 
245 			old = data[0];
246 
247 			/* Is the IRM 1394a-2000 compliant? */
248 			if ((data[0] & c) == (data[1] & c))
249 				continue;
250 
251 			/* 1394-1995 IRM, fall through to retry. */
252 		default:
253 			if (retry--)
254 				i--;
255 		}
256 	}
257 
258 	return -EIO;
259 }
260 
261 static void deallocate_channel(struct fw_card *card, int irm_id,
262 			       int generation, int channel, __be32 buffer[2])
263 {
264 	u32 mask;
265 	u64 offset;
266 
267 	mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
268 	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
269 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
270 
271 	manage_channel(card, irm_id, generation, mask, offset, false, buffer);
272 }
273 
274 /**
275  * fw_iso_resource_manage - Allocate or deallocate a channel and/or bandwidth
276  *
277  * In parameters: card, generation, channels_mask, bandwidth, allocate
278  * Out parameters: channel, bandwidth
279  * This function blocks (sleeps) during communication with the IRM.
280  *
281  * Allocates or deallocates at most one channel out of channels_mask.
282  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
283  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
284  * channel 0 and LSB for channel 63.)
285  * Allocates or deallocates as many bandwidth allocation units as specified.
286  *
287  * Returns channel < 0 if no channel was allocated or deallocated.
288  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
289  *
290  * If generation is stale, deallocations succeed but allocations fail with
291  * channel = -EAGAIN.
292  *
293  * If channel allocation fails, no bandwidth will be allocated either.
294  * If bandwidth allocation fails, no channel will be allocated either.
295  * But deallocations of channel and bandwidth are tried independently
296  * of each other's success.
297  */
298 void fw_iso_resource_manage(struct fw_card *card, int generation,
299 			    u64 channels_mask, int *channel, int *bandwidth,
300 			    bool allocate, __be32 buffer[2])
301 {
302 	u32 channels_hi = channels_mask;	/* channels 31...0 */
303 	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */
304 	int irm_id, ret, c = -EINVAL;
305 
306 	spin_lock_irq(&card->lock);
307 	irm_id = card->irm_node->node_id;
308 	spin_unlock_irq(&card->lock);
309 
310 	if (channels_hi)
311 		c = manage_channel(card, irm_id, generation, channels_hi,
312 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
313 				allocate, buffer);
314 	if (channels_lo && c < 0) {
315 		c = manage_channel(card, irm_id, generation, channels_lo,
316 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
317 				allocate, buffer);
318 		if (c >= 0)
319 			c += 32;
320 	}
321 	*channel = c;
322 
323 	if (allocate && channels_mask != 0 && c < 0)
324 		*bandwidth = 0;
325 
326 	if (*bandwidth == 0)
327 		return;
328 
329 	ret = manage_bandwidth(card, irm_id, generation, *bandwidth,
330 			       allocate, buffer);
331 	if (ret < 0)
332 		*bandwidth = 0;
333 
334 	if (allocate && ret < 0 && c >= 0) {
335 		deallocate_channel(card, irm_id, generation, c, buffer);
336 		*channel = ret;
337 	}
338 }
339