xref: /openbmc/linux/drivers/firewire/core-iso.c (revision 7ff836f0)
1 /*
2  * Isochronous I/O functionality:
3  *   - Isochronous DMA context management
4  *   - Isochronous bus resource management (channels, bandwidth), client side
5  *
6  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21  */
22 
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/vmalloc.h>
32 #include <linux/export.h>
33 
34 #include <asm/byteorder.h>
35 
36 #include "core.h"
37 
38 /*
39  * Isochronous DMA context management
40  */
41 
42 int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
43 {
44 	int i;
45 
46 	buffer->page_count = 0;
47 	buffer->page_count_mapped = 0;
48 	buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]),
49 				      GFP_KERNEL);
50 	if (buffer->pages == NULL)
51 		return -ENOMEM;
52 
53 	for (i = 0; i < page_count; i++) {
54 		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
55 		if (buffer->pages[i] == NULL)
56 			break;
57 	}
58 	buffer->page_count = i;
59 	if (i < page_count) {
60 		fw_iso_buffer_destroy(buffer, NULL);
61 		return -ENOMEM;
62 	}
63 
64 	return 0;
65 }
66 
67 int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
68 			  enum dma_data_direction direction)
69 {
70 	dma_addr_t address;
71 	int i;
72 
73 	buffer->direction = direction;
74 
75 	for (i = 0; i < buffer->page_count; i++) {
76 		address = dma_map_page(card->device, buffer->pages[i],
77 				       0, PAGE_SIZE, direction);
78 		if (dma_mapping_error(card->device, address))
79 			break;
80 
81 		set_page_private(buffer->pages[i], address);
82 	}
83 	buffer->page_count_mapped = i;
84 	if (i < buffer->page_count)
85 		return -ENOMEM;
86 
87 	return 0;
88 }
89 
90 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
91 		       int page_count, enum dma_data_direction direction)
92 {
93 	int ret;
94 
95 	ret = fw_iso_buffer_alloc(buffer, page_count);
96 	if (ret < 0)
97 		return ret;
98 
99 	ret = fw_iso_buffer_map_dma(buffer, card, direction);
100 	if (ret < 0)
101 		fw_iso_buffer_destroy(buffer, card);
102 
103 	return ret;
104 }
105 EXPORT_SYMBOL(fw_iso_buffer_init);
106 
107 int fw_iso_buffer_map_vma(struct fw_iso_buffer *buffer,
108 			  struct vm_area_struct *vma)
109 {
110 	return vm_map_pages_zero(vma, buffer->pages,
111 					buffer->page_count);
112 }
113 
114 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
115 			   struct fw_card *card)
116 {
117 	int i;
118 	dma_addr_t address;
119 
120 	for (i = 0; i < buffer->page_count_mapped; i++) {
121 		address = page_private(buffer->pages[i]);
122 		dma_unmap_page(card->device, address,
123 			       PAGE_SIZE, buffer->direction);
124 	}
125 	for (i = 0; i < buffer->page_count; i++)
126 		__free_page(buffer->pages[i]);
127 
128 	kfree(buffer->pages);
129 	buffer->pages = NULL;
130 	buffer->page_count = 0;
131 	buffer->page_count_mapped = 0;
132 }
133 EXPORT_SYMBOL(fw_iso_buffer_destroy);
134 
135 /* Convert DMA address to offset into virtually contiguous buffer. */
136 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
137 {
138 	size_t i;
139 	dma_addr_t address;
140 	ssize_t offset;
141 
142 	for (i = 0; i < buffer->page_count; i++) {
143 		address = page_private(buffer->pages[i]);
144 		offset = (ssize_t)completed - (ssize_t)address;
145 		if (offset > 0 && offset <= PAGE_SIZE)
146 			return (i << PAGE_SHIFT) + offset;
147 	}
148 
149 	return 0;
150 }
151 
152 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
153 		int type, int channel, int speed, size_t header_size,
154 		fw_iso_callback_t callback, void *callback_data)
155 {
156 	struct fw_iso_context *ctx;
157 
158 	ctx = card->driver->allocate_iso_context(card,
159 						 type, channel, header_size);
160 	if (IS_ERR(ctx))
161 		return ctx;
162 
163 	ctx->card = card;
164 	ctx->type = type;
165 	ctx->channel = channel;
166 	ctx->speed = speed;
167 	ctx->header_size = header_size;
168 	ctx->callback.sc = callback;
169 	ctx->callback_data = callback_data;
170 
171 	return ctx;
172 }
173 EXPORT_SYMBOL(fw_iso_context_create);
174 
175 void fw_iso_context_destroy(struct fw_iso_context *ctx)
176 {
177 	ctx->card->driver->free_iso_context(ctx);
178 }
179 EXPORT_SYMBOL(fw_iso_context_destroy);
180 
181 int fw_iso_context_start(struct fw_iso_context *ctx,
182 			 int cycle, int sync, int tags)
183 {
184 	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
185 }
186 EXPORT_SYMBOL(fw_iso_context_start);
187 
188 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
189 {
190 	return ctx->card->driver->set_iso_channels(ctx, channels);
191 }
192 
193 int fw_iso_context_queue(struct fw_iso_context *ctx,
194 			 struct fw_iso_packet *packet,
195 			 struct fw_iso_buffer *buffer,
196 			 unsigned long payload)
197 {
198 	return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
199 }
200 EXPORT_SYMBOL(fw_iso_context_queue);
201 
202 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
203 {
204 	ctx->card->driver->flush_queue_iso(ctx);
205 }
206 EXPORT_SYMBOL(fw_iso_context_queue_flush);
207 
208 int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
209 {
210 	return ctx->card->driver->flush_iso_completions(ctx);
211 }
212 EXPORT_SYMBOL(fw_iso_context_flush_completions);
213 
214 int fw_iso_context_stop(struct fw_iso_context *ctx)
215 {
216 	return ctx->card->driver->stop_iso(ctx);
217 }
218 EXPORT_SYMBOL(fw_iso_context_stop);
219 
220 /*
221  * Isochronous bus resource management (channels, bandwidth), client side
222  */
223 
224 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
225 			    int bandwidth, bool allocate)
226 {
227 	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
228 	__be32 data[2];
229 
230 	/*
231 	 * On a 1394a IRM with low contention, try < 1 is enough.
232 	 * On a 1394-1995 IRM, we need at least try < 2.
233 	 * Let's just do try < 5.
234 	 */
235 	for (try = 0; try < 5; try++) {
236 		new = allocate ? old - bandwidth : old + bandwidth;
237 		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
238 			return -EBUSY;
239 
240 		data[0] = cpu_to_be32(old);
241 		data[1] = cpu_to_be32(new);
242 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
243 				irm_id, generation, SCODE_100,
244 				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
245 				data, 8)) {
246 		case RCODE_GENERATION:
247 			/* A generation change frees all bandwidth. */
248 			return allocate ? -EAGAIN : bandwidth;
249 
250 		case RCODE_COMPLETE:
251 			if (be32_to_cpup(data) == old)
252 				return bandwidth;
253 
254 			old = be32_to_cpup(data);
255 			/* Fall through. */
256 		}
257 	}
258 
259 	return -EIO;
260 }
261 
262 static int manage_channel(struct fw_card *card, int irm_id, int generation,
263 		u32 channels_mask, u64 offset, bool allocate)
264 {
265 	__be32 bit, all, old;
266 	__be32 data[2];
267 	int channel, ret = -EIO, retry = 5;
268 
269 	old = all = allocate ? cpu_to_be32(~0) : 0;
270 
271 	for (channel = 0; channel < 32; channel++) {
272 		if (!(channels_mask & 1 << channel))
273 			continue;
274 
275 		ret = -EBUSY;
276 
277 		bit = cpu_to_be32(1 << (31 - channel));
278 		if ((old & bit) != (all & bit))
279 			continue;
280 
281 		data[0] = old;
282 		data[1] = old ^ bit;
283 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
284 					   irm_id, generation, SCODE_100,
285 					   offset, data, 8)) {
286 		case RCODE_GENERATION:
287 			/* A generation change frees all channels. */
288 			return allocate ? -EAGAIN : channel;
289 
290 		case RCODE_COMPLETE:
291 			if (data[0] == old)
292 				return channel;
293 
294 			old = data[0];
295 
296 			/* Is the IRM 1394a-2000 compliant? */
297 			if ((data[0] & bit) == (data[1] & bit))
298 				continue;
299 
300 			/* 1394-1995 IRM, fall through to retry. */
301 		default:
302 			if (retry) {
303 				retry--;
304 				channel--;
305 			} else {
306 				ret = -EIO;
307 			}
308 		}
309 	}
310 
311 	return ret;
312 }
313 
314 static void deallocate_channel(struct fw_card *card, int irm_id,
315 			       int generation, int channel)
316 {
317 	u32 mask;
318 	u64 offset;
319 
320 	mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
321 	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
322 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
323 
324 	manage_channel(card, irm_id, generation, mask, offset, false);
325 }
326 
327 /**
328  * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
329  * @card: card interface for this action
330  * @generation: bus generation
331  * @channels_mask: bitmask for channel allocation
332  * @channel: pointer for returning channel allocation result
333  * @bandwidth: pointer for returning bandwidth allocation result
334  * @allocate: whether to allocate (true) or deallocate (false)
335  *
336  * In parameters: card, generation, channels_mask, bandwidth, allocate
337  * Out parameters: channel, bandwidth
338  *
339  * This function blocks (sleeps) during communication with the IRM.
340  *
341  * Allocates or deallocates at most one channel out of channels_mask.
342  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
343  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
344  * channel 0 and LSB for channel 63.)
345  * Allocates or deallocates as many bandwidth allocation units as specified.
346  *
347  * Returns channel < 0 if no channel was allocated or deallocated.
348  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
349  *
350  * If generation is stale, deallocations succeed but allocations fail with
351  * channel = -EAGAIN.
352  *
353  * If channel allocation fails, no bandwidth will be allocated either.
354  * If bandwidth allocation fails, no channel will be allocated either.
355  * But deallocations of channel and bandwidth are tried independently
356  * of each other's success.
357  */
358 void fw_iso_resource_manage(struct fw_card *card, int generation,
359 			    u64 channels_mask, int *channel, int *bandwidth,
360 			    bool allocate)
361 {
362 	u32 channels_hi = channels_mask;	/* channels 31...0 */
363 	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */
364 	int irm_id, ret, c = -EINVAL;
365 
366 	spin_lock_irq(&card->lock);
367 	irm_id = card->irm_node->node_id;
368 	spin_unlock_irq(&card->lock);
369 
370 	if (channels_hi)
371 		c = manage_channel(card, irm_id, generation, channels_hi,
372 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
373 				allocate);
374 	if (channels_lo && c < 0) {
375 		c = manage_channel(card, irm_id, generation, channels_lo,
376 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
377 				allocate);
378 		if (c >= 0)
379 			c += 32;
380 	}
381 	*channel = c;
382 
383 	if (allocate && channels_mask != 0 && c < 0)
384 		*bandwidth = 0;
385 
386 	if (*bandwidth == 0)
387 		return;
388 
389 	ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
390 	if (ret < 0)
391 		*bandwidth = 0;
392 
393 	if (allocate && ret < 0) {
394 		if (c >= 0)
395 			deallocate_channel(card, irm_id, generation, c);
396 		*channel = ret;
397 	}
398 }
399 EXPORT_SYMBOL(fw_iso_resource_manage);
400