1 /*
2  * Device probing and sysfs code.
3  *
4  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/ctype.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/idr.h>
28 #include <linux/jiffies.h>
29 #include <linux/kobject.h>
30 #include <linux/list.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/module.h>
33 #include <linux/mutex.h>
34 #include <linux/rwsem.h>
35 #include <linux/semaphore.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/workqueue.h>
39 
40 #include <asm/atomic.h>
41 #include <asm/byteorder.h>
42 #include <asm/system.h>
43 
44 #include "core.h"
45 
46 void fw_csr_iterator_init(struct fw_csr_iterator *ci, u32 * p)
47 {
48 	ci->p = p + 1;
49 	ci->end = ci->p + (p[0] >> 16);
50 }
51 EXPORT_SYMBOL(fw_csr_iterator_init);
52 
53 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
54 {
55 	*key = *ci->p >> 24;
56 	*value = *ci->p & 0xffffff;
57 
58 	return ci->p++ < ci->end;
59 }
60 EXPORT_SYMBOL(fw_csr_iterator_next);
61 
62 static bool is_fw_unit(struct device *dev);
63 
64 static int match_unit_directory(u32 *directory, u32 match_flags,
65 				const struct ieee1394_device_id *id)
66 {
67 	struct fw_csr_iterator ci;
68 	int key, value, match;
69 
70 	match = 0;
71 	fw_csr_iterator_init(&ci, directory);
72 	while (fw_csr_iterator_next(&ci, &key, &value)) {
73 		if (key == CSR_VENDOR && value == id->vendor_id)
74 			match |= IEEE1394_MATCH_VENDOR_ID;
75 		if (key == CSR_MODEL && value == id->model_id)
76 			match |= IEEE1394_MATCH_MODEL_ID;
77 		if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
78 			match |= IEEE1394_MATCH_SPECIFIER_ID;
79 		if (key == CSR_VERSION && value == id->version)
80 			match |= IEEE1394_MATCH_VERSION;
81 	}
82 
83 	return (match & match_flags) == match_flags;
84 }
85 
86 static int fw_unit_match(struct device *dev, struct device_driver *drv)
87 {
88 	struct fw_unit *unit = fw_unit(dev);
89 	struct fw_device *device;
90 	const struct ieee1394_device_id *id;
91 
92 	/* We only allow binding to fw_units. */
93 	if (!is_fw_unit(dev))
94 		return 0;
95 
96 	device = fw_parent_device(unit);
97 	id = container_of(drv, struct fw_driver, driver)->id_table;
98 
99 	for (; id->match_flags != 0; id++) {
100 		if (match_unit_directory(unit->directory, id->match_flags, id))
101 			return 1;
102 
103 		/* Also check vendor ID in the root directory. */
104 		if ((id->match_flags & IEEE1394_MATCH_VENDOR_ID) &&
105 		    match_unit_directory(&device->config_rom[5],
106 				IEEE1394_MATCH_VENDOR_ID, id) &&
107 		    match_unit_directory(unit->directory, id->match_flags
108 				& ~IEEE1394_MATCH_VENDOR_ID, id))
109 			return 1;
110 	}
111 
112 	return 0;
113 }
114 
115 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
116 {
117 	struct fw_device *device = fw_parent_device(unit);
118 	struct fw_csr_iterator ci;
119 
120 	int key, value;
121 	int vendor = 0;
122 	int model = 0;
123 	int specifier_id = 0;
124 	int version = 0;
125 
126 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
127 	while (fw_csr_iterator_next(&ci, &key, &value)) {
128 		switch (key) {
129 		case CSR_VENDOR:
130 			vendor = value;
131 			break;
132 		case CSR_MODEL:
133 			model = value;
134 			break;
135 		}
136 	}
137 
138 	fw_csr_iterator_init(&ci, unit->directory);
139 	while (fw_csr_iterator_next(&ci, &key, &value)) {
140 		switch (key) {
141 		case CSR_SPECIFIER_ID:
142 			specifier_id = value;
143 			break;
144 		case CSR_VERSION:
145 			version = value;
146 			break;
147 		}
148 	}
149 
150 	return snprintf(buffer, buffer_size,
151 			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
152 			vendor, model, specifier_id, version);
153 }
154 
155 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
156 {
157 	struct fw_unit *unit = fw_unit(dev);
158 	char modalias[64];
159 
160 	get_modalias(unit, modalias, sizeof(modalias));
161 
162 	if (add_uevent_var(env, "MODALIAS=%s", modalias))
163 		return -ENOMEM;
164 
165 	return 0;
166 }
167 
168 struct bus_type fw_bus_type = {
169 	.name = "firewire",
170 	.match = fw_unit_match,
171 };
172 EXPORT_SYMBOL(fw_bus_type);
173 
174 int fw_device_enable_phys_dma(struct fw_device *device)
175 {
176 	int generation = device->generation;
177 
178 	/* device->node_id, accessed below, must not be older than generation */
179 	smp_rmb();
180 
181 	return device->card->driver->enable_phys_dma(device->card,
182 						     device->node_id,
183 						     generation);
184 }
185 EXPORT_SYMBOL(fw_device_enable_phys_dma);
186 
187 struct config_rom_attribute {
188 	struct device_attribute attr;
189 	u32 key;
190 };
191 
192 static ssize_t show_immediate(struct device *dev,
193 			      struct device_attribute *dattr, char *buf)
194 {
195 	struct config_rom_attribute *attr =
196 		container_of(dattr, struct config_rom_attribute, attr);
197 	struct fw_csr_iterator ci;
198 	u32 *dir;
199 	int key, value, ret = -ENOENT;
200 
201 	down_read(&fw_device_rwsem);
202 
203 	if (is_fw_unit(dev))
204 		dir = fw_unit(dev)->directory;
205 	else
206 		dir = fw_device(dev)->config_rom + 5;
207 
208 	fw_csr_iterator_init(&ci, dir);
209 	while (fw_csr_iterator_next(&ci, &key, &value))
210 		if (attr->key == key) {
211 			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
212 				       "0x%06x\n", value);
213 			break;
214 		}
215 
216 	up_read(&fw_device_rwsem);
217 
218 	return ret;
219 }
220 
221 #define IMMEDIATE_ATTR(name, key)				\
222 	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
223 
224 static ssize_t show_text_leaf(struct device *dev,
225 			      struct device_attribute *dattr, char *buf)
226 {
227 	struct config_rom_attribute *attr =
228 		container_of(dattr, struct config_rom_attribute, attr);
229 	struct fw_csr_iterator ci;
230 	u32 *dir, *block = NULL, *p, *end;
231 	int length, key, value, last_key = 0, ret = -ENOENT;
232 	char *b;
233 
234 	down_read(&fw_device_rwsem);
235 
236 	if (is_fw_unit(dev))
237 		dir = fw_unit(dev)->directory;
238 	else
239 		dir = fw_device(dev)->config_rom + 5;
240 
241 	fw_csr_iterator_init(&ci, dir);
242 	while (fw_csr_iterator_next(&ci, &key, &value)) {
243 		if (attr->key == last_key &&
244 		    key == (CSR_DESCRIPTOR | CSR_LEAF))
245 			block = ci.p - 1 + value;
246 		last_key = key;
247 	}
248 
249 	if (block == NULL)
250 		goto out;
251 
252 	length = min(block[0] >> 16, 256U);
253 	if (length < 3)
254 		goto out;
255 
256 	if (block[1] != 0 || block[2] != 0)
257 		/* Unknown encoding. */
258 		goto out;
259 
260 	if (buf == NULL) {
261 		ret = length * 4;
262 		goto out;
263 	}
264 
265 	b = buf;
266 	end = &block[length + 1];
267 	for (p = &block[3]; p < end; p++, b += 4)
268 		* (u32 *) b = (__force u32) __cpu_to_be32(*p);
269 
270 	/* Strip trailing whitespace and add newline. */
271 	while (b--, (isspace(*b) || *b == '\0') && b > buf);
272 	strcpy(b + 1, "\n");
273 	ret = b + 2 - buf;
274  out:
275 	up_read(&fw_device_rwsem);
276 
277 	return ret;
278 }
279 
280 #define TEXT_LEAF_ATTR(name, key)				\
281 	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
282 
283 static struct config_rom_attribute config_rom_attributes[] = {
284 	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
285 	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
286 	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
287 	IMMEDIATE_ATTR(version, CSR_VERSION),
288 	IMMEDIATE_ATTR(model, CSR_MODEL),
289 	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
290 	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
291 	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
292 };
293 
294 static void init_fw_attribute_group(struct device *dev,
295 				    struct device_attribute *attrs,
296 				    struct fw_attribute_group *group)
297 {
298 	struct device_attribute *attr;
299 	int i, j;
300 
301 	for (j = 0; attrs[j].attr.name != NULL; j++)
302 		group->attrs[j] = &attrs[j].attr;
303 
304 	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
305 		attr = &config_rom_attributes[i].attr;
306 		if (attr->show(dev, attr, NULL) < 0)
307 			continue;
308 		group->attrs[j++] = &attr->attr;
309 	}
310 
311 	group->attrs[j] = NULL;
312 	group->groups[0] = &group->group;
313 	group->groups[1] = NULL;
314 	group->group.attrs = group->attrs;
315 	dev->groups = (const struct attribute_group **) group->groups;
316 }
317 
318 static ssize_t modalias_show(struct device *dev,
319 			     struct device_attribute *attr, char *buf)
320 {
321 	struct fw_unit *unit = fw_unit(dev);
322 	int length;
323 
324 	length = get_modalias(unit, buf, PAGE_SIZE);
325 	strcpy(buf + length, "\n");
326 
327 	return length + 1;
328 }
329 
330 static ssize_t rom_index_show(struct device *dev,
331 			      struct device_attribute *attr, char *buf)
332 {
333 	struct fw_device *device = fw_device(dev->parent);
334 	struct fw_unit *unit = fw_unit(dev);
335 
336 	return snprintf(buf, PAGE_SIZE, "%d\n",
337 			(int)(unit->directory - device->config_rom));
338 }
339 
340 static struct device_attribute fw_unit_attributes[] = {
341 	__ATTR_RO(modalias),
342 	__ATTR_RO(rom_index),
343 	__ATTR_NULL,
344 };
345 
346 static ssize_t config_rom_show(struct device *dev,
347 			       struct device_attribute *attr, char *buf)
348 {
349 	struct fw_device *device = fw_device(dev);
350 	size_t length;
351 
352 	down_read(&fw_device_rwsem);
353 	length = device->config_rom_length * 4;
354 	memcpy(buf, device->config_rom, length);
355 	up_read(&fw_device_rwsem);
356 
357 	return length;
358 }
359 
360 static ssize_t guid_show(struct device *dev,
361 			 struct device_attribute *attr, char *buf)
362 {
363 	struct fw_device *device = fw_device(dev);
364 	int ret;
365 
366 	down_read(&fw_device_rwsem);
367 	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
368 		       device->config_rom[3], device->config_rom[4]);
369 	up_read(&fw_device_rwsem);
370 
371 	return ret;
372 }
373 
374 static int units_sprintf(char *buf, u32 *directory)
375 {
376 	struct fw_csr_iterator ci;
377 	int key, value;
378 	int specifier_id = 0;
379 	int version = 0;
380 
381 	fw_csr_iterator_init(&ci, directory);
382 	while (fw_csr_iterator_next(&ci, &key, &value)) {
383 		switch (key) {
384 		case CSR_SPECIFIER_ID:
385 			specifier_id = value;
386 			break;
387 		case CSR_VERSION:
388 			version = value;
389 			break;
390 		}
391 	}
392 
393 	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
394 }
395 
396 static ssize_t units_show(struct device *dev,
397 			  struct device_attribute *attr, char *buf)
398 {
399 	struct fw_device *device = fw_device(dev);
400 	struct fw_csr_iterator ci;
401 	int key, value, i = 0;
402 
403 	down_read(&fw_device_rwsem);
404 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
405 	while (fw_csr_iterator_next(&ci, &key, &value)) {
406 		if (key != (CSR_UNIT | CSR_DIRECTORY))
407 			continue;
408 		i += units_sprintf(&buf[i], ci.p + value - 1);
409 		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
410 			break;
411 	}
412 	up_read(&fw_device_rwsem);
413 
414 	if (i)
415 		buf[i - 1] = '\n';
416 
417 	return i;
418 }
419 
420 static struct device_attribute fw_device_attributes[] = {
421 	__ATTR_RO(config_rom),
422 	__ATTR_RO(guid),
423 	__ATTR_RO(units),
424 	__ATTR_NULL,
425 };
426 
427 static int read_rom(struct fw_device *device,
428 		    int generation, int index, u32 *data)
429 {
430 	int rcode;
431 
432 	/* device->node_id, accessed below, must not be older than generation */
433 	smp_rmb();
434 
435 	rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST,
436 			device->node_id, generation, device->max_speed,
437 			(CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4,
438 			data, 4);
439 	be32_to_cpus(data);
440 
441 	return rcode;
442 }
443 
444 #define READ_BIB_ROM_SIZE	256
445 #define READ_BIB_STACK_SIZE	16
446 
447 /*
448  * Read the bus info block, perform a speed probe, and read all of the rest of
449  * the config ROM.  We do all this with a cached bus generation.  If the bus
450  * generation changes under us, read_bus_info_block will fail and get retried.
451  * It's better to start all over in this case because the node from which we
452  * are reading the ROM may have changed the ROM during the reset.
453  */
454 static int read_bus_info_block(struct fw_device *device, int generation)
455 {
456 	u32 *rom, *stack, *old_rom, *new_rom;
457 	u32 sp, key;
458 	int i, end, length, ret = -1;
459 
460 	rom = kmalloc(sizeof(*rom) * READ_BIB_ROM_SIZE +
461 		      sizeof(*stack) * READ_BIB_STACK_SIZE, GFP_KERNEL);
462 	if (rom == NULL)
463 		return -ENOMEM;
464 
465 	stack = &rom[READ_BIB_ROM_SIZE];
466 
467 	device->max_speed = SCODE_100;
468 
469 	/* First read the bus info block. */
470 	for (i = 0; i < 5; i++) {
471 		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
472 			goto out;
473 		/*
474 		 * As per IEEE1212 7.2, during power-up, devices can
475 		 * reply with a 0 for the first quadlet of the config
476 		 * rom to indicate that they are booting (for example,
477 		 * if the firmware is on the disk of a external
478 		 * harddisk).  In that case we just fail, and the
479 		 * retry mechanism will try again later.
480 		 */
481 		if (i == 0 && rom[i] == 0)
482 			goto out;
483 	}
484 
485 	device->max_speed = device->node->max_speed;
486 
487 	/*
488 	 * Determine the speed of
489 	 *   - devices with link speed less than PHY speed,
490 	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
491 	 *   - all devices if there are 1394b repeaters.
492 	 * Note, we cannot use the bus info block's link_spd as starting point
493 	 * because some buggy firmwares set it lower than necessary and because
494 	 * 1394-1995 nodes do not have the field.
495 	 */
496 	if ((rom[2] & 0x7) < device->max_speed ||
497 	    device->max_speed == SCODE_BETA ||
498 	    device->card->beta_repeaters_present) {
499 		u32 dummy;
500 
501 		/* for S1600 and S3200 */
502 		if (device->max_speed == SCODE_BETA)
503 			device->max_speed = device->card->link_speed;
504 
505 		while (device->max_speed > SCODE_100) {
506 			if (read_rom(device, generation, 0, &dummy) ==
507 			    RCODE_COMPLETE)
508 				break;
509 			device->max_speed--;
510 		}
511 	}
512 
513 	/*
514 	 * Now parse the config rom.  The config rom is a recursive
515 	 * directory structure so we parse it using a stack of
516 	 * references to the blocks that make up the structure.  We
517 	 * push a reference to the root directory on the stack to
518 	 * start things off.
519 	 */
520 	length = i;
521 	sp = 0;
522 	stack[sp++] = 0xc0000005;
523 	while (sp > 0) {
524 		/*
525 		 * Pop the next block reference of the stack.  The
526 		 * lower 24 bits is the offset into the config rom,
527 		 * the upper 8 bits are the type of the reference the
528 		 * block.
529 		 */
530 		key = stack[--sp];
531 		i = key & 0xffffff;
532 		if (i >= READ_BIB_ROM_SIZE)
533 			/*
534 			 * The reference points outside the standard
535 			 * config rom area, something's fishy.
536 			 */
537 			goto out;
538 
539 		/* Read header quadlet for the block to get the length. */
540 		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
541 			goto out;
542 		end = i + (rom[i] >> 16) + 1;
543 		i++;
544 		if (end > READ_BIB_ROM_SIZE)
545 			/*
546 			 * This block extends outside standard config
547 			 * area (and the array we're reading it
548 			 * into).  That's broken, so ignore this
549 			 * device.
550 			 */
551 			goto out;
552 
553 		/*
554 		 * Now read in the block.  If this is a directory
555 		 * block, check the entries as we read them to see if
556 		 * it references another block, and push it in that case.
557 		 */
558 		while (i < end) {
559 			if (read_rom(device, generation, i, &rom[i]) !=
560 			    RCODE_COMPLETE)
561 				goto out;
562 			if ((key >> 30) == 3 && (rom[i] >> 30) > 1 &&
563 			    sp < READ_BIB_STACK_SIZE)
564 				stack[sp++] = i + rom[i];
565 			i++;
566 		}
567 		if (length < i)
568 			length = i;
569 	}
570 
571 	old_rom = device->config_rom;
572 	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
573 	if (new_rom == NULL)
574 		goto out;
575 
576 	down_write(&fw_device_rwsem);
577 	device->config_rom = new_rom;
578 	device->config_rom_length = length;
579 	up_write(&fw_device_rwsem);
580 
581 	kfree(old_rom);
582 	ret = 0;
583 	device->max_rec	= rom[2] >> 12 & 0xf;
584 	device->cmc	= rom[2] >> 30 & 1;
585 	device->irmc	= rom[2] >> 31 & 1;
586  out:
587 	kfree(rom);
588 
589 	return ret;
590 }
591 
592 static void fw_unit_release(struct device *dev)
593 {
594 	struct fw_unit *unit = fw_unit(dev);
595 
596 	kfree(unit);
597 }
598 
599 static struct device_type fw_unit_type = {
600 	.uevent		= fw_unit_uevent,
601 	.release	= fw_unit_release,
602 };
603 
604 static bool is_fw_unit(struct device *dev)
605 {
606 	return dev->type == &fw_unit_type;
607 }
608 
609 static void create_units(struct fw_device *device)
610 {
611 	struct fw_csr_iterator ci;
612 	struct fw_unit *unit;
613 	int key, value, i;
614 
615 	i = 0;
616 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
617 	while (fw_csr_iterator_next(&ci, &key, &value)) {
618 		if (key != (CSR_UNIT | CSR_DIRECTORY))
619 			continue;
620 
621 		/*
622 		 * Get the address of the unit directory and try to
623 		 * match the drivers id_tables against it.
624 		 */
625 		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
626 		if (unit == NULL) {
627 			fw_error("failed to allocate memory for unit\n");
628 			continue;
629 		}
630 
631 		unit->directory = ci.p + value - 1;
632 		unit->device.bus = &fw_bus_type;
633 		unit->device.type = &fw_unit_type;
634 		unit->device.parent = &device->device;
635 		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
636 
637 		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
638 				ARRAY_SIZE(fw_unit_attributes) +
639 				ARRAY_SIZE(config_rom_attributes));
640 		init_fw_attribute_group(&unit->device,
641 					fw_unit_attributes,
642 					&unit->attribute_group);
643 
644 		if (device_register(&unit->device) < 0)
645 			goto skip_unit;
646 
647 		continue;
648 
649 	skip_unit:
650 		kfree(unit);
651 	}
652 }
653 
654 static int shutdown_unit(struct device *device, void *data)
655 {
656 	device_unregister(device);
657 
658 	return 0;
659 }
660 
661 /*
662  * fw_device_rwsem acts as dual purpose mutex:
663  *   - serializes accesses to fw_device_idr,
664  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
665  *     fw_unit.directory, unless those accesses happen at safe occasions
666  */
667 DECLARE_RWSEM(fw_device_rwsem);
668 
669 DEFINE_IDR(fw_device_idr);
670 int fw_cdev_major;
671 
672 struct fw_device *fw_device_get_by_devt(dev_t devt)
673 {
674 	struct fw_device *device;
675 
676 	down_read(&fw_device_rwsem);
677 	device = idr_find(&fw_device_idr, MINOR(devt));
678 	if (device)
679 		fw_device_get(device);
680 	up_read(&fw_device_rwsem);
681 
682 	return device;
683 }
684 
685 /*
686  * These defines control the retry behavior for reading the config
687  * rom.  It shouldn't be necessary to tweak these; if the device
688  * doesn't respond to a config rom read within 10 seconds, it's not
689  * going to respond at all.  As for the initial delay, a lot of
690  * devices will be able to respond within half a second after bus
691  * reset.  On the other hand, it's not really worth being more
692  * aggressive than that, since it scales pretty well; if 10 devices
693  * are plugged in, they're all getting read within one second.
694  */
695 
696 #define MAX_RETRIES	10
697 #define RETRY_DELAY	(3 * HZ)
698 #define INITIAL_DELAY	(HZ / 2)
699 #define SHUTDOWN_DELAY	(2 * HZ)
700 
701 static void fw_device_shutdown(struct work_struct *work)
702 {
703 	struct fw_device *device =
704 		container_of(work, struct fw_device, work.work);
705 	int minor = MINOR(device->device.devt);
706 
707 	if (time_is_after_jiffies(device->card->reset_jiffies + SHUTDOWN_DELAY)
708 	    && !list_empty(&device->card->link)) {
709 		schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
710 		return;
711 	}
712 
713 	if (atomic_cmpxchg(&device->state,
714 			   FW_DEVICE_GONE,
715 			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
716 		return;
717 
718 	fw_device_cdev_remove(device);
719 	device_for_each_child(&device->device, NULL, shutdown_unit);
720 	device_unregister(&device->device);
721 
722 	down_write(&fw_device_rwsem);
723 	idr_remove(&fw_device_idr, minor);
724 	up_write(&fw_device_rwsem);
725 
726 	fw_device_put(device);
727 }
728 
729 static void fw_device_release(struct device *dev)
730 {
731 	struct fw_device *device = fw_device(dev);
732 	struct fw_card *card = device->card;
733 	unsigned long flags;
734 
735 	/*
736 	 * Take the card lock so we don't set this to NULL while a
737 	 * FW_NODE_UPDATED callback is being handled or while the
738 	 * bus manager work looks at this node.
739 	 */
740 	spin_lock_irqsave(&card->lock, flags);
741 	device->node->data = NULL;
742 	spin_unlock_irqrestore(&card->lock, flags);
743 
744 	fw_node_put(device->node);
745 	kfree(device->config_rom);
746 	kfree(device);
747 	fw_card_put(card);
748 }
749 
750 static struct device_type fw_device_type = {
751 	.release = fw_device_release,
752 };
753 
754 static bool is_fw_device(struct device *dev)
755 {
756 	return dev->type == &fw_device_type;
757 }
758 
759 static int update_unit(struct device *dev, void *data)
760 {
761 	struct fw_unit *unit = fw_unit(dev);
762 	struct fw_driver *driver = (struct fw_driver *)dev->driver;
763 
764 	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
765 		down(&dev->sem);
766 		driver->update(unit);
767 		up(&dev->sem);
768 	}
769 
770 	return 0;
771 }
772 
773 static void fw_device_update(struct work_struct *work)
774 {
775 	struct fw_device *device =
776 		container_of(work, struct fw_device, work.work);
777 
778 	fw_device_cdev_update(device);
779 	device_for_each_child(&device->device, NULL, update_unit);
780 }
781 
782 /*
783  * If a device was pending for deletion because its node went away but its
784  * bus info block and root directory header matches that of a newly discovered
785  * device, revive the existing fw_device.
786  * The newly allocated fw_device becomes obsolete instead.
787  */
788 static int lookup_existing_device(struct device *dev, void *data)
789 {
790 	struct fw_device *old = fw_device(dev);
791 	struct fw_device *new = data;
792 	struct fw_card *card = new->card;
793 	int match = 0;
794 
795 	if (!is_fw_device(dev))
796 		return 0;
797 
798 	down_read(&fw_device_rwsem); /* serialize config_rom access */
799 	spin_lock_irq(&card->lock);  /* serialize node access */
800 
801 	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
802 	    atomic_cmpxchg(&old->state,
803 			   FW_DEVICE_GONE,
804 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
805 		struct fw_node *current_node = new->node;
806 		struct fw_node *obsolete_node = old->node;
807 
808 		new->node = obsolete_node;
809 		new->node->data = new;
810 		old->node = current_node;
811 		old->node->data = old;
812 
813 		old->max_speed = new->max_speed;
814 		old->node_id = current_node->node_id;
815 		smp_wmb();  /* update node_id before generation */
816 		old->generation = card->generation;
817 		old->config_rom_retries = 0;
818 		fw_notify("rediscovered device %s\n", dev_name(dev));
819 
820 		PREPARE_DELAYED_WORK(&old->work, fw_device_update);
821 		schedule_delayed_work(&old->work, 0);
822 
823 		if (current_node == card->root_node)
824 			fw_schedule_bm_work(card, 0);
825 
826 		match = 1;
827 	}
828 
829 	spin_unlock_irq(&card->lock);
830 	up_read(&fw_device_rwsem);
831 
832 	return match;
833 }
834 
835 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
836 
837 static void set_broadcast_channel(struct fw_device *device, int generation)
838 {
839 	struct fw_card *card = device->card;
840 	__be32 data;
841 	int rcode;
842 
843 	if (!card->broadcast_channel_allocated)
844 		return;
845 
846 	/*
847 	 * The Broadcast_Channel Valid bit is required by nodes which want to
848 	 * transmit on this channel.  Such transmissions are practically
849 	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
850 	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
851 	 * to narrow down to which nodes we send Broadcast_Channel updates.
852 	 */
853 	if (!device->irmc || device->max_rec < 8)
854 		return;
855 
856 	/*
857 	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
858 	 * Perform a read test first.
859 	 */
860 	if (device->bc_implemented == BC_UNKNOWN) {
861 		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
862 				device->node_id, generation, device->max_speed,
863 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
864 				&data, 4);
865 		switch (rcode) {
866 		case RCODE_COMPLETE:
867 			if (data & cpu_to_be32(1 << 31)) {
868 				device->bc_implemented = BC_IMPLEMENTED;
869 				break;
870 			}
871 			/* else fall through to case address error */
872 		case RCODE_ADDRESS_ERROR:
873 			device->bc_implemented = BC_UNIMPLEMENTED;
874 		}
875 	}
876 
877 	if (device->bc_implemented == BC_IMPLEMENTED) {
878 		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
879 				   BROADCAST_CHANNEL_VALID);
880 		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
881 				device->node_id, generation, device->max_speed,
882 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
883 				&data, 4);
884 	}
885 }
886 
887 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
888 {
889 	if (is_fw_device(dev))
890 		set_broadcast_channel(fw_device(dev), (long)gen);
891 
892 	return 0;
893 }
894 
895 static void fw_device_init(struct work_struct *work)
896 {
897 	struct fw_device *device =
898 		container_of(work, struct fw_device, work.work);
899 	struct device *revived_dev;
900 	int minor, ret;
901 
902 	/*
903 	 * All failure paths here set node->data to NULL, so that we
904 	 * don't try to do device_for_each_child() on a kfree()'d
905 	 * device.
906 	 */
907 
908 	if (read_bus_info_block(device, device->generation) < 0) {
909 		if (device->config_rom_retries < MAX_RETRIES &&
910 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
911 			device->config_rom_retries++;
912 			schedule_delayed_work(&device->work, RETRY_DELAY);
913 		} else {
914 			fw_notify("giving up on config rom for node id %x\n",
915 				  device->node_id);
916 			if (device->node == device->card->root_node)
917 				fw_schedule_bm_work(device->card, 0);
918 			fw_device_release(&device->device);
919 		}
920 		return;
921 	}
922 
923 	revived_dev = device_find_child(device->card->device,
924 					device, lookup_existing_device);
925 	if (revived_dev) {
926 		put_device(revived_dev);
927 		fw_device_release(&device->device);
928 
929 		return;
930 	}
931 
932 	device_initialize(&device->device);
933 
934 	fw_device_get(device);
935 	down_write(&fw_device_rwsem);
936 	ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
937 	      idr_get_new(&fw_device_idr, device, &minor) :
938 	      -ENOMEM;
939 	up_write(&fw_device_rwsem);
940 
941 	if (ret < 0)
942 		goto error;
943 
944 	device->device.bus = &fw_bus_type;
945 	device->device.type = &fw_device_type;
946 	device->device.parent = device->card->device;
947 	device->device.devt = MKDEV(fw_cdev_major, minor);
948 	dev_set_name(&device->device, "fw%d", minor);
949 
950 	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
951 			ARRAY_SIZE(fw_device_attributes) +
952 			ARRAY_SIZE(config_rom_attributes));
953 	init_fw_attribute_group(&device->device,
954 				fw_device_attributes,
955 				&device->attribute_group);
956 
957 	if (device_add(&device->device)) {
958 		fw_error("Failed to add device.\n");
959 		goto error_with_cdev;
960 	}
961 
962 	create_units(device);
963 
964 	/*
965 	 * Transition the device to running state.  If it got pulled
966 	 * out from under us while we did the intialization work, we
967 	 * have to shut down the device again here.  Normally, though,
968 	 * fw_node_event will be responsible for shutting it down when
969 	 * necessary.  We have to use the atomic cmpxchg here to avoid
970 	 * racing with the FW_NODE_DESTROYED case in
971 	 * fw_node_event().
972 	 */
973 	if (atomic_cmpxchg(&device->state,
974 			   FW_DEVICE_INITIALIZING,
975 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
976 		PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
977 		schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
978 	} else {
979 		if (device->config_rom_retries)
980 			fw_notify("created device %s: GUID %08x%08x, S%d00, "
981 				  "%d config ROM retries\n",
982 				  dev_name(&device->device),
983 				  device->config_rom[3], device->config_rom[4],
984 				  1 << device->max_speed,
985 				  device->config_rom_retries);
986 		else
987 			fw_notify("created device %s: GUID %08x%08x, S%d00\n",
988 				  dev_name(&device->device),
989 				  device->config_rom[3], device->config_rom[4],
990 				  1 << device->max_speed);
991 		device->config_rom_retries = 0;
992 
993 		set_broadcast_channel(device, device->generation);
994 	}
995 
996 	/*
997 	 * Reschedule the IRM work if we just finished reading the
998 	 * root node config rom.  If this races with a bus reset we
999 	 * just end up running the IRM work a couple of extra times -
1000 	 * pretty harmless.
1001 	 */
1002 	if (device->node == device->card->root_node)
1003 		fw_schedule_bm_work(device->card, 0);
1004 
1005 	return;
1006 
1007  error_with_cdev:
1008 	down_write(&fw_device_rwsem);
1009 	idr_remove(&fw_device_idr, minor);
1010 	up_write(&fw_device_rwsem);
1011  error:
1012 	fw_device_put(device);		/* fw_device_idr's reference */
1013 
1014 	put_device(&device->device);	/* our reference */
1015 }
1016 
1017 enum {
1018 	REREAD_BIB_ERROR,
1019 	REREAD_BIB_GONE,
1020 	REREAD_BIB_UNCHANGED,
1021 	REREAD_BIB_CHANGED,
1022 };
1023 
1024 /* Reread and compare bus info block and header of root directory */
1025 static int reread_bus_info_block(struct fw_device *device, int generation)
1026 {
1027 	u32 q;
1028 	int i;
1029 
1030 	for (i = 0; i < 6; i++) {
1031 		if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
1032 			return REREAD_BIB_ERROR;
1033 
1034 		if (i == 0 && q == 0)
1035 			return REREAD_BIB_GONE;
1036 
1037 		if (q != device->config_rom[i])
1038 			return REREAD_BIB_CHANGED;
1039 	}
1040 
1041 	return REREAD_BIB_UNCHANGED;
1042 }
1043 
1044 static void fw_device_refresh(struct work_struct *work)
1045 {
1046 	struct fw_device *device =
1047 		container_of(work, struct fw_device, work.work);
1048 	struct fw_card *card = device->card;
1049 	int node_id = device->node_id;
1050 
1051 	switch (reread_bus_info_block(device, device->generation)) {
1052 	case REREAD_BIB_ERROR:
1053 		if (device->config_rom_retries < MAX_RETRIES / 2 &&
1054 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1055 			device->config_rom_retries++;
1056 			schedule_delayed_work(&device->work, RETRY_DELAY / 2);
1057 
1058 			return;
1059 		}
1060 		goto give_up;
1061 
1062 	case REREAD_BIB_GONE:
1063 		goto gone;
1064 
1065 	case REREAD_BIB_UNCHANGED:
1066 		if (atomic_cmpxchg(&device->state,
1067 				   FW_DEVICE_INITIALIZING,
1068 				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1069 			goto gone;
1070 
1071 		fw_device_update(work);
1072 		device->config_rom_retries = 0;
1073 		goto out;
1074 
1075 	case REREAD_BIB_CHANGED:
1076 		break;
1077 	}
1078 
1079 	/*
1080 	 * Something changed.  We keep things simple and don't investigate
1081 	 * further.  We just destroy all previous units and create new ones.
1082 	 */
1083 	device_for_each_child(&device->device, NULL, shutdown_unit);
1084 
1085 	if (read_bus_info_block(device, device->generation) < 0) {
1086 		if (device->config_rom_retries < MAX_RETRIES &&
1087 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1088 			device->config_rom_retries++;
1089 			schedule_delayed_work(&device->work, RETRY_DELAY);
1090 
1091 			return;
1092 		}
1093 		goto give_up;
1094 	}
1095 
1096 	create_units(device);
1097 
1098 	/* Userspace may want to re-read attributes. */
1099 	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1100 
1101 	if (atomic_cmpxchg(&device->state,
1102 			   FW_DEVICE_INITIALIZING,
1103 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1104 		goto gone;
1105 
1106 	fw_notify("refreshed device %s\n", dev_name(&device->device));
1107 	device->config_rom_retries = 0;
1108 	goto out;
1109 
1110  give_up:
1111 	fw_notify("giving up on refresh of device %s\n", dev_name(&device->device));
1112  gone:
1113 	atomic_set(&device->state, FW_DEVICE_GONE);
1114 	PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1115 	schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
1116  out:
1117 	if (node_id == card->root_node->node_id)
1118 		fw_schedule_bm_work(card, 0);
1119 }
1120 
1121 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1122 {
1123 	struct fw_device *device;
1124 
1125 	switch (event) {
1126 	case FW_NODE_CREATED:
1127 	case FW_NODE_LINK_ON:
1128 		if (!node->link_on)
1129 			break;
1130  create:
1131 		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1132 		if (device == NULL)
1133 			break;
1134 
1135 		/*
1136 		 * Do minimal intialization of the device here, the
1137 		 * rest will happen in fw_device_init().
1138 		 *
1139 		 * Attention:  A lot of things, even fw_device_get(),
1140 		 * cannot be done before fw_device_init() finished!
1141 		 * You can basically just check device->state and
1142 		 * schedule work until then, but only while holding
1143 		 * card->lock.
1144 		 */
1145 		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1146 		device->card = fw_card_get(card);
1147 		device->node = fw_node_get(node);
1148 		device->node_id = node->node_id;
1149 		device->generation = card->generation;
1150 		device->is_local = node == card->local_node;
1151 		mutex_init(&device->client_list_mutex);
1152 		INIT_LIST_HEAD(&device->client_list);
1153 
1154 		/*
1155 		 * Set the node data to point back to this device so
1156 		 * FW_NODE_UPDATED callbacks can update the node_id
1157 		 * and generation for the device.
1158 		 */
1159 		node->data = device;
1160 
1161 		/*
1162 		 * Many devices are slow to respond after bus resets,
1163 		 * especially if they are bus powered and go through
1164 		 * power-up after getting plugged in.  We schedule the
1165 		 * first config rom scan half a second after bus reset.
1166 		 */
1167 		INIT_DELAYED_WORK(&device->work, fw_device_init);
1168 		schedule_delayed_work(&device->work, INITIAL_DELAY);
1169 		break;
1170 
1171 	case FW_NODE_INITIATED_RESET:
1172 		device = node->data;
1173 		if (device == NULL)
1174 			goto create;
1175 
1176 		device->node_id = node->node_id;
1177 		smp_wmb();  /* update node_id before generation */
1178 		device->generation = card->generation;
1179 		if (atomic_cmpxchg(&device->state,
1180 			    FW_DEVICE_RUNNING,
1181 			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1182 			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1183 			schedule_delayed_work(&device->work,
1184 				device->is_local ? 0 : INITIAL_DELAY);
1185 		}
1186 		break;
1187 
1188 	case FW_NODE_UPDATED:
1189 		if (!node->link_on || node->data == NULL)
1190 			break;
1191 
1192 		device = node->data;
1193 		device->node_id = node->node_id;
1194 		smp_wmb();  /* update node_id before generation */
1195 		device->generation = card->generation;
1196 		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1197 			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1198 			schedule_delayed_work(&device->work, 0);
1199 		}
1200 		break;
1201 
1202 	case FW_NODE_DESTROYED:
1203 	case FW_NODE_LINK_OFF:
1204 		if (!node->data)
1205 			break;
1206 
1207 		/*
1208 		 * Destroy the device associated with the node.  There
1209 		 * are two cases here: either the device is fully
1210 		 * initialized (FW_DEVICE_RUNNING) or we're in the
1211 		 * process of reading its config rom
1212 		 * (FW_DEVICE_INITIALIZING).  If it is fully
1213 		 * initialized we can reuse device->work to schedule a
1214 		 * full fw_device_shutdown().  If not, there's work
1215 		 * scheduled to read it's config rom, and we just put
1216 		 * the device in shutdown state to have that code fail
1217 		 * to create the device.
1218 		 */
1219 		device = node->data;
1220 		if (atomic_xchg(&device->state,
1221 				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1222 			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1223 			schedule_delayed_work(&device->work,
1224 				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1225 		}
1226 		break;
1227 	}
1228 }
1229