1 /* 2 * Device probing and sysfs code. 3 * 4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 #include <linux/bug.h> 22 #include <linux/ctype.h> 23 #include <linux/delay.h> 24 #include <linux/device.h> 25 #include <linux/errno.h> 26 #include <linux/firewire.h> 27 #include <linux/firewire-constants.h> 28 #include <linux/idr.h> 29 #include <linux/jiffies.h> 30 #include <linux/kobject.h> 31 #include <linux/list.h> 32 #include <linux/mod_devicetable.h> 33 #include <linux/module.h> 34 #include <linux/mutex.h> 35 #include <linux/rwsem.h> 36 #include <linux/slab.h> 37 #include <linux/spinlock.h> 38 #include <linux/string.h> 39 #include <linux/workqueue.h> 40 41 #include <linux/atomic.h> 42 #include <asm/byteorder.h> 43 #include <asm/system.h> 44 45 #include "core.h" 46 47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) 48 { 49 ci->p = p + 1; 50 ci->end = ci->p + (p[0] >> 16); 51 } 52 EXPORT_SYMBOL(fw_csr_iterator_init); 53 54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) 55 { 56 *key = *ci->p >> 24; 57 *value = *ci->p & 0xffffff; 58 59 return ci->p++ < ci->end; 60 } 61 EXPORT_SYMBOL(fw_csr_iterator_next); 62 63 static const u32 *search_leaf(const u32 *directory, int search_key) 64 { 65 struct fw_csr_iterator ci; 66 int last_key = 0, key, value; 67 68 fw_csr_iterator_init(&ci, directory); 69 while (fw_csr_iterator_next(&ci, &key, &value)) { 70 if (last_key == search_key && 71 key == (CSR_DESCRIPTOR | CSR_LEAF)) 72 return ci.p - 1 + value; 73 74 last_key = key; 75 } 76 77 return NULL; 78 } 79 80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) 81 { 82 unsigned int quadlets, i; 83 char c; 84 85 if (!size || !buf) 86 return -EINVAL; 87 88 quadlets = min(block[0] >> 16, 256U); 89 if (quadlets < 2) 90 return -ENODATA; 91 92 if (block[1] != 0 || block[2] != 0) 93 /* unknown language/character set */ 94 return -ENODATA; 95 96 block += 3; 97 quadlets -= 2; 98 for (i = 0; i < quadlets * 4 && i < size - 1; i++) { 99 c = block[i / 4] >> (24 - 8 * (i % 4)); 100 if (c == '\0') 101 break; 102 buf[i] = c; 103 } 104 buf[i] = '\0'; 105 106 return i; 107 } 108 109 /** 110 * fw_csr_string() - reads a string from the configuration ROM 111 * @directory: e.g. root directory or unit directory 112 * @key: the key of the preceding directory entry 113 * @buf: where to put the string 114 * @size: size of @buf, in bytes 115 * 116 * The string is taken from a minimal ASCII text descriptor leaf after 117 * the immediate entry with @key. The string is zero-terminated. 118 * Returns strlen(buf) or a negative error code. 119 */ 120 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) 121 { 122 const u32 *leaf = search_leaf(directory, key); 123 if (!leaf) 124 return -ENOENT; 125 126 return textual_leaf_to_string(leaf, buf, size); 127 } 128 EXPORT_SYMBOL(fw_csr_string); 129 130 static void get_ids(const u32 *directory, int *id) 131 { 132 struct fw_csr_iterator ci; 133 int key, value; 134 135 fw_csr_iterator_init(&ci, directory); 136 while (fw_csr_iterator_next(&ci, &key, &value)) { 137 switch (key) { 138 case CSR_VENDOR: id[0] = value; break; 139 case CSR_MODEL: id[1] = value; break; 140 case CSR_SPECIFIER_ID: id[2] = value; break; 141 case CSR_VERSION: id[3] = value; break; 142 } 143 } 144 } 145 146 static void get_modalias_ids(struct fw_unit *unit, int *id) 147 { 148 get_ids(&fw_parent_device(unit)->config_rom[5], id); 149 get_ids(unit->directory, id); 150 } 151 152 static bool match_ids(const struct ieee1394_device_id *id_table, int *id) 153 { 154 int match = 0; 155 156 if (id[0] == id_table->vendor_id) 157 match |= IEEE1394_MATCH_VENDOR_ID; 158 if (id[1] == id_table->model_id) 159 match |= IEEE1394_MATCH_MODEL_ID; 160 if (id[2] == id_table->specifier_id) 161 match |= IEEE1394_MATCH_SPECIFIER_ID; 162 if (id[3] == id_table->version) 163 match |= IEEE1394_MATCH_VERSION; 164 165 return (match & id_table->match_flags) == id_table->match_flags; 166 } 167 168 static bool is_fw_unit(struct device *dev); 169 170 static int fw_unit_match(struct device *dev, struct device_driver *drv) 171 { 172 const struct ieee1394_device_id *id_table = 173 container_of(drv, struct fw_driver, driver)->id_table; 174 int id[] = {0, 0, 0, 0}; 175 176 /* We only allow binding to fw_units. */ 177 if (!is_fw_unit(dev)) 178 return 0; 179 180 get_modalias_ids(fw_unit(dev), id); 181 182 for (; id_table->match_flags != 0; id_table++) 183 if (match_ids(id_table, id)) 184 return 1; 185 186 return 0; 187 } 188 189 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size) 190 { 191 int id[] = {0, 0, 0, 0}; 192 193 get_modalias_ids(unit, id); 194 195 return snprintf(buffer, buffer_size, 196 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", 197 id[0], id[1], id[2], id[3]); 198 } 199 200 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env) 201 { 202 struct fw_unit *unit = fw_unit(dev); 203 char modalias[64]; 204 205 get_modalias(unit, modalias, sizeof(modalias)); 206 207 if (add_uevent_var(env, "MODALIAS=%s", modalias)) 208 return -ENOMEM; 209 210 return 0; 211 } 212 213 struct bus_type fw_bus_type = { 214 .name = "firewire", 215 .match = fw_unit_match, 216 }; 217 EXPORT_SYMBOL(fw_bus_type); 218 219 int fw_device_enable_phys_dma(struct fw_device *device) 220 { 221 int generation = device->generation; 222 223 /* device->node_id, accessed below, must not be older than generation */ 224 smp_rmb(); 225 226 return device->card->driver->enable_phys_dma(device->card, 227 device->node_id, 228 generation); 229 } 230 EXPORT_SYMBOL(fw_device_enable_phys_dma); 231 232 struct config_rom_attribute { 233 struct device_attribute attr; 234 u32 key; 235 }; 236 237 static ssize_t show_immediate(struct device *dev, 238 struct device_attribute *dattr, char *buf) 239 { 240 struct config_rom_attribute *attr = 241 container_of(dattr, struct config_rom_attribute, attr); 242 struct fw_csr_iterator ci; 243 const u32 *dir; 244 int key, value, ret = -ENOENT; 245 246 down_read(&fw_device_rwsem); 247 248 if (is_fw_unit(dev)) 249 dir = fw_unit(dev)->directory; 250 else 251 dir = fw_device(dev)->config_rom + 5; 252 253 fw_csr_iterator_init(&ci, dir); 254 while (fw_csr_iterator_next(&ci, &key, &value)) 255 if (attr->key == key) { 256 ret = snprintf(buf, buf ? PAGE_SIZE : 0, 257 "0x%06x\n", value); 258 break; 259 } 260 261 up_read(&fw_device_rwsem); 262 263 return ret; 264 } 265 266 #define IMMEDIATE_ATTR(name, key) \ 267 { __ATTR(name, S_IRUGO, show_immediate, NULL), key } 268 269 static ssize_t show_text_leaf(struct device *dev, 270 struct device_attribute *dattr, char *buf) 271 { 272 struct config_rom_attribute *attr = 273 container_of(dattr, struct config_rom_attribute, attr); 274 const u32 *dir; 275 size_t bufsize; 276 char dummy_buf[2]; 277 int ret; 278 279 down_read(&fw_device_rwsem); 280 281 if (is_fw_unit(dev)) 282 dir = fw_unit(dev)->directory; 283 else 284 dir = fw_device(dev)->config_rom + 5; 285 286 if (buf) { 287 bufsize = PAGE_SIZE - 1; 288 } else { 289 buf = dummy_buf; 290 bufsize = 1; 291 } 292 293 ret = fw_csr_string(dir, attr->key, buf, bufsize); 294 295 if (ret >= 0) { 296 /* Strip trailing whitespace and add newline. */ 297 while (ret > 0 && isspace(buf[ret - 1])) 298 ret--; 299 strcpy(buf + ret, "\n"); 300 ret++; 301 } 302 303 up_read(&fw_device_rwsem); 304 305 return ret; 306 } 307 308 #define TEXT_LEAF_ATTR(name, key) \ 309 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } 310 311 static struct config_rom_attribute config_rom_attributes[] = { 312 IMMEDIATE_ATTR(vendor, CSR_VENDOR), 313 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), 314 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), 315 IMMEDIATE_ATTR(version, CSR_VERSION), 316 IMMEDIATE_ATTR(model, CSR_MODEL), 317 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), 318 TEXT_LEAF_ATTR(model_name, CSR_MODEL), 319 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), 320 }; 321 322 static void init_fw_attribute_group(struct device *dev, 323 struct device_attribute *attrs, 324 struct fw_attribute_group *group) 325 { 326 struct device_attribute *attr; 327 int i, j; 328 329 for (j = 0; attrs[j].attr.name != NULL; j++) 330 group->attrs[j] = &attrs[j].attr; 331 332 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { 333 attr = &config_rom_attributes[i].attr; 334 if (attr->show(dev, attr, NULL) < 0) 335 continue; 336 group->attrs[j++] = &attr->attr; 337 } 338 339 group->attrs[j] = NULL; 340 group->groups[0] = &group->group; 341 group->groups[1] = NULL; 342 group->group.attrs = group->attrs; 343 dev->groups = (const struct attribute_group **) group->groups; 344 } 345 346 static ssize_t modalias_show(struct device *dev, 347 struct device_attribute *attr, char *buf) 348 { 349 struct fw_unit *unit = fw_unit(dev); 350 int length; 351 352 length = get_modalias(unit, buf, PAGE_SIZE); 353 strcpy(buf + length, "\n"); 354 355 return length + 1; 356 } 357 358 static ssize_t rom_index_show(struct device *dev, 359 struct device_attribute *attr, char *buf) 360 { 361 struct fw_device *device = fw_device(dev->parent); 362 struct fw_unit *unit = fw_unit(dev); 363 364 return snprintf(buf, PAGE_SIZE, "%d\n", 365 (int)(unit->directory - device->config_rom)); 366 } 367 368 static struct device_attribute fw_unit_attributes[] = { 369 __ATTR_RO(modalias), 370 __ATTR_RO(rom_index), 371 __ATTR_NULL, 372 }; 373 374 static ssize_t config_rom_show(struct device *dev, 375 struct device_attribute *attr, char *buf) 376 { 377 struct fw_device *device = fw_device(dev); 378 size_t length; 379 380 down_read(&fw_device_rwsem); 381 length = device->config_rom_length * 4; 382 memcpy(buf, device->config_rom, length); 383 up_read(&fw_device_rwsem); 384 385 return length; 386 } 387 388 static ssize_t guid_show(struct device *dev, 389 struct device_attribute *attr, char *buf) 390 { 391 struct fw_device *device = fw_device(dev); 392 int ret; 393 394 down_read(&fw_device_rwsem); 395 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n", 396 device->config_rom[3], device->config_rom[4]); 397 up_read(&fw_device_rwsem); 398 399 return ret; 400 } 401 402 static int units_sprintf(char *buf, const u32 *directory) 403 { 404 struct fw_csr_iterator ci; 405 int key, value; 406 int specifier_id = 0; 407 int version = 0; 408 409 fw_csr_iterator_init(&ci, directory); 410 while (fw_csr_iterator_next(&ci, &key, &value)) { 411 switch (key) { 412 case CSR_SPECIFIER_ID: 413 specifier_id = value; 414 break; 415 case CSR_VERSION: 416 version = value; 417 break; 418 } 419 } 420 421 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); 422 } 423 424 static ssize_t units_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 struct fw_device *device = fw_device(dev); 428 struct fw_csr_iterator ci; 429 int key, value, i = 0; 430 431 down_read(&fw_device_rwsem); 432 fw_csr_iterator_init(&ci, &device->config_rom[5]); 433 while (fw_csr_iterator_next(&ci, &key, &value)) { 434 if (key != (CSR_UNIT | CSR_DIRECTORY)) 435 continue; 436 i += units_sprintf(&buf[i], ci.p + value - 1); 437 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) 438 break; 439 } 440 up_read(&fw_device_rwsem); 441 442 if (i) 443 buf[i - 1] = '\n'; 444 445 return i; 446 } 447 448 static struct device_attribute fw_device_attributes[] = { 449 __ATTR_RO(config_rom), 450 __ATTR_RO(guid), 451 __ATTR_RO(units), 452 __ATTR_NULL, 453 }; 454 455 static int read_rom(struct fw_device *device, 456 int generation, int index, u32 *data) 457 { 458 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4; 459 int i, rcode; 460 461 /* device->node_id, accessed below, must not be older than generation */ 462 smp_rmb(); 463 464 for (i = 10; i < 100; i += 10) { 465 rcode = fw_run_transaction(device->card, 466 TCODE_READ_QUADLET_REQUEST, device->node_id, 467 generation, device->max_speed, offset, data, 4); 468 if (rcode != RCODE_BUSY) 469 break; 470 msleep(i); 471 } 472 be32_to_cpus(data); 473 474 return rcode; 475 } 476 477 #define MAX_CONFIG_ROM_SIZE 256 478 479 /* 480 * Read the bus info block, perform a speed probe, and read all of the rest of 481 * the config ROM. We do all this with a cached bus generation. If the bus 482 * generation changes under us, read_config_rom will fail and get retried. 483 * It's better to start all over in this case because the node from which we 484 * are reading the ROM may have changed the ROM during the reset. 485 */ 486 static int read_config_rom(struct fw_device *device, int generation) 487 { 488 struct fw_card *card = device->card; 489 const u32 *old_rom, *new_rom; 490 u32 *rom, *stack; 491 u32 sp, key; 492 int i, end, length, ret = -1; 493 494 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + 495 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); 496 if (rom == NULL) 497 return -ENOMEM; 498 499 stack = &rom[MAX_CONFIG_ROM_SIZE]; 500 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); 501 502 device->max_speed = SCODE_100; 503 504 /* First read the bus info block. */ 505 for (i = 0; i < 5; i++) { 506 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE) 507 goto out; 508 /* 509 * As per IEEE1212 7.2, during power-up, devices can 510 * reply with a 0 for the first quadlet of the config 511 * rom to indicate that they are booting (for example, 512 * if the firmware is on the disk of a external 513 * harddisk). In that case we just fail, and the 514 * retry mechanism will try again later. 515 */ 516 if (i == 0 && rom[i] == 0) 517 goto out; 518 } 519 520 device->max_speed = device->node->max_speed; 521 522 /* 523 * Determine the speed of 524 * - devices with link speed less than PHY speed, 525 * - devices with 1394b PHY (unless only connected to 1394a PHYs), 526 * - all devices if there are 1394b repeaters. 527 * Note, we cannot use the bus info block's link_spd as starting point 528 * because some buggy firmwares set it lower than necessary and because 529 * 1394-1995 nodes do not have the field. 530 */ 531 if ((rom[2] & 0x7) < device->max_speed || 532 device->max_speed == SCODE_BETA || 533 card->beta_repeaters_present) { 534 u32 dummy; 535 536 /* for S1600 and S3200 */ 537 if (device->max_speed == SCODE_BETA) 538 device->max_speed = card->link_speed; 539 540 while (device->max_speed > SCODE_100) { 541 if (read_rom(device, generation, 0, &dummy) == 542 RCODE_COMPLETE) 543 break; 544 device->max_speed--; 545 } 546 } 547 548 /* 549 * Now parse the config rom. The config rom is a recursive 550 * directory structure so we parse it using a stack of 551 * references to the blocks that make up the structure. We 552 * push a reference to the root directory on the stack to 553 * start things off. 554 */ 555 length = i; 556 sp = 0; 557 stack[sp++] = 0xc0000005; 558 while (sp > 0) { 559 /* 560 * Pop the next block reference of the stack. The 561 * lower 24 bits is the offset into the config rom, 562 * the upper 8 bits are the type of the reference the 563 * block. 564 */ 565 key = stack[--sp]; 566 i = key & 0xffffff; 567 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) 568 goto out; 569 570 /* Read header quadlet for the block to get the length. */ 571 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE) 572 goto out; 573 end = i + (rom[i] >> 16) + 1; 574 if (end > MAX_CONFIG_ROM_SIZE) { 575 /* 576 * This block extends outside the config ROM which is 577 * a firmware bug. Ignore this whole block, i.e. 578 * simply set a fake block length of 0. 579 */ 580 fw_err(card, "skipped invalid ROM block %x at %llx\n", 581 rom[i], 582 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 583 rom[i] = 0; 584 end = i; 585 } 586 i++; 587 588 /* 589 * Now read in the block. If this is a directory 590 * block, check the entries as we read them to see if 591 * it references another block, and push it in that case. 592 */ 593 for (; i < end; i++) { 594 if (read_rom(device, generation, i, &rom[i]) != 595 RCODE_COMPLETE) 596 goto out; 597 598 if ((key >> 30) != 3 || (rom[i] >> 30) < 2) 599 continue; 600 /* 601 * Offset points outside the ROM. May be a firmware 602 * bug or an Extended ROM entry (IEEE 1212-2001 clause 603 * 7.7.18). Simply overwrite this pointer here by a 604 * fake immediate entry so that later iterators over 605 * the ROM don't have to check offsets all the time. 606 */ 607 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { 608 fw_err(card, 609 "skipped unsupported ROM entry %x at %llx\n", 610 rom[i], 611 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 612 rom[i] = 0; 613 continue; 614 } 615 stack[sp++] = i + rom[i]; 616 } 617 if (length < i) 618 length = i; 619 } 620 621 old_rom = device->config_rom; 622 new_rom = kmemdup(rom, length * 4, GFP_KERNEL); 623 if (new_rom == NULL) 624 goto out; 625 626 down_write(&fw_device_rwsem); 627 device->config_rom = new_rom; 628 device->config_rom_length = length; 629 up_write(&fw_device_rwsem); 630 631 kfree(old_rom); 632 ret = 0; 633 device->max_rec = rom[2] >> 12 & 0xf; 634 device->cmc = rom[2] >> 30 & 1; 635 device->irmc = rom[2] >> 31 & 1; 636 out: 637 kfree(rom); 638 639 return ret; 640 } 641 642 static void fw_unit_release(struct device *dev) 643 { 644 struct fw_unit *unit = fw_unit(dev); 645 646 fw_device_put(fw_parent_device(unit)); 647 kfree(unit); 648 } 649 650 static struct device_type fw_unit_type = { 651 .uevent = fw_unit_uevent, 652 .release = fw_unit_release, 653 }; 654 655 static bool is_fw_unit(struct device *dev) 656 { 657 return dev->type == &fw_unit_type; 658 } 659 660 static void create_units(struct fw_device *device) 661 { 662 struct fw_csr_iterator ci; 663 struct fw_unit *unit; 664 int key, value, i; 665 666 i = 0; 667 fw_csr_iterator_init(&ci, &device->config_rom[5]); 668 while (fw_csr_iterator_next(&ci, &key, &value)) { 669 if (key != (CSR_UNIT | CSR_DIRECTORY)) 670 continue; 671 672 /* 673 * Get the address of the unit directory and try to 674 * match the drivers id_tables against it. 675 */ 676 unit = kzalloc(sizeof(*unit), GFP_KERNEL); 677 if (unit == NULL) { 678 fw_err(device->card, "out of memory for unit\n"); 679 continue; 680 } 681 682 unit->directory = ci.p + value - 1; 683 unit->device.bus = &fw_bus_type; 684 unit->device.type = &fw_unit_type; 685 unit->device.parent = &device->device; 686 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); 687 688 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < 689 ARRAY_SIZE(fw_unit_attributes) + 690 ARRAY_SIZE(config_rom_attributes)); 691 init_fw_attribute_group(&unit->device, 692 fw_unit_attributes, 693 &unit->attribute_group); 694 695 if (device_register(&unit->device) < 0) 696 goto skip_unit; 697 698 fw_device_get(device); 699 continue; 700 701 skip_unit: 702 kfree(unit); 703 } 704 } 705 706 static int shutdown_unit(struct device *device, void *data) 707 { 708 device_unregister(device); 709 710 return 0; 711 } 712 713 /* 714 * fw_device_rwsem acts as dual purpose mutex: 715 * - serializes accesses to fw_device_idr, 716 * - serializes accesses to fw_device.config_rom/.config_rom_length and 717 * fw_unit.directory, unless those accesses happen at safe occasions 718 */ 719 DECLARE_RWSEM(fw_device_rwsem); 720 721 DEFINE_IDR(fw_device_idr); 722 int fw_cdev_major; 723 724 struct fw_device *fw_device_get_by_devt(dev_t devt) 725 { 726 struct fw_device *device; 727 728 down_read(&fw_device_rwsem); 729 device = idr_find(&fw_device_idr, MINOR(devt)); 730 if (device) 731 fw_device_get(device); 732 up_read(&fw_device_rwsem); 733 734 return device; 735 } 736 737 struct workqueue_struct *fw_workqueue; 738 EXPORT_SYMBOL(fw_workqueue); 739 740 static void fw_schedule_device_work(struct fw_device *device, 741 unsigned long delay) 742 { 743 queue_delayed_work(fw_workqueue, &device->work, delay); 744 } 745 746 /* 747 * These defines control the retry behavior for reading the config 748 * rom. It shouldn't be necessary to tweak these; if the device 749 * doesn't respond to a config rom read within 10 seconds, it's not 750 * going to respond at all. As for the initial delay, a lot of 751 * devices will be able to respond within half a second after bus 752 * reset. On the other hand, it's not really worth being more 753 * aggressive than that, since it scales pretty well; if 10 devices 754 * are plugged in, they're all getting read within one second. 755 */ 756 757 #define MAX_RETRIES 10 758 #define RETRY_DELAY (3 * HZ) 759 #define INITIAL_DELAY (HZ / 2) 760 #define SHUTDOWN_DELAY (2 * HZ) 761 762 static void fw_device_shutdown(struct work_struct *work) 763 { 764 struct fw_device *device = 765 container_of(work, struct fw_device, work.work); 766 int minor = MINOR(device->device.devt); 767 768 if (time_before64(get_jiffies_64(), 769 device->card->reset_jiffies + SHUTDOWN_DELAY) 770 && !list_empty(&device->card->link)) { 771 fw_schedule_device_work(device, SHUTDOWN_DELAY); 772 return; 773 } 774 775 if (atomic_cmpxchg(&device->state, 776 FW_DEVICE_GONE, 777 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) 778 return; 779 780 fw_device_cdev_remove(device); 781 device_for_each_child(&device->device, NULL, shutdown_unit); 782 device_unregister(&device->device); 783 784 down_write(&fw_device_rwsem); 785 idr_remove(&fw_device_idr, minor); 786 up_write(&fw_device_rwsem); 787 788 fw_device_put(device); 789 } 790 791 static void fw_device_release(struct device *dev) 792 { 793 struct fw_device *device = fw_device(dev); 794 struct fw_card *card = device->card; 795 unsigned long flags; 796 797 /* 798 * Take the card lock so we don't set this to NULL while a 799 * FW_NODE_UPDATED callback is being handled or while the 800 * bus manager work looks at this node. 801 */ 802 spin_lock_irqsave(&card->lock, flags); 803 device->node->data = NULL; 804 spin_unlock_irqrestore(&card->lock, flags); 805 806 fw_node_put(device->node); 807 kfree(device->config_rom); 808 kfree(device); 809 fw_card_put(card); 810 } 811 812 static struct device_type fw_device_type = { 813 .release = fw_device_release, 814 }; 815 816 static bool is_fw_device(struct device *dev) 817 { 818 return dev->type == &fw_device_type; 819 } 820 821 static int update_unit(struct device *dev, void *data) 822 { 823 struct fw_unit *unit = fw_unit(dev); 824 struct fw_driver *driver = (struct fw_driver *)dev->driver; 825 826 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { 827 device_lock(dev); 828 driver->update(unit); 829 device_unlock(dev); 830 } 831 832 return 0; 833 } 834 835 static void fw_device_update(struct work_struct *work) 836 { 837 struct fw_device *device = 838 container_of(work, struct fw_device, work.work); 839 840 fw_device_cdev_update(device); 841 device_for_each_child(&device->device, NULL, update_unit); 842 } 843 844 /* 845 * If a device was pending for deletion because its node went away but its 846 * bus info block and root directory header matches that of a newly discovered 847 * device, revive the existing fw_device. 848 * The newly allocated fw_device becomes obsolete instead. 849 */ 850 static int lookup_existing_device(struct device *dev, void *data) 851 { 852 struct fw_device *old = fw_device(dev); 853 struct fw_device *new = data; 854 struct fw_card *card = new->card; 855 int match = 0; 856 857 if (!is_fw_device(dev)) 858 return 0; 859 860 down_read(&fw_device_rwsem); /* serialize config_rom access */ 861 spin_lock_irq(&card->lock); /* serialize node access */ 862 863 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 && 864 atomic_cmpxchg(&old->state, 865 FW_DEVICE_GONE, 866 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 867 struct fw_node *current_node = new->node; 868 struct fw_node *obsolete_node = old->node; 869 870 new->node = obsolete_node; 871 new->node->data = new; 872 old->node = current_node; 873 old->node->data = old; 874 875 old->max_speed = new->max_speed; 876 old->node_id = current_node->node_id; 877 smp_wmb(); /* update node_id before generation */ 878 old->generation = card->generation; 879 old->config_rom_retries = 0; 880 fw_notice(card, "rediscovered device %s\n", dev_name(dev)); 881 882 PREPARE_DELAYED_WORK(&old->work, fw_device_update); 883 fw_schedule_device_work(old, 0); 884 885 if (current_node == card->root_node) 886 fw_schedule_bm_work(card, 0); 887 888 match = 1; 889 } 890 891 spin_unlock_irq(&card->lock); 892 up_read(&fw_device_rwsem); 893 894 return match; 895 } 896 897 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; 898 899 static void set_broadcast_channel(struct fw_device *device, int generation) 900 { 901 struct fw_card *card = device->card; 902 __be32 data; 903 int rcode; 904 905 if (!card->broadcast_channel_allocated) 906 return; 907 908 /* 909 * The Broadcast_Channel Valid bit is required by nodes which want to 910 * transmit on this channel. Such transmissions are practically 911 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required 912 * to be IRM capable and have a max_rec of 8 or more. We use this fact 913 * to narrow down to which nodes we send Broadcast_Channel updates. 914 */ 915 if (!device->irmc || device->max_rec < 8) 916 return; 917 918 /* 919 * Some 1394-1995 nodes crash if this 1394a-2000 register is written. 920 * Perform a read test first. 921 */ 922 if (device->bc_implemented == BC_UNKNOWN) { 923 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, 924 device->node_id, generation, device->max_speed, 925 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 926 &data, 4); 927 switch (rcode) { 928 case RCODE_COMPLETE: 929 if (data & cpu_to_be32(1 << 31)) { 930 device->bc_implemented = BC_IMPLEMENTED; 931 break; 932 } 933 /* else fall through to case address error */ 934 case RCODE_ADDRESS_ERROR: 935 device->bc_implemented = BC_UNIMPLEMENTED; 936 } 937 } 938 939 if (device->bc_implemented == BC_IMPLEMENTED) { 940 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | 941 BROADCAST_CHANNEL_VALID); 942 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, 943 device->node_id, generation, device->max_speed, 944 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 945 &data, 4); 946 } 947 } 948 949 int fw_device_set_broadcast_channel(struct device *dev, void *gen) 950 { 951 if (is_fw_device(dev)) 952 set_broadcast_channel(fw_device(dev), (long)gen); 953 954 return 0; 955 } 956 957 static void fw_device_init(struct work_struct *work) 958 { 959 struct fw_device *device = 960 container_of(work, struct fw_device, work.work); 961 struct fw_card *card = device->card; 962 struct device *revived_dev; 963 int minor, ret; 964 965 /* 966 * All failure paths here set node->data to NULL, so that we 967 * don't try to do device_for_each_child() on a kfree()'d 968 * device. 969 */ 970 971 if (read_config_rom(device, device->generation) < 0) { 972 if (device->config_rom_retries < MAX_RETRIES && 973 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 974 device->config_rom_retries++; 975 fw_schedule_device_work(device, RETRY_DELAY); 976 } else { 977 if (device->node->link_on) 978 fw_notice(card, "giving up on Config ROM for node id %x\n", 979 device->node_id); 980 if (device->node == card->root_node) 981 fw_schedule_bm_work(card, 0); 982 fw_device_release(&device->device); 983 } 984 return; 985 } 986 987 revived_dev = device_find_child(card->device, 988 device, lookup_existing_device); 989 if (revived_dev) { 990 put_device(revived_dev); 991 fw_device_release(&device->device); 992 993 return; 994 } 995 996 device_initialize(&device->device); 997 998 fw_device_get(device); 999 down_write(&fw_device_rwsem); 1000 ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ? 1001 idr_get_new(&fw_device_idr, device, &minor) : 1002 -ENOMEM; 1003 up_write(&fw_device_rwsem); 1004 1005 if (ret < 0) 1006 goto error; 1007 1008 device->device.bus = &fw_bus_type; 1009 device->device.type = &fw_device_type; 1010 device->device.parent = card->device; 1011 device->device.devt = MKDEV(fw_cdev_major, minor); 1012 dev_set_name(&device->device, "fw%d", minor); 1013 1014 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < 1015 ARRAY_SIZE(fw_device_attributes) + 1016 ARRAY_SIZE(config_rom_attributes)); 1017 init_fw_attribute_group(&device->device, 1018 fw_device_attributes, 1019 &device->attribute_group); 1020 1021 if (device_add(&device->device)) { 1022 fw_err(card, "failed to add device\n"); 1023 goto error_with_cdev; 1024 } 1025 1026 create_units(device); 1027 1028 /* 1029 * Transition the device to running state. If it got pulled 1030 * out from under us while we did the intialization work, we 1031 * have to shut down the device again here. Normally, though, 1032 * fw_node_event will be responsible for shutting it down when 1033 * necessary. We have to use the atomic cmpxchg here to avoid 1034 * racing with the FW_NODE_DESTROYED case in 1035 * fw_node_event(). 1036 */ 1037 if (atomic_cmpxchg(&device->state, 1038 FW_DEVICE_INITIALIZING, 1039 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 1040 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1041 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1042 } else { 1043 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n", 1044 dev_name(&device->device), 1045 device->config_rom[3], device->config_rom[4], 1046 1 << device->max_speed); 1047 device->config_rom_retries = 0; 1048 1049 set_broadcast_channel(device, device->generation); 1050 } 1051 1052 /* 1053 * Reschedule the IRM work if we just finished reading the 1054 * root node config rom. If this races with a bus reset we 1055 * just end up running the IRM work a couple of extra times - 1056 * pretty harmless. 1057 */ 1058 if (device->node == card->root_node) 1059 fw_schedule_bm_work(card, 0); 1060 1061 return; 1062 1063 error_with_cdev: 1064 down_write(&fw_device_rwsem); 1065 idr_remove(&fw_device_idr, minor); 1066 up_write(&fw_device_rwsem); 1067 error: 1068 fw_device_put(device); /* fw_device_idr's reference */ 1069 1070 put_device(&device->device); /* our reference */ 1071 } 1072 1073 enum { 1074 REREAD_BIB_ERROR, 1075 REREAD_BIB_GONE, 1076 REREAD_BIB_UNCHANGED, 1077 REREAD_BIB_CHANGED, 1078 }; 1079 1080 /* Reread and compare bus info block and header of root directory */ 1081 static int reread_config_rom(struct fw_device *device, int generation) 1082 { 1083 u32 q; 1084 int i; 1085 1086 for (i = 0; i < 6; i++) { 1087 if (read_rom(device, generation, i, &q) != RCODE_COMPLETE) 1088 return REREAD_BIB_ERROR; 1089 1090 if (i == 0 && q == 0) 1091 return REREAD_BIB_GONE; 1092 1093 if (q != device->config_rom[i]) 1094 return REREAD_BIB_CHANGED; 1095 } 1096 1097 return REREAD_BIB_UNCHANGED; 1098 } 1099 1100 static void fw_device_refresh(struct work_struct *work) 1101 { 1102 struct fw_device *device = 1103 container_of(work, struct fw_device, work.work); 1104 struct fw_card *card = device->card; 1105 int node_id = device->node_id; 1106 1107 switch (reread_config_rom(device, device->generation)) { 1108 case REREAD_BIB_ERROR: 1109 if (device->config_rom_retries < MAX_RETRIES / 2 && 1110 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1111 device->config_rom_retries++; 1112 fw_schedule_device_work(device, RETRY_DELAY / 2); 1113 1114 return; 1115 } 1116 goto give_up; 1117 1118 case REREAD_BIB_GONE: 1119 goto gone; 1120 1121 case REREAD_BIB_UNCHANGED: 1122 if (atomic_cmpxchg(&device->state, 1123 FW_DEVICE_INITIALIZING, 1124 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1125 goto gone; 1126 1127 fw_device_update(work); 1128 device->config_rom_retries = 0; 1129 goto out; 1130 1131 case REREAD_BIB_CHANGED: 1132 break; 1133 } 1134 1135 /* 1136 * Something changed. We keep things simple and don't investigate 1137 * further. We just destroy all previous units and create new ones. 1138 */ 1139 device_for_each_child(&device->device, NULL, shutdown_unit); 1140 1141 if (read_config_rom(device, device->generation) < 0) { 1142 if (device->config_rom_retries < MAX_RETRIES && 1143 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1144 device->config_rom_retries++; 1145 fw_schedule_device_work(device, RETRY_DELAY); 1146 1147 return; 1148 } 1149 goto give_up; 1150 } 1151 1152 fw_device_cdev_update(device); 1153 create_units(device); 1154 1155 /* Userspace may want to re-read attributes. */ 1156 kobject_uevent(&device->device.kobj, KOBJ_CHANGE); 1157 1158 if (atomic_cmpxchg(&device->state, 1159 FW_DEVICE_INITIALIZING, 1160 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1161 goto gone; 1162 1163 fw_notice(card, "refreshed device %s\n", dev_name(&device->device)); 1164 device->config_rom_retries = 0; 1165 goto out; 1166 1167 give_up: 1168 fw_notice(card, "giving up on refresh of device %s\n", 1169 dev_name(&device->device)); 1170 gone: 1171 atomic_set(&device->state, FW_DEVICE_GONE); 1172 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1173 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1174 out: 1175 if (node_id == card->root_node->node_id) 1176 fw_schedule_bm_work(card, 0); 1177 } 1178 1179 void fw_node_event(struct fw_card *card, struct fw_node *node, int event) 1180 { 1181 struct fw_device *device; 1182 1183 switch (event) { 1184 case FW_NODE_CREATED: 1185 /* 1186 * Attempt to scan the node, regardless whether its self ID has 1187 * the L (link active) flag set or not. Some broken devices 1188 * send L=0 but have an up-and-running link; others send L=1 1189 * without actually having a link. 1190 */ 1191 create: 1192 device = kzalloc(sizeof(*device), GFP_ATOMIC); 1193 if (device == NULL) 1194 break; 1195 1196 /* 1197 * Do minimal intialization of the device here, the 1198 * rest will happen in fw_device_init(). 1199 * 1200 * Attention: A lot of things, even fw_device_get(), 1201 * cannot be done before fw_device_init() finished! 1202 * You can basically just check device->state and 1203 * schedule work until then, but only while holding 1204 * card->lock. 1205 */ 1206 atomic_set(&device->state, FW_DEVICE_INITIALIZING); 1207 device->card = fw_card_get(card); 1208 device->node = fw_node_get(node); 1209 device->node_id = node->node_id; 1210 device->generation = card->generation; 1211 device->is_local = node == card->local_node; 1212 mutex_init(&device->client_list_mutex); 1213 INIT_LIST_HEAD(&device->client_list); 1214 1215 /* 1216 * Set the node data to point back to this device so 1217 * FW_NODE_UPDATED callbacks can update the node_id 1218 * and generation for the device. 1219 */ 1220 node->data = device; 1221 1222 /* 1223 * Many devices are slow to respond after bus resets, 1224 * especially if they are bus powered and go through 1225 * power-up after getting plugged in. We schedule the 1226 * first config rom scan half a second after bus reset. 1227 */ 1228 INIT_DELAYED_WORK(&device->work, fw_device_init); 1229 fw_schedule_device_work(device, INITIAL_DELAY); 1230 break; 1231 1232 case FW_NODE_INITIATED_RESET: 1233 case FW_NODE_LINK_ON: 1234 device = node->data; 1235 if (device == NULL) 1236 goto create; 1237 1238 device->node_id = node->node_id; 1239 smp_wmb(); /* update node_id before generation */ 1240 device->generation = card->generation; 1241 if (atomic_cmpxchg(&device->state, 1242 FW_DEVICE_RUNNING, 1243 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { 1244 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh); 1245 fw_schedule_device_work(device, 1246 device->is_local ? 0 : INITIAL_DELAY); 1247 } 1248 break; 1249 1250 case FW_NODE_UPDATED: 1251 device = node->data; 1252 if (device == NULL) 1253 break; 1254 1255 device->node_id = node->node_id; 1256 smp_wmb(); /* update node_id before generation */ 1257 device->generation = card->generation; 1258 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { 1259 PREPARE_DELAYED_WORK(&device->work, fw_device_update); 1260 fw_schedule_device_work(device, 0); 1261 } 1262 break; 1263 1264 case FW_NODE_DESTROYED: 1265 case FW_NODE_LINK_OFF: 1266 if (!node->data) 1267 break; 1268 1269 /* 1270 * Destroy the device associated with the node. There 1271 * are two cases here: either the device is fully 1272 * initialized (FW_DEVICE_RUNNING) or we're in the 1273 * process of reading its config rom 1274 * (FW_DEVICE_INITIALIZING). If it is fully 1275 * initialized we can reuse device->work to schedule a 1276 * full fw_device_shutdown(). If not, there's work 1277 * scheduled to read it's config rom, and we just put 1278 * the device in shutdown state to have that code fail 1279 * to create the device. 1280 */ 1281 device = node->data; 1282 if (atomic_xchg(&device->state, 1283 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { 1284 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1285 fw_schedule_device_work(device, 1286 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); 1287 } 1288 break; 1289 } 1290 } 1291