1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Isochronous I/O functionality:
4 * - Isochronous DMA context management
5 * - Isochronous bus resource management (channels, bandwidth), client side
6 *
7 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
8 */
9
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
20
21 #include <asm/byteorder.h>
22
23 #include "core.h"
24
25 /*
26 * Isochronous DMA context management
27 */
28
fw_iso_buffer_alloc(struct fw_iso_buffer * buffer,int page_count)29 int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
30 {
31 int i;
32
33 buffer->page_count = 0;
34 buffer->page_count_mapped = 0;
35 buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]),
36 GFP_KERNEL);
37 if (buffer->pages == NULL)
38 return -ENOMEM;
39
40 for (i = 0; i < page_count; i++) {
41 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
42 if (buffer->pages[i] == NULL)
43 break;
44 }
45 buffer->page_count = i;
46 if (i < page_count) {
47 fw_iso_buffer_destroy(buffer, NULL);
48 return -ENOMEM;
49 }
50
51 return 0;
52 }
53
fw_iso_buffer_map_dma(struct fw_iso_buffer * buffer,struct fw_card * card,enum dma_data_direction direction)54 int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
55 enum dma_data_direction direction)
56 {
57 dma_addr_t address;
58 int i;
59
60 buffer->direction = direction;
61
62 for (i = 0; i < buffer->page_count; i++) {
63 address = dma_map_page(card->device, buffer->pages[i],
64 0, PAGE_SIZE, direction);
65 if (dma_mapping_error(card->device, address))
66 break;
67
68 set_page_private(buffer->pages[i], address);
69 }
70 buffer->page_count_mapped = i;
71 if (i < buffer->page_count)
72 return -ENOMEM;
73
74 return 0;
75 }
76
fw_iso_buffer_init(struct fw_iso_buffer * buffer,struct fw_card * card,int page_count,enum dma_data_direction direction)77 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
78 int page_count, enum dma_data_direction direction)
79 {
80 int ret;
81
82 ret = fw_iso_buffer_alloc(buffer, page_count);
83 if (ret < 0)
84 return ret;
85
86 ret = fw_iso_buffer_map_dma(buffer, card, direction);
87 if (ret < 0)
88 fw_iso_buffer_destroy(buffer, card);
89
90 return ret;
91 }
92 EXPORT_SYMBOL(fw_iso_buffer_init);
93
fw_iso_buffer_destroy(struct fw_iso_buffer * buffer,struct fw_card * card)94 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
95 struct fw_card *card)
96 {
97 int i;
98 dma_addr_t address;
99
100 for (i = 0; i < buffer->page_count_mapped; i++) {
101 address = page_private(buffer->pages[i]);
102 dma_unmap_page(card->device, address,
103 PAGE_SIZE, buffer->direction);
104 }
105 for (i = 0; i < buffer->page_count; i++)
106 __free_page(buffer->pages[i]);
107
108 kfree(buffer->pages);
109 buffer->pages = NULL;
110 buffer->page_count = 0;
111 buffer->page_count_mapped = 0;
112 }
113 EXPORT_SYMBOL(fw_iso_buffer_destroy);
114
115 /* Convert DMA address to offset into virtually contiguous buffer. */
fw_iso_buffer_lookup(struct fw_iso_buffer * buffer,dma_addr_t completed)116 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
117 {
118 size_t i;
119 dma_addr_t address;
120 ssize_t offset;
121
122 for (i = 0; i < buffer->page_count; i++) {
123 address = page_private(buffer->pages[i]);
124 offset = (ssize_t)completed - (ssize_t)address;
125 if (offset > 0 && offset <= PAGE_SIZE)
126 return (i << PAGE_SHIFT) + offset;
127 }
128
129 return 0;
130 }
131
fw_iso_context_create(struct fw_card * card,int type,int channel,int speed,size_t header_size,fw_iso_callback_t callback,void * callback_data)132 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
133 int type, int channel, int speed, size_t header_size,
134 fw_iso_callback_t callback, void *callback_data)
135 {
136 struct fw_iso_context *ctx;
137
138 ctx = card->driver->allocate_iso_context(card,
139 type, channel, header_size);
140 if (IS_ERR(ctx))
141 return ctx;
142
143 ctx->card = card;
144 ctx->type = type;
145 ctx->channel = channel;
146 ctx->speed = speed;
147 ctx->header_size = header_size;
148 ctx->callback.sc = callback;
149 ctx->callback_data = callback_data;
150
151 return ctx;
152 }
153 EXPORT_SYMBOL(fw_iso_context_create);
154
fw_iso_context_destroy(struct fw_iso_context * ctx)155 void fw_iso_context_destroy(struct fw_iso_context *ctx)
156 {
157 ctx->card->driver->free_iso_context(ctx);
158 }
159 EXPORT_SYMBOL(fw_iso_context_destroy);
160
fw_iso_context_start(struct fw_iso_context * ctx,int cycle,int sync,int tags)161 int fw_iso_context_start(struct fw_iso_context *ctx,
162 int cycle, int sync, int tags)
163 {
164 return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
165 }
166 EXPORT_SYMBOL(fw_iso_context_start);
167
fw_iso_context_set_channels(struct fw_iso_context * ctx,u64 * channels)168 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
169 {
170 return ctx->card->driver->set_iso_channels(ctx, channels);
171 }
172
fw_iso_context_queue(struct fw_iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)173 int fw_iso_context_queue(struct fw_iso_context *ctx,
174 struct fw_iso_packet *packet,
175 struct fw_iso_buffer *buffer,
176 unsigned long payload)
177 {
178 return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
179 }
180 EXPORT_SYMBOL(fw_iso_context_queue);
181
fw_iso_context_queue_flush(struct fw_iso_context * ctx)182 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
183 {
184 ctx->card->driver->flush_queue_iso(ctx);
185 }
186 EXPORT_SYMBOL(fw_iso_context_queue_flush);
187
fw_iso_context_flush_completions(struct fw_iso_context * ctx)188 int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
189 {
190 return ctx->card->driver->flush_iso_completions(ctx);
191 }
192 EXPORT_SYMBOL(fw_iso_context_flush_completions);
193
fw_iso_context_stop(struct fw_iso_context * ctx)194 int fw_iso_context_stop(struct fw_iso_context *ctx)
195 {
196 return ctx->card->driver->stop_iso(ctx);
197 }
198 EXPORT_SYMBOL(fw_iso_context_stop);
199
200 /*
201 * Isochronous bus resource management (channels, bandwidth), client side
202 */
203
manage_bandwidth(struct fw_card * card,int irm_id,int generation,int bandwidth,bool allocate)204 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
205 int bandwidth, bool allocate)
206 {
207 int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
208 __be32 data[2];
209
210 /*
211 * On a 1394a IRM with low contention, try < 1 is enough.
212 * On a 1394-1995 IRM, we need at least try < 2.
213 * Let's just do try < 5.
214 */
215 for (try = 0; try < 5; try++) {
216 new = allocate ? old - bandwidth : old + bandwidth;
217 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
218 return -EBUSY;
219
220 data[0] = cpu_to_be32(old);
221 data[1] = cpu_to_be32(new);
222 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
223 irm_id, generation, SCODE_100,
224 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
225 data, 8)) {
226 case RCODE_GENERATION:
227 /* A generation change frees all bandwidth. */
228 return allocate ? -EAGAIN : bandwidth;
229
230 case RCODE_COMPLETE:
231 if (be32_to_cpup(data) == old)
232 return bandwidth;
233
234 old = be32_to_cpup(data);
235 /* Fall through. */
236 }
237 }
238
239 return -EIO;
240 }
241
manage_channel(struct fw_card * card,int irm_id,int generation,u32 channels_mask,u64 offset,bool allocate)242 static int manage_channel(struct fw_card *card, int irm_id, int generation,
243 u32 channels_mask, u64 offset, bool allocate)
244 {
245 __be32 bit, all, old;
246 __be32 data[2];
247 int channel, ret = -EIO, retry = 5;
248
249 old = all = allocate ? cpu_to_be32(~0) : 0;
250
251 for (channel = 0; channel < 32; channel++) {
252 if (!(channels_mask & 1 << channel))
253 continue;
254
255 ret = -EBUSY;
256
257 bit = cpu_to_be32(1 << (31 - channel));
258 if ((old & bit) != (all & bit))
259 continue;
260
261 data[0] = old;
262 data[1] = old ^ bit;
263 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
264 irm_id, generation, SCODE_100,
265 offset, data, 8)) {
266 case RCODE_GENERATION:
267 /* A generation change frees all channels. */
268 return allocate ? -EAGAIN : channel;
269
270 case RCODE_COMPLETE:
271 if (data[0] == old)
272 return channel;
273
274 old = data[0];
275
276 /* Is the IRM 1394a-2000 compliant? */
277 if ((data[0] & bit) == (data[1] & bit))
278 continue;
279
280 fallthrough; /* It's a 1394-1995 IRM, retry */
281 default:
282 if (retry) {
283 retry--;
284 channel--;
285 } else {
286 ret = -EIO;
287 }
288 }
289 }
290
291 return ret;
292 }
293
deallocate_channel(struct fw_card * card,int irm_id,int generation,int channel)294 static void deallocate_channel(struct fw_card *card, int irm_id,
295 int generation, int channel)
296 {
297 u32 mask;
298 u64 offset;
299
300 mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
301 offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
302 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
303
304 manage_channel(card, irm_id, generation, mask, offset, false);
305 }
306
307 /**
308 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
309 * @card: card interface for this action
310 * @generation: bus generation
311 * @channels_mask: bitmask for channel allocation
312 * @channel: pointer for returning channel allocation result
313 * @bandwidth: pointer for returning bandwidth allocation result
314 * @allocate: whether to allocate (true) or deallocate (false)
315 *
316 * In parameters: card, generation, channels_mask, bandwidth, allocate
317 * Out parameters: channel, bandwidth
318 *
319 * This function blocks (sleeps) during communication with the IRM.
320 *
321 * Allocates or deallocates at most one channel out of channels_mask.
322 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
323 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
324 * channel 0 and LSB for channel 63.)
325 * Allocates or deallocates as many bandwidth allocation units as specified.
326 *
327 * Returns channel < 0 if no channel was allocated or deallocated.
328 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
329 *
330 * If generation is stale, deallocations succeed but allocations fail with
331 * channel = -EAGAIN.
332 *
333 * If channel allocation fails, no bandwidth will be allocated either.
334 * If bandwidth allocation fails, no channel will be allocated either.
335 * But deallocations of channel and bandwidth are tried independently
336 * of each other's success.
337 */
fw_iso_resource_manage(struct fw_card * card,int generation,u64 channels_mask,int * channel,int * bandwidth,bool allocate)338 void fw_iso_resource_manage(struct fw_card *card, int generation,
339 u64 channels_mask, int *channel, int *bandwidth,
340 bool allocate)
341 {
342 u32 channels_hi = channels_mask; /* channels 31...0 */
343 u32 channels_lo = channels_mask >> 32; /* channels 63...32 */
344 int irm_id, ret, c = -EINVAL;
345
346 spin_lock_irq(&card->lock);
347 irm_id = card->irm_node->node_id;
348 spin_unlock_irq(&card->lock);
349
350 if (channels_hi)
351 c = manage_channel(card, irm_id, generation, channels_hi,
352 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
353 allocate);
354 if (channels_lo && c < 0) {
355 c = manage_channel(card, irm_id, generation, channels_lo,
356 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
357 allocate);
358 if (c >= 0)
359 c += 32;
360 }
361 *channel = c;
362
363 if (allocate && channels_mask != 0 && c < 0)
364 *bandwidth = 0;
365
366 if (*bandwidth == 0)
367 return;
368
369 ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
370 if (ret < 0)
371 *bandwidth = 0;
372
373 if (allocate && ret < 0) {
374 if (c >= 0)
375 deallocate_channel(card, irm_id, generation, c);
376 *channel = ret;
377 }
378 }
379 EXPORT_SYMBOL(fw_iso_resource_manage);
380