xref: /openbmc/linux/drivers/firewire/core-iso.c (revision 64d85cc9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Isochronous I/O functionality:
4  *   - Isochronous DMA context management
5  *   - Isochronous bus resource management (channels, bandwidth), client side
6  *
7  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
8  */
9 
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
20 
21 #include <asm/byteorder.h>
22 
23 #include "core.h"
24 
25 /*
26  * Isochronous DMA context management
27  */
28 
29 int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
30 {
31 	int i;
32 
33 	buffer->page_count = 0;
34 	buffer->page_count_mapped = 0;
35 	buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]),
36 				      GFP_KERNEL);
37 	if (buffer->pages == NULL)
38 		return -ENOMEM;
39 
40 	for (i = 0; i < page_count; i++) {
41 		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
42 		if (buffer->pages[i] == NULL)
43 			break;
44 	}
45 	buffer->page_count = i;
46 	if (i < page_count) {
47 		fw_iso_buffer_destroy(buffer, NULL);
48 		return -ENOMEM;
49 	}
50 
51 	return 0;
52 }
53 
54 int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
55 			  enum dma_data_direction direction)
56 {
57 	dma_addr_t address;
58 	int i;
59 
60 	buffer->direction = direction;
61 
62 	for (i = 0; i < buffer->page_count; i++) {
63 		address = dma_map_page(card->device, buffer->pages[i],
64 				       0, PAGE_SIZE, direction);
65 		if (dma_mapping_error(card->device, address))
66 			break;
67 
68 		set_page_private(buffer->pages[i], address);
69 	}
70 	buffer->page_count_mapped = i;
71 	if (i < buffer->page_count)
72 		return -ENOMEM;
73 
74 	return 0;
75 }
76 
77 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
78 		       int page_count, enum dma_data_direction direction)
79 {
80 	int ret;
81 
82 	ret = fw_iso_buffer_alloc(buffer, page_count);
83 	if (ret < 0)
84 		return ret;
85 
86 	ret = fw_iso_buffer_map_dma(buffer, card, direction);
87 	if (ret < 0)
88 		fw_iso_buffer_destroy(buffer, card);
89 
90 	return ret;
91 }
92 EXPORT_SYMBOL(fw_iso_buffer_init);
93 
94 int fw_iso_buffer_map_vma(struct fw_iso_buffer *buffer,
95 			  struct vm_area_struct *vma)
96 {
97 	return vm_map_pages_zero(vma, buffer->pages,
98 					buffer->page_count);
99 }
100 
101 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
102 			   struct fw_card *card)
103 {
104 	int i;
105 	dma_addr_t address;
106 
107 	for (i = 0; i < buffer->page_count_mapped; i++) {
108 		address = page_private(buffer->pages[i]);
109 		dma_unmap_page(card->device, address,
110 			       PAGE_SIZE, buffer->direction);
111 	}
112 	for (i = 0; i < buffer->page_count; i++)
113 		__free_page(buffer->pages[i]);
114 
115 	kfree(buffer->pages);
116 	buffer->pages = NULL;
117 	buffer->page_count = 0;
118 	buffer->page_count_mapped = 0;
119 }
120 EXPORT_SYMBOL(fw_iso_buffer_destroy);
121 
122 /* Convert DMA address to offset into virtually contiguous buffer. */
123 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
124 {
125 	size_t i;
126 	dma_addr_t address;
127 	ssize_t offset;
128 
129 	for (i = 0; i < buffer->page_count; i++) {
130 		address = page_private(buffer->pages[i]);
131 		offset = (ssize_t)completed - (ssize_t)address;
132 		if (offset > 0 && offset <= PAGE_SIZE)
133 			return (i << PAGE_SHIFT) + offset;
134 	}
135 
136 	return 0;
137 }
138 
139 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
140 		int type, int channel, int speed, size_t header_size,
141 		fw_iso_callback_t callback, void *callback_data)
142 {
143 	struct fw_iso_context *ctx;
144 
145 	ctx = card->driver->allocate_iso_context(card,
146 						 type, channel, header_size);
147 	if (IS_ERR(ctx))
148 		return ctx;
149 
150 	ctx->card = card;
151 	ctx->type = type;
152 	ctx->channel = channel;
153 	ctx->speed = speed;
154 	ctx->header_size = header_size;
155 	ctx->callback.sc = callback;
156 	ctx->callback_data = callback_data;
157 
158 	return ctx;
159 }
160 EXPORT_SYMBOL(fw_iso_context_create);
161 
162 void fw_iso_context_destroy(struct fw_iso_context *ctx)
163 {
164 	ctx->card->driver->free_iso_context(ctx);
165 }
166 EXPORT_SYMBOL(fw_iso_context_destroy);
167 
168 int fw_iso_context_start(struct fw_iso_context *ctx,
169 			 int cycle, int sync, int tags)
170 {
171 	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
172 }
173 EXPORT_SYMBOL(fw_iso_context_start);
174 
175 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
176 {
177 	return ctx->card->driver->set_iso_channels(ctx, channels);
178 }
179 
180 int fw_iso_context_queue(struct fw_iso_context *ctx,
181 			 struct fw_iso_packet *packet,
182 			 struct fw_iso_buffer *buffer,
183 			 unsigned long payload)
184 {
185 	return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
186 }
187 EXPORT_SYMBOL(fw_iso_context_queue);
188 
189 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
190 {
191 	ctx->card->driver->flush_queue_iso(ctx);
192 }
193 EXPORT_SYMBOL(fw_iso_context_queue_flush);
194 
195 int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
196 {
197 	return ctx->card->driver->flush_iso_completions(ctx);
198 }
199 EXPORT_SYMBOL(fw_iso_context_flush_completions);
200 
201 int fw_iso_context_stop(struct fw_iso_context *ctx)
202 {
203 	return ctx->card->driver->stop_iso(ctx);
204 }
205 EXPORT_SYMBOL(fw_iso_context_stop);
206 
207 /*
208  * Isochronous bus resource management (channels, bandwidth), client side
209  */
210 
211 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
212 			    int bandwidth, bool allocate)
213 {
214 	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
215 	__be32 data[2];
216 
217 	/*
218 	 * On a 1394a IRM with low contention, try < 1 is enough.
219 	 * On a 1394-1995 IRM, we need at least try < 2.
220 	 * Let's just do try < 5.
221 	 */
222 	for (try = 0; try < 5; try++) {
223 		new = allocate ? old - bandwidth : old + bandwidth;
224 		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
225 			return -EBUSY;
226 
227 		data[0] = cpu_to_be32(old);
228 		data[1] = cpu_to_be32(new);
229 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
230 				irm_id, generation, SCODE_100,
231 				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
232 				data, 8)) {
233 		case RCODE_GENERATION:
234 			/* A generation change frees all bandwidth. */
235 			return allocate ? -EAGAIN : bandwidth;
236 
237 		case RCODE_COMPLETE:
238 			if (be32_to_cpup(data) == old)
239 				return bandwidth;
240 
241 			old = be32_to_cpup(data);
242 			/* Fall through. */
243 		}
244 	}
245 
246 	return -EIO;
247 }
248 
249 static int manage_channel(struct fw_card *card, int irm_id, int generation,
250 		u32 channels_mask, u64 offset, bool allocate)
251 {
252 	__be32 bit, all, old;
253 	__be32 data[2];
254 	int channel, ret = -EIO, retry = 5;
255 
256 	old = all = allocate ? cpu_to_be32(~0) : 0;
257 
258 	for (channel = 0; channel < 32; channel++) {
259 		if (!(channels_mask & 1 << channel))
260 			continue;
261 
262 		ret = -EBUSY;
263 
264 		bit = cpu_to_be32(1 << (31 - channel));
265 		if ((old & bit) != (all & bit))
266 			continue;
267 
268 		data[0] = old;
269 		data[1] = old ^ bit;
270 		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
271 					   irm_id, generation, SCODE_100,
272 					   offset, data, 8)) {
273 		case RCODE_GENERATION:
274 			/* A generation change frees all channels. */
275 			return allocate ? -EAGAIN : channel;
276 
277 		case RCODE_COMPLETE:
278 			if (data[0] == old)
279 				return channel;
280 
281 			old = data[0];
282 
283 			/* Is the IRM 1394a-2000 compliant? */
284 			if ((data[0] & bit) == (data[1] & bit))
285 				continue;
286 
287 			/* 1394-1995 IRM, fall through to retry. */
288 		default:
289 			if (retry) {
290 				retry--;
291 				channel--;
292 			} else {
293 				ret = -EIO;
294 			}
295 		}
296 	}
297 
298 	return ret;
299 }
300 
301 static void deallocate_channel(struct fw_card *card, int irm_id,
302 			       int generation, int channel)
303 {
304 	u32 mask;
305 	u64 offset;
306 
307 	mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
308 	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
309 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
310 
311 	manage_channel(card, irm_id, generation, mask, offset, false);
312 }
313 
314 /**
315  * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
316  * @card: card interface for this action
317  * @generation: bus generation
318  * @channels_mask: bitmask for channel allocation
319  * @channel: pointer for returning channel allocation result
320  * @bandwidth: pointer for returning bandwidth allocation result
321  * @allocate: whether to allocate (true) or deallocate (false)
322  *
323  * In parameters: card, generation, channels_mask, bandwidth, allocate
324  * Out parameters: channel, bandwidth
325  *
326  * This function blocks (sleeps) during communication with the IRM.
327  *
328  * Allocates or deallocates at most one channel out of channels_mask.
329  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
330  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
331  * channel 0 and LSB for channel 63.)
332  * Allocates or deallocates as many bandwidth allocation units as specified.
333  *
334  * Returns channel < 0 if no channel was allocated or deallocated.
335  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
336  *
337  * If generation is stale, deallocations succeed but allocations fail with
338  * channel = -EAGAIN.
339  *
340  * If channel allocation fails, no bandwidth will be allocated either.
341  * If bandwidth allocation fails, no channel will be allocated either.
342  * But deallocations of channel and bandwidth are tried independently
343  * of each other's success.
344  */
345 void fw_iso_resource_manage(struct fw_card *card, int generation,
346 			    u64 channels_mask, int *channel, int *bandwidth,
347 			    bool allocate)
348 {
349 	u32 channels_hi = channels_mask;	/* channels 31...0 */
350 	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */
351 	int irm_id, ret, c = -EINVAL;
352 
353 	spin_lock_irq(&card->lock);
354 	irm_id = card->irm_node->node_id;
355 	spin_unlock_irq(&card->lock);
356 
357 	if (channels_hi)
358 		c = manage_channel(card, irm_id, generation, channels_hi,
359 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
360 				allocate);
361 	if (channels_lo && c < 0) {
362 		c = manage_channel(card, irm_id, generation, channels_lo,
363 				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
364 				allocate);
365 		if (c >= 0)
366 			c += 32;
367 	}
368 	*channel = c;
369 
370 	if (allocate && channels_mask != 0 && c < 0)
371 		*bandwidth = 0;
372 
373 	if (*bandwidth == 0)
374 		return;
375 
376 	ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
377 	if (ret < 0)
378 		*bandwidth = 0;
379 
380 	if (allocate && ret < 0) {
381 		if (c >= 0)
382 			deallocate_channel(card, irm_id, generation, c);
383 		*channel = ret;
384 	}
385 }
386 EXPORT_SYMBOL(fw_iso_resource_manage);
387