1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Device probing and sysfs code. 4 * 5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bug.h> 9 #include <linux/ctype.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/errno.h> 13 #include <linux/firewire.h> 14 #include <linux/firewire-constants.h> 15 #include <linux/idr.h> 16 #include <linux/jiffies.h> 17 #include <linux/kobject.h> 18 #include <linux/list.h> 19 #include <linux/mod_devicetable.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/random.h> 23 #include <linux/rwsem.h> 24 #include <linux/slab.h> 25 #include <linux/spinlock.h> 26 #include <linux/string.h> 27 #include <linux/workqueue.h> 28 29 #include <linux/atomic.h> 30 #include <asm/byteorder.h> 31 32 #include "core.h" 33 34 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) 35 { 36 ci->p = p + 1; 37 ci->end = ci->p + (p[0] >> 16); 38 } 39 EXPORT_SYMBOL(fw_csr_iterator_init); 40 41 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) 42 { 43 *key = *ci->p >> 24; 44 *value = *ci->p & 0xffffff; 45 46 return ci->p++ < ci->end; 47 } 48 EXPORT_SYMBOL(fw_csr_iterator_next); 49 50 static const u32 *search_leaf(const u32 *directory, int search_key) 51 { 52 struct fw_csr_iterator ci; 53 int last_key = 0, key, value; 54 55 fw_csr_iterator_init(&ci, directory); 56 while (fw_csr_iterator_next(&ci, &key, &value)) { 57 if (last_key == search_key && 58 key == (CSR_DESCRIPTOR | CSR_LEAF)) 59 return ci.p - 1 + value; 60 61 last_key = key; 62 } 63 64 return NULL; 65 } 66 67 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) 68 { 69 unsigned int quadlets, i; 70 char c; 71 72 if (!size || !buf) 73 return -EINVAL; 74 75 quadlets = min(block[0] >> 16, 256U); 76 if (quadlets < 2) 77 return -ENODATA; 78 79 if (block[1] != 0 || block[2] != 0) 80 /* unknown language/character set */ 81 return -ENODATA; 82 83 block += 3; 84 quadlets -= 2; 85 for (i = 0; i < quadlets * 4 && i < size - 1; i++) { 86 c = block[i / 4] >> (24 - 8 * (i % 4)); 87 if (c == '\0') 88 break; 89 buf[i] = c; 90 } 91 buf[i] = '\0'; 92 93 return i; 94 } 95 96 /** 97 * fw_csr_string() - reads a string from the configuration ROM 98 * @directory: e.g. root directory or unit directory 99 * @key: the key of the preceding directory entry 100 * @buf: where to put the string 101 * @size: size of @buf, in bytes 102 * 103 * The string is taken from a minimal ASCII text descriptor leaf after 104 * the immediate entry with @key. The string is zero-terminated. 105 * An overlong string is silently truncated such that it and the 106 * zero byte fit into @size. 107 * 108 * Returns strlen(buf) or a negative error code. 109 */ 110 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) 111 { 112 const u32 *leaf = search_leaf(directory, key); 113 if (!leaf) 114 return -ENOENT; 115 116 return textual_leaf_to_string(leaf, buf, size); 117 } 118 EXPORT_SYMBOL(fw_csr_string); 119 120 static void get_ids(const u32 *directory, int *id) 121 { 122 struct fw_csr_iterator ci; 123 int key, value; 124 125 fw_csr_iterator_init(&ci, directory); 126 while (fw_csr_iterator_next(&ci, &key, &value)) { 127 switch (key) { 128 case CSR_VENDOR: id[0] = value; break; 129 case CSR_MODEL: id[1] = value; break; 130 case CSR_SPECIFIER_ID: id[2] = value; break; 131 case CSR_VERSION: id[3] = value; break; 132 } 133 } 134 } 135 136 static void get_modalias_ids(const struct fw_unit *unit, int *id) 137 { 138 get_ids(&fw_parent_device(unit)->config_rom[5], id); 139 get_ids(unit->directory, id); 140 } 141 142 static bool match_ids(const struct ieee1394_device_id *id_table, int *id) 143 { 144 int match = 0; 145 146 if (id[0] == id_table->vendor_id) 147 match |= IEEE1394_MATCH_VENDOR_ID; 148 if (id[1] == id_table->model_id) 149 match |= IEEE1394_MATCH_MODEL_ID; 150 if (id[2] == id_table->specifier_id) 151 match |= IEEE1394_MATCH_SPECIFIER_ID; 152 if (id[3] == id_table->version) 153 match |= IEEE1394_MATCH_VERSION; 154 155 return (match & id_table->match_flags) == id_table->match_flags; 156 } 157 158 static const struct ieee1394_device_id *unit_match(struct device *dev, 159 struct device_driver *drv) 160 { 161 const struct ieee1394_device_id *id_table = 162 container_of(drv, struct fw_driver, driver)->id_table; 163 int id[] = {0, 0, 0, 0}; 164 165 get_modalias_ids(fw_unit(dev), id); 166 167 for (; id_table->match_flags != 0; id_table++) 168 if (match_ids(id_table, id)) 169 return id_table; 170 171 return NULL; 172 } 173 174 static bool is_fw_unit(struct device *dev); 175 176 static int fw_unit_match(struct device *dev, struct device_driver *drv) 177 { 178 /* We only allow binding to fw_units. */ 179 return is_fw_unit(dev) && unit_match(dev, drv) != NULL; 180 } 181 182 static int fw_unit_probe(struct device *dev) 183 { 184 struct fw_driver *driver = 185 container_of(dev->driver, struct fw_driver, driver); 186 187 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver)); 188 } 189 190 static void fw_unit_remove(struct device *dev) 191 { 192 struct fw_driver *driver = 193 container_of(dev->driver, struct fw_driver, driver); 194 195 driver->remove(fw_unit(dev)); 196 } 197 198 static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size) 199 { 200 int id[] = {0, 0, 0, 0}; 201 202 get_modalias_ids(unit, id); 203 204 return snprintf(buffer, buffer_size, 205 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", 206 id[0], id[1], id[2], id[3]); 207 } 208 209 static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env) 210 { 211 const struct fw_unit *unit = fw_unit(dev); 212 char modalias[64]; 213 214 get_modalias(unit, modalias, sizeof(modalias)); 215 216 if (add_uevent_var(env, "MODALIAS=%s", modalias)) 217 return -ENOMEM; 218 219 return 0; 220 } 221 222 struct bus_type fw_bus_type = { 223 .name = "firewire", 224 .match = fw_unit_match, 225 .probe = fw_unit_probe, 226 .remove = fw_unit_remove, 227 }; 228 EXPORT_SYMBOL(fw_bus_type); 229 230 int fw_device_enable_phys_dma(struct fw_device *device) 231 { 232 int generation = device->generation; 233 234 /* device->node_id, accessed below, must not be older than generation */ 235 smp_rmb(); 236 237 return device->card->driver->enable_phys_dma(device->card, 238 device->node_id, 239 generation); 240 } 241 EXPORT_SYMBOL(fw_device_enable_phys_dma); 242 243 struct config_rom_attribute { 244 struct device_attribute attr; 245 u32 key; 246 }; 247 248 static ssize_t show_immediate(struct device *dev, 249 struct device_attribute *dattr, char *buf) 250 { 251 struct config_rom_attribute *attr = 252 container_of(dattr, struct config_rom_attribute, attr); 253 struct fw_csr_iterator ci; 254 const u32 *dir; 255 int key, value, ret = -ENOENT; 256 257 down_read(&fw_device_rwsem); 258 259 if (is_fw_unit(dev)) 260 dir = fw_unit(dev)->directory; 261 else 262 dir = fw_device(dev)->config_rom + 5; 263 264 fw_csr_iterator_init(&ci, dir); 265 while (fw_csr_iterator_next(&ci, &key, &value)) 266 if (attr->key == key) { 267 ret = snprintf(buf, buf ? PAGE_SIZE : 0, 268 "0x%06x\n", value); 269 break; 270 } 271 272 up_read(&fw_device_rwsem); 273 274 return ret; 275 } 276 277 #define IMMEDIATE_ATTR(name, key) \ 278 { __ATTR(name, S_IRUGO, show_immediate, NULL), key } 279 280 static ssize_t show_text_leaf(struct device *dev, 281 struct device_attribute *dattr, char *buf) 282 { 283 struct config_rom_attribute *attr = 284 container_of(dattr, struct config_rom_attribute, attr); 285 const u32 *dir; 286 size_t bufsize; 287 char dummy_buf[2]; 288 int ret; 289 290 down_read(&fw_device_rwsem); 291 292 if (is_fw_unit(dev)) 293 dir = fw_unit(dev)->directory; 294 else 295 dir = fw_device(dev)->config_rom + 5; 296 297 if (buf) { 298 bufsize = PAGE_SIZE - 1; 299 } else { 300 buf = dummy_buf; 301 bufsize = 1; 302 } 303 304 ret = fw_csr_string(dir, attr->key, buf, bufsize); 305 306 if (ret >= 0) { 307 /* Strip trailing whitespace and add newline. */ 308 while (ret > 0 && isspace(buf[ret - 1])) 309 ret--; 310 strcpy(buf + ret, "\n"); 311 ret++; 312 } 313 314 up_read(&fw_device_rwsem); 315 316 return ret; 317 } 318 319 #define TEXT_LEAF_ATTR(name, key) \ 320 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } 321 322 static struct config_rom_attribute config_rom_attributes[] = { 323 IMMEDIATE_ATTR(vendor, CSR_VENDOR), 324 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), 325 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), 326 IMMEDIATE_ATTR(version, CSR_VERSION), 327 IMMEDIATE_ATTR(model, CSR_MODEL), 328 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), 329 TEXT_LEAF_ATTR(model_name, CSR_MODEL), 330 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), 331 }; 332 333 static void init_fw_attribute_group(struct device *dev, 334 struct device_attribute *attrs, 335 struct fw_attribute_group *group) 336 { 337 struct device_attribute *attr; 338 int i, j; 339 340 for (j = 0; attrs[j].attr.name != NULL; j++) 341 group->attrs[j] = &attrs[j].attr; 342 343 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { 344 attr = &config_rom_attributes[i].attr; 345 if (attr->show(dev, attr, NULL) < 0) 346 continue; 347 group->attrs[j++] = &attr->attr; 348 } 349 350 group->attrs[j] = NULL; 351 group->groups[0] = &group->group; 352 group->groups[1] = NULL; 353 group->group.attrs = group->attrs; 354 dev->groups = (const struct attribute_group **) group->groups; 355 } 356 357 static ssize_t modalias_show(struct device *dev, 358 struct device_attribute *attr, char *buf) 359 { 360 struct fw_unit *unit = fw_unit(dev); 361 int length; 362 363 length = get_modalias(unit, buf, PAGE_SIZE); 364 strcpy(buf + length, "\n"); 365 366 return length + 1; 367 } 368 369 static ssize_t rom_index_show(struct device *dev, 370 struct device_attribute *attr, char *buf) 371 { 372 struct fw_device *device = fw_device(dev->parent); 373 struct fw_unit *unit = fw_unit(dev); 374 375 return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom); 376 } 377 378 static struct device_attribute fw_unit_attributes[] = { 379 __ATTR_RO(modalias), 380 __ATTR_RO(rom_index), 381 __ATTR_NULL, 382 }; 383 384 static ssize_t config_rom_show(struct device *dev, 385 struct device_attribute *attr, char *buf) 386 { 387 struct fw_device *device = fw_device(dev); 388 size_t length; 389 390 down_read(&fw_device_rwsem); 391 length = device->config_rom_length * 4; 392 memcpy(buf, device->config_rom, length); 393 up_read(&fw_device_rwsem); 394 395 return length; 396 } 397 398 static ssize_t guid_show(struct device *dev, 399 struct device_attribute *attr, char *buf) 400 { 401 struct fw_device *device = fw_device(dev); 402 int ret; 403 404 down_read(&fw_device_rwsem); 405 ret = sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]); 406 up_read(&fw_device_rwsem); 407 408 return ret; 409 } 410 411 static ssize_t is_local_show(struct device *dev, 412 struct device_attribute *attr, char *buf) 413 { 414 struct fw_device *device = fw_device(dev); 415 416 return sprintf(buf, "%u\n", device->is_local); 417 } 418 419 static int units_sprintf(char *buf, const u32 *directory) 420 { 421 struct fw_csr_iterator ci; 422 int key, value; 423 int specifier_id = 0; 424 int version = 0; 425 426 fw_csr_iterator_init(&ci, directory); 427 while (fw_csr_iterator_next(&ci, &key, &value)) { 428 switch (key) { 429 case CSR_SPECIFIER_ID: 430 specifier_id = value; 431 break; 432 case CSR_VERSION: 433 version = value; 434 break; 435 } 436 } 437 438 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); 439 } 440 441 static ssize_t units_show(struct device *dev, 442 struct device_attribute *attr, char *buf) 443 { 444 struct fw_device *device = fw_device(dev); 445 struct fw_csr_iterator ci; 446 int key, value, i = 0; 447 448 down_read(&fw_device_rwsem); 449 fw_csr_iterator_init(&ci, &device->config_rom[5]); 450 while (fw_csr_iterator_next(&ci, &key, &value)) { 451 if (key != (CSR_UNIT | CSR_DIRECTORY)) 452 continue; 453 i += units_sprintf(&buf[i], ci.p + value - 1); 454 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) 455 break; 456 } 457 up_read(&fw_device_rwsem); 458 459 if (i) 460 buf[i - 1] = '\n'; 461 462 return i; 463 } 464 465 static struct device_attribute fw_device_attributes[] = { 466 __ATTR_RO(config_rom), 467 __ATTR_RO(guid), 468 __ATTR_RO(is_local), 469 __ATTR_RO(units), 470 __ATTR_NULL, 471 }; 472 473 static int read_rom(struct fw_device *device, 474 int generation, int index, u32 *data) 475 { 476 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4; 477 int i, rcode; 478 479 /* device->node_id, accessed below, must not be older than generation */ 480 smp_rmb(); 481 482 for (i = 10; i < 100; i += 10) { 483 rcode = fw_run_transaction(device->card, 484 TCODE_READ_QUADLET_REQUEST, device->node_id, 485 generation, device->max_speed, offset, data, 4); 486 if (rcode != RCODE_BUSY) 487 break; 488 msleep(i); 489 } 490 be32_to_cpus(data); 491 492 return rcode; 493 } 494 495 #define MAX_CONFIG_ROM_SIZE 256 496 497 /* 498 * Read the bus info block, perform a speed probe, and read all of the rest of 499 * the config ROM. We do all this with a cached bus generation. If the bus 500 * generation changes under us, read_config_rom will fail and get retried. 501 * It's better to start all over in this case because the node from which we 502 * are reading the ROM may have changed the ROM during the reset. 503 * Returns either a result code or a negative error code. 504 */ 505 static int read_config_rom(struct fw_device *device, int generation) 506 { 507 struct fw_card *card = device->card; 508 const u32 *old_rom, *new_rom; 509 u32 *rom, *stack; 510 u32 sp, key; 511 int i, end, length, ret; 512 513 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + 514 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); 515 if (rom == NULL) 516 return -ENOMEM; 517 518 stack = &rom[MAX_CONFIG_ROM_SIZE]; 519 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); 520 521 device->max_speed = SCODE_100; 522 523 /* First read the bus info block. */ 524 for (i = 0; i < 5; i++) { 525 ret = read_rom(device, generation, i, &rom[i]); 526 if (ret != RCODE_COMPLETE) 527 goto out; 528 /* 529 * As per IEEE1212 7.2, during initialization, devices can 530 * reply with a 0 for the first quadlet of the config 531 * rom to indicate that they are booting (for example, 532 * if the firmware is on the disk of a external 533 * harddisk). In that case we just fail, and the 534 * retry mechanism will try again later. 535 */ 536 if (i == 0 && rom[i] == 0) { 537 ret = RCODE_BUSY; 538 goto out; 539 } 540 } 541 542 device->max_speed = device->node->max_speed; 543 544 /* 545 * Determine the speed of 546 * - devices with link speed less than PHY speed, 547 * - devices with 1394b PHY (unless only connected to 1394a PHYs), 548 * - all devices if there are 1394b repeaters. 549 * Note, we cannot use the bus info block's link_spd as starting point 550 * because some buggy firmwares set it lower than necessary and because 551 * 1394-1995 nodes do not have the field. 552 */ 553 if ((rom[2] & 0x7) < device->max_speed || 554 device->max_speed == SCODE_BETA || 555 card->beta_repeaters_present) { 556 u32 dummy; 557 558 /* for S1600 and S3200 */ 559 if (device->max_speed == SCODE_BETA) 560 device->max_speed = card->link_speed; 561 562 while (device->max_speed > SCODE_100) { 563 if (read_rom(device, generation, 0, &dummy) == 564 RCODE_COMPLETE) 565 break; 566 device->max_speed--; 567 } 568 } 569 570 /* 571 * Now parse the config rom. The config rom is a recursive 572 * directory structure so we parse it using a stack of 573 * references to the blocks that make up the structure. We 574 * push a reference to the root directory on the stack to 575 * start things off. 576 */ 577 length = i; 578 sp = 0; 579 stack[sp++] = 0xc0000005; 580 while (sp > 0) { 581 /* 582 * Pop the next block reference of the stack. The 583 * lower 24 bits is the offset into the config rom, 584 * the upper 8 bits are the type of the reference the 585 * block. 586 */ 587 key = stack[--sp]; 588 i = key & 0xffffff; 589 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) { 590 ret = -ENXIO; 591 goto out; 592 } 593 594 /* Read header quadlet for the block to get the length. */ 595 ret = read_rom(device, generation, i, &rom[i]); 596 if (ret != RCODE_COMPLETE) 597 goto out; 598 end = i + (rom[i] >> 16) + 1; 599 if (end > MAX_CONFIG_ROM_SIZE) { 600 /* 601 * This block extends outside the config ROM which is 602 * a firmware bug. Ignore this whole block, i.e. 603 * simply set a fake block length of 0. 604 */ 605 fw_err(card, "skipped invalid ROM block %x at %llx\n", 606 rom[i], 607 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 608 rom[i] = 0; 609 end = i; 610 } 611 i++; 612 613 /* 614 * Now read in the block. If this is a directory 615 * block, check the entries as we read them to see if 616 * it references another block, and push it in that case. 617 */ 618 for (; i < end; i++) { 619 ret = read_rom(device, generation, i, &rom[i]); 620 if (ret != RCODE_COMPLETE) 621 goto out; 622 623 if ((key >> 30) != 3 || (rom[i] >> 30) < 2) 624 continue; 625 /* 626 * Offset points outside the ROM. May be a firmware 627 * bug or an Extended ROM entry (IEEE 1212-2001 clause 628 * 7.7.18). Simply overwrite this pointer here by a 629 * fake immediate entry so that later iterators over 630 * the ROM don't have to check offsets all the time. 631 */ 632 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { 633 fw_err(card, 634 "skipped unsupported ROM entry %x at %llx\n", 635 rom[i], 636 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 637 rom[i] = 0; 638 continue; 639 } 640 stack[sp++] = i + rom[i]; 641 } 642 if (length < i) 643 length = i; 644 } 645 646 old_rom = device->config_rom; 647 new_rom = kmemdup(rom, length * 4, GFP_KERNEL); 648 if (new_rom == NULL) { 649 ret = -ENOMEM; 650 goto out; 651 } 652 653 down_write(&fw_device_rwsem); 654 device->config_rom = new_rom; 655 device->config_rom_length = length; 656 up_write(&fw_device_rwsem); 657 658 kfree(old_rom); 659 ret = RCODE_COMPLETE; 660 device->max_rec = rom[2] >> 12 & 0xf; 661 device->cmc = rom[2] >> 30 & 1; 662 device->irmc = rom[2] >> 31 & 1; 663 out: 664 kfree(rom); 665 666 return ret; 667 } 668 669 static void fw_unit_release(struct device *dev) 670 { 671 struct fw_unit *unit = fw_unit(dev); 672 673 fw_device_put(fw_parent_device(unit)); 674 kfree(unit); 675 } 676 677 static struct device_type fw_unit_type = { 678 .uevent = fw_unit_uevent, 679 .release = fw_unit_release, 680 }; 681 682 static bool is_fw_unit(struct device *dev) 683 { 684 return dev->type == &fw_unit_type; 685 } 686 687 static void create_units(struct fw_device *device) 688 { 689 struct fw_csr_iterator ci; 690 struct fw_unit *unit; 691 int key, value, i; 692 693 i = 0; 694 fw_csr_iterator_init(&ci, &device->config_rom[5]); 695 while (fw_csr_iterator_next(&ci, &key, &value)) { 696 if (key != (CSR_UNIT | CSR_DIRECTORY)) 697 continue; 698 699 /* 700 * Get the address of the unit directory and try to 701 * match the drivers id_tables against it. 702 */ 703 unit = kzalloc(sizeof(*unit), GFP_KERNEL); 704 if (unit == NULL) 705 continue; 706 707 unit->directory = ci.p + value - 1; 708 unit->device.bus = &fw_bus_type; 709 unit->device.type = &fw_unit_type; 710 unit->device.parent = &device->device; 711 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); 712 713 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < 714 ARRAY_SIZE(fw_unit_attributes) + 715 ARRAY_SIZE(config_rom_attributes)); 716 init_fw_attribute_group(&unit->device, 717 fw_unit_attributes, 718 &unit->attribute_group); 719 720 fw_device_get(device); 721 if (device_register(&unit->device) < 0) { 722 put_device(&unit->device); 723 continue; 724 } 725 } 726 } 727 728 static int shutdown_unit(struct device *device, void *data) 729 { 730 device_unregister(device); 731 732 return 0; 733 } 734 735 /* 736 * fw_device_rwsem acts as dual purpose mutex: 737 * - serializes accesses to fw_device_idr, 738 * - serializes accesses to fw_device.config_rom/.config_rom_length and 739 * fw_unit.directory, unless those accesses happen at safe occasions 740 */ 741 DECLARE_RWSEM(fw_device_rwsem); 742 743 DEFINE_IDR(fw_device_idr); 744 int fw_cdev_major; 745 746 struct fw_device *fw_device_get_by_devt(dev_t devt) 747 { 748 struct fw_device *device; 749 750 down_read(&fw_device_rwsem); 751 device = idr_find(&fw_device_idr, MINOR(devt)); 752 if (device) 753 fw_device_get(device); 754 up_read(&fw_device_rwsem); 755 756 return device; 757 } 758 759 struct workqueue_struct *fw_workqueue; 760 EXPORT_SYMBOL(fw_workqueue); 761 762 static void fw_schedule_device_work(struct fw_device *device, 763 unsigned long delay) 764 { 765 queue_delayed_work(fw_workqueue, &device->work, delay); 766 } 767 768 /* 769 * These defines control the retry behavior for reading the config 770 * rom. It shouldn't be necessary to tweak these; if the device 771 * doesn't respond to a config rom read within 10 seconds, it's not 772 * going to respond at all. As for the initial delay, a lot of 773 * devices will be able to respond within half a second after bus 774 * reset. On the other hand, it's not really worth being more 775 * aggressive than that, since it scales pretty well; if 10 devices 776 * are plugged in, they're all getting read within one second. 777 */ 778 779 #define MAX_RETRIES 10 780 #define RETRY_DELAY (3 * HZ) 781 #define INITIAL_DELAY (HZ / 2) 782 #define SHUTDOWN_DELAY (2 * HZ) 783 784 static void fw_device_shutdown(struct work_struct *work) 785 { 786 struct fw_device *device = 787 container_of(work, struct fw_device, work.work); 788 int minor = MINOR(device->device.devt); 789 790 if (time_before64(get_jiffies_64(), 791 device->card->reset_jiffies + SHUTDOWN_DELAY) 792 && !list_empty(&device->card->link)) { 793 fw_schedule_device_work(device, SHUTDOWN_DELAY); 794 return; 795 } 796 797 if (atomic_cmpxchg(&device->state, 798 FW_DEVICE_GONE, 799 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) 800 return; 801 802 fw_device_cdev_remove(device); 803 device_for_each_child(&device->device, NULL, shutdown_unit); 804 device_unregister(&device->device); 805 806 down_write(&fw_device_rwsem); 807 idr_remove(&fw_device_idr, minor); 808 up_write(&fw_device_rwsem); 809 810 fw_device_put(device); 811 } 812 813 static void fw_device_release(struct device *dev) 814 { 815 struct fw_device *device = fw_device(dev); 816 struct fw_card *card = device->card; 817 unsigned long flags; 818 819 /* 820 * Take the card lock so we don't set this to NULL while a 821 * FW_NODE_UPDATED callback is being handled or while the 822 * bus manager work looks at this node. 823 */ 824 spin_lock_irqsave(&card->lock, flags); 825 device->node->data = NULL; 826 spin_unlock_irqrestore(&card->lock, flags); 827 828 fw_node_put(device->node); 829 kfree(device->config_rom); 830 kfree(device); 831 fw_card_put(card); 832 } 833 834 static struct device_type fw_device_type = { 835 .release = fw_device_release, 836 }; 837 838 static bool is_fw_device(struct device *dev) 839 { 840 return dev->type == &fw_device_type; 841 } 842 843 static int update_unit(struct device *dev, void *data) 844 { 845 struct fw_unit *unit = fw_unit(dev); 846 struct fw_driver *driver = (struct fw_driver *)dev->driver; 847 848 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { 849 device_lock(dev); 850 driver->update(unit); 851 device_unlock(dev); 852 } 853 854 return 0; 855 } 856 857 static void fw_device_update(struct work_struct *work) 858 { 859 struct fw_device *device = 860 container_of(work, struct fw_device, work.work); 861 862 fw_device_cdev_update(device); 863 device_for_each_child(&device->device, NULL, update_unit); 864 } 865 866 /* 867 * If a device was pending for deletion because its node went away but its 868 * bus info block and root directory header matches that of a newly discovered 869 * device, revive the existing fw_device. 870 * The newly allocated fw_device becomes obsolete instead. 871 */ 872 static int lookup_existing_device(struct device *dev, void *data) 873 { 874 struct fw_device *old = fw_device(dev); 875 struct fw_device *new = data; 876 struct fw_card *card = new->card; 877 int match = 0; 878 879 if (!is_fw_device(dev)) 880 return 0; 881 882 down_read(&fw_device_rwsem); /* serialize config_rom access */ 883 spin_lock_irq(&card->lock); /* serialize node access */ 884 885 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 && 886 atomic_cmpxchg(&old->state, 887 FW_DEVICE_GONE, 888 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 889 struct fw_node *current_node = new->node; 890 struct fw_node *obsolete_node = old->node; 891 892 new->node = obsolete_node; 893 new->node->data = new; 894 old->node = current_node; 895 old->node->data = old; 896 897 old->max_speed = new->max_speed; 898 old->node_id = current_node->node_id; 899 smp_wmb(); /* update node_id before generation */ 900 old->generation = card->generation; 901 old->config_rom_retries = 0; 902 fw_notice(card, "rediscovered device %s\n", dev_name(dev)); 903 904 old->workfn = fw_device_update; 905 fw_schedule_device_work(old, 0); 906 907 if (current_node == card->root_node) 908 fw_schedule_bm_work(card, 0); 909 910 match = 1; 911 } 912 913 spin_unlock_irq(&card->lock); 914 up_read(&fw_device_rwsem); 915 916 return match; 917 } 918 919 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; 920 921 static void set_broadcast_channel(struct fw_device *device, int generation) 922 { 923 struct fw_card *card = device->card; 924 __be32 data; 925 int rcode; 926 927 if (!card->broadcast_channel_allocated) 928 return; 929 930 /* 931 * The Broadcast_Channel Valid bit is required by nodes which want to 932 * transmit on this channel. Such transmissions are practically 933 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required 934 * to be IRM capable and have a max_rec of 8 or more. We use this fact 935 * to narrow down to which nodes we send Broadcast_Channel updates. 936 */ 937 if (!device->irmc || device->max_rec < 8) 938 return; 939 940 /* 941 * Some 1394-1995 nodes crash if this 1394a-2000 register is written. 942 * Perform a read test first. 943 */ 944 if (device->bc_implemented == BC_UNKNOWN) { 945 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, 946 device->node_id, generation, device->max_speed, 947 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 948 &data, 4); 949 switch (rcode) { 950 case RCODE_COMPLETE: 951 if (data & cpu_to_be32(1 << 31)) { 952 device->bc_implemented = BC_IMPLEMENTED; 953 break; 954 } 955 fallthrough; /* to case address error */ 956 case RCODE_ADDRESS_ERROR: 957 device->bc_implemented = BC_UNIMPLEMENTED; 958 } 959 } 960 961 if (device->bc_implemented == BC_IMPLEMENTED) { 962 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | 963 BROADCAST_CHANNEL_VALID); 964 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, 965 device->node_id, generation, device->max_speed, 966 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 967 &data, 4); 968 } 969 } 970 971 int fw_device_set_broadcast_channel(struct device *dev, void *gen) 972 { 973 if (is_fw_device(dev)) 974 set_broadcast_channel(fw_device(dev), (long)gen); 975 976 return 0; 977 } 978 979 static void fw_device_init(struct work_struct *work) 980 { 981 struct fw_device *device = 982 container_of(work, struct fw_device, work.work); 983 struct fw_card *card = device->card; 984 struct device *revived_dev; 985 int minor, ret; 986 987 /* 988 * All failure paths here set node->data to NULL, so that we 989 * don't try to do device_for_each_child() on a kfree()'d 990 * device. 991 */ 992 993 ret = read_config_rom(device, device->generation); 994 if (ret != RCODE_COMPLETE) { 995 if (device->config_rom_retries < MAX_RETRIES && 996 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 997 device->config_rom_retries++; 998 fw_schedule_device_work(device, RETRY_DELAY); 999 } else { 1000 if (device->node->link_on) 1001 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n", 1002 device->node_id, 1003 fw_rcode_string(ret)); 1004 if (device->node == card->root_node) 1005 fw_schedule_bm_work(card, 0); 1006 fw_device_release(&device->device); 1007 } 1008 return; 1009 } 1010 1011 revived_dev = device_find_child(card->device, 1012 device, lookup_existing_device); 1013 if (revived_dev) { 1014 put_device(revived_dev); 1015 fw_device_release(&device->device); 1016 1017 return; 1018 } 1019 1020 device_initialize(&device->device); 1021 1022 fw_device_get(device); 1023 down_write(&fw_device_rwsem); 1024 minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS, 1025 GFP_KERNEL); 1026 up_write(&fw_device_rwsem); 1027 1028 if (minor < 0) 1029 goto error; 1030 1031 device->device.bus = &fw_bus_type; 1032 device->device.type = &fw_device_type; 1033 device->device.parent = card->device; 1034 device->device.devt = MKDEV(fw_cdev_major, minor); 1035 dev_set_name(&device->device, "fw%d", minor); 1036 1037 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < 1038 ARRAY_SIZE(fw_device_attributes) + 1039 ARRAY_SIZE(config_rom_attributes)); 1040 init_fw_attribute_group(&device->device, 1041 fw_device_attributes, 1042 &device->attribute_group); 1043 1044 if (device_add(&device->device)) { 1045 fw_err(card, "failed to add device\n"); 1046 goto error_with_cdev; 1047 } 1048 1049 create_units(device); 1050 1051 /* 1052 * Transition the device to running state. If it got pulled 1053 * out from under us while we did the initialization work, we 1054 * have to shut down the device again here. Normally, though, 1055 * fw_node_event will be responsible for shutting it down when 1056 * necessary. We have to use the atomic cmpxchg here to avoid 1057 * racing with the FW_NODE_DESTROYED case in 1058 * fw_node_event(). 1059 */ 1060 if (atomic_cmpxchg(&device->state, 1061 FW_DEVICE_INITIALIZING, 1062 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 1063 device->workfn = fw_device_shutdown; 1064 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1065 } else { 1066 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n", 1067 dev_name(&device->device), 1068 device->config_rom[3], device->config_rom[4], 1069 1 << device->max_speed); 1070 device->config_rom_retries = 0; 1071 1072 set_broadcast_channel(device, device->generation); 1073 1074 add_device_randomness(&device->config_rom[3], 8); 1075 } 1076 1077 /* 1078 * Reschedule the IRM work if we just finished reading the 1079 * root node config rom. If this races with a bus reset we 1080 * just end up running the IRM work a couple of extra times - 1081 * pretty harmless. 1082 */ 1083 if (device->node == card->root_node) 1084 fw_schedule_bm_work(card, 0); 1085 1086 return; 1087 1088 error_with_cdev: 1089 down_write(&fw_device_rwsem); 1090 idr_remove(&fw_device_idr, minor); 1091 up_write(&fw_device_rwsem); 1092 error: 1093 fw_device_put(device); /* fw_device_idr's reference */ 1094 1095 put_device(&device->device); /* our reference */ 1096 } 1097 1098 /* Reread and compare bus info block and header of root directory */ 1099 static int reread_config_rom(struct fw_device *device, int generation, 1100 bool *changed) 1101 { 1102 u32 q; 1103 int i, rcode; 1104 1105 for (i = 0; i < 6; i++) { 1106 rcode = read_rom(device, generation, i, &q); 1107 if (rcode != RCODE_COMPLETE) 1108 return rcode; 1109 1110 if (i == 0 && q == 0) 1111 /* inaccessible (see read_config_rom); retry later */ 1112 return RCODE_BUSY; 1113 1114 if (q != device->config_rom[i]) { 1115 *changed = true; 1116 return RCODE_COMPLETE; 1117 } 1118 } 1119 1120 *changed = false; 1121 return RCODE_COMPLETE; 1122 } 1123 1124 static void fw_device_refresh(struct work_struct *work) 1125 { 1126 struct fw_device *device = 1127 container_of(work, struct fw_device, work.work); 1128 struct fw_card *card = device->card; 1129 int ret, node_id = device->node_id; 1130 bool changed; 1131 1132 ret = reread_config_rom(device, device->generation, &changed); 1133 if (ret != RCODE_COMPLETE) 1134 goto failed_config_rom; 1135 1136 if (!changed) { 1137 if (atomic_cmpxchg(&device->state, 1138 FW_DEVICE_INITIALIZING, 1139 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1140 goto gone; 1141 1142 fw_device_update(work); 1143 device->config_rom_retries = 0; 1144 goto out; 1145 } 1146 1147 /* 1148 * Something changed. We keep things simple and don't investigate 1149 * further. We just destroy all previous units and create new ones. 1150 */ 1151 device_for_each_child(&device->device, NULL, shutdown_unit); 1152 1153 ret = read_config_rom(device, device->generation); 1154 if (ret != RCODE_COMPLETE) 1155 goto failed_config_rom; 1156 1157 fw_device_cdev_update(device); 1158 create_units(device); 1159 1160 /* Userspace may want to re-read attributes. */ 1161 kobject_uevent(&device->device.kobj, KOBJ_CHANGE); 1162 1163 if (atomic_cmpxchg(&device->state, 1164 FW_DEVICE_INITIALIZING, 1165 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1166 goto gone; 1167 1168 fw_notice(card, "refreshed device %s\n", dev_name(&device->device)); 1169 device->config_rom_retries = 0; 1170 goto out; 1171 1172 failed_config_rom: 1173 if (device->config_rom_retries < MAX_RETRIES && 1174 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1175 device->config_rom_retries++; 1176 fw_schedule_device_work(device, RETRY_DELAY); 1177 return; 1178 } 1179 1180 fw_notice(card, "giving up on refresh of device %s: %s\n", 1181 dev_name(&device->device), fw_rcode_string(ret)); 1182 gone: 1183 atomic_set(&device->state, FW_DEVICE_GONE); 1184 device->workfn = fw_device_shutdown; 1185 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1186 out: 1187 if (node_id == card->root_node->node_id) 1188 fw_schedule_bm_work(card, 0); 1189 } 1190 1191 static void fw_device_workfn(struct work_struct *work) 1192 { 1193 struct fw_device *device = container_of(to_delayed_work(work), 1194 struct fw_device, work); 1195 device->workfn(work); 1196 } 1197 1198 void fw_node_event(struct fw_card *card, struct fw_node *node, int event) 1199 { 1200 struct fw_device *device; 1201 1202 switch (event) { 1203 case FW_NODE_CREATED: 1204 /* 1205 * Attempt to scan the node, regardless whether its self ID has 1206 * the L (link active) flag set or not. Some broken devices 1207 * send L=0 but have an up-and-running link; others send L=1 1208 * without actually having a link. 1209 */ 1210 create: 1211 device = kzalloc(sizeof(*device), GFP_ATOMIC); 1212 if (device == NULL) 1213 break; 1214 1215 /* 1216 * Do minimal initialization of the device here, the 1217 * rest will happen in fw_device_init(). 1218 * 1219 * Attention: A lot of things, even fw_device_get(), 1220 * cannot be done before fw_device_init() finished! 1221 * You can basically just check device->state and 1222 * schedule work until then, but only while holding 1223 * card->lock. 1224 */ 1225 atomic_set(&device->state, FW_DEVICE_INITIALIZING); 1226 device->card = fw_card_get(card); 1227 device->node = fw_node_get(node); 1228 device->node_id = node->node_id; 1229 device->generation = card->generation; 1230 device->is_local = node == card->local_node; 1231 mutex_init(&device->client_list_mutex); 1232 INIT_LIST_HEAD(&device->client_list); 1233 1234 /* 1235 * Set the node data to point back to this device so 1236 * FW_NODE_UPDATED callbacks can update the node_id 1237 * and generation for the device. 1238 */ 1239 node->data = device; 1240 1241 /* 1242 * Many devices are slow to respond after bus resets, 1243 * especially if they are bus powered and go through 1244 * power-up after getting plugged in. We schedule the 1245 * first config rom scan half a second after bus reset. 1246 */ 1247 device->workfn = fw_device_init; 1248 INIT_DELAYED_WORK(&device->work, fw_device_workfn); 1249 fw_schedule_device_work(device, INITIAL_DELAY); 1250 break; 1251 1252 case FW_NODE_INITIATED_RESET: 1253 case FW_NODE_LINK_ON: 1254 device = node->data; 1255 if (device == NULL) 1256 goto create; 1257 1258 device->node_id = node->node_id; 1259 smp_wmb(); /* update node_id before generation */ 1260 device->generation = card->generation; 1261 if (atomic_cmpxchg(&device->state, 1262 FW_DEVICE_RUNNING, 1263 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { 1264 device->workfn = fw_device_refresh; 1265 fw_schedule_device_work(device, 1266 device->is_local ? 0 : INITIAL_DELAY); 1267 } 1268 break; 1269 1270 case FW_NODE_UPDATED: 1271 device = node->data; 1272 if (device == NULL) 1273 break; 1274 1275 device->node_id = node->node_id; 1276 smp_wmb(); /* update node_id before generation */ 1277 device->generation = card->generation; 1278 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { 1279 device->workfn = fw_device_update; 1280 fw_schedule_device_work(device, 0); 1281 } 1282 break; 1283 1284 case FW_NODE_DESTROYED: 1285 case FW_NODE_LINK_OFF: 1286 if (!node->data) 1287 break; 1288 1289 /* 1290 * Destroy the device associated with the node. There 1291 * are two cases here: either the device is fully 1292 * initialized (FW_DEVICE_RUNNING) or we're in the 1293 * process of reading its config rom 1294 * (FW_DEVICE_INITIALIZING). If it is fully 1295 * initialized we can reuse device->work to schedule a 1296 * full fw_device_shutdown(). If not, there's work 1297 * scheduled to read it's config rom, and we just put 1298 * the device in shutdown state to have that code fail 1299 * to create the device. 1300 */ 1301 device = node->data; 1302 if (atomic_xchg(&device->state, 1303 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { 1304 device->workfn = fw_device_shutdown; 1305 fw_schedule_device_work(device, 1306 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); 1307 } 1308 break; 1309 } 1310 } 1311