1 /* 2 * Isochronous I/O functionality: 3 * - Isochronous DMA context management 4 * - Isochronous bus resource management (channels, bandwidth), client side 5 * 6 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 21 */ 22 23 #include <linux/dma-mapping.h> 24 #include <linux/errno.h> 25 #include <linux/firewire.h> 26 #include <linux/firewire-constants.h> 27 #include <linux/kernel.h> 28 #include <linux/mm.h> 29 #include <linux/slab.h> 30 #include <linux/spinlock.h> 31 #include <linux/vmalloc.h> 32 #include <linux/export.h> 33 34 #include <asm/byteorder.h> 35 36 #include "core.h" 37 38 /* 39 * Isochronous DMA context management 40 */ 41 42 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card, 43 int page_count, enum dma_data_direction direction) 44 { 45 int i, j; 46 dma_addr_t address; 47 48 buffer->page_count = page_count; 49 buffer->direction = direction; 50 51 buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]), 52 GFP_KERNEL); 53 if (buffer->pages == NULL) 54 goto out; 55 56 for (i = 0; i < buffer->page_count; i++) { 57 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO); 58 if (buffer->pages[i] == NULL) 59 goto out_pages; 60 61 address = dma_map_page(card->device, buffer->pages[i], 62 0, PAGE_SIZE, direction); 63 if (dma_mapping_error(card->device, address)) { 64 __free_page(buffer->pages[i]); 65 goto out_pages; 66 } 67 set_page_private(buffer->pages[i], address); 68 } 69 70 return 0; 71 72 out_pages: 73 for (j = 0; j < i; j++) { 74 address = page_private(buffer->pages[j]); 75 dma_unmap_page(card->device, address, 76 PAGE_SIZE, direction); 77 __free_page(buffer->pages[j]); 78 } 79 kfree(buffer->pages); 80 out: 81 buffer->pages = NULL; 82 83 return -ENOMEM; 84 } 85 EXPORT_SYMBOL(fw_iso_buffer_init); 86 87 int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma) 88 { 89 unsigned long uaddr; 90 int i, err; 91 92 uaddr = vma->vm_start; 93 for (i = 0; i < buffer->page_count; i++) { 94 err = vm_insert_page(vma, uaddr, buffer->pages[i]); 95 if (err) 96 return err; 97 98 uaddr += PAGE_SIZE; 99 } 100 101 return 0; 102 } 103 104 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, 105 struct fw_card *card) 106 { 107 int i; 108 dma_addr_t address; 109 110 for (i = 0; i < buffer->page_count; i++) { 111 address = page_private(buffer->pages[i]); 112 dma_unmap_page(card->device, address, 113 PAGE_SIZE, buffer->direction); 114 __free_page(buffer->pages[i]); 115 } 116 117 kfree(buffer->pages); 118 buffer->pages = NULL; 119 } 120 EXPORT_SYMBOL(fw_iso_buffer_destroy); 121 122 /* Convert DMA address to offset into virtually contiguous buffer. */ 123 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed) 124 { 125 int i; 126 dma_addr_t address; 127 ssize_t offset; 128 129 for (i = 0; i < buffer->page_count; i++) { 130 address = page_private(buffer->pages[i]); 131 offset = (ssize_t)completed - (ssize_t)address; 132 if (offset > 0 && offset <= PAGE_SIZE) 133 return (i << PAGE_SHIFT) + offset; 134 } 135 136 return 0; 137 } 138 139 struct fw_iso_context *fw_iso_context_create(struct fw_card *card, 140 int type, int channel, int speed, size_t header_size, 141 fw_iso_callback_t callback, void *callback_data) 142 { 143 struct fw_iso_context *ctx; 144 145 ctx = card->driver->allocate_iso_context(card, 146 type, channel, header_size); 147 if (IS_ERR(ctx)) 148 return ctx; 149 150 ctx->card = card; 151 ctx->type = type; 152 ctx->channel = channel; 153 ctx->speed = speed; 154 ctx->header_size = header_size; 155 ctx->callback.sc = callback; 156 ctx->callback_data = callback_data; 157 158 return ctx; 159 } 160 EXPORT_SYMBOL(fw_iso_context_create); 161 162 void fw_iso_context_destroy(struct fw_iso_context *ctx) 163 { 164 ctx->card->driver->free_iso_context(ctx); 165 } 166 EXPORT_SYMBOL(fw_iso_context_destroy); 167 168 int fw_iso_context_start(struct fw_iso_context *ctx, 169 int cycle, int sync, int tags) 170 { 171 return ctx->card->driver->start_iso(ctx, cycle, sync, tags); 172 } 173 EXPORT_SYMBOL(fw_iso_context_start); 174 175 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels) 176 { 177 return ctx->card->driver->set_iso_channels(ctx, channels); 178 } 179 180 int fw_iso_context_queue(struct fw_iso_context *ctx, 181 struct fw_iso_packet *packet, 182 struct fw_iso_buffer *buffer, 183 unsigned long payload) 184 { 185 return ctx->card->driver->queue_iso(ctx, packet, buffer, payload); 186 } 187 EXPORT_SYMBOL(fw_iso_context_queue); 188 189 void fw_iso_context_queue_flush(struct fw_iso_context *ctx) 190 { 191 ctx->card->driver->flush_queue_iso(ctx); 192 } 193 EXPORT_SYMBOL(fw_iso_context_queue_flush); 194 195 int fw_iso_context_flush_completions(struct fw_iso_context *ctx) 196 { 197 return ctx->card->driver->flush_iso_completions(ctx); 198 } 199 EXPORT_SYMBOL(fw_iso_context_flush_completions); 200 201 int fw_iso_context_stop(struct fw_iso_context *ctx) 202 { 203 return ctx->card->driver->stop_iso(ctx); 204 } 205 EXPORT_SYMBOL(fw_iso_context_stop); 206 207 /* 208 * Isochronous bus resource management (channels, bandwidth), client side 209 */ 210 211 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation, 212 int bandwidth, bool allocate) 213 { 214 int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0; 215 __be32 data[2]; 216 217 /* 218 * On a 1394a IRM with low contention, try < 1 is enough. 219 * On a 1394-1995 IRM, we need at least try < 2. 220 * Let's just do try < 5. 221 */ 222 for (try = 0; try < 5; try++) { 223 new = allocate ? old - bandwidth : old + bandwidth; 224 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL) 225 return -EBUSY; 226 227 data[0] = cpu_to_be32(old); 228 data[1] = cpu_to_be32(new); 229 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, 230 irm_id, generation, SCODE_100, 231 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE, 232 data, 8)) { 233 case RCODE_GENERATION: 234 /* A generation change frees all bandwidth. */ 235 return allocate ? -EAGAIN : bandwidth; 236 237 case RCODE_COMPLETE: 238 if (be32_to_cpup(data) == old) 239 return bandwidth; 240 241 old = be32_to_cpup(data); 242 /* Fall through. */ 243 } 244 } 245 246 return -EIO; 247 } 248 249 static int manage_channel(struct fw_card *card, int irm_id, int generation, 250 u32 channels_mask, u64 offset, bool allocate) 251 { 252 __be32 bit, all, old; 253 __be32 data[2]; 254 int channel, ret = -EIO, retry = 5; 255 256 old = all = allocate ? cpu_to_be32(~0) : 0; 257 258 for (channel = 0; channel < 32; channel++) { 259 if (!(channels_mask & 1 << channel)) 260 continue; 261 262 ret = -EBUSY; 263 264 bit = cpu_to_be32(1 << (31 - channel)); 265 if ((old & bit) != (all & bit)) 266 continue; 267 268 data[0] = old; 269 data[1] = old ^ bit; 270 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, 271 irm_id, generation, SCODE_100, 272 offset, data, 8)) { 273 case RCODE_GENERATION: 274 /* A generation change frees all channels. */ 275 return allocate ? -EAGAIN : channel; 276 277 case RCODE_COMPLETE: 278 if (data[0] == old) 279 return channel; 280 281 old = data[0]; 282 283 /* Is the IRM 1394a-2000 compliant? */ 284 if ((data[0] & bit) == (data[1] & bit)) 285 continue; 286 287 /* 1394-1995 IRM, fall through to retry. */ 288 default: 289 if (retry) { 290 retry--; 291 channel--; 292 } else { 293 ret = -EIO; 294 } 295 } 296 } 297 298 return ret; 299 } 300 301 static void deallocate_channel(struct fw_card *card, int irm_id, 302 int generation, int channel) 303 { 304 u32 mask; 305 u64 offset; 306 307 mask = channel < 32 ? 1 << channel : 1 << (channel - 32); 308 offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI : 309 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO; 310 311 manage_channel(card, irm_id, generation, mask, offset, false); 312 } 313 314 /** 315 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth 316 * 317 * In parameters: card, generation, channels_mask, bandwidth, allocate 318 * Out parameters: channel, bandwidth 319 * This function blocks (sleeps) during communication with the IRM. 320 * 321 * Allocates or deallocates at most one channel out of channels_mask. 322 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0. 323 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for 324 * channel 0 and LSB for channel 63.) 325 * Allocates or deallocates as many bandwidth allocation units as specified. 326 * 327 * Returns channel < 0 if no channel was allocated or deallocated. 328 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated. 329 * 330 * If generation is stale, deallocations succeed but allocations fail with 331 * channel = -EAGAIN. 332 * 333 * If channel allocation fails, no bandwidth will be allocated either. 334 * If bandwidth allocation fails, no channel will be allocated either. 335 * But deallocations of channel and bandwidth are tried independently 336 * of each other's success. 337 */ 338 void fw_iso_resource_manage(struct fw_card *card, int generation, 339 u64 channels_mask, int *channel, int *bandwidth, 340 bool allocate) 341 { 342 u32 channels_hi = channels_mask; /* channels 31...0 */ 343 u32 channels_lo = channels_mask >> 32; /* channels 63...32 */ 344 int irm_id, ret, c = -EINVAL; 345 346 spin_lock_irq(&card->lock); 347 irm_id = card->irm_node->node_id; 348 spin_unlock_irq(&card->lock); 349 350 if (channels_hi) 351 c = manage_channel(card, irm_id, generation, channels_hi, 352 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI, 353 allocate); 354 if (channels_lo && c < 0) { 355 c = manage_channel(card, irm_id, generation, channels_lo, 356 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO, 357 allocate); 358 if (c >= 0) 359 c += 32; 360 } 361 *channel = c; 362 363 if (allocate && channels_mask != 0 && c < 0) 364 *bandwidth = 0; 365 366 if (*bandwidth == 0) 367 return; 368 369 ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate); 370 if (ret < 0) 371 *bandwidth = 0; 372 373 if (allocate && ret < 0) { 374 if (c >= 0) 375 deallocate_channel(card, irm_id, generation, c); 376 *channel = ret; 377 } 378 } 379 EXPORT_SYMBOL(fw_iso_resource_manage); 380