1 /*
2  * Device probing and sysfs code.
3  *
4  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/rwsem.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/workqueue.h>
40 
41 #include <linux/atomic.h>
42 #include <asm/byteorder.h>
43 #include <asm/system.h>
44 
45 #include "core.h"
46 
47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48 {
49 	ci->p = p + 1;
50 	ci->end = ci->p + (p[0] >> 16);
51 }
52 EXPORT_SYMBOL(fw_csr_iterator_init);
53 
54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
55 {
56 	*key = *ci->p >> 24;
57 	*value = *ci->p & 0xffffff;
58 
59 	return ci->p++ < ci->end;
60 }
61 EXPORT_SYMBOL(fw_csr_iterator_next);
62 
63 static const u32 *search_leaf(const u32 *directory, int search_key)
64 {
65 	struct fw_csr_iterator ci;
66 	int last_key = 0, key, value;
67 
68 	fw_csr_iterator_init(&ci, directory);
69 	while (fw_csr_iterator_next(&ci, &key, &value)) {
70 		if (last_key == search_key &&
71 		    key == (CSR_DESCRIPTOR | CSR_LEAF))
72 			return ci.p - 1 + value;
73 
74 		last_key = key;
75 	}
76 
77 	return NULL;
78 }
79 
80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81 {
82 	unsigned int quadlets, i;
83 	char c;
84 
85 	if (!size || !buf)
86 		return -EINVAL;
87 
88 	quadlets = min(block[0] >> 16, 256U);
89 	if (quadlets < 2)
90 		return -ENODATA;
91 
92 	if (block[1] != 0 || block[2] != 0)
93 		/* unknown language/character set */
94 		return -ENODATA;
95 
96 	block += 3;
97 	quadlets -= 2;
98 	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99 		c = block[i / 4] >> (24 - 8 * (i % 4));
100 		if (c == '\0')
101 			break;
102 		buf[i] = c;
103 	}
104 	buf[i] = '\0';
105 
106 	return i;
107 }
108 
109 /**
110  * fw_csr_string() - reads a string from the configuration ROM
111  * @directory:	e.g. root directory or unit directory
112  * @key:	the key of the preceding directory entry
113  * @buf:	where to put the string
114  * @size:	size of @buf, in bytes
115  *
116  * The string is taken from a minimal ASCII text descriptor leaf after
117  * the immediate entry with @key.  The string is zero-terminated.
118  * Returns strlen(buf) or a negative error code.
119  */
120 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
121 {
122 	const u32 *leaf = search_leaf(directory, key);
123 	if (!leaf)
124 		return -ENOENT;
125 
126 	return textual_leaf_to_string(leaf, buf, size);
127 }
128 EXPORT_SYMBOL(fw_csr_string);
129 
130 static void get_ids(const u32 *directory, int *id)
131 {
132 	struct fw_csr_iterator ci;
133 	int key, value;
134 
135 	fw_csr_iterator_init(&ci, directory);
136 	while (fw_csr_iterator_next(&ci, &key, &value)) {
137 		switch (key) {
138 		case CSR_VENDOR:	id[0] = value; break;
139 		case CSR_MODEL:		id[1] = value; break;
140 		case CSR_SPECIFIER_ID:	id[2] = value; break;
141 		case CSR_VERSION:	id[3] = value; break;
142 		}
143 	}
144 }
145 
146 static void get_modalias_ids(struct fw_unit *unit, int *id)
147 {
148 	get_ids(&fw_parent_device(unit)->config_rom[5], id);
149 	get_ids(unit->directory, id);
150 }
151 
152 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
153 {
154 	int match = 0;
155 
156 	if (id[0] == id_table->vendor_id)
157 		match |= IEEE1394_MATCH_VENDOR_ID;
158 	if (id[1] == id_table->model_id)
159 		match |= IEEE1394_MATCH_MODEL_ID;
160 	if (id[2] == id_table->specifier_id)
161 		match |= IEEE1394_MATCH_SPECIFIER_ID;
162 	if (id[3] == id_table->version)
163 		match |= IEEE1394_MATCH_VERSION;
164 
165 	return (match & id_table->match_flags) == id_table->match_flags;
166 }
167 
168 static bool is_fw_unit(struct device *dev);
169 
170 static int fw_unit_match(struct device *dev, struct device_driver *drv)
171 {
172 	const struct ieee1394_device_id *id_table =
173 			container_of(drv, struct fw_driver, driver)->id_table;
174 	int id[] = {0, 0, 0, 0};
175 
176 	/* We only allow binding to fw_units. */
177 	if (!is_fw_unit(dev))
178 		return 0;
179 
180 	get_modalias_ids(fw_unit(dev), id);
181 
182 	for (; id_table->match_flags != 0; id_table++)
183 		if (match_ids(id_table, id))
184 			return 1;
185 
186 	return 0;
187 }
188 
189 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
190 {
191 	int id[] = {0, 0, 0, 0};
192 
193 	get_modalias_ids(unit, id);
194 
195 	return snprintf(buffer, buffer_size,
196 			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
197 			id[0], id[1], id[2], id[3]);
198 }
199 
200 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
201 {
202 	struct fw_unit *unit = fw_unit(dev);
203 	char modalias[64];
204 
205 	get_modalias(unit, modalias, sizeof(modalias));
206 
207 	if (add_uevent_var(env, "MODALIAS=%s", modalias))
208 		return -ENOMEM;
209 
210 	return 0;
211 }
212 
213 struct bus_type fw_bus_type = {
214 	.name = "firewire",
215 	.match = fw_unit_match,
216 };
217 EXPORT_SYMBOL(fw_bus_type);
218 
219 int fw_device_enable_phys_dma(struct fw_device *device)
220 {
221 	int generation = device->generation;
222 
223 	/* device->node_id, accessed below, must not be older than generation */
224 	smp_rmb();
225 
226 	return device->card->driver->enable_phys_dma(device->card,
227 						     device->node_id,
228 						     generation);
229 }
230 EXPORT_SYMBOL(fw_device_enable_phys_dma);
231 
232 struct config_rom_attribute {
233 	struct device_attribute attr;
234 	u32 key;
235 };
236 
237 static ssize_t show_immediate(struct device *dev,
238 			      struct device_attribute *dattr, char *buf)
239 {
240 	struct config_rom_attribute *attr =
241 		container_of(dattr, struct config_rom_attribute, attr);
242 	struct fw_csr_iterator ci;
243 	const u32 *dir;
244 	int key, value, ret = -ENOENT;
245 
246 	down_read(&fw_device_rwsem);
247 
248 	if (is_fw_unit(dev))
249 		dir = fw_unit(dev)->directory;
250 	else
251 		dir = fw_device(dev)->config_rom + 5;
252 
253 	fw_csr_iterator_init(&ci, dir);
254 	while (fw_csr_iterator_next(&ci, &key, &value))
255 		if (attr->key == key) {
256 			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
257 				       "0x%06x\n", value);
258 			break;
259 		}
260 
261 	up_read(&fw_device_rwsem);
262 
263 	return ret;
264 }
265 
266 #define IMMEDIATE_ATTR(name, key)				\
267 	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
268 
269 static ssize_t show_text_leaf(struct device *dev,
270 			      struct device_attribute *dattr, char *buf)
271 {
272 	struct config_rom_attribute *attr =
273 		container_of(dattr, struct config_rom_attribute, attr);
274 	const u32 *dir;
275 	size_t bufsize;
276 	char dummy_buf[2];
277 	int ret;
278 
279 	down_read(&fw_device_rwsem);
280 
281 	if (is_fw_unit(dev))
282 		dir = fw_unit(dev)->directory;
283 	else
284 		dir = fw_device(dev)->config_rom + 5;
285 
286 	if (buf) {
287 		bufsize = PAGE_SIZE - 1;
288 	} else {
289 		buf = dummy_buf;
290 		bufsize = 1;
291 	}
292 
293 	ret = fw_csr_string(dir, attr->key, buf, bufsize);
294 
295 	if (ret >= 0) {
296 		/* Strip trailing whitespace and add newline. */
297 		while (ret > 0 && isspace(buf[ret - 1]))
298 			ret--;
299 		strcpy(buf + ret, "\n");
300 		ret++;
301 	}
302 
303 	up_read(&fw_device_rwsem);
304 
305 	return ret;
306 }
307 
308 #define TEXT_LEAF_ATTR(name, key)				\
309 	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
310 
311 static struct config_rom_attribute config_rom_attributes[] = {
312 	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
313 	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
314 	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
315 	IMMEDIATE_ATTR(version, CSR_VERSION),
316 	IMMEDIATE_ATTR(model, CSR_MODEL),
317 	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
318 	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
319 	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
320 };
321 
322 static void init_fw_attribute_group(struct device *dev,
323 				    struct device_attribute *attrs,
324 				    struct fw_attribute_group *group)
325 {
326 	struct device_attribute *attr;
327 	int i, j;
328 
329 	for (j = 0; attrs[j].attr.name != NULL; j++)
330 		group->attrs[j] = &attrs[j].attr;
331 
332 	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
333 		attr = &config_rom_attributes[i].attr;
334 		if (attr->show(dev, attr, NULL) < 0)
335 			continue;
336 		group->attrs[j++] = &attr->attr;
337 	}
338 
339 	group->attrs[j] = NULL;
340 	group->groups[0] = &group->group;
341 	group->groups[1] = NULL;
342 	group->group.attrs = group->attrs;
343 	dev->groups = (const struct attribute_group **) group->groups;
344 }
345 
346 static ssize_t modalias_show(struct device *dev,
347 			     struct device_attribute *attr, char *buf)
348 {
349 	struct fw_unit *unit = fw_unit(dev);
350 	int length;
351 
352 	length = get_modalias(unit, buf, PAGE_SIZE);
353 	strcpy(buf + length, "\n");
354 
355 	return length + 1;
356 }
357 
358 static ssize_t rom_index_show(struct device *dev,
359 			      struct device_attribute *attr, char *buf)
360 {
361 	struct fw_device *device = fw_device(dev->parent);
362 	struct fw_unit *unit = fw_unit(dev);
363 
364 	return snprintf(buf, PAGE_SIZE, "%d\n",
365 			(int)(unit->directory - device->config_rom));
366 }
367 
368 static struct device_attribute fw_unit_attributes[] = {
369 	__ATTR_RO(modalias),
370 	__ATTR_RO(rom_index),
371 	__ATTR_NULL,
372 };
373 
374 static ssize_t config_rom_show(struct device *dev,
375 			       struct device_attribute *attr, char *buf)
376 {
377 	struct fw_device *device = fw_device(dev);
378 	size_t length;
379 
380 	down_read(&fw_device_rwsem);
381 	length = device->config_rom_length * 4;
382 	memcpy(buf, device->config_rom, length);
383 	up_read(&fw_device_rwsem);
384 
385 	return length;
386 }
387 
388 static ssize_t guid_show(struct device *dev,
389 			 struct device_attribute *attr, char *buf)
390 {
391 	struct fw_device *device = fw_device(dev);
392 	int ret;
393 
394 	down_read(&fw_device_rwsem);
395 	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
396 		       device->config_rom[3], device->config_rom[4]);
397 	up_read(&fw_device_rwsem);
398 
399 	return ret;
400 }
401 
402 static int units_sprintf(char *buf, const u32 *directory)
403 {
404 	struct fw_csr_iterator ci;
405 	int key, value;
406 	int specifier_id = 0;
407 	int version = 0;
408 
409 	fw_csr_iterator_init(&ci, directory);
410 	while (fw_csr_iterator_next(&ci, &key, &value)) {
411 		switch (key) {
412 		case CSR_SPECIFIER_ID:
413 			specifier_id = value;
414 			break;
415 		case CSR_VERSION:
416 			version = value;
417 			break;
418 		}
419 	}
420 
421 	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
422 }
423 
424 static ssize_t units_show(struct device *dev,
425 			  struct device_attribute *attr, char *buf)
426 {
427 	struct fw_device *device = fw_device(dev);
428 	struct fw_csr_iterator ci;
429 	int key, value, i = 0;
430 
431 	down_read(&fw_device_rwsem);
432 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
433 	while (fw_csr_iterator_next(&ci, &key, &value)) {
434 		if (key != (CSR_UNIT | CSR_DIRECTORY))
435 			continue;
436 		i += units_sprintf(&buf[i], ci.p + value - 1);
437 		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
438 			break;
439 	}
440 	up_read(&fw_device_rwsem);
441 
442 	if (i)
443 		buf[i - 1] = '\n';
444 
445 	return i;
446 }
447 
448 static struct device_attribute fw_device_attributes[] = {
449 	__ATTR_RO(config_rom),
450 	__ATTR_RO(guid),
451 	__ATTR_RO(units),
452 	__ATTR_NULL,
453 };
454 
455 static int read_rom(struct fw_device *device,
456 		    int generation, int index, u32 *data)
457 {
458 	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
459 	int i, rcode;
460 
461 	/* device->node_id, accessed below, must not be older than generation */
462 	smp_rmb();
463 
464 	for (i = 10; i < 100; i += 10) {
465 		rcode = fw_run_transaction(device->card,
466 				TCODE_READ_QUADLET_REQUEST, device->node_id,
467 				generation, device->max_speed, offset, data, 4);
468 		if (rcode != RCODE_BUSY)
469 			break;
470 		msleep(i);
471 	}
472 	be32_to_cpus(data);
473 
474 	return rcode;
475 }
476 
477 #define MAX_CONFIG_ROM_SIZE 256
478 
479 /*
480  * Read the bus info block, perform a speed probe, and read all of the rest of
481  * the config ROM.  We do all this with a cached bus generation.  If the bus
482  * generation changes under us, read_config_rom will fail and get retried.
483  * It's better to start all over in this case because the node from which we
484  * are reading the ROM may have changed the ROM during the reset.
485  */
486 static int read_config_rom(struct fw_device *device, int generation)
487 {
488 	struct fw_card *card = device->card;
489 	const u32 *old_rom, *new_rom;
490 	u32 *rom, *stack;
491 	u32 sp, key;
492 	int i, end, length, ret = -1;
493 
494 	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
495 		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
496 	if (rom == NULL)
497 		return -ENOMEM;
498 
499 	stack = &rom[MAX_CONFIG_ROM_SIZE];
500 	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
501 
502 	device->max_speed = SCODE_100;
503 
504 	/* First read the bus info block. */
505 	for (i = 0; i < 5; i++) {
506 		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
507 			goto out;
508 		/*
509 		 * As per IEEE1212 7.2, during power-up, devices can
510 		 * reply with a 0 for the first quadlet of the config
511 		 * rom to indicate that they are booting (for example,
512 		 * if the firmware is on the disk of a external
513 		 * harddisk).  In that case we just fail, and the
514 		 * retry mechanism will try again later.
515 		 */
516 		if (i == 0 && rom[i] == 0)
517 			goto out;
518 	}
519 
520 	device->max_speed = device->node->max_speed;
521 
522 	/*
523 	 * Determine the speed of
524 	 *   - devices with link speed less than PHY speed,
525 	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
526 	 *   - all devices if there are 1394b repeaters.
527 	 * Note, we cannot use the bus info block's link_spd as starting point
528 	 * because some buggy firmwares set it lower than necessary and because
529 	 * 1394-1995 nodes do not have the field.
530 	 */
531 	if ((rom[2] & 0x7) < device->max_speed ||
532 	    device->max_speed == SCODE_BETA ||
533 	    card->beta_repeaters_present) {
534 		u32 dummy;
535 
536 		/* for S1600 and S3200 */
537 		if (device->max_speed == SCODE_BETA)
538 			device->max_speed = card->link_speed;
539 
540 		while (device->max_speed > SCODE_100) {
541 			if (read_rom(device, generation, 0, &dummy) ==
542 			    RCODE_COMPLETE)
543 				break;
544 			device->max_speed--;
545 		}
546 	}
547 
548 	/*
549 	 * Now parse the config rom.  The config rom is a recursive
550 	 * directory structure so we parse it using a stack of
551 	 * references to the blocks that make up the structure.  We
552 	 * push a reference to the root directory on the stack to
553 	 * start things off.
554 	 */
555 	length = i;
556 	sp = 0;
557 	stack[sp++] = 0xc0000005;
558 	while (sp > 0) {
559 		/*
560 		 * Pop the next block reference of the stack.  The
561 		 * lower 24 bits is the offset into the config rom,
562 		 * the upper 8 bits are the type of the reference the
563 		 * block.
564 		 */
565 		key = stack[--sp];
566 		i = key & 0xffffff;
567 		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE))
568 			goto out;
569 
570 		/* Read header quadlet for the block to get the length. */
571 		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
572 			goto out;
573 		end = i + (rom[i] >> 16) + 1;
574 		if (end > MAX_CONFIG_ROM_SIZE) {
575 			/*
576 			 * This block extends outside the config ROM which is
577 			 * a firmware bug.  Ignore this whole block, i.e.
578 			 * simply set a fake block length of 0.
579 			 */
580 			fw_err(card, "skipped invalid ROM block %x at %llx\n",
581 			       rom[i],
582 			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
583 			rom[i] = 0;
584 			end = i;
585 		}
586 		i++;
587 
588 		/*
589 		 * Now read in the block.  If this is a directory
590 		 * block, check the entries as we read them to see if
591 		 * it references another block, and push it in that case.
592 		 */
593 		for (; i < end; i++) {
594 			if (read_rom(device, generation, i, &rom[i]) !=
595 			    RCODE_COMPLETE)
596 				goto out;
597 
598 			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
599 				continue;
600 			/*
601 			 * Offset points outside the ROM.  May be a firmware
602 			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
603 			 * 7.7.18).  Simply overwrite this pointer here by a
604 			 * fake immediate entry so that later iterators over
605 			 * the ROM don't have to check offsets all the time.
606 			 */
607 			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
608 				fw_err(card,
609 				       "skipped unsupported ROM entry %x at %llx\n",
610 				       rom[i],
611 				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
612 				rom[i] = 0;
613 				continue;
614 			}
615 			stack[sp++] = i + rom[i];
616 		}
617 		if (length < i)
618 			length = i;
619 	}
620 
621 	old_rom = device->config_rom;
622 	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
623 	if (new_rom == NULL)
624 		goto out;
625 
626 	down_write(&fw_device_rwsem);
627 	device->config_rom = new_rom;
628 	device->config_rom_length = length;
629 	up_write(&fw_device_rwsem);
630 
631 	kfree(old_rom);
632 	ret = 0;
633 	device->max_rec	= rom[2] >> 12 & 0xf;
634 	device->cmc	= rom[2] >> 30 & 1;
635 	device->irmc	= rom[2] >> 31 & 1;
636  out:
637 	kfree(rom);
638 
639 	return ret;
640 }
641 
642 static void fw_unit_release(struct device *dev)
643 {
644 	struct fw_unit *unit = fw_unit(dev);
645 
646 	fw_device_put(fw_parent_device(unit));
647 	kfree(unit);
648 }
649 
650 static struct device_type fw_unit_type = {
651 	.uevent		= fw_unit_uevent,
652 	.release	= fw_unit_release,
653 };
654 
655 static bool is_fw_unit(struct device *dev)
656 {
657 	return dev->type == &fw_unit_type;
658 }
659 
660 static void create_units(struct fw_device *device)
661 {
662 	struct fw_csr_iterator ci;
663 	struct fw_unit *unit;
664 	int key, value, i;
665 
666 	i = 0;
667 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
668 	while (fw_csr_iterator_next(&ci, &key, &value)) {
669 		if (key != (CSR_UNIT | CSR_DIRECTORY))
670 			continue;
671 
672 		/*
673 		 * Get the address of the unit directory and try to
674 		 * match the drivers id_tables against it.
675 		 */
676 		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
677 		if (unit == NULL) {
678 			fw_err(device->card, "out of memory for unit\n");
679 			continue;
680 		}
681 
682 		unit->directory = ci.p + value - 1;
683 		unit->device.bus = &fw_bus_type;
684 		unit->device.type = &fw_unit_type;
685 		unit->device.parent = &device->device;
686 		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
687 
688 		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
689 				ARRAY_SIZE(fw_unit_attributes) +
690 				ARRAY_SIZE(config_rom_attributes));
691 		init_fw_attribute_group(&unit->device,
692 					fw_unit_attributes,
693 					&unit->attribute_group);
694 
695 		if (device_register(&unit->device) < 0)
696 			goto skip_unit;
697 
698 		fw_device_get(device);
699 		continue;
700 
701 	skip_unit:
702 		kfree(unit);
703 	}
704 }
705 
706 static int shutdown_unit(struct device *device, void *data)
707 {
708 	device_unregister(device);
709 
710 	return 0;
711 }
712 
713 /*
714  * fw_device_rwsem acts as dual purpose mutex:
715  *   - serializes accesses to fw_device_idr,
716  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
717  *     fw_unit.directory, unless those accesses happen at safe occasions
718  */
719 DECLARE_RWSEM(fw_device_rwsem);
720 
721 DEFINE_IDR(fw_device_idr);
722 int fw_cdev_major;
723 
724 struct fw_device *fw_device_get_by_devt(dev_t devt)
725 {
726 	struct fw_device *device;
727 
728 	down_read(&fw_device_rwsem);
729 	device = idr_find(&fw_device_idr, MINOR(devt));
730 	if (device)
731 		fw_device_get(device);
732 	up_read(&fw_device_rwsem);
733 
734 	return device;
735 }
736 
737 struct workqueue_struct *fw_workqueue;
738 EXPORT_SYMBOL(fw_workqueue);
739 
740 static void fw_schedule_device_work(struct fw_device *device,
741 				    unsigned long delay)
742 {
743 	queue_delayed_work(fw_workqueue, &device->work, delay);
744 }
745 
746 /*
747  * These defines control the retry behavior for reading the config
748  * rom.  It shouldn't be necessary to tweak these; if the device
749  * doesn't respond to a config rom read within 10 seconds, it's not
750  * going to respond at all.  As for the initial delay, a lot of
751  * devices will be able to respond within half a second after bus
752  * reset.  On the other hand, it's not really worth being more
753  * aggressive than that, since it scales pretty well; if 10 devices
754  * are plugged in, they're all getting read within one second.
755  */
756 
757 #define MAX_RETRIES	10
758 #define RETRY_DELAY	(3 * HZ)
759 #define INITIAL_DELAY	(HZ / 2)
760 #define SHUTDOWN_DELAY	(2 * HZ)
761 
762 static void fw_device_shutdown(struct work_struct *work)
763 {
764 	struct fw_device *device =
765 		container_of(work, struct fw_device, work.work);
766 	int minor = MINOR(device->device.devt);
767 
768 	if (time_before64(get_jiffies_64(),
769 			  device->card->reset_jiffies + SHUTDOWN_DELAY)
770 	    && !list_empty(&device->card->link)) {
771 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
772 		return;
773 	}
774 
775 	if (atomic_cmpxchg(&device->state,
776 			   FW_DEVICE_GONE,
777 			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
778 		return;
779 
780 	fw_device_cdev_remove(device);
781 	device_for_each_child(&device->device, NULL, shutdown_unit);
782 	device_unregister(&device->device);
783 
784 	down_write(&fw_device_rwsem);
785 	idr_remove(&fw_device_idr, minor);
786 	up_write(&fw_device_rwsem);
787 
788 	fw_device_put(device);
789 }
790 
791 static void fw_device_release(struct device *dev)
792 {
793 	struct fw_device *device = fw_device(dev);
794 	struct fw_card *card = device->card;
795 	unsigned long flags;
796 
797 	/*
798 	 * Take the card lock so we don't set this to NULL while a
799 	 * FW_NODE_UPDATED callback is being handled or while the
800 	 * bus manager work looks at this node.
801 	 */
802 	spin_lock_irqsave(&card->lock, flags);
803 	device->node->data = NULL;
804 	spin_unlock_irqrestore(&card->lock, flags);
805 
806 	fw_node_put(device->node);
807 	kfree(device->config_rom);
808 	kfree(device);
809 	fw_card_put(card);
810 }
811 
812 static struct device_type fw_device_type = {
813 	.release = fw_device_release,
814 };
815 
816 static bool is_fw_device(struct device *dev)
817 {
818 	return dev->type == &fw_device_type;
819 }
820 
821 static int update_unit(struct device *dev, void *data)
822 {
823 	struct fw_unit *unit = fw_unit(dev);
824 	struct fw_driver *driver = (struct fw_driver *)dev->driver;
825 
826 	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
827 		device_lock(dev);
828 		driver->update(unit);
829 		device_unlock(dev);
830 	}
831 
832 	return 0;
833 }
834 
835 static void fw_device_update(struct work_struct *work)
836 {
837 	struct fw_device *device =
838 		container_of(work, struct fw_device, work.work);
839 
840 	fw_device_cdev_update(device);
841 	device_for_each_child(&device->device, NULL, update_unit);
842 }
843 
844 /*
845  * If a device was pending for deletion because its node went away but its
846  * bus info block and root directory header matches that of a newly discovered
847  * device, revive the existing fw_device.
848  * The newly allocated fw_device becomes obsolete instead.
849  */
850 static int lookup_existing_device(struct device *dev, void *data)
851 {
852 	struct fw_device *old = fw_device(dev);
853 	struct fw_device *new = data;
854 	struct fw_card *card = new->card;
855 	int match = 0;
856 
857 	if (!is_fw_device(dev))
858 		return 0;
859 
860 	down_read(&fw_device_rwsem); /* serialize config_rom access */
861 	spin_lock_irq(&card->lock);  /* serialize node access */
862 
863 	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
864 	    atomic_cmpxchg(&old->state,
865 			   FW_DEVICE_GONE,
866 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
867 		struct fw_node *current_node = new->node;
868 		struct fw_node *obsolete_node = old->node;
869 
870 		new->node = obsolete_node;
871 		new->node->data = new;
872 		old->node = current_node;
873 		old->node->data = old;
874 
875 		old->max_speed = new->max_speed;
876 		old->node_id = current_node->node_id;
877 		smp_wmb();  /* update node_id before generation */
878 		old->generation = card->generation;
879 		old->config_rom_retries = 0;
880 		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
881 
882 		PREPARE_DELAYED_WORK(&old->work, fw_device_update);
883 		fw_schedule_device_work(old, 0);
884 
885 		if (current_node == card->root_node)
886 			fw_schedule_bm_work(card, 0);
887 
888 		match = 1;
889 	}
890 
891 	spin_unlock_irq(&card->lock);
892 	up_read(&fw_device_rwsem);
893 
894 	return match;
895 }
896 
897 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
898 
899 static void set_broadcast_channel(struct fw_device *device, int generation)
900 {
901 	struct fw_card *card = device->card;
902 	__be32 data;
903 	int rcode;
904 
905 	if (!card->broadcast_channel_allocated)
906 		return;
907 
908 	/*
909 	 * The Broadcast_Channel Valid bit is required by nodes which want to
910 	 * transmit on this channel.  Such transmissions are practically
911 	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
912 	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
913 	 * to narrow down to which nodes we send Broadcast_Channel updates.
914 	 */
915 	if (!device->irmc || device->max_rec < 8)
916 		return;
917 
918 	/*
919 	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
920 	 * Perform a read test first.
921 	 */
922 	if (device->bc_implemented == BC_UNKNOWN) {
923 		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
924 				device->node_id, generation, device->max_speed,
925 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
926 				&data, 4);
927 		switch (rcode) {
928 		case RCODE_COMPLETE:
929 			if (data & cpu_to_be32(1 << 31)) {
930 				device->bc_implemented = BC_IMPLEMENTED;
931 				break;
932 			}
933 			/* else fall through to case address error */
934 		case RCODE_ADDRESS_ERROR:
935 			device->bc_implemented = BC_UNIMPLEMENTED;
936 		}
937 	}
938 
939 	if (device->bc_implemented == BC_IMPLEMENTED) {
940 		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
941 				   BROADCAST_CHANNEL_VALID);
942 		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
943 				device->node_id, generation, device->max_speed,
944 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
945 				&data, 4);
946 	}
947 }
948 
949 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
950 {
951 	if (is_fw_device(dev))
952 		set_broadcast_channel(fw_device(dev), (long)gen);
953 
954 	return 0;
955 }
956 
957 static void fw_device_init(struct work_struct *work)
958 {
959 	struct fw_device *device =
960 		container_of(work, struct fw_device, work.work);
961 	struct fw_card *card = device->card;
962 	struct device *revived_dev;
963 	int minor, ret;
964 
965 	/*
966 	 * All failure paths here set node->data to NULL, so that we
967 	 * don't try to do device_for_each_child() on a kfree()'d
968 	 * device.
969 	 */
970 
971 	if (read_config_rom(device, device->generation) < 0) {
972 		if (device->config_rom_retries < MAX_RETRIES &&
973 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
974 			device->config_rom_retries++;
975 			fw_schedule_device_work(device, RETRY_DELAY);
976 		} else {
977 			if (device->node->link_on)
978 				fw_notice(card, "giving up on Config ROM for node id %x\n",
979 					  device->node_id);
980 			if (device->node == card->root_node)
981 				fw_schedule_bm_work(card, 0);
982 			fw_device_release(&device->device);
983 		}
984 		return;
985 	}
986 
987 	revived_dev = device_find_child(card->device,
988 					device, lookup_existing_device);
989 	if (revived_dev) {
990 		put_device(revived_dev);
991 		fw_device_release(&device->device);
992 
993 		return;
994 	}
995 
996 	device_initialize(&device->device);
997 
998 	fw_device_get(device);
999 	down_write(&fw_device_rwsem);
1000 	ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
1001 	      idr_get_new(&fw_device_idr, device, &minor) :
1002 	      -ENOMEM;
1003 	up_write(&fw_device_rwsem);
1004 
1005 	if (ret < 0)
1006 		goto error;
1007 
1008 	device->device.bus = &fw_bus_type;
1009 	device->device.type = &fw_device_type;
1010 	device->device.parent = card->device;
1011 	device->device.devt = MKDEV(fw_cdev_major, minor);
1012 	dev_set_name(&device->device, "fw%d", minor);
1013 
1014 	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1015 			ARRAY_SIZE(fw_device_attributes) +
1016 			ARRAY_SIZE(config_rom_attributes));
1017 	init_fw_attribute_group(&device->device,
1018 				fw_device_attributes,
1019 				&device->attribute_group);
1020 
1021 	if (device_add(&device->device)) {
1022 		fw_err(card, "failed to add device\n");
1023 		goto error_with_cdev;
1024 	}
1025 
1026 	create_units(device);
1027 
1028 	/*
1029 	 * Transition the device to running state.  If it got pulled
1030 	 * out from under us while we did the intialization work, we
1031 	 * have to shut down the device again here.  Normally, though,
1032 	 * fw_node_event will be responsible for shutting it down when
1033 	 * necessary.  We have to use the atomic cmpxchg here to avoid
1034 	 * racing with the FW_NODE_DESTROYED case in
1035 	 * fw_node_event().
1036 	 */
1037 	if (atomic_cmpxchg(&device->state,
1038 			   FW_DEVICE_INITIALIZING,
1039 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1040 		PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1041 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1042 	} else {
1043 		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1044 			  dev_name(&device->device),
1045 			  device->config_rom[3], device->config_rom[4],
1046 			  1 << device->max_speed);
1047 		device->config_rom_retries = 0;
1048 
1049 		set_broadcast_channel(device, device->generation);
1050 	}
1051 
1052 	/*
1053 	 * Reschedule the IRM work if we just finished reading the
1054 	 * root node config rom.  If this races with a bus reset we
1055 	 * just end up running the IRM work a couple of extra times -
1056 	 * pretty harmless.
1057 	 */
1058 	if (device->node == card->root_node)
1059 		fw_schedule_bm_work(card, 0);
1060 
1061 	return;
1062 
1063  error_with_cdev:
1064 	down_write(&fw_device_rwsem);
1065 	idr_remove(&fw_device_idr, minor);
1066 	up_write(&fw_device_rwsem);
1067  error:
1068 	fw_device_put(device);		/* fw_device_idr's reference */
1069 
1070 	put_device(&device->device);	/* our reference */
1071 }
1072 
1073 enum {
1074 	REREAD_BIB_ERROR,
1075 	REREAD_BIB_GONE,
1076 	REREAD_BIB_UNCHANGED,
1077 	REREAD_BIB_CHANGED,
1078 };
1079 
1080 /* Reread and compare bus info block and header of root directory */
1081 static int reread_config_rom(struct fw_device *device, int generation)
1082 {
1083 	u32 q;
1084 	int i;
1085 
1086 	for (i = 0; i < 6; i++) {
1087 		if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
1088 			return REREAD_BIB_ERROR;
1089 
1090 		if (i == 0 && q == 0)
1091 			return REREAD_BIB_GONE;
1092 
1093 		if (q != device->config_rom[i])
1094 			return REREAD_BIB_CHANGED;
1095 	}
1096 
1097 	return REREAD_BIB_UNCHANGED;
1098 }
1099 
1100 static void fw_device_refresh(struct work_struct *work)
1101 {
1102 	struct fw_device *device =
1103 		container_of(work, struct fw_device, work.work);
1104 	struct fw_card *card = device->card;
1105 	int node_id = device->node_id;
1106 
1107 	switch (reread_config_rom(device, device->generation)) {
1108 	case REREAD_BIB_ERROR:
1109 		if (device->config_rom_retries < MAX_RETRIES / 2 &&
1110 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1111 			device->config_rom_retries++;
1112 			fw_schedule_device_work(device, RETRY_DELAY / 2);
1113 
1114 			return;
1115 		}
1116 		goto give_up;
1117 
1118 	case REREAD_BIB_GONE:
1119 		goto gone;
1120 
1121 	case REREAD_BIB_UNCHANGED:
1122 		if (atomic_cmpxchg(&device->state,
1123 				   FW_DEVICE_INITIALIZING,
1124 				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1125 			goto gone;
1126 
1127 		fw_device_update(work);
1128 		device->config_rom_retries = 0;
1129 		goto out;
1130 
1131 	case REREAD_BIB_CHANGED:
1132 		break;
1133 	}
1134 
1135 	/*
1136 	 * Something changed.  We keep things simple and don't investigate
1137 	 * further.  We just destroy all previous units and create new ones.
1138 	 */
1139 	device_for_each_child(&device->device, NULL, shutdown_unit);
1140 
1141 	if (read_config_rom(device, device->generation) < 0) {
1142 		if (device->config_rom_retries < MAX_RETRIES &&
1143 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1144 			device->config_rom_retries++;
1145 			fw_schedule_device_work(device, RETRY_DELAY);
1146 
1147 			return;
1148 		}
1149 		goto give_up;
1150 	}
1151 
1152 	fw_device_cdev_update(device);
1153 	create_units(device);
1154 
1155 	/* Userspace may want to re-read attributes. */
1156 	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1157 
1158 	if (atomic_cmpxchg(&device->state,
1159 			   FW_DEVICE_INITIALIZING,
1160 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1161 		goto gone;
1162 
1163 	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1164 	device->config_rom_retries = 0;
1165 	goto out;
1166 
1167  give_up:
1168 	fw_notice(card, "giving up on refresh of device %s\n",
1169 		  dev_name(&device->device));
1170  gone:
1171 	atomic_set(&device->state, FW_DEVICE_GONE);
1172 	PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1173 	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1174  out:
1175 	if (node_id == card->root_node->node_id)
1176 		fw_schedule_bm_work(card, 0);
1177 }
1178 
1179 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1180 {
1181 	struct fw_device *device;
1182 
1183 	switch (event) {
1184 	case FW_NODE_CREATED:
1185 		/*
1186 		 * Attempt to scan the node, regardless whether its self ID has
1187 		 * the L (link active) flag set or not.  Some broken devices
1188 		 * send L=0 but have an up-and-running link; others send L=1
1189 		 * without actually having a link.
1190 		 */
1191  create:
1192 		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1193 		if (device == NULL)
1194 			break;
1195 
1196 		/*
1197 		 * Do minimal intialization of the device here, the
1198 		 * rest will happen in fw_device_init().
1199 		 *
1200 		 * Attention:  A lot of things, even fw_device_get(),
1201 		 * cannot be done before fw_device_init() finished!
1202 		 * You can basically just check device->state and
1203 		 * schedule work until then, but only while holding
1204 		 * card->lock.
1205 		 */
1206 		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1207 		device->card = fw_card_get(card);
1208 		device->node = fw_node_get(node);
1209 		device->node_id = node->node_id;
1210 		device->generation = card->generation;
1211 		device->is_local = node == card->local_node;
1212 		mutex_init(&device->client_list_mutex);
1213 		INIT_LIST_HEAD(&device->client_list);
1214 
1215 		/*
1216 		 * Set the node data to point back to this device so
1217 		 * FW_NODE_UPDATED callbacks can update the node_id
1218 		 * and generation for the device.
1219 		 */
1220 		node->data = device;
1221 
1222 		/*
1223 		 * Many devices are slow to respond after bus resets,
1224 		 * especially if they are bus powered and go through
1225 		 * power-up after getting plugged in.  We schedule the
1226 		 * first config rom scan half a second after bus reset.
1227 		 */
1228 		INIT_DELAYED_WORK(&device->work, fw_device_init);
1229 		fw_schedule_device_work(device, INITIAL_DELAY);
1230 		break;
1231 
1232 	case FW_NODE_INITIATED_RESET:
1233 	case FW_NODE_LINK_ON:
1234 		device = node->data;
1235 		if (device == NULL)
1236 			goto create;
1237 
1238 		device->node_id = node->node_id;
1239 		smp_wmb();  /* update node_id before generation */
1240 		device->generation = card->generation;
1241 		if (atomic_cmpxchg(&device->state,
1242 			    FW_DEVICE_RUNNING,
1243 			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1244 			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1245 			fw_schedule_device_work(device,
1246 				device->is_local ? 0 : INITIAL_DELAY);
1247 		}
1248 		break;
1249 
1250 	case FW_NODE_UPDATED:
1251 		device = node->data;
1252 		if (device == NULL)
1253 			break;
1254 
1255 		device->node_id = node->node_id;
1256 		smp_wmb();  /* update node_id before generation */
1257 		device->generation = card->generation;
1258 		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1259 			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1260 			fw_schedule_device_work(device, 0);
1261 		}
1262 		break;
1263 
1264 	case FW_NODE_DESTROYED:
1265 	case FW_NODE_LINK_OFF:
1266 		if (!node->data)
1267 			break;
1268 
1269 		/*
1270 		 * Destroy the device associated with the node.  There
1271 		 * are two cases here: either the device is fully
1272 		 * initialized (FW_DEVICE_RUNNING) or we're in the
1273 		 * process of reading its config rom
1274 		 * (FW_DEVICE_INITIALIZING).  If it is fully
1275 		 * initialized we can reuse device->work to schedule a
1276 		 * full fw_device_shutdown().  If not, there's work
1277 		 * scheduled to read it's config rom, and we just put
1278 		 * the device in shutdown state to have that code fail
1279 		 * to create the device.
1280 		 */
1281 		device = node->data;
1282 		if (atomic_xchg(&device->state,
1283 				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1284 			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1285 			fw_schedule_device_work(device,
1286 				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1287 		}
1288 		break;
1289 	}
1290 }
1291