xref: /openbmc/linux/drivers/firewire/core-device.c (revision 8bf3cbe32b180836720f735e6de5dee700052317)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Device probing and sysfs code.
4  *
5  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bug.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/errno.h>
13 #include <linux/firewire.h>
14 #include <linux/firewire-constants.h>
15 #include <linux/idr.h>
16 #include <linux/jiffies.h>
17 #include <linux/kobject.h>
18 #include <linux/list.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/random.h>
23 #include <linux/rwsem.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/string.h>
27 #include <linux/workqueue.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/byteorder.h>
31 
32 #include "core.h"
33 
34 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
35 {
36 	ci->p = p + 1;
37 	ci->end = ci->p + (p[0] >> 16);
38 }
39 EXPORT_SYMBOL(fw_csr_iterator_init);
40 
41 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
42 {
43 	*key = *ci->p >> 24;
44 	*value = *ci->p & 0xffffff;
45 
46 	return ci->p++ < ci->end;
47 }
48 EXPORT_SYMBOL(fw_csr_iterator_next);
49 
50 static const u32 *search_leaf(const u32 *directory, int search_key)
51 {
52 	struct fw_csr_iterator ci;
53 	int last_key = 0, key, value;
54 
55 	fw_csr_iterator_init(&ci, directory);
56 	while (fw_csr_iterator_next(&ci, &key, &value)) {
57 		if (last_key == search_key &&
58 		    key == (CSR_DESCRIPTOR | CSR_LEAF))
59 			return ci.p - 1 + value;
60 
61 		last_key = key;
62 	}
63 
64 	return NULL;
65 }
66 
67 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
68 {
69 	unsigned int quadlets, i;
70 	char c;
71 
72 	if (!size || !buf)
73 		return -EINVAL;
74 
75 	quadlets = min(block[0] >> 16, 256U);
76 	if (quadlets < 2)
77 		return -ENODATA;
78 
79 	if (block[1] != 0 || block[2] != 0)
80 		/* unknown language/character set */
81 		return -ENODATA;
82 
83 	block += 3;
84 	quadlets -= 2;
85 	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
86 		c = block[i / 4] >> (24 - 8 * (i % 4));
87 		if (c == '\0')
88 			break;
89 		buf[i] = c;
90 	}
91 	buf[i] = '\0';
92 
93 	return i;
94 }
95 
96 /**
97  * fw_csr_string() - reads a string from the configuration ROM
98  * @directory:	e.g. root directory or unit directory
99  * @key:	the key of the preceding directory entry
100  * @buf:	where to put the string
101  * @size:	size of @buf, in bytes
102  *
103  * The string is taken from a minimal ASCII text descriptor leaf after
104  * the immediate entry with @key.  The string is zero-terminated.
105  * An overlong string is silently truncated such that it and the
106  * zero byte fit into @size.
107  *
108  * Returns strlen(buf) or a negative error code.
109  */
110 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
111 {
112 	const u32 *leaf = search_leaf(directory, key);
113 	if (!leaf)
114 		return -ENOENT;
115 
116 	return textual_leaf_to_string(leaf, buf, size);
117 }
118 EXPORT_SYMBOL(fw_csr_string);
119 
120 static void get_ids(const u32 *directory, int *id)
121 {
122 	struct fw_csr_iterator ci;
123 	int key, value;
124 
125 	fw_csr_iterator_init(&ci, directory);
126 	while (fw_csr_iterator_next(&ci, &key, &value)) {
127 		switch (key) {
128 		case CSR_VENDOR:	id[0] = value; break;
129 		case CSR_MODEL:		id[1] = value; break;
130 		case CSR_SPECIFIER_ID:	id[2] = value; break;
131 		case CSR_VERSION:	id[3] = value; break;
132 		}
133 	}
134 }
135 
136 static void get_modalias_ids(struct fw_unit *unit, int *id)
137 {
138 	get_ids(&fw_parent_device(unit)->config_rom[5], id);
139 	get_ids(unit->directory, id);
140 }
141 
142 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
143 {
144 	int match = 0;
145 
146 	if (id[0] == id_table->vendor_id)
147 		match |= IEEE1394_MATCH_VENDOR_ID;
148 	if (id[1] == id_table->model_id)
149 		match |= IEEE1394_MATCH_MODEL_ID;
150 	if (id[2] == id_table->specifier_id)
151 		match |= IEEE1394_MATCH_SPECIFIER_ID;
152 	if (id[3] == id_table->version)
153 		match |= IEEE1394_MATCH_VERSION;
154 
155 	return (match & id_table->match_flags) == id_table->match_flags;
156 }
157 
158 static const struct ieee1394_device_id *unit_match(struct device *dev,
159 						   struct device_driver *drv)
160 {
161 	const struct ieee1394_device_id *id_table =
162 			container_of(drv, struct fw_driver, driver)->id_table;
163 	int id[] = {0, 0, 0, 0};
164 
165 	get_modalias_ids(fw_unit(dev), id);
166 
167 	for (; id_table->match_flags != 0; id_table++)
168 		if (match_ids(id_table, id))
169 			return id_table;
170 
171 	return NULL;
172 }
173 
174 static bool is_fw_unit(struct device *dev);
175 
176 static int fw_unit_match(struct device *dev, struct device_driver *drv)
177 {
178 	/* We only allow binding to fw_units. */
179 	return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
180 }
181 
182 static int fw_unit_probe(struct device *dev)
183 {
184 	struct fw_driver *driver =
185 			container_of(dev->driver, struct fw_driver, driver);
186 
187 	return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
188 }
189 
190 static int fw_unit_remove(struct device *dev)
191 {
192 	struct fw_driver *driver =
193 			container_of(dev->driver, struct fw_driver, driver);
194 
195 	return driver->remove(fw_unit(dev)), 0;
196 }
197 
198 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
199 {
200 	int id[] = {0, 0, 0, 0};
201 
202 	get_modalias_ids(unit, id);
203 
204 	return snprintf(buffer, buffer_size,
205 			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
206 			id[0], id[1], id[2], id[3]);
207 }
208 
209 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
210 {
211 	struct fw_unit *unit = fw_unit(dev);
212 	char modalias[64];
213 
214 	get_modalias(unit, modalias, sizeof(modalias));
215 
216 	if (add_uevent_var(env, "MODALIAS=%s", modalias))
217 		return -ENOMEM;
218 
219 	return 0;
220 }
221 
222 struct bus_type fw_bus_type = {
223 	.name = "firewire",
224 	.match = fw_unit_match,
225 	.probe = fw_unit_probe,
226 	.remove = fw_unit_remove,
227 };
228 EXPORT_SYMBOL(fw_bus_type);
229 
230 int fw_device_enable_phys_dma(struct fw_device *device)
231 {
232 	int generation = device->generation;
233 
234 	/* device->node_id, accessed below, must not be older than generation */
235 	smp_rmb();
236 
237 	return device->card->driver->enable_phys_dma(device->card,
238 						     device->node_id,
239 						     generation);
240 }
241 EXPORT_SYMBOL(fw_device_enable_phys_dma);
242 
243 struct config_rom_attribute {
244 	struct device_attribute attr;
245 	u32 key;
246 };
247 
248 static ssize_t show_immediate(struct device *dev,
249 			      struct device_attribute *dattr, char *buf)
250 {
251 	struct config_rom_attribute *attr =
252 		container_of(dattr, struct config_rom_attribute, attr);
253 	struct fw_csr_iterator ci;
254 	const u32 *dir;
255 	int key, value, ret = -ENOENT;
256 
257 	down_read(&fw_device_rwsem);
258 
259 	if (is_fw_unit(dev))
260 		dir = fw_unit(dev)->directory;
261 	else
262 		dir = fw_device(dev)->config_rom + 5;
263 
264 	fw_csr_iterator_init(&ci, dir);
265 	while (fw_csr_iterator_next(&ci, &key, &value))
266 		if (attr->key == key) {
267 			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
268 				       "0x%06x\n", value);
269 			break;
270 		}
271 
272 	up_read(&fw_device_rwsem);
273 
274 	return ret;
275 }
276 
277 #define IMMEDIATE_ATTR(name, key)				\
278 	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
279 
280 static ssize_t show_text_leaf(struct device *dev,
281 			      struct device_attribute *dattr, char *buf)
282 {
283 	struct config_rom_attribute *attr =
284 		container_of(dattr, struct config_rom_attribute, attr);
285 	const u32 *dir;
286 	size_t bufsize;
287 	char dummy_buf[2];
288 	int ret;
289 
290 	down_read(&fw_device_rwsem);
291 
292 	if (is_fw_unit(dev))
293 		dir = fw_unit(dev)->directory;
294 	else
295 		dir = fw_device(dev)->config_rom + 5;
296 
297 	if (buf) {
298 		bufsize = PAGE_SIZE - 1;
299 	} else {
300 		buf = dummy_buf;
301 		bufsize = 1;
302 	}
303 
304 	ret = fw_csr_string(dir, attr->key, buf, bufsize);
305 
306 	if (ret >= 0) {
307 		/* Strip trailing whitespace and add newline. */
308 		while (ret > 0 && isspace(buf[ret - 1]))
309 			ret--;
310 		strcpy(buf + ret, "\n");
311 		ret++;
312 	}
313 
314 	up_read(&fw_device_rwsem);
315 
316 	return ret;
317 }
318 
319 #define TEXT_LEAF_ATTR(name, key)				\
320 	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
321 
322 static struct config_rom_attribute config_rom_attributes[] = {
323 	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
324 	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
325 	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
326 	IMMEDIATE_ATTR(version, CSR_VERSION),
327 	IMMEDIATE_ATTR(model, CSR_MODEL),
328 	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
329 	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
330 	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
331 };
332 
333 static void init_fw_attribute_group(struct device *dev,
334 				    struct device_attribute *attrs,
335 				    struct fw_attribute_group *group)
336 {
337 	struct device_attribute *attr;
338 	int i, j;
339 
340 	for (j = 0; attrs[j].attr.name != NULL; j++)
341 		group->attrs[j] = &attrs[j].attr;
342 
343 	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
344 		attr = &config_rom_attributes[i].attr;
345 		if (attr->show(dev, attr, NULL) < 0)
346 			continue;
347 		group->attrs[j++] = &attr->attr;
348 	}
349 
350 	group->attrs[j] = NULL;
351 	group->groups[0] = &group->group;
352 	group->groups[1] = NULL;
353 	group->group.attrs = group->attrs;
354 	dev->groups = (const struct attribute_group **) group->groups;
355 }
356 
357 static ssize_t modalias_show(struct device *dev,
358 			     struct device_attribute *attr, char *buf)
359 {
360 	struct fw_unit *unit = fw_unit(dev);
361 	int length;
362 
363 	length = get_modalias(unit, buf, PAGE_SIZE);
364 	strcpy(buf + length, "\n");
365 
366 	return length + 1;
367 }
368 
369 static ssize_t rom_index_show(struct device *dev,
370 			      struct device_attribute *attr, char *buf)
371 {
372 	struct fw_device *device = fw_device(dev->parent);
373 	struct fw_unit *unit = fw_unit(dev);
374 
375 	return snprintf(buf, PAGE_SIZE, "%d\n",
376 			(int)(unit->directory - device->config_rom));
377 }
378 
379 static struct device_attribute fw_unit_attributes[] = {
380 	__ATTR_RO(modalias),
381 	__ATTR_RO(rom_index),
382 	__ATTR_NULL,
383 };
384 
385 static ssize_t config_rom_show(struct device *dev,
386 			       struct device_attribute *attr, char *buf)
387 {
388 	struct fw_device *device = fw_device(dev);
389 	size_t length;
390 
391 	down_read(&fw_device_rwsem);
392 	length = device->config_rom_length * 4;
393 	memcpy(buf, device->config_rom, length);
394 	up_read(&fw_device_rwsem);
395 
396 	return length;
397 }
398 
399 static ssize_t guid_show(struct device *dev,
400 			 struct device_attribute *attr, char *buf)
401 {
402 	struct fw_device *device = fw_device(dev);
403 	int ret;
404 
405 	down_read(&fw_device_rwsem);
406 	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
407 		       device->config_rom[3], device->config_rom[4]);
408 	up_read(&fw_device_rwsem);
409 
410 	return ret;
411 }
412 
413 static ssize_t is_local_show(struct device *dev,
414 			     struct device_attribute *attr, char *buf)
415 {
416 	struct fw_device *device = fw_device(dev);
417 
418 	return sprintf(buf, "%u\n", device->is_local);
419 }
420 
421 static int units_sprintf(char *buf, const u32 *directory)
422 {
423 	struct fw_csr_iterator ci;
424 	int key, value;
425 	int specifier_id = 0;
426 	int version = 0;
427 
428 	fw_csr_iterator_init(&ci, directory);
429 	while (fw_csr_iterator_next(&ci, &key, &value)) {
430 		switch (key) {
431 		case CSR_SPECIFIER_ID:
432 			specifier_id = value;
433 			break;
434 		case CSR_VERSION:
435 			version = value;
436 			break;
437 		}
438 	}
439 
440 	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
441 }
442 
443 static ssize_t units_show(struct device *dev,
444 			  struct device_attribute *attr, char *buf)
445 {
446 	struct fw_device *device = fw_device(dev);
447 	struct fw_csr_iterator ci;
448 	int key, value, i = 0;
449 
450 	down_read(&fw_device_rwsem);
451 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
452 	while (fw_csr_iterator_next(&ci, &key, &value)) {
453 		if (key != (CSR_UNIT | CSR_DIRECTORY))
454 			continue;
455 		i += units_sprintf(&buf[i], ci.p + value - 1);
456 		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
457 			break;
458 	}
459 	up_read(&fw_device_rwsem);
460 
461 	if (i)
462 		buf[i - 1] = '\n';
463 
464 	return i;
465 }
466 
467 static struct device_attribute fw_device_attributes[] = {
468 	__ATTR_RO(config_rom),
469 	__ATTR_RO(guid),
470 	__ATTR_RO(is_local),
471 	__ATTR_RO(units),
472 	__ATTR_NULL,
473 };
474 
475 static int read_rom(struct fw_device *device,
476 		    int generation, int index, u32 *data)
477 {
478 	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
479 	int i, rcode;
480 
481 	/* device->node_id, accessed below, must not be older than generation */
482 	smp_rmb();
483 
484 	for (i = 10; i < 100; i += 10) {
485 		rcode = fw_run_transaction(device->card,
486 				TCODE_READ_QUADLET_REQUEST, device->node_id,
487 				generation, device->max_speed, offset, data, 4);
488 		if (rcode != RCODE_BUSY)
489 			break;
490 		msleep(i);
491 	}
492 	be32_to_cpus(data);
493 
494 	return rcode;
495 }
496 
497 #define MAX_CONFIG_ROM_SIZE 256
498 
499 /*
500  * Read the bus info block, perform a speed probe, and read all of the rest of
501  * the config ROM.  We do all this with a cached bus generation.  If the bus
502  * generation changes under us, read_config_rom will fail and get retried.
503  * It's better to start all over in this case because the node from which we
504  * are reading the ROM may have changed the ROM during the reset.
505  * Returns either a result code or a negative error code.
506  */
507 static int read_config_rom(struct fw_device *device, int generation)
508 {
509 	struct fw_card *card = device->card;
510 	const u32 *old_rom, *new_rom;
511 	u32 *rom, *stack;
512 	u32 sp, key;
513 	int i, end, length, ret;
514 
515 	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
516 		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
517 	if (rom == NULL)
518 		return -ENOMEM;
519 
520 	stack = &rom[MAX_CONFIG_ROM_SIZE];
521 	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
522 
523 	device->max_speed = SCODE_100;
524 
525 	/* First read the bus info block. */
526 	for (i = 0; i < 5; i++) {
527 		ret = read_rom(device, generation, i, &rom[i]);
528 		if (ret != RCODE_COMPLETE)
529 			goto out;
530 		/*
531 		 * As per IEEE1212 7.2, during initialization, devices can
532 		 * reply with a 0 for the first quadlet of the config
533 		 * rom to indicate that they are booting (for example,
534 		 * if the firmware is on the disk of a external
535 		 * harddisk).  In that case we just fail, and the
536 		 * retry mechanism will try again later.
537 		 */
538 		if (i == 0 && rom[i] == 0) {
539 			ret = RCODE_BUSY;
540 			goto out;
541 		}
542 	}
543 
544 	device->max_speed = device->node->max_speed;
545 
546 	/*
547 	 * Determine the speed of
548 	 *   - devices with link speed less than PHY speed,
549 	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
550 	 *   - all devices if there are 1394b repeaters.
551 	 * Note, we cannot use the bus info block's link_spd as starting point
552 	 * because some buggy firmwares set it lower than necessary and because
553 	 * 1394-1995 nodes do not have the field.
554 	 */
555 	if ((rom[2] & 0x7) < device->max_speed ||
556 	    device->max_speed == SCODE_BETA ||
557 	    card->beta_repeaters_present) {
558 		u32 dummy;
559 
560 		/* for S1600 and S3200 */
561 		if (device->max_speed == SCODE_BETA)
562 			device->max_speed = card->link_speed;
563 
564 		while (device->max_speed > SCODE_100) {
565 			if (read_rom(device, generation, 0, &dummy) ==
566 			    RCODE_COMPLETE)
567 				break;
568 			device->max_speed--;
569 		}
570 	}
571 
572 	/*
573 	 * Now parse the config rom.  The config rom is a recursive
574 	 * directory structure so we parse it using a stack of
575 	 * references to the blocks that make up the structure.  We
576 	 * push a reference to the root directory on the stack to
577 	 * start things off.
578 	 */
579 	length = i;
580 	sp = 0;
581 	stack[sp++] = 0xc0000005;
582 	while (sp > 0) {
583 		/*
584 		 * Pop the next block reference of the stack.  The
585 		 * lower 24 bits is the offset into the config rom,
586 		 * the upper 8 bits are the type of the reference the
587 		 * block.
588 		 */
589 		key = stack[--sp];
590 		i = key & 0xffffff;
591 		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
592 			ret = -ENXIO;
593 			goto out;
594 		}
595 
596 		/* Read header quadlet for the block to get the length. */
597 		ret = read_rom(device, generation, i, &rom[i]);
598 		if (ret != RCODE_COMPLETE)
599 			goto out;
600 		end = i + (rom[i] >> 16) + 1;
601 		if (end > MAX_CONFIG_ROM_SIZE) {
602 			/*
603 			 * This block extends outside the config ROM which is
604 			 * a firmware bug.  Ignore this whole block, i.e.
605 			 * simply set a fake block length of 0.
606 			 */
607 			fw_err(card, "skipped invalid ROM block %x at %llx\n",
608 			       rom[i],
609 			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
610 			rom[i] = 0;
611 			end = i;
612 		}
613 		i++;
614 
615 		/*
616 		 * Now read in the block.  If this is a directory
617 		 * block, check the entries as we read them to see if
618 		 * it references another block, and push it in that case.
619 		 */
620 		for (; i < end; i++) {
621 			ret = read_rom(device, generation, i, &rom[i]);
622 			if (ret != RCODE_COMPLETE)
623 				goto out;
624 
625 			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
626 				continue;
627 			/*
628 			 * Offset points outside the ROM.  May be a firmware
629 			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
630 			 * 7.7.18).  Simply overwrite this pointer here by a
631 			 * fake immediate entry so that later iterators over
632 			 * the ROM don't have to check offsets all the time.
633 			 */
634 			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
635 				fw_err(card,
636 				       "skipped unsupported ROM entry %x at %llx\n",
637 				       rom[i],
638 				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
639 				rom[i] = 0;
640 				continue;
641 			}
642 			stack[sp++] = i + rom[i];
643 		}
644 		if (length < i)
645 			length = i;
646 	}
647 
648 	old_rom = device->config_rom;
649 	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
650 	if (new_rom == NULL) {
651 		ret = -ENOMEM;
652 		goto out;
653 	}
654 
655 	down_write(&fw_device_rwsem);
656 	device->config_rom = new_rom;
657 	device->config_rom_length = length;
658 	up_write(&fw_device_rwsem);
659 
660 	kfree(old_rom);
661 	ret = RCODE_COMPLETE;
662 	device->max_rec	= rom[2] >> 12 & 0xf;
663 	device->cmc	= rom[2] >> 30 & 1;
664 	device->irmc	= rom[2] >> 31 & 1;
665  out:
666 	kfree(rom);
667 
668 	return ret;
669 }
670 
671 static void fw_unit_release(struct device *dev)
672 {
673 	struct fw_unit *unit = fw_unit(dev);
674 
675 	fw_device_put(fw_parent_device(unit));
676 	kfree(unit);
677 }
678 
679 static struct device_type fw_unit_type = {
680 	.uevent		= fw_unit_uevent,
681 	.release	= fw_unit_release,
682 };
683 
684 static bool is_fw_unit(struct device *dev)
685 {
686 	return dev->type == &fw_unit_type;
687 }
688 
689 static void create_units(struct fw_device *device)
690 {
691 	struct fw_csr_iterator ci;
692 	struct fw_unit *unit;
693 	int key, value, i;
694 
695 	i = 0;
696 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
697 	while (fw_csr_iterator_next(&ci, &key, &value)) {
698 		if (key != (CSR_UNIT | CSR_DIRECTORY))
699 			continue;
700 
701 		/*
702 		 * Get the address of the unit directory and try to
703 		 * match the drivers id_tables against it.
704 		 */
705 		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
706 		if (unit == NULL)
707 			continue;
708 
709 		unit->directory = ci.p + value - 1;
710 		unit->device.bus = &fw_bus_type;
711 		unit->device.type = &fw_unit_type;
712 		unit->device.parent = &device->device;
713 		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
714 
715 		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
716 				ARRAY_SIZE(fw_unit_attributes) +
717 				ARRAY_SIZE(config_rom_attributes));
718 		init_fw_attribute_group(&unit->device,
719 					fw_unit_attributes,
720 					&unit->attribute_group);
721 
722 		if (device_register(&unit->device) < 0)
723 			goto skip_unit;
724 
725 		fw_device_get(device);
726 		continue;
727 
728 	skip_unit:
729 		kfree(unit);
730 	}
731 }
732 
733 static int shutdown_unit(struct device *device, void *data)
734 {
735 	device_unregister(device);
736 
737 	return 0;
738 }
739 
740 /*
741  * fw_device_rwsem acts as dual purpose mutex:
742  *   - serializes accesses to fw_device_idr,
743  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
744  *     fw_unit.directory, unless those accesses happen at safe occasions
745  */
746 DECLARE_RWSEM(fw_device_rwsem);
747 
748 DEFINE_IDR(fw_device_idr);
749 int fw_cdev_major;
750 
751 struct fw_device *fw_device_get_by_devt(dev_t devt)
752 {
753 	struct fw_device *device;
754 
755 	down_read(&fw_device_rwsem);
756 	device = idr_find(&fw_device_idr, MINOR(devt));
757 	if (device)
758 		fw_device_get(device);
759 	up_read(&fw_device_rwsem);
760 
761 	return device;
762 }
763 
764 struct workqueue_struct *fw_workqueue;
765 EXPORT_SYMBOL(fw_workqueue);
766 
767 static void fw_schedule_device_work(struct fw_device *device,
768 				    unsigned long delay)
769 {
770 	queue_delayed_work(fw_workqueue, &device->work, delay);
771 }
772 
773 /*
774  * These defines control the retry behavior for reading the config
775  * rom.  It shouldn't be necessary to tweak these; if the device
776  * doesn't respond to a config rom read within 10 seconds, it's not
777  * going to respond at all.  As for the initial delay, a lot of
778  * devices will be able to respond within half a second after bus
779  * reset.  On the other hand, it's not really worth being more
780  * aggressive than that, since it scales pretty well; if 10 devices
781  * are plugged in, they're all getting read within one second.
782  */
783 
784 #define MAX_RETRIES	10
785 #define RETRY_DELAY	(3 * HZ)
786 #define INITIAL_DELAY	(HZ / 2)
787 #define SHUTDOWN_DELAY	(2 * HZ)
788 
789 static void fw_device_shutdown(struct work_struct *work)
790 {
791 	struct fw_device *device =
792 		container_of(work, struct fw_device, work.work);
793 	int minor = MINOR(device->device.devt);
794 
795 	if (time_before64(get_jiffies_64(),
796 			  device->card->reset_jiffies + SHUTDOWN_DELAY)
797 	    && !list_empty(&device->card->link)) {
798 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
799 		return;
800 	}
801 
802 	if (atomic_cmpxchg(&device->state,
803 			   FW_DEVICE_GONE,
804 			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
805 		return;
806 
807 	fw_device_cdev_remove(device);
808 	device_for_each_child(&device->device, NULL, shutdown_unit);
809 	device_unregister(&device->device);
810 
811 	down_write(&fw_device_rwsem);
812 	idr_remove(&fw_device_idr, minor);
813 	up_write(&fw_device_rwsem);
814 
815 	fw_device_put(device);
816 }
817 
818 static void fw_device_release(struct device *dev)
819 {
820 	struct fw_device *device = fw_device(dev);
821 	struct fw_card *card = device->card;
822 	unsigned long flags;
823 
824 	/*
825 	 * Take the card lock so we don't set this to NULL while a
826 	 * FW_NODE_UPDATED callback is being handled or while the
827 	 * bus manager work looks at this node.
828 	 */
829 	spin_lock_irqsave(&card->lock, flags);
830 	device->node->data = NULL;
831 	spin_unlock_irqrestore(&card->lock, flags);
832 
833 	fw_node_put(device->node);
834 	kfree(device->config_rom);
835 	kfree(device);
836 	fw_card_put(card);
837 }
838 
839 static struct device_type fw_device_type = {
840 	.release = fw_device_release,
841 };
842 
843 static bool is_fw_device(struct device *dev)
844 {
845 	return dev->type == &fw_device_type;
846 }
847 
848 static int update_unit(struct device *dev, void *data)
849 {
850 	struct fw_unit *unit = fw_unit(dev);
851 	struct fw_driver *driver = (struct fw_driver *)dev->driver;
852 
853 	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
854 		device_lock(dev);
855 		driver->update(unit);
856 		device_unlock(dev);
857 	}
858 
859 	return 0;
860 }
861 
862 static void fw_device_update(struct work_struct *work)
863 {
864 	struct fw_device *device =
865 		container_of(work, struct fw_device, work.work);
866 
867 	fw_device_cdev_update(device);
868 	device_for_each_child(&device->device, NULL, update_unit);
869 }
870 
871 /*
872  * If a device was pending for deletion because its node went away but its
873  * bus info block and root directory header matches that of a newly discovered
874  * device, revive the existing fw_device.
875  * The newly allocated fw_device becomes obsolete instead.
876  */
877 static int lookup_existing_device(struct device *dev, void *data)
878 {
879 	struct fw_device *old = fw_device(dev);
880 	struct fw_device *new = data;
881 	struct fw_card *card = new->card;
882 	int match = 0;
883 
884 	if (!is_fw_device(dev))
885 		return 0;
886 
887 	down_read(&fw_device_rwsem); /* serialize config_rom access */
888 	spin_lock_irq(&card->lock);  /* serialize node access */
889 
890 	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
891 	    atomic_cmpxchg(&old->state,
892 			   FW_DEVICE_GONE,
893 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
894 		struct fw_node *current_node = new->node;
895 		struct fw_node *obsolete_node = old->node;
896 
897 		new->node = obsolete_node;
898 		new->node->data = new;
899 		old->node = current_node;
900 		old->node->data = old;
901 
902 		old->max_speed = new->max_speed;
903 		old->node_id = current_node->node_id;
904 		smp_wmb();  /* update node_id before generation */
905 		old->generation = card->generation;
906 		old->config_rom_retries = 0;
907 		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
908 
909 		old->workfn = fw_device_update;
910 		fw_schedule_device_work(old, 0);
911 
912 		if (current_node == card->root_node)
913 			fw_schedule_bm_work(card, 0);
914 
915 		match = 1;
916 	}
917 
918 	spin_unlock_irq(&card->lock);
919 	up_read(&fw_device_rwsem);
920 
921 	return match;
922 }
923 
924 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
925 
926 static void set_broadcast_channel(struct fw_device *device, int generation)
927 {
928 	struct fw_card *card = device->card;
929 	__be32 data;
930 	int rcode;
931 
932 	if (!card->broadcast_channel_allocated)
933 		return;
934 
935 	/*
936 	 * The Broadcast_Channel Valid bit is required by nodes which want to
937 	 * transmit on this channel.  Such transmissions are practically
938 	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
939 	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
940 	 * to narrow down to which nodes we send Broadcast_Channel updates.
941 	 */
942 	if (!device->irmc || device->max_rec < 8)
943 		return;
944 
945 	/*
946 	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
947 	 * Perform a read test first.
948 	 */
949 	if (device->bc_implemented == BC_UNKNOWN) {
950 		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
951 				device->node_id, generation, device->max_speed,
952 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
953 				&data, 4);
954 		switch (rcode) {
955 		case RCODE_COMPLETE:
956 			if (data & cpu_to_be32(1 << 31)) {
957 				device->bc_implemented = BC_IMPLEMENTED;
958 				break;
959 			}
960 			/* else, fall through - to case address error */
961 		case RCODE_ADDRESS_ERROR:
962 			device->bc_implemented = BC_UNIMPLEMENTED;
963 		}
964 	}
965 
966 	if (device->bc_implemented == BC_IMPLEMENTED) {
967 		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
968 				   BROADCAST_CHANNEL_VALID);
969 		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
970 				device->node_id, generation, device->max_speed,
971 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
972 				&data, 4);
973 	}
974 }
975 
976 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
977 {
978 	if (is_fw_device(dev))
979 		set_broadcast_channel(fw_device(dev), (long)gen);
980 
981 	return 0;
982 }
983 
984 static void fw_device_init(struct work_struct *work)
985 {
986 	struct fw_device *device =
987 		container_of(work, struct fw_device, work.work);
988 	struct fw_card *card = device->card;
989 	struct device *revived_dev;
990 	int minor, ret;
991 
992 	/*
993 	 * All failure paths here set node->data to NULL, so that we
994 	 * don't try to do device_for_each_child() on a kfree()'d
995 	 * device.
996 	 */
997 
998 	ret = read_config_rom(device, device->generation);
999 	if (ret != RCODE_COMPLETE) {
1000 		if (device->config_rom_retries < MAX_RETRIES &&
1001 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1002 			device->config_rom_retries++;
1003 			fw_schedule_device_work(device, RETRY_DELAY);
1004 		} else {
1005 			if (device->node->link_on)
1006 				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1007 					  device->node_id,
1008 					  fw_rcode_string(ret));
1009 			if (device->node == card->root_node)
1010 				fw_schedule_bm_work(card, 0);
1011 			fw_device_release(&device->device);
1012 		}
1013 		return;
1014 	}
1015 
1016 	revived_dev = device_find_child(card->device,
1017 					device, lookup_existing_device);
1018 	if (revived_dev) {
1019 		put_device(revived_dev);
1020 		fw_device_release(&device->device);
1021 
1022 		return;
1023 	}
1024 
1025 	device_initialize(&device->device);
1026 
1027 	fw_device_get(device);
1028 	down_write(&fw_device_rwsem);
1029 	minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1030 			GFP_KERNEL);
1031 	up_write(&fw_device_rwsem);
1032 
1033 	if (minor < 0)
1034 		goto error;
1035 
1036 	device->device.bus = &fw_bus_type;
1037 	device->device.type = &fw_device_type;
1038 	device->device.parent = card->device;
1039 	device->device.devt = MKDEV(fw_cdev_major, minor);
1040 	dev_set_name(&device->device, "fw%d", minor);
1041 
1042 	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1043 			ARRAY_SIZE(fw_device_attributes) +
1044 			ARRAY_SIZE(config_rom_attributes));
1045 	init_fw_attribute_group(&device->device,
1046 				fw_device_attributes,
1047 				&device->attribute_group);
1048 
1049 	if (device_add(&device->device)) {
1050 		fw_err(card, "failed to add device\n");
1051 		goto error_with_cdev;
1052 	}
1053 
1054 	create_units(device);
1055 
1056 	/*
1057 	 * Transition the device to running state.  If it got pulled
1058 	 * out from under us while we did the initialization work, we
1059 	 * have to shut down the device again here.  Normally, though,
1060 	 * fw_node_event will be responsible for shutting it down when
1061 	 * necessary.  We have to use the atomic cmpxchg here to avoid
1062 	 * racing with the FW_NODE_DESTROYED case in
1063 	 * fw_node_event().
1064 	 */
1065 	if (atomic_cmpxchg(&device->state,
1066 			   FW_DEVICE_INITIALIZING,
1067 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1068 		device->workfn = fw_device_shutdown;
1069 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1070 	} else {
1071 		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1072 			  dev_name(&device->device),
1073 			  device->config_rom[3], device->config_rom[4],
1074 			  1 << device->max_speed);
1075 		device->config_rom_retries = 0;
1076 
1077 		set_broadcast_channel(device, device->generation);
1078 
1079 		add_device_randomness(&device->config_rom[3], 8);
1080 	}
1081 
1082 	/*
1083 	 * Reschedule the IRM work if we just finished reading the
1084 	 * root node config rom.  If this races with a bus reset we
1085 	 * just end up running the IRM work a couple of extra times -
1086 	 * pretty harmless.
1087 	 */
1088 	if (device->node == card->root_node)
1089 		fw_schedule_bm_work(card, 0);
1090 
1091 	return;
1092 
1093  error_with_cdev:
1094 	down_write(&fw_device_rwsem);
1095 	idr_remove(&fw_device_idr, minor);
1096 	up_write(&fw_device_rwsem);
1097  error:
1098 	fw_device_put(device);		/* fw_device_idr's reference */
1099 
1100 	put_device(&device->device);	/* our reference */
1101 }
1102 
1103 /* Reread and compare bus info block and header of root directory */
1104 static int reread_config_rom(struct fw_device *device, int generation,
1105 			     bool *changed)
1106 {
1107 	u32 q;
1108 	int i, rcode;
1109 
1110 	for (i = 0; i < 6; i++) {
1111 		rcode = read_rom(device, generation, i, &q);
1112 		if (rcode != RCODE_COMPLETE)
1113 			return rcode;
1114 
1115 		if (i == 0 && q == 0)
1116 			/* inaccessible (see read_config_rom); retry later */
1117 			return RCODE_BUSY;
1118 
1119 		if (q != device->config_rom[i]) {
1120 			*changed = true;
1121 			return RCODE_COMPLETE;
1122 		}
1123 	}
1124 
1125 	*changed = false;
1126 	return RCODE_COMPLETE;
1127 }
1128 
1129 static void fw_device_refresh(struct work_struct *work)
1130 {
1131 	struct fw_device *device =
1132 		container_of(work, struct fw_device, work.work);
1133 	struct fw_card *card = device->card;
1134 	int ret, node_id = device->node_id;
1135 	bool changed;
1136 
1137 	ret = reread_config_rom(device, device->generation, &changed);
1138 	if (ret != RCODE_COMPLETE)
1139 		goto failed_config_rom;
1140 
1141 	if (!changed) {
1142 		if (atomic_cmpxchg(&device->state,
1143 				   FW_DEVICE_INITIALIZING,
1144 				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1145 			goto gone;
1146 
1147 		fw_device_update(work);
1148 		device->config_rom_retries = 0;
1149 		goto out;
1150 	}
1151 
1152 	/*
1153 	 * Something changed.  We keep things simple and don't investigate
1154 	 * further.  We just destroy all previous units and create new ones.
1155 	 */
1156 	device_for_each_child(&device->device, NULL, shutdown_unit);
1157 
1158 	ret = read_config_rom(device, device->generation);
1159 	if (ret != RCODE_COMPLETE)
1160 		goto failed_config_rom;
1161 
1162 	fw_device_cdev_update(device);
1163 	create_units(device);
1164 
1165 	/* Userspace may want to re-read attributes. */
1166 	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1167 
1168 	if (atomic_cmpxchg(&device->state,
1169 			   FW_DEVICE_INITIALIZING,
1170 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1171 		goto gone;
1172 
1173 	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1174 	device->config_rom_retries = 0;
1175 	goto out;
1176 
1177  failed_config_rom:
1178 	if (device->config_rom_retries < MAX_RETRIES &&
1179 	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1180 		device->config_rom_retries++;
1181 		fw_schedule_device_work(device, RETRY_DELAY);
1182 		return;
1183 	}
1184 
1185 	fw_notice(card, "giving up on refresh of device %s: %s\n",
1186 		  dev_name(&device->device), fw_rcode_string(ret));
1187  gone:
1188 	atomic_set(&device->state, FW_DEVICE_GONE);
1189 	device->workfn = fw_device_shutdown;
1190 	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1191  out:
1192 	if (node_id == card->root_node->node_id)
1193 		fw_schedule_bm_work(card, 0);
1194 }
1195 
1196 static void fw_device_workfn(struct work_struct *work)
1197 {
1198 	struct fw_device *device = container_of(to_delayed_work(work),
1199 						struct fw_device, work);
1200 	device->workfn(work);
1201 }
1202 
1203 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1204 {
1205 	struct fw_device *device;
1206 
1207 	switch (event) {
1208 	case FW_NODE_CREATED:
1209 		/*
1210 		 * Attempt to scan the node, regardless whether its self ID has
1211 		 * the L (link active) flag set or not.  Some broken devices
1212 		 * send L=0 but have an up-and-running link; others send L=1
1213 		 * without actually having a link.
1214 		 */
1215  create:
1216 		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1217 		if (device == NULL)
1218 			break;
1219 
1220 		/*
1221 		 * Do minimal initialization of the device here, the
1222 		 * rest will happen in fw_device_init().
1223 		 *
1224 		 * Attention:  A lot of things, even fw_device_get(),
1225 		 * cannot be done before fw_device_init() finished!
1226 		 * You can basically just check device->state and
1227 		 * schedule work until then, but only while holding
1228 		 * card->lock.
1229 		 */
1230 		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1231 		device->card = fw_card_get(card);
1232 		device->node = fw_node_get(node);
1233 		device->node_id = node->node_id;
1234 		device->generation = card->generation;
1235 		device->is_local = node == card->local_node;
1236 		mutex_init(&device->client_list_mutex);
1237 		INIT_LIST_HEAD(&device->client_list);
1238 
1239 		/*
1240 		 * Set the node data to point back to this device so
1241 		 * FW_NODE_UPDATED callbacks can update the node_id
1242 		 * and generation for the device.
1243 		 */
1244 		node->data = device;
1245 
1246 		/*
1247 		 * Many devices are slow to respond after bus resets,
1248 		 * especially if they are bus powered and go through
1249 		 * power-up after getting plugged in.  We schedule the
1250 		 * first config rom scan half a second after bus reset.
1251 		 */
1252 		device->workfn = fw_device_init;
1253 		INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1254 		fw_schedule_device_work(device, INITIAL_DELAY);
1255 		break;
1256 
1257 	case FW_NODE_INITIATED_RESET:
1258 	case FW_NODE_LINK_ON:
1259 		device = node->data;
1260 		if (device == NULL)
1261 			goto create;
1262 
1263 		device->node_id = node->node_id;
1264 		smp_wmb();  /* update node_id before generation */
1265 		device->generation = card->generation;
1266 		if (atomic_cmpxchg(&device->state,
1267 			    FW_DEVICE_RUNNING,
1268 			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1269 			device->workfn = fw_device_refresh;
1270 			fw_schedule_device_work(device,
1271 				device->is_local ? 0 : INITIAL_DELAY);
1272 		}
1273 		break;
1274 
1275 	case FW_NODE_UPDATED:
1276 		device = node->data;
1277 		if (device == NULL)
1278 			break;
1279 
1280 		device->node_id = node->node_id;
1281 		smp_wmb();  /* update node_id before generation */
1282 		device->generation = card->generation;
1283 		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1284 			device->workfn = fw_device_update;
1285 			fw_schedule_device_work(device, 0);
1286 		}
1287 		break;
1288 
1289 	case FW_NODE_DESTROYED:
1290 	case FW_NODE_LINK_OFF:
1291 		if (!node->data)
1292 			break;
1293 
1294 		/*
1295 		 * Destroy the device associated with the node.  There
1296 		 * are two cases here: either the device is fully
1297 		 * initialized (FW_DEVICE_RUNNING) or we're in the
1298 		 * process of reading its config rom
1299 		 * (FW_DEVICE_INITIALIZING).  If it is fully
1300 		 * initialized we can reuse device->work to schedule a
1301 		 * full fw_device_shutdown().  If not, there's work
1302 		 * scheduled to read it's config rom, and we just put
1303 		 * the device in shutdown state to have that code fail
1304 		 * to create the device.
1305 		 */
1306 		device = node->data;
1307 		if (atomic_xchg(&device->state,
1308 				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1309 			device->workfn = fw_device_shutdown;
1310 			fw_schedule_device_work(device,
1311 				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1312 		}
1313 		break;
1314 	}
1315 }
1316