1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Device probing and sysfs code. 4 * 5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bug.h> 9 #include <linux/ctype.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/errno.h> 13 #include <linux/firewire.h> 14 #include <linux/firewire-constants.h> 15 #include <linux/idr.h> 16 #include <linux/jiffies.h> 17 #include <linux/kobject.h> 18 #include <linux/list.h> 19 #include <linux/mod_devicetable.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/random.h> 23 #include <linux/rwsem.h> 24 #include <linux/slab.h> 25 #include <linux/spinlock.h> 26 #include <linux/string.h> 27 #include <linux/workqueue.h> 28 29 #include <linux/atomic.h> 30 #include <asm/byteorder.h> 31 32 #include "core.h" 33 34 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) 35 { 36 ci->p = p + 1; 37 ci->end = ci->p + (p[0] >> 16); 38 } 39 EXPORT_SYMBOL(fw_csr_iterator_init); 40 41 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) 42 { 43 *key = *ci->p >> 24; 44 *value = *ci->p & 0xffffff; 45 46 return ci->p++ < ci->end; 47 } 48 EXPORT_SYMBOL(fw_csr_iterator_next); 49 50 static const u32 *search_leaf(const u32 *directory, int search_key) 51 { 52 struct fw_csr_iterator ci; 53 int last_key = 0, key, value; 54 55 fw_csr_iterator_init(&ci, directory); 56 while (fw_csr_iterator_next(&ci, &key, &value)) { 57 if (last_key == search_key && 58 key == (CSR_DESCRIPTOR | CSR_LEAF)) 59 return ci.p - 1 + value; 60 61 last_key = key; 62 } 63 64 return NULL; 65 } 66 67 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) 68 { 69 unsigned int quadlets, i; 70 char c; 71 72 if (!size || !buf) 73 return -EINVAL; 74 75 quadlets = min(block[0] >> 16, 256U); 76 if (quadlets < 2) 77 return -ENODATA; 78 79 if (block[1] != 0 || block[2] != 0) 80 /* unknown language/character set */ 81 return -ENODATA; 82 83 block += 3; 84 quadlets -= 2; 85 for (i = 0; i < quadlets * 4 && i < size - 1; i++) { 86 c = block[i / 4] >> (24 - 8 * (i % 4)); 87 if (c == '\0') 88 break; 89 buf[i] = c; 90 } 91 buf[i] = '\0'; 92 93 return i; 94 } 95 96 /** 97 * fw_csr_string() - reads a string from the configuration ROM 98 * @directory: e.g. root directory or unit directory 99 * @key: the key of the preceding directory entry 100 * @buf: where to put the string 101 * @size: size of @buf, in bytes 102 * 103 * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the 104 * @key. The string is zero-terminated. An overlong string is silently truncated such that it 105 * and the zero byte fit into @size. 106 * 107 * Returns strlen(buf) or a negative error code. 108 */ 109 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) 110 { 111 const u32 *leaf = search_leaf(directory, key); 112 if (!leaf) 113 return -ENOENT; 114 115 return textual_leaf_to_string(leaf, buf, size); 116 } 117 EXPORT_SYMBOL(fw_csr_string); 118 119 static void get_ids(const u32 *directory, int *id) 120 { 121 struct fw_csr_iterator ci; 122 int key, value; 123 124 fw_csr_iterator_init(&ci, directory); 125 while (fw_csr_iterator_next(&ci, &key, &value)) { 126 switch (key) { 127 case CSR_VENDOR: id[0] = value; break; 128 case CSR_MODEL: id[1] = value; break; 129 case CSR_SPECIFIER_ID: id[2] = value; break; 130 case CSR_VERSION: id[3] = value; break; 131 } 132 } 133 } 134 135 static void get_modalias_ids(const struct fw_unit *unit, int *id) 136 { 137 get_ids(&fw_parent_device(unit)->config_rom[5], id); 138 get_ids(unit->directory, id); 139 } 140 141 static bool match_ids(const struct ieee1394_device_id *id_table, int *id) 142 { 143 int match = 0; 144 145 if (id[0] == id_table->vendor_id) 146 match |= IEEE1394_MATCH_VENDOR_ID; 147 if (id[1] == id_table->model_id) 148 match |= IEEE1394_MATCH_MODEL_ID; 149 if (id[2] == id_table->specifier_id) 150 match |= IEEE1394_MATCH_SPECIFIER_ID; 151 if (id[3] == id_table->version) 152 match |= IEEE1394_MATCH_VERSION; 153 154 return (match & id_table->match_flags) == id_table->match_flags; 155 } 156 157 static const struct ieee1394_device_id *unit_match(struct device *dev, 158 struct device_driver *drv) 159 { 160 const struct ieee1394_device_id *id_table = 161 container_of(drv, struct fw_driver, driver)->id_table; 162 int id[] = {0, 0, 0, 0}; 163 164 get_modalias_ids(fw_unit(dev), id); 165 166 for (; id_table->match_flags != 0; id_table++) 167 if (match_ids(id_table, id)) 168 return id_table; 169 170 return NULL; 171 } 172 173 static bool is_fw_unit(struct device *dev); 174 175 static int fw_unit_match(struct device *dev, struct device_driver *drv) 176 { 177 /* We only allow binding to fw_units. */ 178 return is_fw_unit(dev) && unit_match(dev, drv) != NULL; 179 } 180 181 static int fw_unit_probe(struct device *dev) 182 { 183 struct fw_driver *driver = 184 container_of(dev->driver, struct fw_driver, driver); 185 186 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver)); 187 } 188 189 static void fw_unit_remove(struct device *dev) 190 { 191 struct fw_driver *driver = 192 container_of(dev->driver, struct fw_driver, driver); 193 194 driver->remove(fw_unit(dev)); 195 } 196 197 static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size) 198 { 199 int id[] = {0, 0, 0, 0}; 200 201 get_modalias_ids(unit, id); 202 203 return snprintf(buffer, buffer_size, 204 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", 205 id[0], id[1], id[2], id[3]); 206 } 207 208 static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env) 209 { 210 const struct fw_unit *unit = fw_unit(dev); 211 char modalias[64]; 212 213 get_modalias(unit, modalias, sizeof(modalias)); 214 215 if (add_uevent_var(env, "MODALIAS=%s", modalias)) 216 return -ENOMEM; 217 218 return 0; 219 } 220 221 struct bus_type fw_bus_type = { 222 .name = "firewire", 223 .match = fw_unit_match, 224 .probe = fw_unit_probe, 225 .remove = fw_unit_remove, 226 }; 227 EXPORT_SYMBOL(fw_bus_type); 228 229 int fw_device_enable_phys_dma(struct fw_device *device) 230 { 231 int generation = device->generation; 232 233 /* device->node_id, accessed below, must not be older than generation */ 234 smp_rmb(); 235 236 return device->card->driver->enable_phys_dma(device->card, 237 device->node_id, 238 generation); 239 } 240 EXPORT_SYMBOL(fw_device_enable_phys_dma); 241 242 struct config_rom_attribute { 243 struct device_attribute attr; 244 u32 key; 245 }; 246 247 static ssize_t show_immediate(struct device *dev, 248 struct device_attribute *dattr, char *buf) 249 { 250 struct config_rom_attribute *attr = 251 container_of(dattr, struct config_rom_attribute, attr); 252 struct fw_csr_iterator ci; 253 const u32 *dir; 254 int key, value, ret = -ENOENT; 255 256 down_read(&fw_device_rwsem); 257 258 if (is_fw_unit(dev)) 259 dir = fw_unit(dev)->directory; 260 else 261 dir = fw_device(dev)->config_rom + 5; 262 263 fw_csr_iterator_init(&ci, dir); 264 while (fw_csr_iterator_next(&ci, &key, &value)) 265 if (attr->key == key) { 266 ret = snprintf(buf, buf ? PAGE_SIZE : 0, 267 "0x%06x\n", value); 268 break; 269 } 270 271 up_read(&fw_device_rwsem); 272 273 return ret; 274 } 275 276 #define IMMEDIATE_ATTR(name, key) \ 277 { __ATTR(name, S_IRUGO, show_immediate, NULL), key } 278 279 static ssize_t show_text_leaf(struct device *dev, 280 struct device_attribute *dattr, char *buf) 281 { 282 struct config_rom_attribute *attr = 283 container_of(dattr, struct config_rom_attribute, attr); 284 const u32 *dir; 285 size_t bufsize; 286 char dummy_buf[2]; 287 int ret; 288 289 down_read(&fw_device_rwsem); 290 291 if (is_fw_unit(dev)) 292 dir = fw_unit(dev)->directory; 293 else 294 dir = fw_device(dev)->config_rom + 5; 295 296 if (buf) { 297 bufsize = PAGE_SIZE - 1; 298 } else { 299 buf = dummy_buf; 300 bufsize = 1; 301 } 302 303 ret = fw_csr_string(dir, attr->key, buf, bufsize); 304 305 if (ret >= 0) { 306 /* Strip trailing whitespace and add newline. */ 307 while (ret > 0 && isspace(buf[ret - 1])) 308 ret--; 309 strcpy(buf + ret, "\n"); 310 ret++; 311 } 312 313 up_read(&fw_device_rwsem); 314 315 return ret; 316 } 317 318 #define TEXT_LEAF_ATTR(name, key) \ 319 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } 320 321 static struct config_rom_attribute config_rom_attributes[] = { 322 IMMEDIATE_ATTR(vendor, CSR_VENDOR), 323 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), 324 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), 325 IMMEDIATE_ATTR(version, CSR_VERSION), 326 IMMEDIATE_ATTR(model, CSR_MODEL), 327 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), 328 TEXT_LEAF_ATTR(model_name, CSR_MODEL), 329 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), 330 }; 331 332 static void init_fw_attribute_group(struct device *dev, 333 struct device_attribute *attrs, 334 struct fw_attribute_group *group) 335 { 336 struct device_attribute *attr; 337 int i, j; 338 339 for (j = 0; attrs[j].attr.name != NULL; j++) 340 group->attrs[j] = &attrs[j].attr; 341 342 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { 343 attr = &config_rom_attributes[i].attr; 344 if (attr->show(dev, attr, NULL) < 0) 345 continue; 346 group->attrs[j++] = &attr->attr; 347 } 348 349 group->attrs[j] = NULL; 350 group->groups[0] = &group->group; 351 group->groups[1] = NULL; 352 group->group.attrs = group->attrs; 353 dev->groups = (const struct attribute_group **) group->groups; 354 } 355 356 static ssize_t modalias_show(struct device *dev, 357 struct device_attribute *attr, char *buf) 358 { 359 struct fw_unit *unit = fw_unit(dev); 360 int length; 361 362 length = get_modalias(unit, buf, PAGE_SIZE); 363 strcpy(buf + length, "\n"); 364 365 return length + 1; 366 } 367 368 static ssize_t rom_index_show(struct device *dev, 369 struct device_attribute *attr, char *buf) 370 { 371 struct fw_device *device = fw_device(dev->parent); 372 struct fw_unit *unit = fw_unit(dev); 373 374 return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom); 375 } 376 377 static struct device_attribute fw_unit_attributes[] = { 378 __ATTR_RO(modalias), 379 __ATTR_RO(rom_index), 380 __ATTR_NULL, 381 }; 382 383 static ssize_t config_rom_show(struct device *dev, 384 struct device_attribute *attr, char *buf) 385 { 386 struct fw_device *device = fw_device(dev); 387 size_t length; 388 389 down_read(&fw_device_rwsem); 390 length = device->config_rom_length * 4; 391 memcpy(buf, device->config_rom, length); 392 up_read(&fw_device_rwsem); 393 394 return length; 395 } 396 397 static ssize_t guid_show(struct device *dev, 398 struct device_attribute *attr, char *buf) 399 { 400 struct fw_device *device = fw_device(dev); 401 int ret; 402 403 down_read(&fw_device_rwsem); 404 ret = sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]); 405 up_read(&fw_device_rwsem); 406 407 return ret; 408 } 409 410 static ssize_t is_local_show(struct device *dev, 411 struct device_attribute *attr, char *buf) 412 { 413 struct fw_device *device = fw_device(dev); 414 415 return sprintf(buf, "%u\n", device->is_local); 416 } 417 418 static int units_sprintf(char *buf, const u32 *directory) 419 { 420 struct fw_csr_iterator ci; 421 int key, value; 422 int specifier_id = 0; 423 int version = 0; 424 425 fw_csr_iterator_init(&ci, directory); 426 while (fw_csr_iterator_next(&ci, &key, &value)) { 427 switch (key) { 428 case CSR_SPECIFIER_ID: 429 specifier_id = value; 430 break; 431 case CSR_VERSION: 432 version = value; 433 break; 434 } 435 } 436 437 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); 438 } 439 440 static ssize_t units_show(struct device *dev, 441 struct device_attribute *attr, char *buf) 442 { 443 struct fw_device *device = fw_device(dev); 444 struct fw_csr_iterator ci; 445 int key, value, i = 0; 446 447 down_read(&fw_device_rwsem); 448 fw_csr_iterator_init(&ci, &device->config_rom[5]); 449 while (fw_csr_iterator_next(&ci, &key, &value)) { 450 if (key != (CSR_UNIT | CSR_DIRECTORY)) 451 continue; 452 i += units_sprintf(&buf[i], ci.p + value - 1); 453 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) 454 break; 455 } 456 up_read(&fw_device_rwsem); 457 458 if (i) 459 buf[i - 1] = '\n'; 460 461 return i; 462 } 463 464 static struct device_attribute fw_device_attributes[] = { 465 __ATTR_RO(config_rom), 466 __ATTR_RO(guid), 467 __ATTR_RO(is_local), 468 __ATTR_RO(units), 469 __ATTR_NULL, 470 }; 471 472 static int read_rom(struct fw_device *device, 473 int generation, int index, u32 *data) 474 { 475 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4; 476 int i, rcode; 477 478 /* device->node_id, accessed below, must not be older than generation */ 479 smp_rmb(); 480 481 for (i = 10; i < 100; i += 10) { 482 rcode = fw_run_transaction(device->card, 483 TCODE_READ_QUADLET_REQUEST, device->node_id, 484 generation, device->max_speed, offset, data, 4); 485 if (rcode != RCODE_BUSY) 486 break; 487 msleep(i); 488 } 489 be32_to_cpus(data); 490 491 return rcode; 492 } 493 494 #define MAX_CONFIG_ROM_SIZE 256 495 496 /* 497 * Read the bus info block, perform a speed probe, and read all of the rest of 498 * the config ROM. We do all this with a cached bus generation. If the bus 499 * generation changes under us, read_config_rom will fail and get retried. 500 * It's better to start all over in this case because the node from which we 501 * are reading the ROM may have changed the ROM during the reset. 502 * Returns either a result code or a negative error code. 503 */ 504 static int read_config_rom(struct fw_device *device, int generation) 505 { 506 struct fw_card *card = device->card; 507 const u32 *old_rom, *new_rom; 508 u32 *rom, *stack; 509 u32 sp, key; 510 int i, end, length, ret; 511 512 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + 513 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); 514 if (rom == NULL) 515 return -ENOMEM; 516 517 stack = &rom[MAX_CONFIG_ROM_SIZE]; 518 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); 519 520 device->max_speed = SCODE_100; 521 522 /* First read the bus info block. */ 523 for (i = 0; i < 5; i++) { 524 ret = read_rom(device, generation, i, &rom[i]); 525 if (ret != RCODE_COMPLETE) 526 goto out; 527 /* 528 * As per IEEE1212 7.2, during initialization, devices can 529 * reply with a 0 for the first quadlet of the config 530 * rom to indicate that they are booting (for example, 531 * if the firmware is on the disk of a external 532 * harddisk). In that case we just fail, and the 533 * retry mechanism will try again later. 534 */ 535 if (i == 0 && rom[i] == 0) { 536 ret = RCODE_BUSY; 537 goto out; 538 } 539 } 540 541 device->max_speed = device->node->max_speed; 542 543 /* 544 * Determine the speed of 545 * - devices with link speed less than PHY speed, 546 * - devices with 1394b PHY (unless only connected to 1394a PHYs), 547 * - all devices if there are 1394b repeaters. 548 * Note, we cannot use the bus info block's link_spd as starting point 549 * because some buggy firmwares set it lower than necessary and because 550 * 1394-1995 nodes do not have the field. 551 */ 552 if ((rom[2] & 0x7) < device->max_speed || 553 device->max_speed == SCODE_BETA || 554 card->beta_repeaters_present) { 555 u32 dummy; 556 557 /* for S1600 and S3200 */ 558 if (device->max_speed == SCODE_BETA) 559 device->max_speed = card->link_speed; 560 561 while (device->max_speed > SCODE_100) { 562 if (read_rom(device, generation, 0, &dummy) == 563 RCODE_COMPLETE) 564 break; 565 device->max_speed--; 566 } 567 } 568 569 /* 570 * Now parse the config rom. The config rom is a recursive 571 * directory structure so we parse it using a stack of 572 * references to the blocks that make up the structure. We 573 * push a reference to the root directory on the stack to 574 * start things off. 575 */ 576 length = i; 577 sp = 0; 578 stack[sp++] = 0xc0000005; 579 while (sp > 0) { 580 /* 581 * Pop the next block reference of the stack. The 582 * lower 24 bits is the offset into the config rom, 583 * the upper 8 bits are the type of the reference the 584 * block. 585 */ 586 key = stack[--sp]; 587 i = key & 0xffffff; 588 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) { 589 ret = -ENXIO; 590 goto out; 591 } 592 593 /* Read header quadlet for the block to get the length. */ 594 ret = read_rom(device, generation, i, &rom[i]); 595 if (ret != RCODE_COMPLETE) 596 goto out; 597 end = i + (rom[i] >> 16) + 1; 598 if (end > MAX_CONFIG_ROM_SIZE) { 599 /* 600 * This block extends outside the config ROM which is 601 * a firmware bug. Ignore this whole block, i.e. 602 * simply set a fake block length of 0. 603 */ 604 fw_err(card, "skipped invalid ROM block %x at %llx\n", 605 rom[i], 606 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 607 rom[i] = 0; 608 end = i; 609 } 610 i++; 611 612 /* 613 * Now read in the block. If this is a directory 614 * block, check the entries as we read them to see if 615 * it references another block, and push it in that case. 616 */ 617 for (; i < end; i++) { 618 ret = read_rom(device, generation, i, &rom[i]); 619 if (ret != RCODE_COMPLETE) 620 goto out; 621 622 if ((key >> 30) != 3 || (rom[i] >> 30) < 2) 623 continue; 624 /* 625 * Offset points outside the ROM. May be a firmware 626 * bug or an Extended ROM entry (IEEE 1212-2001 clause 627 * 7.7.18). Simply overwrite this pointer here by a 628 * fake immediate entry so that later iterators over 629 * the ROM don't have to check offsets all the time. 630 */ 631 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { 632 fw_err(card, 633 "skipped unsupported ROM entry %x at %llx\n", 634 rom[i], 635 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 636 rom[i] = 0; 637 continue; 638 } 639 stack[sp++] = i + rom[i]; 640 } 641 if (length < i) 642 length = i; 643 } 644 645 old_rom = device->config_rom; 646 new_rom = kmemdup(rom, length * 4, GFP_KERNEL); 647 if (new_rom == NULL) { 648 ret = -ENOMEM; 649 goto out; 650 } 651 652 down_write(&fw_device_rwsem); 653 device->config_rom = new_rom; 654 device->config_rom_length = length; 655 up_write(&fw_device_rwsem); 656 657 kfree(old_rom); 658 ret = RCODE_COMPLETE; 659 device->max_rec = rom[2] >> 12 & 0xf; 660 device->cmc = rom[2] >> 30 & 1; 661 device->irmc = rom[2] >> 31 & 1; 662 out: 663 kfree(rom); 664 665 return ret; 666 } 667 668 static void fw_unit_release(struct device *dev) 669 { 670 struct fw_unit *unit = fw_unit(dev); 671 672 fw_device_put(fw_parent_device(unit)); 673 kfree(unit); 674 } 675 676 static struct device_type fw_unit_type = { 677 .uevent = fw_unit_uevent, 678 .release = fw_unit_release, 679 }; 680 681 static bool is_fw_unit(struct device *dev) 682 { 683 return dev->type == &fw_unit_type; 684 } 685 686 static void create_units(struct fw_device *device) 687 { 688 struct fw_csr_iterator ci; 689 struct fw_unit *unit; 690 int key, value, i; 691 692 i = 0; 693 fw_csr_iterator_init(&ci, &device->config_rom[5]); 694 while (fw_csr_iterator_next(&ci, &key, &value)) { 695 if (key != (CSR_UNIT | CSR_DIRECTORY)) 696 continue; 697 698 /* 699 * Get the address of the unit directory and try to 700 * match the drivers id_tables against it. 701 */ 702 unit = kzalloc(sizeof(*unit), GFP_KERNEL); 703 if (unit == NULL) 704 continue; 705 706 unit->directory = ci.p + value - 1; 707 unit->device.bus = &fw_bus_type; 708 unit->device.type = &fw_unit_type; 709 unit->device.parent = &device->device; 710 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); 711 712 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < 713 ARRAY_SIZE(fw_unit_attributes) + 714 ARRAY_SIZE(config_rom_attributes)); 715 init_fw_attribute_group(&unit->device, 716 fw_unit_attributes, 717 &unit->attribute_group); 718 719 fw_device_get(device); 720 if (device_register(&unit->device) < 0) { 721 put_device(&unit->device); 722 continue; 723 } 724 } 725 } 726 727 static int shutdown_unit(struct device *device, void *data) 728 { 729 device_unregister(device); 730 731 return 0; 732 } 733 734 /* 735 * fw_device_rwsem acts as dual purpose mutex: 736 * - serializes accesses to fw_device_idr, 737 * - serializes accesses to fw_device.config_rom/.config_rom_length and 738 * fw_unit.directory, unless those accesses happen at safe occasions 739 */ 740 DECLARE_RWSEM(fw_device_rwsem); 741 742 DEFINE_IDR(fw_device_idr); 743 int fw_cdev_major; 744 745 struct fw_device *fw_device_get_by_devt(dev_t devt) 746 { 747 struct fw_device *device; 748 749 down_read(&fw_device_rwsem); 750 device = idr_find(&fw_device_idr, MINOR(devt)); 751 if (device) 752 fw_device_get(device); 753 up_read(&fw_device_rwsem); 754 755 return device; 756 } 757 758 struct workqueue_struct *fw_workqueue; 759 EXPORT_SYMBOL(fw_workqueue); 760 761 static void fw_schedule_device_work(struct fw_device *device, 762 unsigned long delay) 763 { 764 queue_delayed_work(fw_workqueue, &device->work, delay); 765 } 766 767 /* 768 * These defines control the retry behavior for reading the config 769 * rom. It shouldn't be necessary to tweak these; if the device 770 * doesn't respond to a config rom read within 10 seconds, it's not 771 * going to respond at all. As for the initial delay, a lot of 772 * devices will be able to respond within half a second after bus 773 * reset. On the other hand, it's not really worth being more 774 * aggressive than that, since it scales pretty well; if 10 devices 775 * are plugged in, they're all getting read within one second. 776 */ 777 778 #define MAX_RETRIES 10 779 #define RETRY_DELAY (3 * HZ) 780 #define INITIAL_DELAY (HZ / 2) 781 #define SHUTDOWN_DELAY (2 * HZ) 782 783 static void fw_device_shutdown(struct work_struct *work) 784 { 785 struct fw_device *device = 786 container_of(work, struct fw_device, work.work); 787 int minor = MINOR(device->device.devt); 788 789 if (time_before64(get_jiffies_64(), 790 device->card->reset_jiffies + SHUTDOWN_DELAY) 791 && !list_empty(&device->card->link)) { 792 fw_schedule_device_work(device, SHUTDOWN_DELAY); 793 return; 794 } 795 796 if (atomic_cmpxchg(&device->state, 797 FW_DEVICE_GONE, 798 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) 799 return; 800 801 fw_device_cdev_remove(device); 802 device_for_each_child(&device->device, NULL, shutdown_unit); 803 device_unregister(&device->device); 804 805 down_write(&fw_device_rwsem); 806 idr_remove(&fw_device_idr, minor); 807 up_write(&fw_device_rwsem); 808 809 fw_device_put(device); 810 } 811 812 static void fw_device_release(struct device *dev) 813 { 814 struct fw_device *device = fw_device(dev); 815 struct fw_card *card = device->card; 816 unsigned long flags; 817 818 /* 819 * Take the card lock so we don't set this to NULL while a 820 * FW_NODE_UPDATED callback is being handled or while the 821 * bus manager work looks at this node. 822 */ 823 spin_lock_irqsave(&card->lock, flags); 824 device->node->data = NULL; 825 spin_unlock_irqrestore(&card->lock, flags); 826 827 fw_node_put(device->node); 828 kfree(device->config_rom); 829 kfree(device); 830 fw_card_put(card); 831 } 832 833 static struct device_type fw_device_type = { 834 .release = fw_device_release, 835 }; 836 837 static bool is_fw_device(struct device *dev) 838 { 839 return dev->type == &fw_device_type; 840 } 841 842 static int update_unit(struct device *dev, void *data) 843 { 844 struct fw_unit *unit = fw_unit(dev); 845 struct fw_driver *driver = (struct fw_driver *)dev->driver; 846 847 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { 848 device_lock(dev); 849 driver->update(unit); 850 device_unlock(dev); 851 } 852 853 return 0; 854 } 855 856 static void fw_device_update(struct work_struct *work) 857 { 858 struct fw_device *device = 859 container_of(work, struct fw_device, work.work); 860 861 fw_device_cdev_update(device); 862 device_for_each_child(&device->device, NULL, update_unit); 863 } 864 865 /* 866 * If a device was pending for deletion because its node went away but its 867 * bus info block and root directory header matches that of a newly discovered 868 * device, revive the existing fw_device. 869 * The newly allocated fw_device becomes obsolete instead. 870 */ 871 static int lookup_existing_device(struct device *dev, void *data) 872 { 873 struct fw_device *old = fw_device(dev); 874 struct fw_device *new = data; 875 struct fw_card *card = new->card; 876 int match = 0; 877 878 if (!is_fw_device(dev)) 879 return 0; 880 881 down_read(&fw_device_rwsem); /* serialize config_rom access */ 882 spin_lock_irq(&card->lock); /* serialize node access */ 883 884 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 && 885 atomic_cmpxchg(&old->state, 886 FW_DEVICE_GONE, 887 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 888 struct fw_node *current_node = new->node; 889 struct fw_node *obsolete_node = old->node; 890 891 new->node = obsolete_node; 892 new->node->data = new; 893 old->node = current_node; 894 old->node->data = old; 895 896 old->max_speed = new->max_speed; 897 old->node_id = current_node->node_id; 898 smp_wmb(); /* update node_id before generation */ 899 old->generation = card->generation; 900 old->config_rom_retries = 0; 901 fw_notice(card, "rediscovered device %s\n", dev_name(dev)); 902 903 old->workfn = fw_device_update; 904 fw_schedule_device_work(old, 0); 905 906 if (current_node == card->root_node) 907 fw_schedule_bm_work(card, 0); 908 909 match = 1; 910 } 911 912 spin_unlock_irq(&card->lock); 913 up_read(&fw_device_rwsem); 914 915 return match; 916 } 917 918 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; 919 920 static void set_broadcast_channel(struct fw_device *device, int generation) 921 { 922 struct fw_card *card = device->card; 923 __be32 data; 924 int rcode; 925 926 if (!card->broadcast_channel_allocated) 927 return; 928 929 /* 930 * The Broadcast_Channel Valid bit is required by nodes which want to 931 * transmit on this channel. Such transmissions are practically 932 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required 933 * to be IRM capable and have a max_rec of 8 or more. We use this fact 934 * to narrow down to which nodes we send Broadcast_Channel updates. 935 */ 936 if (!device->irmc || device->max_rec < 8) 937 return; 938 939 /* 940 * Some 1394-1995 nodes crash if this 1394a-2000 register is written. 941 * Perform a read test first. 942 */ 943 if (device->bc_implemented == BC_UNKNOWN) { 944 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, 945 device->node_id, generation, device->max_speed, 946 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 947 &data, 4); 948 switch (rcode) { 949 case RCODE_COMPLETE: 950 if (data & cpu_to_be32(1 << 31)) { 951 device->bc_implemented = BC_IMPLEMENTED; 952 break; 953 } 954 fallthrough; /* to case address error */ 955 case RCODE_ADDRESS_ERROR: 956 device->bc_implemented = BC_UNIMPLEMENTED; 957 } 958 } 959 960 if (device->bc_implemented == BC_IMPLEMENTED) { 961 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | 962 BROADCAST_CHANNEL_VALID); 963 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, 964 device->node_id, generation, device->max_speed, 965 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 966 &data, 4); 967 } 968 } 969 970 int fw_device_set_broadcast_channel(struct device *dev, void *gen) 971 { 972 if (is_fw_device(dev)) 973 set_broadcast_channel(fw_device(dev), (long)gen); 974 975 return 0; 976 } 977 978 static void fw_device_init(struct work_struct *work) 979 { 980 struct fw_device *device = 981 container_of(work, struct fw_device, work.work); 982 struct fw_card *card = device->card; 983 struct device *revived_dev; 984 int minor, ret; 985 986 /* 987 * All failure paths here set node->data to NULL, so that we 988 * don't try to do device_for_each_child() on a kfree()'d 989 * device. 990 */ 991 992 ret = read_config_rom(device, device->generation); 993 if (ret != RCODE_COMPLETE) { 994 if (device->config_rom_retries < MAX_RETRIES && 995 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 996 device->config_rom_retries++; 997 fw_schedule_device_work(device, RETRY_DELAY); 998 } else { 999 if (device->node->link_on) 1000 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n", 1001 device->node_id, 1002 fw_rcode_string(ret)); 1003 if (device->node == card->root_node) 1004 fw_schedule_bm_work(card, 0); 1005 fw_device_release(&device->device); 1006 } 1007 return; 1008 } 1009 1010 revived_dev = device_find_child(card->device, 1011 device, lookup_existing_device); 1012 if (revived_dev) { 1013 put_device(revived_dev); 1014 fw_device_release(&device->device); 1015 1016 return; 1017 } 1018 1019 device_initialize(&device->device); 1020 1021 fw_device_get(device); 1022 down_write(&fw_device_rwsem); 1023 minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS, 1024 GFP_KERNEL); 1025 up_write(&fw_device_rwsem); 1026 1027 if (minor < 0) 1028 goto error; 1029 1030 device->device.bus = &fw_bus_type; 1031 device->device.type = &fw_device_type; 1032 device->device.parent = card->device; 1033 device->device.devt = MKDEV(fw_cdev_major, minor); 1034 dev_set_name(&device->device, "fw%d", minor); 1035 1036 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < 1037 ARRAY_SIZE(fw_device_attributes) + 1038 ARRAY_SIZE(config_rom_attributes)); 1039 init_fw_attribute_group(&device->device, 1040 fw_device_attributes, 1041 &device->attribute_group); 1042 1043 if (device_add(&device->device)) { 1044 fw_err(card, "failed to add device\n"); 1045 goto error_with_cdev; 1046 } 1047 1048 create_units(device); 1049 1050 /* 1051 * Transition the device to running state. If it got pulled 1052 * out from under us while we did the initialization work, we 1053 * have to shut down the device again here. Normally, though, 1054 * fw_node_event will be responsible for shutting it down when 1055 * necessary. We have to use the atomic cmpxchg here to avoid 1056 * racing with the FW_NODE_DESTROYED case in 1057 * fw_node_event(). 1058 */ 1059 if (atomic_cmpxchg(&device->state, 1060 FW_DEVICE_INITIALIZING, 1061 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 1062 device->workfn = fw_device_shutdown; 1063 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1064 } else { 1065 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n", 1066 dev_name(&device->device), 1067 device->config_rom[3], device->config_rom[4], 1068 1 << device->max_speed); 1069 device->config_rom_retries = 0; 1070 1071 set_broadcast_channel(device, device->generation); 1072 1073 add_device_randomness(&device->config_rom[3], 8); 1074 } 1075 1076 /* 1077 * Reschedule the IRM work if we just finished reading the 1078 * root node config rom. If this races with a bus reset we 1079 * just end up running the IRM work a couple of extra times - 1080 * pretty harmless. 1081 */ 1082 if (device->node == card->root_node) 1083 fw_schedule_bm_work(card, 0); 1084 1085 return; 1086 1087 error_with_cdev: 1088 down_write(&fw_device_rwsem); 1089 idr_remove(&fw_device_idr, minor); 1090 up_write(&fw_device_rwsem); 1091 error: 1092 fw_device_put(device); /* fw_device_idr's reference */ 1093 1094 put_device(&device->device); /* our reference */ 1095 } 1096 1097 /* Reread and compare bus info block and header of root directory */ 1098 static int reread_config_rom(struct fw_device *device, int generation, 1099 bool *changed) 1100 { 1101 u32 q; 1102 int i, rcode; 1103 1104 for (i = 0; i < 6; i++) { 1105 rcode = read_rom(device, generation, i, &q); 1106 if (rcode != RCODE_COMPLETE) 1107 return rcode; 1108 1109 if (i == 0 && q == 0) 1110 /* inaccessible (see read_config_rom); retry later */ 1111 return RCODE_BUSY; 1112 1113 if (q != device->config_rom[i]) { 1114 *changed = true; 1115 return RCODE_COMPLETE; 1116 } 1117 } 1118 1119 *changed = false; 1120 return RCODE_COMPLETE; 1121 } 1122 1123 static void fw_device_refresh(struct work_struct *work) 1124 { 1125 struct fw_device *device = 1126 container_of(work, struct fw_device, work.work); 1127 struct fw_card *card = device->card; 1128 int ret, node_id = device->node_id; 1129 bool changed; 1130 1131 ret = reread_config_rom(device, device->generation, &changed); 1132 if (ret != RCODE_COMPLETE) 1133 goto failed_config_rom; 1134 1135 if (!changed) { 1136 if (atomic_cmpxchg(&device->state, 1137 FW_DEVICE_INITIALIZING, 1138 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1139 goto gone; 1140 1141 fw_device_update(work); 1142 device->config_rom_retries = 0; 1143 goto out; 1144 } 1145 1146 /* 1147 * Something changed. We keep things simple and don't investigate 1148 * further. We just destroy all previous units and create new ones. 1149 */ 1150 device_for_each_child(&device->device, NULL, shutdown_unit); 1151 1152 ret = read_config_rom(device, device->generation); 1153 if (ret != RCODE_COMPLETE) 1154 goto failed_config_rom; 1155 1156 fw_device_cdev_update(device); 1157 create_units(device); 1158 1159 /* Userspace may want to re-read attributes. */ 1160 kobject_uevent(&device->device.kobj, KOBJ_CHANGE); 1161 1162 if (atomic_cmpxchg(&device->state, 1163 FW_DEVICE_INITIALIZING, 1164 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1165 goto gone; 1166 1167 fw_notice(card, "refreshed device %s\n", dev_name(&device->device)); 1168 device->config_rom_retries = 0; 1169 goto out; 1170 1171 failed_config_rom: 1172 if (device->config_rom_retries < MAX_RETRIES && 1173 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1174 device->config_rom_retries++; 1175 fw_schedule_device_work(device, RETRY_DELAY); 1176 return; 1177 } 1178 1179 fw_notice(card, "giving up on refresh of device %s: %s\n", 1180 dev_name(&device->device), fw_rcode_string(ret)); 1181 gone: 1182 atomic_set(&device->state, FW_DEVICE_GONE); 1183 device->workfn = fw_device_shutdown; 1184 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1185 out: 1186 if (node_id == card->root_node->node_id) 1187 fw_schedule_bm_work(card, 0); 1188 } 1189 1190 static void fw_device_workfn(struct work_struct *work) 1191 { 1192 struct fw_device *device = container_of(to_delayed_work(work), 1193 struct fw_device, work); 1194 device->workfn(work); 1195 } 1196 1197 void fw_node_event(struct fw_card *card, struct fw_node *node, int event) 1198 { 1199 struct fw_device *device; 1200 1201 switch (event) { 1202 case FW_NODE_CREATED: 1203 /* 1204 * Attempt to scan the node, regardless whether its self ID has 1205 * the L (link active) flag set or not. Some broken devices 1206 * send L=0 but have an up-and-running link; others send L=1 1207 * without actually having a link. 1208 */ 1209 create: 1210 device = kzalloc(sizeof(*device), GFP_ATOMIC); 1211 if (device == NULL) 1212 break; 1213 1214 /* 1215 * Do minimal initialization of the device here, the 1216 * rest will happen in fw_device_init(). 1217 * 1218 * Attention: A lot of things, even fw_device_get(), 1219 * cannot be done before fw_device_init() finished! 1220 * You can basically just check device->state and 1221 * schedule work until then, but only while holding 1222 * card->lock. 1223 */ 1224 atomic_set(&device->state, FW_DEVICE_INITIALIZING); 1225 device->card = fw_card_get(card); 1226 device->node = fw_node_get(node); 1227 device->node_id = node->node_id; 1228 device->generation = card->generation; 1229 device->is_local = node == card->local_node; 1230 mutex_init(&device->client_list_mutex); 1231 INIT_LIST_HEAD(&device->client_list); 1232 1233 /* 1234 * Set the node data to point back to this device so 1235 * FW_NODE_UPDATED callbacks can update the node_id 1236 * and generation for the device. 1237 */ 1238 node->data = device; 1239 1240 /* 1241 * Many devices are slow to respond after bus resets, 1242 * especially if they are bus powered and go through 1243 * power-up after getting plugged in. We schedule the 1244 * first config rom scan half a second after bus reset. 1245 */ 1246 device->workfn = fw_device_init; 1247 INIT_DELAYED_WORK(&device->work, fw_device_workfn); 1248 fw_schedule_device_work(device, INITIAL_DELAY); 1249 break; 1250 1251 case FW_NODE_INITIATED_RESET: 1252 case FW_NODE_LINK_ON: 1253 device = node->data; 1254 if (device == NULL) 1255 goto create; 1256 1257 device->node_id = node->node_id; 1258 smp_wmb(); /* update node_id before generation */ 1259 device->generation = card->generation; 1260 if (atomic_cmpxchg(&device->state, 1261 FW_DEVICE_RUNNING, 1262 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { 1263 device->workfn = fw_device_refresh; 1264 fw_schedule_device_work(device, 1265 device->is_local ? 0 : INITIAL_DELAY); 1266 } 1267 break; 1268 1269 case FW_NODE_UPDATED: 1270 device = node->data; 1271 if (device == NULL) 1272 break; 1273 1274 device->node_id = node->node_id; 1275 smp_wmb(); /* update node_id before generation */ 1276 device->generation = card->generation; 1277 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { 1278 device->workfn = fw_device_update; 1279 fw_schedule_device_work(device, 0); 1280 } 1281 break; 1282 1283 case FW_NODE_DESTROYED: 1284 case FW_NODE_LINK_OFF: 1285 if (!node->data) 1286 break; 1287 1288 /* 1289 * Destroy the device associated with the node. There 1290 * are two cases here: either the device is fully 1291 * initialized (FW_DEVICE_RUNNING) or we're in the 1292 * process of reading its config rom 1293 * (FW_DEVICE_INITIALIZING). If it is fully 1294 * initialized we can reuse device->work to schedule a 1295 * full fw_device_shutdown(). If not, there's work 1296 * scheduled to read it's config rom, and we just put 1297 * the device in shutdown state to have that code fail 1298 * to create the device. 1299 */ 1300 device = node->data; 1301 if (atomic_xchg(&device->state, 1302 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { 1303 device->workfn = fw_device_shutdown; 1304 fw_schedule_device_work(device, 1305 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); 1306 } 1307 break; 1308 } 1309 } 1310