1 /* 2 * Device probing and sysfs code. 3 * 4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 #include <linux/bug.h> 22 #include <linux/ctype.h> 23 #include <linux/delay.h> 24 #include <linux/device.h> 25 #include <linux/errno.h> 26 #include <linux/firewire.h> 27 #include <linux/firewire-constants.h> 28 #include <linux/idr.h> 29 #include <linux/jiffies.h> 30 #include <linux/kobject.h> 31 #include <linux/list.h> 32 #include <linux/mod_devicetable.h> 33 #include <linux/module.h> 34 #include <linux/mutex.h> 35 #include <linux/rwsem.h> 36 #include <linux/slab.h> 37 #include <linux/spinlock.h> 38 #include <linux/string.h> 39 #include <linux/workqueue.h> 40 41 #include <asm/atomic.h> 42 #include <asm/byteorder.h> 43 #include <asm/system.h> 44 45 #include "core.h" 46 47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) 48 { 49 ci->p = p + 1; 50 ci->end = ci->p + (p[0] >> 16); 51 } 52 EXPORT_SYMBOL(fw_csr_iterator_init); 53 54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) 55 { 56 *key = *ci->p >> 24; 57 *value = *ci->p & 0xffffff; 58 59 return ci->p++ < ci->end; 60 } 61 EXPORT_SYMBOL(fw_csr_iterator_next); 62 63 static const u32 *search_leaf(const u32 *directory, int search_key) 64 { 65 struct fw_csr_iterator ci; 66 int last_key = 0, key, value; 67 68 fw_csr_iterator_init(&ci, directory); 69 while (fw_csr_iterator_next(&ci, &key, &value)) { 70 if (last_key == search_key && 71 key == (CSR_DESCRIPTOR | CSR_LEAF)) 72 return ci.p - 1 + value; 73 74 last_key = key; 75 } 76 77 return NULL; 78 } 79 80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) 81 { 82 unsigned int quadlets, i; 83 char c; 84 85 if (!size || !buf) 86 return -EINVAL; 87 88 quadlets = min(block[0] >> 16, 256U); 89 if (quadlets < 2) 90 return -ENODATA; 91 92 if (block[1] != 0 || block[2] != 0) 93 /* unknown language/character set */ 94 return -ENODATA; 95 96 block += 3; 97 quadlets -= 2; 98 for (i = 0; i < quadlets * 4 && i < size - 1; i++) { 99 c = block[i / 4] >> (24 - 8 * (i % 4)); 100 if (c == '\0') 101 break; 102 buf[i] = c; 103 } 104 buf[i] = '\0'; 105 106 return i; 107 } 108 109 /** 110 * fw_csr_string() - reads a string from the configuration ROM 111 * @directory: e.g. root directory or unit directory 112 * @key: the key of the preceding directory entry 113 * @buf: where to put the string 114 * @size: size of @buf, in bytes 115 * 116 * The string is taken from a minimal ASCII text descriptor leaf after 117 * the immediate entry with @key. The string is zero-terminated. 118 * Returns strlen(buf) or a negative error code. 119 */ 120 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) 121 { 122 const u32 *leaf = search_leaf(directory, key); 123 if (!leaf) 124 return -ENOENT; 125 126 return textual_leaf_to_string(leaf, buf, size); 127 } 128 EXPORT_SYMBOL(fw_csr_string); 129 130 static void get_ids(const u32 *directory, int *id) 131 { 132 struct fw_csr_iterator ci; 133 int key, value; 134 135 fw_csr_iterator_init(&ci, directory); 136 while (fw_csr_iterator_next(&ci, &key, &value)) { 137 switch (key) { 138 case CSR_VENDOR: id[0] = value; break; 139 case CSR_MODEL: id[1] = value; break; 140 case CSR_SPECIFIER_ID: id[2] = value; break; 141 case CSR_VERSION: id[3] = value; break; 142 } 143 } 144 } 145 146 static void get_modalias_ids(struct fw_unit *unit, int *id) 147 { 148 get_ids(&fw_parent_device(unit)->config_rom[5], id); 149 get_ids(unit->directory, id); 150 } 151 152 static bool match_ids(const struct ieee1394_device_id *id_table, int *id) 153 { 154 int match = 0; 155 156 if (id[0] == id_table->vendor_id) 157 match |= IEEE1394_MATCH_VENDOR_ID; 158 if (id[1] == id_table->model_id) 159 match |= IEEE1394_MATCH_MODEL_ID; 160 if (id[2] == id_table->specifier_id) 161 match |= IEEE1394_MATCH_SPECIFIER_ID; 162 if (id[3] == id_table->version) 163 match |= IEEE1394_MATCH_VERSION; 164 165 return (match & id_table->match_flags) == id_table->match_flags; 166 } 167 168 static bool is_fw_unit(struct device *dev); 169 170 static int fw_unit_match(struct device *dev, struct device_driver *drv) 171 { 172 const struct ieee1394_device_id *id_table = 173 container_of(drv, struct fw_driver, driver)->id_table; 174 int id[] = {0, 0, 0, 0}; 175 176 /* We only allow binding to fw_units. */ 177 if (!is_fw_unit(dev)) 178 return 0; 179 180 get_modalias_ids(fw_unit(dev), id); 181 182 for (; id_table->match_flags != 0; id_table++) 183 if (match_ids(id_table, id)) 184 return 1; 185 186 return 0; 187 } 188 189 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size) 190 { 191 int id[] = {0, 0, 0, 0}; 192 193 get_modalias_ids(unit, id); 194 195 return snprintf(buffer, buffer_size, 196 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", 197 id[0], id[1], id[2], id[3]); 198 } 199 200 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env) 201 { 202 struct fw_unit *unit = fw_unit(dev); 203 char modalias[64]; 204 205 get_modalias(unit, modalias, sizeof(modalias)); 206 207 if (add_uevent_var(env, "MODALIAS=%s", modalias)) 208 return -ENOMEM; 209 210 return 0; 211 } 212 213 struct bus_type fw_bus_type = { 214 .name = "firewire", 215 .match = fw_unit_match, 216 }; 217 EXPORT_SYMBOL(fw_bus_type); 218 219 int fw_device_enable_phys_dma(struct fw_device *device) 220 { 221 int generation = device->generation; 222 223 /* device->node_id, accessed below, must not be older than generation */ 224 smp_rmb(); 225 226 return device->card->driver->enable_phys_dma(device->card, 227 device->node_id, 228 generation); 229 } 230 EXPORT_SYMBOL(fw_device_enable_phys_dma); 231 232 struct config_rom_attribute { 233 struct device_attribute attr; 234 u32 key; 235 }; 236 237 static ssize_t show_immediate(struct device *dev, 238 struct device_attribute *dattr, char *buf) 239 { 240 struct config_rom_attribute *attr = 241 container_of(dattr, struct config_rom_attribute, attr); 242 struct fw_csr_iterator ci; 243 const u32 *dir; 244 int key, value, ret = -ENOENT; 245 246 down_read(&fw_device_rwsem); 247 248 if (is_fw_unit(dev)) 249 dir = fw_unit(dev)->directory; 250 else 251 dir = fw_device(dev)->config_rom + 5; 252 253 fw_csr_iterator_init(&ci, dir); 254 while (fw_csr_iterator_next(&ci, &key, &value)) 255 if (attr->key == key) { 256 ret = snprintf(buf, buf ? PAGE_SIZE : 0, 257 "0x%06x\n", value); 258 break; 259 } 260 261 up_read(&fw_device_rwsem); 262 263 return ret; 264 } 265 266 #define IMMEDIATE_ATTR(name, key) \ 267 { __ATTR(name, S_IRUGO, show_immediate, NULL), key } 268 269 static ssize_t show_text_leaf(struct device *dev, 270 struct device_attribute *dattr, char *buf) 271 { 272 struct config_rom_attribute *attr = 273 container_of(dattr, struct config_rom_attribute, attr); 274 const u32 *dir; 275 size_t bufsize; 276 char dummy_buf[2]; 277 int ret; 278 279 down_read(&fw_device_rwsem); 280 281 if (is_fw_unit(dev)) 282 dir = fw_unit(dev)->directory; 283 else 284 dir = fw_device(dev)->config_rom + 5; 285 286 if (buf) { 287 bufsize = PAGE_SIZE - 1; 288 } else { 289 buf = dummy_buf; 290 bufsize = 1; 291 } 292 293 ret = fw_csr_string(dir, attr->key, buf, bufsize); 294 295 if (ret >= 0) { 296 /* Strip trailing whitespace and add newline. */ 297 while (ret > 0 && isspace(buf[ret - 1])) 298 ret--; 299 strcpy(buf + ret, "\n"); 300 ret++; 301 } 302 303 up_read(&fw_device_rwsem); 304 305 return ret; 306 } 307 308 #define TEXT_LEAF_ATTR(name, key) \ 309 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } 310 311 static struct config_rom_attribute config_rom_attributes[] = { 312 IMMEDIATE_ATTR(vendor, CSR_VENDOR), 313 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), 314 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), 315 IMMEDIATE_ATTR(version, CSR_VERSION), 316 IMMEDIATE_ATTR(model, CSR_MODEL), 317 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), 318 TEXT_LEAF_ATTR(model_name, CSR_MODEL), 319 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), 320 }; 321 322 static void init_fw_attribute_group(struct device *dev, 323 struct device_attribute *attrs, 324 struct fw_attribute_group *group) 325 { 326 struct device_attribute *attr; 327 int i, j; 328 329 for (j = 0; attrs[j].attr.name != NULL; j++) 330 group->attrs[j] = &attrs[j].attr; 331 332 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { 333 attr = &config_rom_attributes[i].attr; 334 if (attr->show(dev, attr, NULL) < 0) 335 continue; 336 group->attrs[j++] = &attr->attr; 337 } 338 339 group->attrs[j] = NULL; 340 group->groups[0] = &group->group; 341 group->groups[1] = NULL; 342 group->group.attrs = group->attrs; 343 dev->groups = (const struct attribute_group **) group->groups; 344 } 345 346 static ssize_t modalias_show(struct device *dev, 347 struct device_attribute *attr, char *buf) 348 { 349 struct fw_unit *unit = fw_unit(dev); 350 int length; 351 352 length = get_modalias(unit, buf, PAGE_SIZE); 353 strcpy(buf + length, "\n"); 354 355 return length + 1; 356 } 357 358 static ssize_t rom_index_show(struct device *dev, 359 struct device_attribute *attr, char *buf) 360 { 361 struct fw_device *device = fw_device(dev->parent); 362 struct fw_unit *unit = fw_unit(dev); 363 364 return snprintf(buf, PAGE_SIZE, "%d\n", 365 (int)(unit->directory - device->config_rom)); 366 } 367 368 static struct device_attribute fw_unit_attributes[] = { 369 __ATTR_RO(modalias), 370 __ATTR_RO(rom_index), 371 __ATTR_NULL, 372 }; 373 374 static ssize_t config_rom_show(struct device *dev, 375 struct device_attribute *attr, char *buf) 376 { 377 struct fw_device *device = fw_device(dev); 378 size_t length; 379 380 down_read(&fw_device_rwsem); 381 length = device->config_rom_length * 4; 382 memcpy(buf, device->config_rom, length); 383 up_read(&fw_device_rwsem); 384 385 return length; 386 } 387 388 static ssize_t guid_show(struct device *dev, 389 struct device_attribute *attr, char *buf) 390 { 391 struct fw_device *device = fw_device(dev); 392 int ret; 393 394 down_read(&fw_device_rwsem); 395 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n", 396 device->config_rom[3], device->config_rom[4]); 397 up_read(&fw_device_rwsem); 398 399 return ret; 400 } 401 402 static int units_sprintf(char *buf, const u32 *directory) 403 { 404 struct fw_csr_iterator ci; 405 int key, value; 406 int specifier_id = 0; 407 int version = 0; 408 409 fw_csr_iterator_init(&ci, directory); 410 while (fw_csr_iterator_next(&ci, &key, &value)) { 411 switch (key) { 412 case CSR_SPECIFIER_ID: 413 specifier_id = value; 414 break; 415 case CSR_VERSION: 416 version = value; 417 break; 418 } 419 } 420 421 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); 422 } 423 424 static ssize_t units_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 struct fw_device *device = fw_device(dev); 428 struct fw_csr_iterator ci; 429 int key, value, i = 0; 430 431 down_read(&fw_device_rwsem); 432 fw_csr_iterator_init(&ci, &device->config_rom[5]); 433 while (fw_csr_iterator_next(&ci, &key, &value)) { 434 if (key != (CSR_UNIT | CSR_DIRECTORY)) 435 continue; 436 i += units_sprintf(&buf[i], ci.p + value - 1); 437 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) 438 break; 439 } 440 up_read(&fw_device_rwsem); 441 442 if (i) 443 buf[i - 1] = '\n'; 444 445 return i; 446 } 447 448 static struct device_attribute fw_device_attributes[] = { 449 __ATTR_RO(config_rom), 450 __ATTR_RO(guid), 451 __ATTR_RO(units), 452 __ATTR_NULL, 453 }; 454 455 static int read_rom(struct fw_device *device, 456 int generation, int index, u32 *data) 457 { 458 int rcode; 459 460 /* device->node_id, accessed below, must not be older than generation */ 461 smp_rmb(); 462 463 rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST, 464 device->node_id, generation, device->max_speed, 465 (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4, 466 data, 4); 467 be32_to_cpus(data); 468 469 return rcode; 470 } 471 472 #define MAX_CONFIG_ROM_SIZE 256 473 474 /* 475 * Read the bus info block, perform a speed probe, and read all of the rest of 476 * the config ROM. We do all this with a cached bus generation. If the bus 477 * generation changes under us, read_config_rom will fail and get retried. 478 * It's better to start all over in this case because the node from which we 479 * are reading the ROM may have changed the ROM during the reset. 480 */ 481 static int read_config_rom(struct fw_device *device, int generation) 482 { 483 const u32 *old_rom, *new_rom; 484 u32 *rom, *stack; 485 u32 sp, key; 486 int i, end, length, ret = -1; 487 488 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + 489 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); 490 if (rom == NULL) 491 return -ENOMEM; 492 493 stack = &rom[MAX_CONFIG_ROM_SIZE]; 494 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); 495 496 device->max_speed = SCODE_100; 497 498 /* First read the bus info block. */ 499 for (i = 0; i < 5; i++) { 500 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE) 501 goto out; 502 /* 503 * As per IEEE1212 7.2, during power-up, devices can 504 * reply with a 0 for the first quadlet of the config 505 * rom to indicate that they are booting (for example, 506 * if the firmware is on the disk of a external 507 * harddisk). In that case we just fail, and the 508 * retry mechanism will try again later. 509 */ 510 if (i == 0 && rom[i] == 0) 511 goto out; 512 } 513 514 device->max_speed = device->node->max_speed; 515 516 /* 517 * Determine the speed of 518 * - devices with link speed less than PHY speed, 519 * - devices with 1394b PHY (unless only connected to 1394a PHYs), 520 * - all devices if there are 1394b repeaters. 521 * Note, we cannot use the bus info block's link_spd as starting point 522 * because some buggy firmwares set it lower than necessary and because 523 * 1394-1995 nodes do not have the field. 524 */ 525 if ((rom[2] & 0x7) < device->max_speed || 526 device->max_speed == SCODE_BETA || 527 device->card->beta_repeaters_present) { 528 u32 dummy; 529 530 /* for S1600 and S3200 */ 531 if (device->max_speed == SCODE_BETA) 532 device->max_speed = device->card->link_speed; 533 534 while (device->max_speed > SCODE_100) { 535 if (read_rom(device, generation, 0, &dummy) == 536 RCODE_COMPLETE) 537 break; 538 device->max_speed--; 539 } 540 } 541 542 /* 543 * Now parse the config rom. The config rom is a recursive 544 * directory structure so we parse it using a stack of 545 * references to the blocks that make up the structure. We 546 * push a reference to the root directory on the stack to 547 * start things off. 548 */ 549 length = i; 550 sp = 0; 551 stack[sp++] = 0xc0000005; 552 while (sp > 0) { 553 /* 554 * Pop the next block reference of the stack. The 555 * lower 24 bits is the offset into the config rom, 556 * the upper 8 bits are the type of the reference the 557 * block. 558 */ 559 key = stack[--sp]; 560 i = key & 0xffffff; 561 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) 562 goto out; 563 564 /* Read header quadlet for the block to get the length. */ 565 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE) 566 goto out; 567 end = i + (rom[i] >> 16) + 1; 568 if (end > MAX_CONFIG_ROM_SIZE) { 569 /* 570 * This block extends outside the config ROM which is 571 * a firmware bug. Ignore this whole block, i.e. 572 * simply set a fake block length of 0. 573 */ 574 fw_error("skipped invalid ROM block %x at %llx\n", 575 rom[i], 576 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 577 rom[i] = 0; 578 end = i; 579 } 580 i++; 581 582 /* 583 * Now read in the block. If this is a directory 584 * block, check the entries as we read them to see if 585 * it references another block, and push it in that case. 586 */ 587 for (; i < end; i++) { 588 if (read_rom(device, generation, i, &rom[i]) != 589 RCODE_COMPLETE) 590 goto out; 591 592 if ((key >> 30) != 3 || (rom[i] >> 30) < 2) 593 continue; 594 /* 595 * Offset points outside the ROM. May be a firmware 596 * bug or an Extended ROM entry (IEEE 1212-2001 clause 597 * 7.7.18). Simply overwrite this pointer here by a 598 * fake immediate entry so that later iterators over 599 * the ROM don't have to check offsets all the time. 600 */ 601 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { 602 fw_error("skipped unsupported ROM entry %x at %llx\n", 603 rom[i], 604 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 605 rom[i] = 0; 606 continue; 607 } 608 stack[sp++] = i + rom[i]; 609 } 610 if (length < i) 611 length = i; 612 } 613 614 old_rom = device->config_rom; 615 new_rom = kmemdup(rom, length * 4, GFP_KERNEL); 616 if (new_rom == NULL) 617 goto out; 618 619 down_write(&fw_device_rwsem); 620 device->config_rom = new_rom; 621 device->config_rom_length = length; 622 up_write(&fw_device_rwsem); 623 624 kfree(old_rom); 625 ret = 0; 626 device->max_rec = rom[2] >> 12 & 0xf; 627 device->cmc = rom[2] >> 30 & 1; 628 device->irmc = rom[2] >> 31 & 1; 629 out: 630 kfree(rom); 631 632 return ret; 633 } 634 635 static void fw_unit_release(struct device *dev) 636 { 637 struct fw_unit *unit = fw_unit(dev); 638 639 kfree(unit); 640 } 641 642 static struct device_type fw_unit_type = { 643 .uevent = fw_unit_uevent, 644 .release = fw_unit_release, 645 }; 646 647 static bool is_fw_unit(struct device *dev) 648 { 649 return dev->type == &fw_unit_type; 650 } 651 652 static void create_units(struct fw_device *device) 653 { 654 struct fw_csr_iterator ci; 655 struct fw_unit *unit; 656 int key, value, i; 657 658 i = 0; 659 fw_csr_iterator_init(&ci, &device->config_rom[5]); 660 while (fw_csr_iterator_next(&ci, &key, &value)) { 661 if (key != (CSR_UNIT | CSR_DIRECTORY)) 662 continue; 663 664 /* 665 * Get the address of the unit directory and try to 666 * match the drivers id_tables against it. 667 */ 668 unit = kzalloc(sizeof(*unit), GFP_KERNEL); 669 if (unit == NULL) { 670 fw_error("failed to allocate memory for unit\n"); 671 continue; 672 } 673 674 unit->directory = ci.p + value - 1; 675 unit->device.bus = &fw_bus_type; 676 unit->device.type = &fw_unit_type; 677 unit->device.parent = &device->device; 678 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); 679 680 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < 681 ARRAY_SIZE(fw_unit_attributes) + 682 ARRAY_SIZE(config_rom_attributes)); 683 init_fw_attribute_group(&unit->device, 684 fw_unit_attributes, 685 &unit->attribute_group); 686 687 if (device_register(&unit->device) < 0) 688 goto skip_unit; 689 690 continue; 691 692 skip_unit: 693 kfree(unit); 694 } 695 } 696 697 static int shutdown_unit(struct device *device, void *data) 698 { 699 device_unregister(device); 700 701 return 0; 702 } 703 704 /* 705 * fw_device_rwsem acts as dual purpose mutex: 706 * - serializes accesses to fw_device_idr, 707 * - serializes accesses to fw_device.config_rom/.config_rom_length and 708 * fw_unit.directory, unless those accesses happen at safe occasions 709 */ 710 DECLARE_RWSEM(fw_device_rwsem); 711 712 DEFINE_IDR(fw_device_idr); 713 int fw_cdev_major; 714 715 struct fw_device *fw_device_get_by_devt(dev_t devt) 716 { 717 struct fw_device *device; 718 719 down_read(&fw_device_rwsem); 720 device = idr_find(&fw_device_idr, MINOR(devt)); 721 if (device) 722 fw_device_get(device); 723 up_read(&fw_device_rwsem); 724 725 return device; 726 } 727 728 struct workqueue_struct *fw_workqueue; 729 EXPORT_SYMBOL(fw_workqueue); 730 731 static void fw_schedule_device_work(struct fw_device *device, 732 unsigned long delay) 733 { 734 queue_delayed_work(fw_workqueue, &device->work, delay); 735 } 736 737 /* 738 * These defines control the retry behavior for reading the config 739 * rom. It shouldn't be necessary to tweak these; if the device 740 * doesn't respond to a config rom read within 10 seconds, it's not 741 * going to respond at all. As for the initial delay, a lot of 742 * devices will be able to respond within half a second after bus 743 * reset. On the other hand, it's not really worth being more 744 * aggressive than that, since it scales pretty well; if 10 devices 745 * are plugged in, they're all getting read within one second. 746 */ 747 748 #define MAX_RETRIES 10 749 #define RETRY_DELAY (3 * HZ) 750 #define INITIAL_DELAY (HZ / 2) 751 #define SHUTDOWN_DELAY (2 * HZ) 752 753 static void fw_device_shutdown(struct work_struct *work) 754 { 755 struct fw_device *device = 756 container_of(work, struct fw_device, work.work); 757 int minor = MINOR(device->device.devt); 758 759 if (time_before64(get_jiffies_64(), 760 device->card->reset_jiffies + SHUTDOWN_DELAY) 761 && !list_empty(&device->card->link)) { 762 fw_schedule_device_work(device, SHUTDOWN_DELAY); 763 return; 764 } 765 766 if (atomic_cmpxchg(&device->state, 767 FW_DEVICE_GONE, 768 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) 769 return; 770 771 fw_device_cdev_remove(device); 772 device_for_each_child(&device->device, NULL, shutdown_unit); 773 device_unregister(&device->device); 774 775 down_write(&fw_device_rwsem); 776 idr_remove(&fw_device_idr, minor); 777 up_write(&fw_device_rwsem); 778 779 fw_device_put(device); 780 } 781 782 static void fw_device_release(struct device *dev) 783 { 784 struct fw_device *device = fw_device(dev); 785 struct fw_card *card = device->card; 786 unsigned long flags; 787 788 /* 789 * Take the card lock so we don't set this to NULL while a 790 * FW_NODE_UPDATED callback is being handled or while the 791 * bus manager work looks at this node. 792 */ 793 spin_lock_irqsave(&card->lock, flags); 794 device->node->data = NULL; 795 spin_unlock_irqrestore(&card->lock, flags); 796 797 fw_node_put(device->node); 798 kfree(device->config_rom); 799 kfree(device); 800 fw_card_put(card); 801 } 802 803 static struct device_type fw_device_type = { 804 .release = fw_device_release, 805 }; 806 807 static bool is_fw_device(struct device *dev) 808 { 809 return dev->type == &fw_device_type; 810 } 811 812 static int update_unit(struct device *dev, void *data) 813 { 814 struct fw_unit *unit = fw_unit(dev); 815 struct fw_driver *driver = (struct fw_driver *)dev->driver; 816 817 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { 818 device_lock(dev); 819 driver->update(unit); 820 device_unlock(dev); 821 } 822 823 return 0; 824 } 825 826 static void fw_device_update(struct work_struct *work) 827 { 828 struct fw_device *device = 829 container_of(work, struct fw_device, work.work); 830 831 fw_device_cdev_update(device); 832 device_for_each_child(&device->device, NULL, update_unit); 833 } 834 835 /* 836 * If a device was pending for deletion because its node went away but its 837 * bus info block and root directory header matches that of a newly discovered 838 * device, revive the existing fw_device. 839 * The newly allocated fw_device becomes obsolete instead. 840 */ 841 static int lookup_existing_device(struct device *dev, void *data) 842 { 843 struct fw_device *old = fw_device(dev); 844 struct fw_device *new = data; 845 struct fw_card *card = new->card; 846 int match = 0; 847 848 if (!is_fw_device(dev)) 849 return 0; 850 851 down_read(&fw_device_rwsem); /* serialize config_rom access */ 852 spin_lock_irq(&card->lock); /* serialize node access */ 853 854 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 && 855 atomic_cmpxchg(&old->state, 856 FW_DEVICE_GONE, 857 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 858 struct fw_node *current_node = new->node; 859 struct fw_node *obsolete_node = old->node; 860 861 new->node = obsolete_node; 862 new->node->data = new; 863 old->node = current_node; 864 old->node->data = old; 865 866 old->max_speed = new->max_speed; 867 old->node_id = current_node->node_id; 868 smp_wmb(); /* update node_id before generation */ 869 old->generation = card->generation; 870 old->config_rom_retries = 0; 871 fw_notify("rediscovered device %s\n", dev_name(dev)); 872 873 PREPARE_DELAYED_WORK(&old->work, fw_device_update); 874 fw_schedule_device_work(old, 0); 875 876 if (current_node == card->root_node) 877 fw_schedule_bm_work(card, 0); 878 879 match = 1; 880 } 881 882 spin_unlock_irq(&card->lock); 883 up_read(&fw_device_rwsem); 884 885 return match; 886 } 887 888 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; 889 890 static void set_broadcast_channel(struct fw_device *device, int generation) 891 { 892 struct fw_card *card = device->card; 893 __be32 data; 894 int rcode; 895 896 if (!card->broadcast_channel_allocated) 897 return; 898 899 /* 900 * The Broadcast_Channel Valid bit is required by nodes which want to 901 * transmit on this channel. Such transmissions are practically 902 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required 903 * to be IRM capable and have a max_rec of 8 or more. We use this fact 904 * to narrow down to which nodes we send Broadcast_Channel updates. 905 */ 906 if (!device->irmc || device->max_rec < 8) 907 return; 908 909 /* 910 * Some 1394-1995 nodes crash if this 1394a-2000 register is written. 911 * Perform a read test first. 912 */ 913 if (device->bc_implemented == BC_UNKNOWN) { 914 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, 915 device->node_id, generation, device->max_speed, 916 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 917 &data, 4); 918 switch (rcode) { 919 case RCODE_COMPLETE: 920 if (data & cpu_to_be32(1 << 31)) { 921 device->bc_implemented = BC_IMPLEMENTED; 922 break; 923 } 924 /* else fall through to case address error */ 925 case RCODE_ADDRESS_ERROR: 926 device->bc_implemented = BC_UNIMPLEMENTED; 927 } 928 } 929 930 if (device->bc_implemented == BC_IMPLEMENTED) { 931 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | 932 BROADCAST_CHANNEL_VALID); 933 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, 934 device->node_id, generation, device->max_speed, 935 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 936 &data, 4); 937 } 938 } 939 940 int fw_device_set_broadcast_channel(struct device *dev, void *gen) 941 { 942 if (is_fw_device(dev)) 943 set_broadcast_channel(fw_device(dev), (long)gen); 944 945 return 0; 946 } 947 948 static void fw_device_init(struct work_struct *work) 949 { 950 struct fw_device *device = 951 container_of(work, struct fw_device, work.work); 952 struct device *revived_dev; 953 int minor, ret; 954 955 /* 956 * All failure paths here set node->data to NULL, so that we 957 * don't try to do device_for_each_child() on a kfree()'d 958 * device. 959 */ 960 961 if (read_config_rom(device, device->generation) < 0) { 962 if (device->config_rom_retries < MAX_RETRIES && 963 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 964 device->config_rom_retries++; 965 fw_schedule_device_work(device, RETRY_DELAY); 966 } else { 967 if (device->node->link_on) 968 fw_notify("giving up on config rom for node id %x\n", 969 device->node_id); 970 if (device->node == device->card->root_node) 971 fw_schedule_bm_work(device->card, 0); 972 fw_device_release(&device->device); 973 } 974 return; 975 } 976 977 revived_dev = device_find_child(device->card->device, 978 device, lookup_existing_device); 979 if (revived_dev) { 980 put_device(revived_dev); 981 fw_device_release(&device->device); 982 983 return; 984 } 985 986 device_initialize(&device->device); 987 988 fw_device_get(device); 989 down_write(&fw_device_rwsem); 990 ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ? 991 idr_get_new(&fw_device_idr, device, &minor) : 992 -ENOMEM; 993 up_write(&fw_device_rwsem); 994 995 if (ret < 0) 996 goto error; 997 998 device->device.bus = &fw_bus_type; 999 device->device.type = &fw_device_type; 1000 device->device.parent = device->card->device; 1001 device->device.devt = MKDEV(fw_cdev_major, minor); 1002 dev_set_name(&device->device, "fw%d", minor); 1003 1004 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < 1005 ARRAY_SIZE(fw_device_attributes) + 1006 ARRAY_SIZE(config_rom_attributes)); 1007 init_fw_attribute_group(&device->device, 1008 fw_device_attributes, 1009 &device->attribute_group); 1010 1011 if (device_add(&device->device)) { 1012 fw_error("Failed to add device.\n"); 1013 goto error_with_cdev; 1014 } 1015 1016 create_units(device); 1017 1018 /* 1019 * Transition the device to running state. If it got pulled 1020 * out from under us while we did the intialization work, we 1021 * have to shut down the device again here. Normally, though, 1022 * fw_node_event will be responsible for shutting it down when 1023 * necessary. We have to use the atomic cmpxchg here to avoid 1024 * racing with the FW_NODE_DESTROYED case in 1025 * fw_node_event(). 1026 */ 1027 if (atomic_cmpxchg(&device->state, 1028 FW_DEVICE_INITIALIZING, 1029 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 1030 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1031 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1032 } else { 1033 if (device->config_rom_retries) 1034 fw_notify("created device %s: GUID %08x%08x, S%d00, " 1035 "%d config ROM retries\n", 1036 dev_name(&device->device), 1037 device->config_rom[3], device->config_rom[4], 1038 1 << device->max_speed, 1039 device->config_rom_retries); 1040 else 1041 fw_notify("created device %s: GUID %08x%08x, S%d00\n", 1042 dev_name(&device->device), 1043 device->config_rom[3], device->config_rom[4], 1044 1 << device->max_speed); 1045 device->config_rom_retries = 0; 1046 1047 set_broadcast_channel(device, device->generation); 1048 } 1049 1050 /* 1051 * Reschedule the IRM work if we just finished reading the 1052 * root node config rom. If this races with a bus reset we 1053 * just end up running the IRM work a couple of extra times - 1054 * pretty harmless. 1055 */ 1056 if (device->node == device->card->root_node) 1057 fw_schedule_bm_work(device->card, 0); 1058 1059 return; 1060 1061 error_with_cdev: 1062 down_write(&fw_device_rwsem); 1063 idr_remove(&fw_device_idr, minor); 1064 up_write(&fw_device_rwsem); 1065 error: 1066 fw_device_put(device); /* fw_device_idr's reference */ 1067 1068 put_device(&device->device); /* our reference */ 1069 } 1070 1071 enum { 1072 REREAD_BIB_ERROR, 1073 REREAD_BIB_GONE, 1074 REREAD_BIB_UNCHANGED, 1075 REREAD_BIB_CHANGED, 1076 }; 1077 1078 /* Reread and compare bus info block and header of root directory */ 1079 static int reread_config_rom(struct fw_device *device, int generation) 1080 { 1081 u32 q; 1082 int i; 1083 1084 for (i = 0; i < 6; i++) { 1085 if (read_rom(device, generation, i, &q) != RCODE_COMPLETE) 1086 return REREAD_BIB_ERROR; 1087 1088 if (i == 0 && q == 0) 1089 return REREAD_BIB_GONE; 1090 1091 if (q != device->config_rom[i]) 1092 return REREAD_BIB_CHANGED; 1093 } 1094 1095 return REREAD_BIB_UNCHANGED; 1096 } 1097 1098 static void fw_device_refresh(struct work_struct *work) 1099 { 1100 struct fw_device *device = 1101 container_of(work, struct fw_device, work.work); 1102 struct fw_card *card = device->card; 1103 int node_id = device->node_id; 1104 1105 switch (reread_config_rom(device, device->generation)) { 1106 case REREAD_BIB_ERROR: 1107 if (device->config_rom_retries < MAX_RETRIES / 2 && 1108 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1109 device->config_rom_retries++; 1110 fw_schedule_device_work(device, RETRY_DELAY / 2); 1111 1112 return; 1113 } 1114 goto give_up; 1115 1116 case REREAD_BIB_GONE: 1117 goto gone; 1118 1119 case REREAD_BIB_UNCHANGED: 1120 if (atomic_cmpxchg(&device->state, 1121 FW_DEVICE_INITIALIZING, 1122 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1123 goto gone; 1124 1125 fw_device_update(work); 1126 device->config_rom_retries = 0; 1127 goto out; 1128 1129 case REREAD_BIB_CHANGED: 1130 break; 1131 } 1132 1133 /* 1134 * Something changed. We keep things simple and don't investigate 1135 * further. We just destroy all previous units and create new ones. 1136 */ 1137 device_for_each_child(&device->device, NULL, shutdown_unit); 1138 1139 if (read_config_rom(device, device->generation) < 0) { 1140 if (device->config_rom_retries < MAX_RETRIES && 1141 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1142 device->config_rom_retries++; 1143 fw_schedule_device_work(device, RETRY_DELAY); 1144 1145 return; 1146 } 1147 goto give_up; 1148 } 1149 1150 fw_device_cdev_update(device); 1151 create_units(device); 1152 1153 /* Userspace may want to re-read attributes. */ 1154 kobject_uevent(&device->device.kobj, KOBJ_CHANGE); 1155 1156 if (atomic_cmpxchg(&device->state, 1157 FW_DEVICE_INITIALIZING, 1158 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1159 goto gone; 1160 1161 fw_notify("refreshed device %s\n", dev_name(&device->device)); 1162 device->config_rom_retries = 0; 1163 goto out; 1164 1165 give_up: 1166 fw_notify("giving up on refresh of device %s\n", dev_name(&device->device)); 1167 gone: 1168 atomic_set(&device->state, FW_DEVICE_GONE); 1169 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1170 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1171 out: 1172 if (node_id == card->root_node->node_id) 1173 fw_schedule_bm_work(card, 0); 1174 } 1175 1176 void fw_node_event(struct fw_card *card, struct fw_node *node, int event) 1177 { 1178 struct fw_device *device; 1179 1180 switch (event) { 1181 case FW_NODE_CREATED: 1182 /* 1183 * Attempt to scan the node, regardless whether its self ID has 1184 * the L (link active) flag set or not. Some broken devices 1185 * send L=0 but have an up-and-running link; others send L=1 1186 * without actually having a link. 1187 */ 1188 create: 1189 device = kzalloc(sizeof(*device), GFP_ATOMIC); 1190 if (device == NULL) 1191 break; 1192 1193 /* 1194 * Do minimal intialization of the device here, the 1195 * rest will happen in fw_device_init(). 1196 * 1197 * Attention: A lot of things, even fw_device_get(), 1198 * cannot be done before fw_device_init() finished! 1199 * You can basically just check device->state and 1200 * schedule work until then, but only while holding 1201 * card->lock. 1202 */ 1203 atomic_set(&device->state, FW_DEVICE_INITIALIZING); 1204 device->card = fw_card_get(card); 1205 device->node = fw_node_get(node); 1206 device->node_id = node->node_id; 1207 device->generation = card->generation; 1208 device->is_local = node == card->local_node; 1209 mutex_init(&device->client_list_mutex); 1210 INIT_LIST_HEAD(&device->client_list); 1211 1212 /* 1213 * Set the node data to point back to this device so 1214 * FW_NODE_UPDATED callbacks can update the node_id 1215 * and generation for the device. 1216 */ 1217 node->data = device; 1218 1219 /* 1220 * Many devices are slow to respond after bus resets, 1221 * especially if they are bus powered and go through 1222 * power-up after getting plugged in. We schedule the 1223 * first config rom scan half a second after bus reset. 1224 */ 1225 INIT_DELAYED_WORK(&device->work, fw_device_init); 1226 fw_schedule_device_work(device, INITIAL_DELAY); 1227 break; 1228 1229 case FW_NODE_INITIATED_RESET: 1230 case FW_NODE_LINK_ON: 1231 device = node->data; 1232 if (device == NULL) 1233 goto create; 1234 1235 device->node_id = node->node_id; 1236 smp_wmb(); /* update node_id before generation */ 1237 device->generation = card->generation; 1238 if (atomic_cmpxchg(&device->state, 1239 FW_DEVICE_RUNNING, 1240 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { 1241 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh); 1242 fw_schedule_device_work(device, 1243 device->is_local ? 0 : INITIAL_DELAY); 1244 } 1245 break; 1246 1247 case FW_NODE_UPDATED: 1248 device = node->data; 1249 if (device == NULL) 1250 break; 1251 1252 device->node_id = node->node_id; 1253 smp_wmb(); /* update node_id before generation */ 1254 device->generation = card->generation; 1255 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { 1256 PREPARE_DELAYED_WORK(&device->work, fw_device_update); 1257 fw_schedule_device_work(device, 0); 1258 } 1259 break; 1260 1261 case FW_NODE_DESTROYED: 1262 case FW_NODE_LINK_OFF: 1263 if (!node->data) 1264 break; 1265 1266 /* 1267 * Destroy the device associated with the node. There 1268 * are two cases here: either the device is fully 1269 * initialized (FW_DEVICE_RUNNING) or we're in the 1270 * process of reading its config rom 1271 * (FW_DEVICE_INITIALIZING). If it is fully 1272 * initialized we can reuse device->work to schedule a 1273 * full fw_device_shutdown(). If not, there's work 1274 * scheduled to read it's config rom, and we just put 1275 * the device in shutdown state to have that code fail 1276 * to create the device. 1277 */ 1278 device = node->data; 1279 if (atomic_xchg(&device->state, 1280 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { 1281 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); 1282 fw_schedule_device_work(device, 1283 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); 1284 } 1285 break; 1286 } 1287 } 1288