xref: /openbmc/linux/drivers/firewire/core-device.c (revision a1dff44b354c0e2721aeae075a287d07daf1c76b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Device probing and sysfs code.
4  *
5  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bug.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/errno.h>
13 #include <linux/firewire.h>
14 #include <linux/firewire-constants.h>
15 #include <linux/idr.h>
16 #include <linux/jiffies.h>
17 #include <linux/kobject.h>
18 #include <linux/list.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/random.h>
23 #include <linux/rwsem.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/string.h>
27 #include <linux/workqueue.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/byteorder.h>
31 
32 #include "core.h"
33 
34 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
35 {
36 	ci->p = p + 1;
37 	ci->end = ci->p + (p[0] >> 16);
38 }
39 EXPORT_SYMBOL(fw_csr_iterator_init);
40 
41 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
42 {
43 	*key = *ci->p >> 24;
44 	*value = *ci->p & 0xffffff;
45 
46 	return ci->p++ < ci->end;
47 }
48 EXPORT_SYMBOL(fw_csr_iterator_next);
49 
50 static const u32 *search_leaf(const u32 *directory, int search_key)
51 {
52 	struct fw_csr_iterator ci;
53 	int last_key = 0, key, value;
54 
55 	fw_csr_iterator_init(&ci, directory);
56 	while (fw_csr_iterator_next(&ci, &key, &value)) {
57 		if (last_key == search_key &&
58 		    key == (CSR_DESCRIPTOR | CSR_LEAF))
59 			return ci.p - 1 + value;
60 
61 		last_key = key;
62 	}
63 
64 	return NULL;
65 }
66 
67 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
68 {
69 	unsigned int quadlets, i;
70 	char c;
71 
72 	if (!size || !buf)
73 		return -EINVAL;
74 
75 	quadlets = min(block[0] >> 16, 256U);
76 	if (quadlets < 2)
77 		return -ENODATA;
78 
79 	if (block[1] != 0 || block[2] != 0)
80 		/* unknown language/character set */
81 		return -ENODATA;
82 
83 	block += 3;
84 	quadlets -= 2;
85 	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
86 		c = block[i / 4] >> (24 - 8 * (i % 4));
87 		if (c == '\0')
88 			break;
89 		buf[i] = c;
90 	}
91 	buf[i] = '\0';
92 
93 	return i;
94 }
95 
96 /**
97  * fw_csr_string() - reads a string from the configuration ROM
98  * @directory:	e.g. root directory or unit directory
99  * @key:	the key of the preceding directory entry
100  * @buf:	where to put the string
101  * @size:	size of @buf, in bytes
102  *
103  * The string is taken from a minimal ASCII text descriptor leaf after
104  * the immediate entry with @key.  The string is zero-terminated.
105  * An overlong string is silently truncated such that it and the
106  * zero byte fit into @size.
107  *
108  * Returns strlen(buf) or a negative error code.
109  */
110 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
111 {
112 	const u32 *leaf = search_leaf(directory, key);
113 	if (!leaf)
114 		return -ENOENT;
115 
116 	return textual_leaf_to_string(leaf, buf, size);
117 }
118 EXPORT_SYMBOL(fw_csr_string);
119 
120 static void get_ids(const u32 *directory, int *id)
121 {
122 	struct fw_csr_iterator ci;
123 	int key, value;
124 
125 	fw_csr_iterator_init(&ci, directory);
126 	while (fw_csr_iterator_next(&ci, &key, &value)) {
127 		switch (key) {
128 		case CSR_VENDOR:	id[0] = value; break;
129 		case CSR_MODEL:		id[1] = value; break;
130 		case CSR_SPECIFIER_ID:	id[2] = value; break;
131 		case CSR_VERSION:	id[3] = value; break;
132 		}
133 	}
134 }
135 
136 static void get_modalias_ids(struct fw_unit *unit, int *id)
137 {
138 	get_ids(&fw_parent_device(unit)->config_rom[5], id);
139 	get_ids(unit->directory, id);
140 }
141 
142 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
143 {
144 	int match = 0;
145 
146 	if (id[0] == id_table->vendor_id)
147 		match |= IEEE1394_MATCH_VENDOR_ID;
148 	if (id[1] == id_table->model_id)
149 		match |= IEEE1394_MATCH_MODEL_ID;
150 	if (id[2] == id_table->specifier_id)
151 		match |= IEEE1394_MATCH_SPECIFIER_ID;
152 	if (id[3] == id_table->version)
153 		match |= IEEE1394_MATCH_VERSION;
154 
155 	return (match & id_table->match_flags) == id_table->match_flags;
156 }
157 
158 static const struct ieee1394_device_id *unit_match(struct device *dev,
159 						   struct device_driver *drv)
160 {
161 	const struct ieee1394_device_id *id_table =
162 			container_of(drv, struct fw_driver, driver)->id_table;
163 	int id[] = {0, 0, 0, 0};
164 
165 	get_modalias_ids(fw_unit(dev), id);
166 
167 	for (; id_table->match_flags != 0; id_table++)
168 		if (match_ids(id_table, id))
169 			return id_table;
170 
171 	return NULL;
172 }
173 
174 static bool is_fw_unit(struct device *dev);
175 
176 static int fw_unit_match(struct device *dev, struct device_driver *drv)
177 {
178 	/* We only allow binding to fw_units. */
179 	return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
180 }
181 
182 static int fw_unit_probe(struct device *dev)
183 {
184 	struct fw_driver *driver =
185 			container_of(dev->driver, struct fw_driver, driver);
186 
187 	return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
188 }
189 
190 static int fw_unit_remove(struct device *dev)
191 {
192 	struct fw_driver *driver =
193 			container_of(dev->driver, struct fw_driver, driver);
194 
195 	driver->remove(fw_unit(dev));
196 
197 	return 0;
198 }
199 
200 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
201 {
202 	int id[] = {0, 0, 0, 0};
203 
204 	get_modalias_ids(unit, id);
205 
206 	return snprintf(buffer, buffer_size,
207 			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
208 			id[0], id[1], id[2], id[3]);
209 }
210 
211 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
212 {
213 	struct fw_unit *unit = fw_unit(dev);
214 	char modalias[64];
215 
216 	get_modalias(unit, modalias, sizeof(modalias));
217 
218 	if (add_uevent_var(env, "MODALIAS=%s", modalias))
219 		return -ENOMEM;
220 
221 	return 0;
222 }
223 
224 struct bus_type fw_bus_type = {
225 	.name = "firewire",
226 	.match = fw_unit_match,
227 	.probe = fw_unit_probe,
228 	.remove = fw_unit_remove,
229 };
230 EXPORT_SYMBOL(fw_bus_type);
231 
232 int fw_device_enable_phys_dma(struct fw_device *device)
233 {
234 	int generation = device->generation;
235 
236 	/* device->node_id, accessed below, must not be older than generation */
237 	smp_rmb();
238 
239 	return device->card->driver->enable_phys_dma(device->card,
240 						     device->node_id,
241 						     generation);
242 }
243 EXPORT_SYMBOL(fw_device_enable_phys_dma);
244 
245 struct config_rom_attribute {
246 	struct device_attribute attr;
247 	u32 key;
248 };
249 
250 static ssize_t show_immediate(struct device *dev,
251 			      struct device_attribute *dattr, char *buf)
252 {
253 	struct config_rom_attribute *attr =
254 		container_of(dattr, struct config_rom_attribute, attr);
255 	struct fw_csr_iterator ci;
256 	const u32 *dir;
257 	int key, value, ret = -ENOENT;
258 
259 	down_read(&fw_device_rwsem);
260 
261 	if (is_fw_unit(dev))
262 		dir = fw_unit(dev)->directory;
263 	else
264 		dir = fw_device(dev)->config_rom + 5;
265 
266 	fw_csr_iterator_init(&ci, dir);
267 	while (fw_csr_iterator_next(&ci, &key, &value))
268 		if (attr->key == key) {
269 			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
270 				       "0x%06x\n", value);
271 			break;
272 		}
273 
274 	up_read(&fw_device_rwsem);
275 
276 	return ret;
277 }
278 
279 #define IMMEDIATE_ATTR(name, key)				\
280 	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
281 
282 static ssize_t show_text_leaf(struct device *dev,
283 			      struct device_attribute *dattr, char *buf)
284 {
285 	struct config_rom_attribute *attr =
286 		container_of(dattr, struct config_rom_attribute, attr);
287 	const u32 *dir;
288 	size_t bufsize;
289 	char dummy_buf[2];
290 	int ret;
291 
292 	down_read(&fw_device_rwsem);
293 
294 	if (is_fw_unit(dev))
295 		dir = fw_unit(dev)->directory;
296 	else
297 		dir = fw_device(dev)->config_rom + 5;
298 
299 	if (buf) {
300 		bufsize = PAGE_SIZE - 1;
301 	} else {
302 		buf = dummy_buf;
303 		bufsize = 1;
304 	}
305 
306 	ret = fw_csr_string(dir, attr->key, buf, bufsize);
307 
308 	if (ret >= 0) {
309 		/* Strip trailing whitespace and add newline. */
310 		while (ret > 0 && isspace(buf[ret - 1]))
311 			ret--;
312 		strcpy(buf + ret, "\n");
313 		ret++;
314 	}
315 
316 	up_read(&fw_device_rwsem);
317 
318 	return ret;
319 }
320 
321 #define TEXT_LEAF_ATTR(name, key)				\
322 	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
323 
324 static struct config_rom_attribute config_rom_attributes[] = {
325 	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
326 	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
327 	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
328 	IMMEDIATE_ATTR(version, CSR_VERSION),
329 	IMMEDIATE_ATTR(model, CSR_MODEL),
330 	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
331 	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
332 	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
333 };
334 
335 static void init_fw_attribute_group(struct device *dev,
336 				    struct device_attribute *attrs,
337 				    struct fw_attribute_group *group)
338 {
339 	struct device_attribute *attr;
340 	int i, j;
341 
342 	for (j = 0; attrs[j].attr.name != NULL; j++)
343 		group->attrs[j] = &attrs[j].attr;
344 
345 	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
346 		attr = &config_rom_attributes[i].attr;
347 		if (attr->show(dev, attr, NULL) < 0)
348 			continue;
349 		group->attrs[j++] = &attr->attr;
350 	}
351 
352 	group->attrs[j] = NULL;
353 	group->groups[0] = &group->group;
354 	group->groups[1] = NULL;
355 	group->group.attrs = group->attrs;
356 	dev->groups = (const struct attribute_group **) group->groups;
357 }
358 
359 static ssize_t modalias_show(struct device *dev,
360 			     struct device_attribute *attr, char *buf)
361 {
362 	struct fw_unit *unit = fw_unit(dev);
363 	int length;
364 
365 	length = get_modalias(unit, buf, PAGE_SIZE);
366 	strcpy(buf + length, "\n");
367 
368 	return length + 1;
369 }
370 
371 static ssize_t rom_index_show(struct device *dev,
372 			      struct device_attribute *attr, char *buf)
373 {
374 	struct fw_device *device = fw_device(dev->parent);
375 	struct fw_unit *unit = fw_unit(dev);
376 
377 	return snprintf(buf, PAGE_SIZE, "%d\n",
378 			(int)(unit->directory - device->config_rom));
379 }
380 
381 static struct device_attribute fw_unit_attributes[] = {
382 	__ATTR_RO(modalias),
383 	__ATTR_RO(rom_index),
384 	__ATTR_NULL,
385 };
386 
387 static ssize_t config_rom_show(struct device *dev,
388 			       struct device_attribute *attr, char *buf)
389 {
390 	struct fw_device *device = fw_device(dev);
391 	size_t length;
392 
393 	down_read(&fw_device_rwsem);
394 	length = device->config_rom_length * 4;
395 	memcpy(buf, device->config_rom, length);
396 	up_read(&fw_device_rwsem);
397 
398 	return length;
399 }
400 
401 static ssize_t guid_show(struct device *dev,
402 			 struct device_attribute *attr, char *buf)
403 {
404 	struct fw_device *device = fw_device(dev);
405 	int ret;
406 
407 	down_read(&fw_device_rwsem);
408 	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
409 		       device->config_rom[3], device->config_rom[4]);
410 	up_read(&fw_device_rwsem);
411 
412 	return ret;
413 }
414 
415 static ssize_t is_local_show(struct device *dev,
416 			     struct device_attribute *attr, char *buf)
417 {
418 	struct fw_device *device = fw_device(dev);
419 
420 	return sprintf(buf, "%u\n", device->is_local);
421 }
422 
423 static int units_sprintf(char *buf, const u32 *directory)
424 {
425 	struct fw_csr_iterator ci;
426 	int key, value;
427 	int specifier_id = 0;
428 	int version = 0;
429 
430 	fw_csr_iterator_init(&ci, directory);
431 	while (fw_csr_iterator_next(&ci, &key, &value)) {
432 		switch (key) {
433 		case CSR_SPECIFIER_ID:
434 			specifier_id = value;
435 			break;
436 		case CSR_VERSION:
437 			version = value;
438 			break;
439 		}
440 	}
441 
442 	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
443 }
444 
445 static ssize_t units_show(struct device *dev,
446 			  struct device_attribute *attr, char *buf)
447 {
448 	struct fw_device *device = fw_device(dev);
449 	struct fw_csr_iterator ci;
450 	int key, value, i = 0;
451 
452 	down_read(&fw_device_rwsem);
453 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
454 	while (fw_csr_iterator_next(&ci, &key, &value)) {
455 		if (key != (CSR_UNIT | CSR_DIRECTORY))
456 			continue;
457 		i += units_sprintf(&buf[i], ci.p + value - 1);
458 		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
459 			break;
460 	}
461 	up_read(&fw_device_rwsem);
462 
463 	if (i)
464 		buf[i - 1] = '\n';
465 
466 	return i;
467 }
468 
469 static struct device_attribute fw_device_attributes[] = {
470 	__ATTR_RO(config_rom),
471 	__ATTR_RO(guid),
472 	__ATTR_RO(is_local),
473 	__ATTR_RO(units),
474 	__ATTR_NULL,
475 };
476 
477 static int read_rom(struct fw_device *device,
478 		    int generation, int index, u32 *data)
479 {
480 	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
481 	int i, rcode;
482 
483 	/* device->node_id, accessed below, must not be older than generation */
484 	smp_rmb();
485 
486 	for (i = 10; i < 100; i += 10) {
487 		rcode = fw_run_transaction(device->card,
488 				TCODE_READ_QUADLET_REQUEST, device->node_id,
489 				generation, device->max_speed, offset, data, 4);
490 		if (rcode != RCODE_BUSY)
491 			break;
492 		msleep(i);
493 	}
494 	be32_to_cpus(data);
495 
496 	return rcode;
497 }
498 
499 #define MAX_CONFIG_ROM_SIZE 256
500 
501 /*
502  * Read the bus info block, perform a speed probe, and read all of the rest of
503  * the config ROM.  We do all this with a cached bus generation.  If the bus
504  * generation changes under us, read_config_rom will fail and get retried.
505  * It's better to start all over in this case because the node from which we
506  * are reading the ROM may have changed the ROM during the reset.
507  * Returns either a result code or a negative error code.
508  */
509 static int read_config_rom(struct fw_device *device, int generation)
510 {
511 	struct fw_card *card = device->card;
512 	const u32 *old_rom, *new_rom;
513 	u32 *rom, *stack;
514 	u32 sp, key;
515 	int i, end, length, ret;
516 
517 	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
518 		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
519 	if (rom == NULL)
520 		return -ENOMEM;
521 
522 	stack = &rom[MAX_CONFIG_ROM_SIZE];
523 	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
524 
525 	device->max_speed = SCODE_100;
526 
527 	/* First read the bus info block. */
528 	for (i = 0; i < 5; i++) {
529 		ret = read_rom(device, generation, i, &rom[i]);
530 		if (ret != RCODE_COMPLETE)
531 			goto out;
532 		/*
533 		 * As per IEEE1212 7.2, during initialization, devices can
534 		 * reply with a 0 for the first quadlet of the config
535 		 * rom to indicate that they are booting (for example,
536 		 * if the firmware is on the disk of a external
537 		 * harddisk).  In that case we just fail, and the
538 		 * retry mechanism will try again later.
539 		 */
540 		if (i == 0 && rom[i] == 0) {
541 			ret = RCODE_BUSY;
542 			goto out;
543 		}
544 	}
545 
546 	device->max_speed = device->node->max_speed;
547 
548 	/*
549 	 * Determine the speed of
550 	 *   - devices with link speed less than PHY speed,
551 	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
552 	 *   - all devices if there are 1394b repeaters.
553 	 * Note, we cannot use the bus info block's link_spd as starting point
554 	 * because some buggy firmwares set it lower than necessary and because
555 	 * 1394-1995 nodes do not have the field.
556 	 */
557 	if ((rom[2] & 0x7) < device->max_speed ||
558 	    device->max_speed == SCODE_BETA ||
559 	    card->beta_repeaters_present) {
560 		u32 dummy;
561 
562 		/* for S1600 and S3200 */
563 		if (device->max_speed == SCODE_BETA)
564 			device->max_speed = card->link_speed;
565 
566 		while (device->max_speed > SCODE_100) {
567 			if (read_rom(device, generation, 0, &dummy) ==
568 			    RCODE_COMPLETE)
569 				break;
570 			device->max_speed--;
571 		}
572 	}
573 
574 	/*
575 	 * Now parse the config rom.  The config rom is a recursive
576 	 * directory structure so we parse it using a stack of
577 	 * references to the blocks that make up the structure.  We
578 	 * push a reference to the root directory on the stack to
579 	 * start things off.
580 	 */
581 	length = i;
582 	sp = 0;
583 	stack[sp++] = 0xc0000005;
584 	while (sp > 0) {
585 		/*
586 		 * Pop the next block reference of the stack.  The
587 		 * lower 24 bits is the offset into the config rom,
588 		 * the upper 8 bits are the type of the reference the
589 		 * block.
590 		 */
591 		key = stack[--sp];
592 		i = key & 0xffffff;
593 		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
594 			ret = -ENXIO;
595 			goto out;
596 		}
597 
598 		/* Read header quadlet for the block to get the length. */
599 		ret = read_rom(device, generation, i, &rom[i]);
600 		if (ret != RCODE_COMPLETE)
601 			goto out;
602 		end = i + (rom[i] >> 16) + 1;
603 		if (end > MAX_CONFIG_ROM_SIZE) {
604 			/*
605 			 * This block extends outside the config ROM which is
606 			 * a firmware bug.  Ignore this whole block, i.e.
607 			 * simply set a fake block length of 0.
608 			 */
609 			fw_err(card, "skipped invalid ROM block %x at %llx\n",
610 			       rom[i],
611 			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
612 			rom[i] = 0;
613 			end = i;
614 		}
615 		i++;
616 
617 		/*
618 		 * Now read in the block.  If this is a directory
619 		 * block, check the entries as we read them to see if
620 		 * it references another block, and push it in that case.
621 		 */
622 		for (; i < end; i++) {
623 			ret = read_rom(device, generation, i, &rom[i]);
624 			if (ret != RCODE_COMPLETE)
625 				goto out;
626 
627 			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
628 				continue;
629 			/*
630 			 * Offset points outside the ROM.  May be a firmware
631 			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
632 			 * 7.7.18).  Simply overwrite this pointer here by a
633 			 * fake immediate entry so that later iterators over
634 			 * the ROM don't have to check offsets all the time.
635 			 */
636 			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
637 				fw_err(card,
638 				       "skipped unsupported ROM entry %x at %llx\n",
639 				       rom[i],
640 				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
641 				rom[i] = 0;
642 				continue;
643 			}
644 			stack[sp++] = i + rom[i];
645 		}
646 		if (length < i)
647 			length = i;
648 	}
649 
650 	old_rom = device->config_rom;
651 	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
652 	if (new_rom == NULL) {
653 		ret = -ENOMEM;
654 		goto out;
655 	}
656 
657 	down_write(&fw_device_rwsem);
658 	device->config_rom = new_rom;
659 	device->config_rom_length = length;
660 	up_write(&fw_device_rwsem);
661 
662 	kfree(old_rom);
663 	ret = RCODE_COMPLETE;
664 	device->max_rec	= rom[2] >> 12 & 0xf;
665 	device->cmc	= rom[2] >> 30 & 1;
666 	device->irmc	= rom[2] >> 31 & 1;
667  out:
668 	kfree(rom);
669 
670 	return ret;
671 }
672 
673 static void fw_unit_release(struct device *dev)
674 {
675 	struct fw_unit *unit = fw_unit(dev);
676 
677 	fw_device_put(fw_parent_device(unit));
678 	kfree(unit);
679 }
680 
681 static struct device_type fw_unit_type = {
682 	.uevent		= fw_unit_uevent,
683 	.release	= fw_unit_release,
684 };
685 
686 static bool is_fw_unit(struct device *dev)
687 {
688 	return dev->type == &fw_unit_type;
689 }
690 
691 static void create_units(struct fw_device *device)
692 {
693 	struct fw_csr_iterator ci;
694 	struct fw_unit *unit;
695 	int key, value, i;
696 
697 	i = 0;
698 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
699 	while (fw_csr_iterator_next(&ci, &key, &value)) {
700 		if (key != (CSR_UNIT | CSR_DIRECTORY))
701 			continue;
702 
703 		/*
704 		 * Get the address of the unit directory and try to
705 		 * match the drivers id_tables against it.
706 		 */
707 		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
708 		if (unit == NULL)
709 			continue;
710 
711 		unit->directory = ci.p + value - 1;
712 		unit->device.bus = &fw_bus_type;
713 		unit->device.type = &fw_unit_type;
714 		unit->device.parent = &device->device;
715 		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
716 
717 		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
718 				ARRAY_SIZE(fw_unit_attributes) +
719 				ARRAY_SIZE(config_rom_attributes));
720 		init_fw_attribute_group(&unit->device,
721 					fw_unit_attributes,
722 					&unit->attribute_group);
723 
724 		if (device_register(&unit->device) < 0)
725 			goto skip_unit;
726 
727 		fw_device_get(device);
728 		continue;
729 
730 	skip_unit:
731 		kfree(unit);
732 	}
733 }
734 
735 static int shutdown_unit(struct device *device, void *data)
736 {
737 	device_unregister(device);
738 
739 	return 0;
740 }
741 
742 /*
743  * fw_device_rwsem acts as dual purpose mutex:
744  *   - serializes accesses to fw_device_idr,
745  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
746  *     fw_unit.directory, unless those accesses happen at safe occasions
747  */
748 DECLARE_RWSEM(fw_device_rwsem);
749 
750 DEFINE_IDR(fw_device_idr);
751 int fw_cdev_major;
752 
753 struct fw_device *fw_device_get_by_devt(dev_t devt)
754 {
755 	struct fw_device *device;
756 
757 	down_read(&fw_device_rwsem);
758 	device = idr_find(&fw_device_idr, MINOR(devt));
759 	if (device)
760 		fw_device_get(device);
761 	up_read(&fw_device_rwsem);
762 
763 	return device;
764 }
765 
766 struct workqueue_struct *fw_workqueue;
767 EXPORT_SYMBOL(fw_workqueue);
768 
769 static void fw_schedule_device_work(struct fw_device *device,
770 				    unsigned long delay)
771 {
772 	queue_delayed_work(fw_workqueue, &device->work, delay);
773 }
774 
775 /*
776  * These defines control the retry behavior for reading the config
777  * rom.  It shouldn't be necessary to tweak these; if the device
778  * doesn't respond to a config rom read within 10 seconds, it's not
779  * going to respond at all.  As for the initial delay, a lot of
780  * devices will be able to respond within half a second after bus
781  * reset.  On the other hand, it's not really worth being more
782  * aggressive than that, since it scales pretty well; if 10 devices
783  * are plugged in, they're all getting read within one second.
784  */
785 
786 #define MAX_RETRIES	10
787 #define RETRY_DELAY	(3 * HZ)
788 #define INITIAL_DELAY	(HZ / 2)
789 #define SHUTDOWN_DELAY	(2 * HZ)
790 
791 static void fw_device_shutdown(struct work_struct *work)
792 {
793 	struct fw_device *device =
794 		container_of(work, struct fw_device, work.work);
795 	int minor = MINOR(device->device.devt);
796 
797 	if (time_before64(get_jiffies_64(),
798 			  device->card->reset_jiffies + SHUTDOWN_DELAY)
799 	    && !list_empty(&device->card->link)) {
800 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
801 		return;
802 	}
803 
804 	if (atomic_cmpxchg(&device->state,
805 			   FW_DEVICE_GONE,
806 			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
807 		return;
808 
809 	fw_device_cdev_remove(device);
810 	device_for_each_child(&device->device, NULL, shutdown_unit);
811 	device_unregister(&device->device);
812 
813 	down_write(&fw_device_rwsem);
814 	idr_remove(&fw_device_idr, minor);
815 	up_write(&fw_device_rwsem);
816 
817 	fw_device_put(device);
818 }
819 
820 static void fw_device_release(struct device *dev)
821 {
822 	struct fw_device *device = fw_device(dev);
823 	struct fw_card *card = device->card;
824 	unsigned long flags;
825 
826 	/*
827 	 * Take the card lock so we don't set this to NULL while a
828 	 * FW_NODE_UPDATED callback is being handled or while the
829 	 * bus manager work looks at this node.
830 	 */
831 	spin_lock_irqsave(&card->lock, flags);
832 	device->node->data = NULL;
833 	spin_unlock_irqrestore(&card->lock, flags);
834 
835 	fw_node_put(device->node);
836 	kfree(device->config_rom);
837 	kfree(device);
838 	fw_card_put(card);
839 }
840 
841 static struct device_type fw_device_type = {
842 	.release = fw_device_release,
843 };
844 
845 static bool is_fw_device(struct device *dev)
846 {
847 	return dev->type == &fw_device_type;
848 }
849 
850 static int update_unit(struct device *dev, void *data)
851 {
852 	struct fw_unit *unit = fw_unit(dev);
853 	struct fw_driver *driver = (struct fw_driver *)dev->driver;
854 
855 	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
856 		device_lock(dev);
857 		driver->update(unit);
858 		device_unlock(dev);
859 	}
860 
861 	return 0;
862 }
863 
864 static void fw_device_update(struct work_struct *work)
865 {
866 	struct fw_device *device =
867 		container_of(work, struct fw_device, work.work);
868 
869 	fw_device_cdev_update(device);
870 	device_for_each_child(&device->device, NULL, update_unit);
871 }
872 
873 /*
874  * If a device was pending for deletion because its node went away but its
875  * bus info block and root directory header matches that of a newly discovered
876  * device, revive the existing fw_device.
877  * The newly allocated fw_device becomes obsolete instead.
878  */
879 static int lookup_existing_device(struct device *dev, void *data)
880 {
881 	struct fw_device *old = fw_device(dev);
882 	struct fw_device *new = data;
883 	struct fw_card *card = new->card;
884 	int match = 0;
885 
886 	if (!is_fw_device(dev))
887 		return 0;
888 
889 	down_read(&fw_device_rwsem); /* serialize config_rom access */
890 	spin_lock_irq(&card->lock);  /* serialize node access */
891 
892 	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
893 	    atomic_cmpxchg(&old->state,
894 			   FW_DEVICE_GONE,
895 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
896 		struct fw_node *current_node = new->node;
897 		struct fw_node *obsolete_node = old->node;
898 
899 		new->node = obsolete_node;
900 		new->node->data = new;
901 		old->node = current_node;
902 		old->node->data = old;
903 
904 		old->max_speed = new->max_speed;
905 		old->node_id = current_node->node_id;
906 		smp_wmb();  /* update node_id before generation */
907 		old->generation = card->generation;
908 		old->config_rom_retries = 0;
909 		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
910 
911 		old->workfn = fw_device_update;
912 		fw_schedule_device_work(old, 0);
913 
914 		if (current_node == card->root_node)
915 			fw_schedule_bm_work(card, 0);
916 
917 		match = 1;
918 	}
919 
920 	spin_unlock_irq(&card->lock);
921 	up_read(&fw_device_rwsem);
922 
923 	return match;
924 }
925 
926 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
927 
928 static void set_broadcast_channel(struct fw_device *device, int generation)
929 {
930 	struct fw_card *card = device->card;
931 	__be32 data;
932 	int rcode;
933 
934 	if (!card->broadcast_channel_allocated)
935 		return;
936 
937 	/*
938 	 * The Broadcast_Channel Valid bit is required by nodes which want to
939 	 * transmit on this channel.  Such transmissions are practically
940 	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
941 	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
942 	 * to narrow down to which nodes we send Broadcast_Channel updates.
943 	 */
944 	if (!device->irmc || device->max_rec < 8)
945 		return;
946 
947 	/*
948 	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
949 	 * Perform a read test first.
950 	 */
951 	if (device->bc_implemented == BC_UNKNOWN) {
952 		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
953 				device->node_id, generation, device->max_speed,
954 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
955 				&data, 4);
956 		switch (rcode) {
957 		case RCODE_COMPLETE:
958 			if (data & cpu_to_be32(1 << 31)) {
959 				device->bc_implemented = BC_IMPLEMENTED;
960 				break;
961 			}
962 			fallthrough;	/* to case address error */
963 		case RCODE_ADDRESS_ERROR:
964 			device->bc_implemented = BC_UNIMPLEMENTED;
965 		}
966 	}
967 
968 	if (device->bc_implemented == BC_IMPLEMENTED) {
969 		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
970 				   BROADCAST_CHANNEL_VALID);
971 		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
972 				device->node_id, generation, device->max_speed,
973 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
974 				&data, 4);
975 	}
976 }
977 
978 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
979 {
980 	if (is_fw_device(dev))
981 		set_broadcast_channel(fw_device(dev), (long)gen);
982 
983 	return 0;
984 }
985 
986 static void fw_device_init(struct work_struct *work)
987 {
988 	struct fw_device *device =
989 		container_of(work, struct fw_device, work.work);
990 	struct fw_card *card = device->card;
991 	struct device *revived_dev;
992 	int minor, ret;
993 
994 	/*
995 	 * All failure paths here set node->data to NULL, so that we
996 	 * don't try to do device_for_each_child() on a kfree()'d
997 	 * device.
998 	 */
999 
1000 	ret = read_config_rom(device, device->generation);
1001 	if (ret != RCODE_COMPLETE) {
1002 		if (device->config_rom_retries < MAX_RETRIES &&
1003 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1004 			device->config_rom_retries++;
1005 			fw_schedule_device_work(device, RETRY_DELAY);
1006 		} else {
1007 			if (device->node->link_on)
1008 				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1009 					  device->node_id,
1010 					  fw_rcode_string(ret));
1011 			if (device->node == card->root_node)
1012 				fw_schedule_bm_work(card, 0);
1013 			fw_device_release(&device->device);
1014 		}
1015 		return;
1016 	}
1017 
1018 	revived_dev = device_find_child(card->device,
1019 					device, lookup_existing_device);
1020 	if (revived_dev) {
1021 		put_device(revived_dev);
1022 		fw_device_release(&device->device);
1023 
1024 		return;
1025 	}
1026 
1027 	device_initialize(&device->device);
1028 
1029 	fw_device_get(device);
1030 	down_write(&fw_device_rwsem);
1031 	minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1032 			GFP_KERNEL);
1033 	up_write(&fw_device_rwsem);
1034 
1035 	if (minor < 0)
1036 		goto error;
1037 
1038 	device->device.bus = &fw_bus_type;
1039 	device->device.type = &fw_device_type;
1040 	device->device.parent = card->device;
1041 	device->device.devt = MKDEV(fw_cdev_major, minor);
1042 	dev_set_name(&device->device, "fw%d", minor);
1043 
1044 	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1045 			ARRAY_SIZE(fw_device_attributes) +
1046 			ARRAY_SIZE(config_rom_attributes));
1047 	init_fw_attribute_group(&device->device,
1048 				fw_device_attributes,
1049 				&device->attribute_group);
1050 
1051 	if (device_add(&device->device)) {
1052 		fw_err(card, "failed to add device\n");
1053 		goto error_with_cdev;
1054 	}
1055 
1056 	create_units(device);
1057 
1058 	/*
1059 	 * Transition the device to running state.  If it got pulled
1060 	 * out from under us while we did the initialization work, we
1061 	 * have to shut down the device again here.  Normally, though,
1062 	 * fw_node_event will be responsible for shutting it down when
1063 	 * necessary.  We have to use the atomic cmpxchg here to avoid
1064 	 * racing with the FW_NODE_DESTROYED case in
1065 	 * fw_node_event().
1066 	 */
1067 	if (atomic_cmpxchg(&device->state,
1068 			   FW_DEVICE_INITIALIZING,
1069 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1070 		device->workfn = fw_device_shutdown;
1071 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1072 	} else {
1073 		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1074 			  dev_name(&device->device),
1075 			  device->config_rom[3], device->config_rom[4],
1076 			  1 << device->max_speed);
1077 		device->config_rom_retries = 0;
1078 
1079 		set_broadcast_channel(device, device->generation);
1080 
1081 		add_device_randomness(&device->config_rom[3], 8);
1082 	}
1083 
1084 	/*
1085 	 * Reschedule the IRM work if we just finished reading the
1086 	 * root node config rom.  If this races with a bus reset we
1087 	 * just end up running the IRM work a couple of extra times -
1088 	 * pretty harmless.
1089 	 */
1090 	if (device->node == card->root_node)
1091 		fw_schedule_bm_work(card, 0);
1092 
1093 	return;
1094 
1095  error_with_cdev:
1096 	down_write(&fw_device_rwsem);
1097 	idr_remove(&fw_device_idr, minor);
1098 	up_write(&fw_device_rwsem);
1099  error:
1100 	fw_device_put(device);		/* fw_device_idr's reference */
1101 
1102 	put_device(&device->device);	/* our reference */
1103 }
1104 
1105 /* Reread and compare bus info block and header of root directory */
1106 static int reread_config_rom(struct fw_device *device, int generation,
1107 			     bool *changed)
1108 {
1109 	u32 q;
1110 	int i, rcode;
1111 
1112 	for (i = 0; i < 6; i++) {
1113 		rcode = read_rom(device, generation, i, &q);
1114 		if (rcode != RCODE_COMPLETE)
1115 			return rcode;
1116 
1117 		if (i == 0 && q == 0)
1118 			/* inaccessible (see read_config_rom); retry later */
1119 			return RCODE_BUSY;
1120 
1121 		if (q != device->config_rom[i]) {
1122 			*changed = true;
1123 			return RCODE_COMPLETE;
1124 		}
1125 	}
1126 
1127 	*changed = false;
1128 	return RCODE_COMPLETE;
1129 }
1130 
1131 static void fw_device_refresh(struct work_struct *work)
1132 {
1133 	struct fw_device *device =
1134 		container_of(work, struct fw_device, work.work);
1135 	struct fw_card *card = device->card;
1136 	int ret, node_id = device->node_id;
1137 	bool changed;
1138 
1139 	ret = reread_config_rom(device, device->generation, &changed);
1140 	if (ret != RCODE_COMPLETE)
1141 		goto failed_config_rom;
1142 
1143 	if (!changed) {
1144 		if (atomic_cmpxchg(&device->state,
1145 				   FW_DEVICE_INITIALIZING,
1146 				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1147 			goto gone;
1148 
1149 		fw_device_update(work);
1150 		device->config_rom_retries = 0;
1151 		goto out;
1152 	}
1153 
1154 	/*
1155 	 * Something changed.  We keep things simple and don't investigate
1156 	 * further.  We just destroy all previous units and create new ones.
1157 	 */
1158 	device_for_each_child(&device->device, NULL, shutdown_unit);
1159 
1160 	ret = read_config_rom(device, device->generation);
1161 	if (ret != RCODE_COMPLETE)
1162 		goto failed_config_rom;
1163 
1164 	fw_device_cdev_update(device);
1165 	create_units(device);
1166 
1167 	/* Userspace may want to re-read attributes. */
1168 	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1169 
1170 	if (atomic_cmpxchg(&device->state,
1171 			   FW_DEVICE_INITIALIZING,
1172 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1173 		goto gone;
1174 
1175 	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1176 	device->config_rom_retries = 0;
1177 	goto out;
1178 
1179  failed_config_rom:
1180 	if (device->config_rom_retries < MAX_RETRIES &&
1181 	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1182 		device->config_rom_retries++;
1183 		fw_schedule_device_work(device, RETRY_DELAY);
1184 		return;
1185 	}
1186 
1187 	fw_notice(card, "giving up on refresh of device %s: %s\n",
1188 		  dev_name(&device->device), fw_rcode_string(ret));
1189  gone:
1190 	atomic_set(&device->state, FW_DEVICE_GONE);
1191 	device->workfn = fw_device_shutdown;
1192 	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1193  out:
1194 	if (node_id == card->root_node->node_id)
1195 		fw_schedule_bm_work(card, 0);
1196 }
1197 
1198 static void fw_device_workfn(struct work_struct *work)
1199 {
1200 	struct fw_device *device = container_of(to_delayed_work(work),
1201 						struct fw_device, work);
1202 	device->workfn(work);
1203 }
1204 
1205 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1206 {
1207 	struct fw_device *device;
1208 
1209 	switch (event) {
1210 	case FW_NODE_CREATED:
1211 		/*
1212 		 * Attempt to scan the node, regardless whether its self ID has
1213 		 * the L (link active) flag set or not.  Some broken devices
1214 		 * send L=0 but have an up-and-running link; others send L=1
1215 		 * without actually having a link.
1216 		 */
1217  create:
1218 		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1219 		if (device == NULL)
1220 			break;
1221 
1222 		/*
1223 		 * Do minimal initialization of the device here, the
1224 		 * rest will happen in fw_device_init().
1225 		 *
1226 		 * Attention:  A lot of things, even fw_device_get(),
1227 		 * cannot be done before fw_device_init() finished!
1228 		 * You can basically just check device->state and
1229 		 * schedule work until then, but only while holding
1230 		 * card->lock.
1231 		 */
1232 		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1233 		device->card = fw_card_get(card);
1234 		device->node = fw_node_get(node);
1235 		device->node_id = node->node_id;
1236 		device->generation = card->generation;
1237 		device->is_local = node == card->local_node;
1238 		mutex_init(&device->client_list_mutex);
1239 		INIT_LIST_HEAD(&device->client_list);
1240 
1241 		/*
1242 		 * Set the node data to point back to this device so
1243 		 * FW_NODE_UPDATED callbacks can update the node_id
1244 		 * and generation for the device.
1245 		 */
1246 		node->data = device;
1247 
1248 		/*
1249 		 * Many devices are slow to respond after bus resets,
1250 		 * especially if they are bus powered and go through
1251 		 * power-up after getting plugged in.  We schedule the
1252 		 * first config rom scan half a second after bus reset.
1253 		 */
1254 		device->workfn = fw_device_init;
1255 		INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1256 		fw_schedule_device_work(device, INITIAL_DELAY);
1257 		break;
1258 
1259 	case FW_NODE_INITIATED_RESET:
1260 	case FW_NODE_LINK_ON:
1261 		device = node->data;
1262 		if (device == NULL)
1263 			goto create;
1264 
1265 		device->node_id = node->node_id;
1266 		smp_wmb();  /* update node_id before generation */
1267 		device->generation = card->generation;
1268 		if (atomic_cmpxchg(&device->state,
1269 			    FW_DEVICE_RUNNING,
1270 			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1271 			device->workfn = fw_device_refresh;
1272 			fw_schedule_device_work(device,
1273 				device->is_local ? 0 : INITIAL_DELAY);
1274 		}
1275 		break;
1276 
1277 	case FW_NODE_UPDATED:
1278 		device = node->data;
1279 		if (device == NULL)
1280 			break;
1281 
1282 		device->node_id = node->node_id;
1283 		smp_wmb();  /* update node_id before generation */
1284 		device->generation = card->generation;
1285 		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1286 			device->workfn = fw_device_update;
1287 			fw_schedule_device_work(device, 0);
1288 		}
1289 		break;
1290 
1291 	case FW_NODE_DESTROYED:
1292 	case FW_NODE_LINK_OFF:
1293 		if (!node->data)
1294 			break;
1295 
1296 		/*
1297 		 * Destroy the device associated with the node.  There
1298 		 * are two cases here: either the device is fully
1299 		 * initialized (FW_DEVICE_RUNNING) or we're in the
1300 		 * process of reading its config rom
1301 		 * (FW_DEVICE_INITIALIZING).  If it is fully
1302 		 * initialized we can reuse device->work to schedule a
1303 		 * full fw_device_shutdown().  If not, there's work
1304 		 * scheduled to read it's config rom, and we just put
1305 		 * the device in shutdown state to have that code fail
1306 		 * to create the device.
1307 		 */
1308 		device = node->data;
1309 		if (atomic_xchg(&device->state,
1310 				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1311 			device->workfn = fw_device_shutdown;
1312 			fw_schedule_device_work(device,
1313 				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1314 		}
1315 		break;
1316 	}
1317 }
1318