xref: /openbmc/linux/drivers/firewire/core-device.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /*
2  * Device probing and sysfs code.
3  *
4  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/random.h>
36 #include <linux/rwsem.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40 #include <linux/workqueue.h>
41 
42 #include <linux/atomic.h>
43 #include <asm/byteorder.h>
44 
45 #include "core.h"
46 
47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48 {
49 	ci->p = p + 1;
50 	ci->end = ci->p + (p[0] >> 16);
51 }
52 EXPORT_SYMBOL(fw_csr_iterator_init);
53 
54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
55 {
56 	*key = *ci->p >> 24;
57 	*value = *ci->p & 0xffffff;
58 
59 	return ci->p++ < ci->end;
60 }
61 EXPORT_SYMBOL(fw_csr_iterator_next);
62 
63 static const u32 *search_leaf(const u32 *directory, int search_key)
64 {
65 	struct fw_csr_iterator ci;
66 	int last_key = 0, key, value;
67 
68 	fw_csr_iterator_init(&ci, directory);
69 	while (fw_csr_iterator_next(&ci, &key, &value)) {
70 		if (last_key == search_key &&
71 		    key == (CSR_DESCRIPTOR | CSR_LEAF))
72 			return ci.p - 1 + value;
73 
74 		last_key = key;
75 	}
76 
77 	return NULL;
78 }
79 
80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81 {
82 	unsigned int quadlets, i;
83 	char c;
84 
85 	if (!size || !buf)
86 		return -EINVAL;
87 
88 	quadlets = min(block[0] >> 16, 256U);
89 	if (quadlets < 2)
90 		return -ENODATA;
91 
92 	if (block[1] != 0 || block[2] != 0)
93 		/* unknown language/character set */
94 		return -ENODATA;
95 
96 	block += 3;
97 	quadlets -= 2;
98 	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99 		c = block[i / 4] >> (24 - 8 * (i % 4));
100 		if (c == '\0')
101 			break;
102 		buf[i] = c;
103 	}
104 	buf[i] = '\0';
105 
106 	return i;
107 }
108 
109 /**
110  * fw_csr_string() - reads a string from the configuration ROM
111  * @directory:	e.g. root directory or unit directory
112  * @key:	the key of the preceding directory entry
113  * @buf:	where to put the string
114  * @size:	size of @buf, in bytes
115  *
116  * The string is taken from a minimal ASCII text descriptor leaf after
117  * the immediate entry with @key.  The string is zero-terminated.
118  * Returns strlen(buf) or a negative error code.
119  */
120 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
121 {
122 	const u32 *leaf = search_leaf(directory, key);
123 	if (!leaf)
124 		return -ENOENT;
125 
126 	return textual_leaf_to_string(leaf, buf, size);
127 }
128 EXPORT_SYMBOL(fw_csr_string);
129 
130 static void get_ids(const u32 *directory, int *id)
131 {
132 	struct fw_csr_iterator ci;
133 	int key, value;
134 
135 	fw_csr_iterator_init(&ci, directory);
136 	while (fw_csr_iterator_next(&ci, &key, &value)) {
137 		switch (key) {
138 		case CSR_VENDOR:	id[0] = value; break;
139 		case CSR_MODEL:		id[1] = value; break;
140 		case CSR_SPECIFIER_ID:	id[2] = value; break;
141 		case CSR_VERSION:	id[3] = value; break;
142 		}
143 	}
144 }
145 
146 static void get_modalias_ids(struct fw_unit *unit, int *id)
147 {
148 	get_ids(&fw_parent_device(unit)->config_rom[5], id);
149 	get_ids(unit->directory, id);
150 }
151 
152 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
153 {
154 	int match = 0;
155 
156 	if (id[0] == id_table->vendor_id)
157 		match |= IEEE1394_MATCH_VENDOR_ID;
158 	if (id[1] == id_table->model_id)
159 		match |= IEEE1394_MATCH_MODEL_ID;
160 	if (id[2] == id_table->specifier_id)
161 		match |= IEEE1394_MATCH_SPECIFIER_ID;
162 	if (id[3] == id_table->version)
163 		match |= IEEE1394_MATCH_VERSION;
164 
165 	return (match & id_table->match_flags) == id_table->match_flags;
166 }
167 
168 static const struct ieee1394_device_id *unit_match(struct device *dev,
169 						   struct device_driver *drv)
170 {
171 	const struct ieee1394_device_id *id_table =
172 			container_of(drv, struct fw_driver, driver)->id_table;
173 	int id[] = {0, 0, 0, 0};
174 
175 	get_modalias_ids(fw_unit(dev), id);
176 
177 	for (; id_table->match_flags != 0; id_table++)
178 		if (match_ids(id_table, id))
179 			return id_table;
180 
181 	return NULL;
182 }
183 
184 static bool is_fw_unit(struct device *dev);
185 
186 static int fw_unit_match(struct device *dev, struct device_driver *drv)
187 {
188 	/* We only allow binding to fw_units. */
189 	return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
190 }
191 
192 static int fw_unit_probe(struct device *dev)
193 {
194 	struct fw_driver *driver =
195 			container_of(dev->driver, struct fw_driver, driver);
196 
197 	return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
198 }
199 
200 static int fw_unit_remove(struct device *dev)
201 {
202 	struct fw_driver *driver =
203 			container_of(dev->driver, struct fw_driver, driver);
204 
205 	return driver->remove(fw_unit(dev)), 0;
206 }
207 
208 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
209 {
210 	int id[] = {0, 0, 0, 0};
211 
212 	get_modalias_ids(unit, id);
213 
214 	return snprintf(buffer, buffer_size,
215 			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
216 			id[0], id[1], id[2], id[3]);
217 }
218 
219 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
220 {
221 	struct fw_unit *unit = fw_unit(dev);
222 	char modalias[64];
223 
224 	get_modalias(unit, modalias, sizeof(modalias));
225 
226 	if (add_uevent_var(env, "MODALIAS=%s", modalias))
227 		return -ENOMEM;
228 
229 	return 0;
230 }
231 
232 struct bus_type fw_bus_type = {
233 	.name = "firewire",
234 	.match = fw_unit_match,
235 	.probe = fw_unit_probe,
236 	.remove = fw_unit_remove,
237 };
238 EXPORT_SYMBOL(fw_bus_type);
239 
240 int fw_device_enable_phys_dma(struct fw_device *device)
241 {
242 	int generation = device->generation;
243 
244 	/* device->node_id, accessed below, must not be older than generation */
245 	smp_rmb();
246 
247 	return device->card->driver->enable_phys_dma(device->card,
248 						     device->node_id,
249 						     generation);
250 }
251 EXPORT_SYMBOL(fw_device_enable_phys_dma);
252 
253 struct config_rom_attribute {
254 	struct device_attribute attr;
255 	u32 key;
256 };
257 
258 static ssize_t show_immediate(struct device *dev,
259 			      struct device_attribute *dattr, char *buf)
260 {
261 	struct config_rom_attribute *attr =
262 		container_of(dattr, struct config_rom_attribute, attr);
263 	struct fw_csr_iterator ci;
264 	const u32 *dir;
265 	int key, value, ret = -ENOENT;
266 
267 	down_read(&fw_device_rwsem);
268 
269 	if (is_fw_unit(dev))
270 		dir = fw_unit(dev)->directory;
271 	else
272 		dir = fw_device(dev)->config_rom + 5;
273 
274 	fw_csr_iterator_init(&ci, dir);
275 	while (fw_csr_iterator_next(&ci, &key, &value))
276 		if (attr->key == key) {
277 			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
278 				       "0x%06x\n", value);
279 			break;
280 		}
281 
282 	up_read(&fw_device_rwsem);
283 
284 	return ret;
285 }
286 
287 #define IMMEDIATE_ATTR(name, key)				\
288 	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
289 
290 static ssize_t show_text_leaf(struct device *dev,
291 			      struct device_attribute *dattr, char *buf)
292 {
293 	struct config_rom_attribute *attr =
294 		container_of(dattr, struct config_rom_attribute, attr);
295 	const u32 *dir;
296 	size_t bufsize;
297 	char dummy_buf[2];
298 	int ret;
299 
300 	down_read(&fw_device_rwsem);
301 
302 	if (is_fw_unit(dev))
303 		dir = fw_unit(dev)->directory;
304 	else
305 		dir = fw_device(dev)->config_rom + 5;
306 
307 	if (buf) {
308 		bufsize = PAGE_SIZE - 1;
309 	} else {
310 		buf = dummy_buf;
311 		bufsize = 1;
312 	}
313 
314 	ret = fw_csr_string(dir, attr->key, buf, bufsize);
315 
316 	if (ret >= 0) {
317 		/* Strip trailing whitespace and add newline. */
318 		while (ret > 0 && isspace(buf[ret - 1]))
319 			ret--;
320 		strcpy(buf + ret, "\n");
321 		ret++;
322 	}
323 
324 	up_read(&fw_device_rwsem);
325 
326 	return ret;
327 }
328 
329 #define TEXT_LEAF_ATTR(name, key)				\
330 	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
331 
332 static struct config_rom_attribute config_rom_attributes[] = {
333 	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
334 	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
335 	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
336 	IMMEDIATE_ATTR(version, CSR_VERSION),
337 	IMMEDIATE_ATTR(model, CSR_MODEL),
338 	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
339 	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
340 	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
341 };
342 
343 static void init_fw_attribute_group(struct device *dev,
344 				    struct device_attribute *attrs,
345 				    struct fw_attribute_group *group)
346 {
347 	struct device_attribute *attr;
348 	int i, j;
349 
350 	for (j = 0; attrs[j].attr.name != NULL; j++)
351 		group->attrs[j] = &attrs[j].attr;
352 
353 	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
354 		attr = &config_rom_attributes[i].attr;
355 		if (attr->show(dev, attr, NULL) < 0)
356 			continue;
357 		group->attrs[j++] = &attr->attr;
358 	}
359 
360 	group->attrs[j] = NULL;
361 	group->groups[0] = &group->group;
362 	group->groups[1] = NULL;
363 	group->group.attrs = group->attrs;
364 	dev->groups = (const struct attribute_group **) group->groups;
365 }
366 
367 static ssize_t modalias_show(struct device *dev,
368 			     struct device_attribute *attr, char *buf)
369 {
370 	struct fw_unit *unit = fw_unit(dev);
371 	int length;
372 
373 	length = get_modalias(unit, buf, PAGE_SIZE);
374 	strcpy(buf + length, "\n");
375 
376 	return length + 1;
377 }
378 
379 static ssize_t rom_index_show(struct device *dev,
380 			      struct device_attribute *attr, char *buf)
381 {
382 	struct fw_device *device = fw_device(dev->parent);
383 	struct fw_unit *unit = fw_unit(dev);
384 
385 	return snprintf(buf, PAGE_SIZE, "%d\n",
386 			(int)(unit->directory - device->config_rom));
387 }
388 
389 static struct device_attribute fw_unit_attributes[] = {
390 	__ATTR_RO(modalias),
391 	__ATTR_RO(rom_index),
392 	__ATTR_NULL,
393 };
394 
395 static ssize_t config_rom_show(struct device *dev,
396 			       struct device_attribute *attr, char *buf)
397 {
398 	struct fw_device *device = fw_device(dev);
399 	size_t length;
400 
401 	down_read(&fw_device_rwsem);
402 	length = device->config_rom_length * 4;
403 	memcpy(buf, device->config_rom, length);
404 	up_read(&fw_device_rwsem);
405 
406 	return length;
407 }
408 
409 static ssize_t guid_show(struct device *dev,
410 			 struct device_attribute *attr, char *buf)
411 {
412 	struct fw_device *device = fw_device(dev);
413 	int ret;
414 
415 	down_read(&fw_device_rwsem);
416 	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
417 		       device->config_rom[3], device->config_rom[4]);
418 	up_read(&fw_device_rwsem);
419 
420 	return ret;
421 }
422 
423 static ssize_t is_local_show(struct device *dev,
424 			     struct device_attribute *attr, char *buf)
425 {
426 	struct fw_device *device = fw_device(dev);
427 
428 	return sprintf(buf, "%u\n", device->is_local);
429 }
430 
431 static int units_sprintf(char *buf, const u32 *directory)
432 {
433 	struct fw_csr_iterator ci;
434 	int key, value;
435 	int specifier_id = 0;
436 	int version = 0;
437 
438 	fw_csr_iterator_init(&ci, directory);
439 	while (fw_csr_iterator_next(&ci, &key, &value)) {
440 		switch (key) {
441 		case CSR_SPECIFIER_ID:
442 			specifier_id = value;
443 			break;
444 		case CSR_VERSION:
445 			version = value;
446 			break;
447 		}
448 	}
449 
450 	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
451 }
452 
453 static ssize_t units_show(struct device *dev,
454 			  struct device_attribute *attr, char *buf)
455 {
456 	struct fw_device *device = fw_device(dev);
457 	struct fw_csr_iterator ci;
458 	int key, value, i = 0;
459 
460 	down_read(&fw_device_rwsem);
461 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
462 	while (fw_csr_iterator_next(&ci, &key, &value)) {
463 		if (key != (CSR_UNIT | CSR_DIRECTORY))
464 			continue;
465 		i += units_sprintf(&buf[i], ci.p + value - 1);
466 		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
467 			break;
468 	}
469 	up_read(&fw_device_rwsem);
470 
471 	if (i)
472 		buf[i - 1] = '\n';
473 
474 	return i;
475 }
476 
477 static struct device_attribute fw_device_attributes[] = {
478 	__ATTR_RO(config_rom),
479 	__ATTR_RO(guid),
480 	__ATTR_RO(is_local),
481 	__ATTR_RO(units),
482 	__ATTR_NULL,
483 };
484 
485 static int read_rom(struct fw_device *device,
486 		    int generation, int index, u32 *data)
487 {
488 	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
489 	int i, rcode;
490 
491 	/* device->node_id, accessed below, must not be older than generation */
492 	smp_rmb();
493 
494 	for (i = 10; i < 100; i += 10) {
495 		rcode = fw_run_transaction(device->card,
496 				TCODE_READ_QUADLET_REQUEST, device->node_id,
497 				generation, device->max_speed, offset, data, 4);
498 		if (rcode != RCODE_BUSY)
499 			break;
500 		msleep(i);
501 	}
502 	be32_to_cpus(data);
503 
504 	return rcode;
505 }
506 
507 #define MAX_CONFIG_ROM_SIZE 256
508 
509 /*
510  * Read the bus info block, perform a speed probe, and read all of the rest of
511  * the config ROM.  We do all this with a cached bus generation.  If the bus
512  * generation changes under us, read_config_rom will fail and get retried.
513  * It's better to start all over in this case because the node from which we
514  * are reading the ROM may have changed the ROM during the reset.
515  * Returns either a result code or a negative error code.
516  */
517 static int read_config_rom(struct fw_device *device, int generation)
518 {
519 	struct fw_card *card = device->card;
520 	const u32 *old_rom, *new_rom;
521 	u32 *rom, *stack;
522 	u32 sp, key;
523 	int i, end, length, ret;
524 
525 	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
526 		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
527 	if (rom == NULL)
528 		return -ENOMEM;
529 
530 	stack = &rom[MAX_CONFIG_ROM_SIZE];
531 	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
532 
533 	device->max_speed = SCODE_100;
534 
535 	/* First read the bus info block. */
536 	for (i = 0; i < 5; i++) {
537 		ret = read_rom(device, generation, i, &rom[i]);
538 		if (ret != RCODE_COMPLETE)
539 			goto out;
540 		/*
541 		 * As per IEEE1212 7.2, during initialization, devices can
542 		 * reply with a 0 for the first quadlet of the config
543 		 * rom to indicate that they are booting (for example,
544 		 * if the firmware is on the disk of a external
545 		 * harddisk).  In that case we just fail, and the
546 		 * retry mechanism will try again later.
547 		 */
548 		if (i == 0 && rom[i] == 0) {
549 			ret = RCODE_BUSY;
550 			goto out;
551 		}
552 	}
553 
554 	device->max_speed = device->node->max_speed;
555 
556 	/*
557 	 * Determine the speed of
558 	 *   - devices with link speed less than PHY speed,
559 	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
560 	 *   - all devices if there are 1394b repeaters.
561 	 * Note, we cannot use the bus info block's link_spd as starting point
562 	 * because some buggy firmwares set it lower than necessary and because
563 	 * 1394-1995 nodes do not have the field.
564 	 */
565 	if ((rom[2] & 0x7) < device->max_speed ||
566 	    device->max_speed == SCODE_BETA ||
567 	    card->beta_repeaters_present) {
568 		u32 dummy;
569 
570 		/* for S1600 and S3200 */
571 		if (device->max_speed == SCODE_BETA)
572 			device->max_speed = card->link_speed;
573 
574 		while (device->max_speed > SCODE_100) {
575 			if (read_rom(device, generation, 0, &dummy) ==
576 			    RCODE_COMPLETE)
577 				break;
578 			device->max_speed--;
579 		}
580 	}
581 
582 	/*
583 	 * Now parse the config rom.  The config rom is a recursive
584 	 * directory structure so we parse it using a stack of
585 	 * references to the blocks that make up the structure.  We
586 	 * push a reference to the root directory on the stack to
587 	 * start things off.
588 	 */
589 	length = i;
590 	sp = 0;
591 	stack[sp++] = 0xc0000005;
592 	while (sp > 0) {
593 		/*
594 		 * Pop the next block reference of the stack.  The
595 		 * lower 24 bits is the offset into the config rom,
596 		 * the upper 8 bits are the type of the reference the
597 		 * block.
598 		 */
599 		key = stack[--sp];
600 		i = key & 0xffffff;
601 		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
602 			ret = -ENXIO;
603 			goto out;
604 		}
605 
606 		/* Read header quadlet for the block to get the length. */
607 		ret = read_rom(device, generation, i, &rom[i]);
608 		if (ret != RCODE_COMPLETE)
609 			goto out;
610 		end = i + (rom[i] >> 16) + 1;
611 		if (end > MAX_CONFIG_ROM_SIZE) {
612 			/*
613 			 * This block extends outside the config ROM which is
614 			 * a firmware bug.  Ignore this whole block, i.e.
615 			 * simply set a fake block length of 0.
616 			 */
617 			fw_err(card, "skipped invalid ROM block %x at %llx\n",
618 			       rom[i],
619 			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
620 			rom[i] = 0;
621 			end = i;
622 		}
623 		i++;
624 
625 		/*
626 		 * Now read in the block.  If this is a directory
627 		 * block, check the entries as we read them to see if
628 		 * it references another block, and push it in that case.
629 		 */
630 		for (; i < end; i++) {
631 			ret = read_rom(device, generation, i, &rom[i]);
632 			if (ret != RCODE_COMPLETE)
633 				goto out;
634 
635 			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
636 				continue;
637 			/*
638 			 * Offset points outside the ROM.  May be a firmware
639 			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
640 			 * 7.7.18).  Simply overwrite this pointer here by a
641 			 * fake immediate entry so that later iterators over
642 			 * the ROM don't have to check offsets all the time.
643 			 */
644 			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
645 				fw_err(card,
646 				       "skipped unsupported ROM entry %x at %llx\n",
647 				       rom[i],
648 				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
649 				rom[i] = 0;
650 				continue;
651 			}
652 			stack[sp++] = i + rom[i];
653 		}
654 		if (length < i)
655 			length = i;
656 	}
657 
658 	old_rom = device->config_rom;
659 	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
660 	if (new_rom == NULL) {
661 		ret = -ENOMEM;
662 		goto out;
663 	}
664 
665 	down_write(&fw_device_rwsem);
666 	device->config_rom = new_rom;
667 	device->config_rom_length = length;
668 	up_write(&fw_device_rwsem);
669 
670 	kfree(old_rom);
671 	ret = RCODE_COMPLETE;
672 	device->max_rec	= rom[2] >> 12 & 0xf;
673 	device->cmc	= rom[2] >> 30 & 1;
674 	device->irmc	= rom[2] >> 31 & 1;
675  out:
676 	kfree(rom);
677 
678 	return ret;
679 }
680 
681 static void fw_unit_release(struct device *dev)
682 {
683 	struct fw_unit *unit = fw_unit(dev);
684 
685 	fw_device_put(fw_parent_device(unit));
686 	kfree(unit);
687 }
688 
689 static struct device_type fw_unit_type = {
690 	.uevent		= fw_unit_uevent,
691 	.release	= fw_unit_release,
692 };
693 
694 static bool is_fw_unit(struct device *dev)
695 {
696 	return dev->type == &fw_unit_type;
697 }
698 
699 static void create_units(struct fw_device *device)
700 {
701 	struct fw_csr_iterator ci;
702 	struct fw_unit *unit;
703 	int key, value, i;
704 
705 	i = 0;
706 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
707 	while (fw_csr_iterator_next(&ci, &key, &value)) {
708 		if (key != (CSR_UNIT | CSR_DIRECTORY))
709 			continue;
710 
711 		/*
712 		 * Get the address of the unit directory and try to
713 		 * match the drivers id_tables against it.
714 		 */
715 		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
716 		if (unit == NULL)
717 			continue;
718 
719 		unit->directory = ci.p + value - 1;
720 		unit->device.bus = &fw_bus_type;
721 		unit->device.type = &fw_unit_type;
722 		unit->device.parent = &device->device;
723 		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
724 
725 		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
726 				ARRAY_SIZE(fw_unit_attributes) +
727 				ARRAY_SIZE(config_rom_attributes));
728 		init_fw_attribute_group(&unit->device,
729 					fw_unit_attributes,
730 					&unit->attribute_group);
731 
732 		if (device_register(&unit->device) < 0)
733 			goto skip_unit;
734 
735 		fw_device_get(device);
736 		continue;
737 
738 	skip_unit:
739 		kfree(unit);
740 	}
741 }
742 
743 static int shutdown_unit(struct device *device, void *data)
744 {
745 	device_unregister(device);
746 
747 	return 0;
748 }
749 
750 /*
751  * fw_device_rwsem acts as dual purpose mutex:
752  *   - serializes accesses to fw_device_idr,
753  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
754  *     fw_unit.directory, unless those accesses happen at safe occasions
755  */
756 DECLARE_RWSEM(fw_device_rwsem);
757 
758 DEFINE_IDR(fw_device_idr);
759 int fw_cdev_major;
760 
761 struct fw_device *fw_device_get_by_devt(dev_t devt)
762 {
763 	struct fw_device *device;
764 
765 	down_read(&fw_device_rwsem);
766 	device = idr_find(&fw_device_idr, MINOR(devt));
767 	if (device)
768 		fw_device_get(device);
769 	up_read(&fw_device_rwsem);
770 
771 	return device;
772 }
773 
774 struct workqueue_struct *fw_workqueue;
775 EXPORT_SYMBOL(fw_workqueue);
776 
777 static void fw_schedule_device_work(struct fw_device *device,
778 				    unsigned long delay)
779 {
780 	queue_delayed_work(fw_workqueue, &device->work, delay);
781 }
782 
783 /*
784  * These defines control the retry behavior for reading the config
785  * rom.  It shouldn't be necessary to tweak these; if the device
786  * doesn't respond to a config rom read within 10 seconds, it's not
787  * going to respond at all.  As for the initial delay, a lot of
788  * devices will be able to respond within half a second after bus
789  * reset.  On the other hand, it's not really worth being more
790  * aggressive than that, since it scales pretty well; if 10 devices
791  * are plugged in, they're all getting read within one second.
792  */
793 
794 #define MAX_RETRIES	10
795 #define RETRY_DELAY	(3 * HZ)
796 #define INITIAL_DELAY	(HZ / 2)
797 #define SHUTDOWN_DELAY	(2 * HZ)
798 
799 static void fw_device_shutdown(struct work_struct *work)
800 {
801 	struct fw_device *device =
802 		container_of(work, struct fw_device, work.work);
803 	int minor = MINOR(device->device.devt);
804 
805 	if (time_before64(get_jiffies_64(),
806 			  device->card->reset_jiffies + SHUTDOWN_DELAY)
807 	    && !list_empty(&device->card->link)) {
808 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
809 		return;
810 	}
811 
812 	if (atomic_cmpxchg(&device->state,
813 			   FW_DEVICE_GONE,
814 			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
815 		return;
816 
817 	fw_device_cdev_remove(device);
818 	device_for_each_child(&device->device, NULL, shutdown_unit);
819 	device_unregister(&device->device);
820 
821 	down_write(&fw_device_rwsem);
822 	idr_remove(&fw_device_idr, minor);
823 	up_write(&fw_device_rwsem);
824 
825 	fw_device_put(device);
826 }
827 
828 static void fw_device_release(struct device *dev)
829 {
830 	struct fw_device *device = fw_device(dev);
831 	struct fw_card *card = device->card;
832 	unsigned long flags;
833 
834 	/*
835 	 * Take the card lock so we don't set this to NULL while a
836 	 * FW_NODE_UPDATED callback is being handled or while the
837 	 * bus manager work looks at this node.
838 	 */
839 	spin_lock_irqsave(&card->lock, flags);
840 	device->node->data = NULL;
841 	spin_unlock_irqrestore(&card->lock, flags);
842 
843 	fw_node_put(device->node);
844 	kfree(device->config_rom);
845 	kfree(device);
846 	fw_card_put(card);
847 }
848 
849 static struct device_type fw_device_type = {
850 	.release = fw_device_release,
851 };
852 
853 static bool is_fw_device(struct device *dev)
854 {
855 	return dev->type == &fw_device_type;
856 }
857 
858 static int update_unit(struct device *dev, void *data)
859 {
860 	struct fw_unit *unit = fw_unit(dev);
861 	struct fw_driver *driver = (struct fw_driver *)dev->driver;
862 
863 	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
864 		device_lock(dev);
865 		driver->update(unit);
866 		device_unlock(dev);
867 	}
868 
869 	return 0;
870 }
871 
872 static void fw_device_update(struct work_struct *work)
873 {
874 	struct fw_device *device =
875 		container_of(work, struct fw_device, work.work);
876 
877 	fw_device_cdev_update(device);
878 	device_for_each_child(&device->device, NULL, update_unit);
879 }
880 
881 /*
882  * If a device was pending for deletion because its node went away but its
883  * bus info block and root directory header matches that of a newly discovered
884  * device, revive the existing fw_device.
885  * The newly allocated fw_device becomes obsolete instead.
886  */
887 static int lookup_existing_device(struct device *dev, void *data)
888 {
889 	struct fw_device *old = fw_device(dev);
890 	struct fw_device *new = data;
891 	struct fw_card *card = new->card;
892 	int match = 0;
893 
894 	if (!is_fw_device(dev))
895 		return 0;
896 
897 	down_read(&fw_device_rwsem); /* serialize config_rom access */
898 	spin_lock_irq(&card->lock);  /* serialize node access */
899 
900 	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
901 	    atomic_cmpxchg(&old->state,
902 			   FW_DEVICE_GONE,
903 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
904 		struct fw_node *current_node = new->node;
905 		struct fw_node *obsolete_node = old->node;
906 
907 		new->node = obsolete_node;
908 		new->node->data = new;
909 		old->node = current_node;
910 		old->node->data = old;
911 
912 		old->max_speed = new->max_speed;
913 		old->node_id = current_node->node_id;
914 		smp_wmb();  /* update node_id before generation */
915 		old->generation = card->generation;
916 		old->config_rom_retries = 0;
917 		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
918 
919 		old->workfn = fw_device_update;
920 		fw_schedule_device_work(old, 0);
921 
922 		if (current_node == card->root_node)
923 			fw_schedule_bm_work(card, 0);
924 
925 		match = 1;
926 	}
927 
928 	spin_unlock_irq(&card->lock);
929 	up_read(&fw_device_rwsem);
930 
931 	return match;
932 }
933 
934 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
935 
936 static void set_broadcast_channel(struct fw_device *device, int generation)
937 {
938 	struct fw_card *card = device->card;
939 	__be32 data;
940 	int rcode;
941 
942 	if (!card->broadcast_channel_allocated)
943 		return;
944 
945 	/*
946 	 * The Broadcast_Channel Valid bit is required by nodes which want to
947 	 * transmit on this channel.  Such transmissions are practically
948 	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
949 	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
950 	 * to narrow down to which nodes we send Broadcast_Channel updates.
951 	 */
952 	if (!device->irmc || device->max_rec < 8)
953 		return;
954 
955 	/*
956 	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
957 	 * Perform a read test first.
958 	 */
959 	if (device->bc_implemented == BC_UNKNOWN) {
960 		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
961 				device->node_id, generation, device->max_speed,
962 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
963 				&data, 4);
964 		switch (rcode) {
965 		case RCODE_COMPLETE:
966 			if (data & cpu_to_be32(1 << 31)) {
967 				device->bc_implemented = BC_IMPLEMENTED;
968 				break;
969 			}
970 			/* else fall through to case address error */
971 		case RCODE_ADDRESS_ERROR:
972 			device->bc_implemented = BC_UNIMPLEMENTED;
973 		}
974 	}
975 
976 	if (device->bc_implemented == BC_IMPLEMENTED) {
977 		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
978 				   BROADCAST_CHANNEL_VALID);
979 		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
980 				device->node_id, generation, device->max_speed,
981 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
982 				&data, 4);
983 	}
984 }
985 
986 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
987 {
988 	if (is_fw_device(dev))
989 		set_broadcast_channel(fw_device(dev), (long)gen);
990 
991 	return 0;
992 }
993 
994 static void fw_device_init(struct work_struct *work)
995 {
996 	struct fw_device *device =
997 		container_of(work, struct fw_device, work.work);
998 	struct fw_card *card = device->card;
999 	struct device *revived_dev;
1000 	int minor, ret;
1001 
1002 	/*
1003 	 * All failure paths here set node->data to NULL, so that we
1004 	 * don't try to do device_for_each_child() on a kfree()'d
1005 	 * device.
1006 	 */
1007 
1008 	ret = read_config_rom(device, device->generation);
1009 	if (ret != RCODE_COMPLETE) {
1010 		if (device->config_rom_retries < MAX_RETRIES &&
1011 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1012 			device->config_rom_retries++;
1013 			fw_schedule_device_work(device, RETRY_DELAY);
1014 		} else {
1015 			if (device->node->link_on)
1016 				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1017 					  device->node_id,
1018 					  fw_rcode_string(ret));
1019 			if (device->node == card->root_node)
1020 				fw_schedule_bm_work(card, 0);
1021 			fw_device_release(&device->device);
1022 		}
1023 		return;
1024 	}
1025 
1026 	revived_dev = device_find_child(card->device,
1027 					device, lookup_existing_device);
1028 	if (revived_dev) {
1029 		put_device(revived_dev);
1030 		fw_device_release(&device->device);
1031 
1032 		return;
1033 	}
1034 
1035 	device_initialize(&device->device);
1036 
1037 	fw_device_get(device);
1038 	down_write(&fw_device_rwsem);
1039 	minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1040 			GFP_KERNEL);
1041 	up_write(&fw_device_rwsem);
1042 
1043 	if (minor < 0)
1044 		goto error;
1045 
1046 	device->device.bus = &fw_bus_type;
1047 	device->device.type = &fw_device_type;
1048 	device->device.parent = card->device;
1049 	device->device.devt = MKDEV(fw_cdev_major, minor);
1050 	dev_set_name(&device->device, "fw%d", minor);
1051 
1052 	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1053 			ARRAY_SIZE(fw_device_attributes) +
1054 			ARRAY_SIZE(config_rom_attributes));
1055 	init_fw_attribute_group(&device->device,
1056 				fw_device_attributes,
1057 				&device->attribute_group);
1058 
1059 	if (device_add(&device->device)) {
1060 		fw_err(card, "failed to add device\n");
1061 		goto error_with_cdev;
1062 	}
1063 
1064 	create_units(device);
1065 
1066 	/*
1067 	 * Transition the device to running state.  If it got pulled
1068 	 * out from under us while we did the intialization work, we
1069 	 * have to shut down the device again here.  Normally, though,
1070 	 * fw_node_event will be responsible for shutting it down when
1071 	 * necessary.  We have to use the atomic cmpxchg here to avoid
1072 	 * racing with the FW_NODE_DESTROYED case in
1073 	 * fw_node_event().
1074 	 */
1075 	if (atomic_cmpxchg(&device->state,
1076 			   FW_DEVICE_INITIALIZING,
1077 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1078 		device->workfn = fw_device_shutdown;
1079 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1080 	} else {
1081 		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1082 			  dev_name(&device->device),
1083 			  device->config_rom[3], device->config_rom[4],
1084 			  1 << device->max_speed);
1085 		device->config_rom_retries = 0;
1086 
1087 		set_broadcast_channel(device, device->generation);
1088 
1089 		add_device_randomness(&device->config_rom[3], 8);
1090 	}
1091 
1092 	/*
1093 	 * Reschedule the IRM work if we just finished reading the
1094 	 * root node config rom.  If this races with a bus reset we
1095 	 * just end up running the IRM work a couple of extra times -
1096 	 * pretty harmless.
1097 	 */
1098 	if (device->node == card->root_node)
1099 		fw_schedule_bm_work(card, 0);
1100 
1101 	return;
1102 
1103  error_with_cdev:
1104 	down_write(&fw_device_rwsem);
1105 	idr_remove(&fw_device_idr, minor);
1106 	up_write(&fw_device_rwsem);
1107  error:
1108 	fw_device_put(device);		/* fw_device_idr's reference */
1109 
1110 	put_device(&device->device);	/* our reference */
1111 }
1112 
1113 /* Reread and compare bus info block and header of root directory */
1114 static int reread_config_rom(struct fw_device *device, int generation,
1115 			     bool *changed)
1116 {
1117 	u32 q;
1118 	int i, rcode;
1119 
1120 	for (i = 0; i < 6; i++) {
1121 		rcode = read_rom(device, generation, i, &q);
1122 		if (rcode != RCODE_COMPLETE)
1123 			return rcode;
1124 
1125 		if (i == 0 && q == 0)
1126 			/* inaccessible (see read_config_rom); retry later */
1127 			return RCODE_BUSY;
1128 
1129 		if (q != device->config_rom[i]) {
1130 			*changed = true;
1131 			return RCODE_COMPLETE;
1132 		}
1133 	}
1134 
1135 	*changed = false;
1136 	return RCODE_COMPLETE;
1137 }
1138 
1139 static void fw_device_refresh(struct work_struct *work)
1140 {
1141 	struct fw_device *device =
1142 		container_of(work, struct fw_device, work.work);
1143 	struct fw_card *card = device->card;
1144 	int ret, node_id = device->node_id;
1145 	bool changed;
1146 
1147 	ret = reread_config_rom(device, device->generation, &changed);
1148 	if (ret != RCODE_COMPLETE)
1149 		goto failed_config_rom;
1150 
1151 	if (!changed) {
1152 		if (atomic_cmpxchg(&device->state,
1153 				   FW_DEVICE_INITIALIZING,
1154 				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1155 			goto gone;
1156 
1157 		fw_device_update(work);
1158 		device->config_rom_retries = 0;
1159 		goto out;
1160 	}
1161 
1162 	/*
1163 	 * Something changed.  We keep things simple and don't investigate
1164 	 * further.  We just destroy all previous units and create new ones.
1165 	 */
1166 	device_for_each_child(&device->device, NULL, shutdown_unit);
1167 
1168 	ret = read_config_rom(device, device->generation);
1169 	if (ret != RCODE_COMPLETE)
1170 		goto failed_config_rom;
1171 
1172 	fw_device_cdev_update(device);
1173 	create_units(device);
1174 
1175 	/* Userspace may want to re-read attributes. */
1176 	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1177 
1178 	if (atomic_cmpxchg(&device->state,
1179 			   FW_DEVICE_INITIALIZING,
1180 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1181 		goto gone;
1182 
1183 	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1184 	device->config_rom_retries = 0;
1185 	goto out;
1186 
1187  failed_config_rom:
1188 	if (device->config_rom_retries < MAX_RETRIES &&
1189 	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1190 		device->config_rom_retries++;
1191 		fw_schedule_device_work(device, RETRY_DELAY);
1192 		return;
1193 	}
1194 
1195 	fw_notice(card, "giving up on refresh of device %s: %s\n",
1196 		  dev_name(&device->device), fw_rcode_string(ret));
1197  gone:
1198 	atomic_set(&device->state, FW_DEVICE_GONE);
1199 	device->workfn = fw_device_shutdown;
1200 	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1201  out:
1202 	if (node_id == card->root_node->node_id)
1203 		fw_schedule_bm_work(card, 0);
1204 }
1205 
1206 static void fw_device_workfn(struct work_struct *work)
1207 {
1208 	struct fw_device *device = container_of(to_delayed_work(work),
1209 						struct fw_device, work);
1210 	device->workfn(work);
1211 }
1212 
1213 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1214 {
1215 	struct fw_device *device;
1216 
1217 	switch (event) {
1218 	case FW_NODE_CREATED:
1219 		/*
1220 		 * Attempt to scan the node, regardless whether its self ID has
1221 		 * the L (link active) flag set or not.  Some broken devices
1222 		 * send L=0 but have an up-and-running link; others send L=1
1223 		 * without actually having a link.
1224 		 */
1225  create:
1226 		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1227 		if (device == NULL)
1228 			break;
1229 
1230 		/*
1231 		 * Do minimal intialization of the device here, the
1232 		 * rest will happen in fw_device_init().
1233 		 *
1234 		 * Attention:  A lot of things, even fw_device_get(),
1235 		 * cannot be done before fw_device_init() finished!
1236 		 * You can basically just check device->state and
1237 		 * schedule work until then, but only while holding
1238 		 * card->lock.
1239 		 */
1240 		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1241 		device->card = fw_card_get(card);
1242 		device->node = fw_node_get(node);
1243 		device->node_id = node->node_id;
1244 		device->generation = card->generation;
1245 		device->is_local = node == card->local_node;
1246 		mutex_init(&device->client_list_mutex);
1247 		INIT_LIST_HEAD(&device->client_list);
1248 
1249 		/*
1250 		 * Set the node data to point back to this device so
1251 		 * FW_NODE_UPDATED callbacks can update the node_id
1252 		 * and generation for the device.
1253 		 */
1254 		node->data = device;
1255 
1256 		/*
1257 		 * Many devices are slow to respond after bus resets,
1258 		 * especially if they are bus powered and go through
1259 		 * power-up after getting plugged in.  We schedule the
1260 		 * first config rom scan half a second after bus reset.
1261 		 */
1262 		device->workfn = fw_device_init;
1263 		INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1264 		fw_schedule_device_work(device, INITIAL_DELAY);
1265 		break;
1266 
1267 	case FW_NODE_INITIATED_RESET:
1268 	case FW_NODE_LINK_ON:
1269 		device = node->data;
1270 		if (device == NULL)
1271 			goto create;
1272 
1273 		device->node_id = node->node_id;
1274 		smp_wmb();  /* update node_id before generation */
1275 		device->generation = card->generation;
1276 		if (atomic_cmpxchg(&device->state,
1277 			    FW_DEVICE_RUNNING,
1278 			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1279 			device->workfn = fw_device_refresh;
1280 			fw_schedule_device_work(device,
1281 				device->is_local ? 0 : INITIAL_DELAY);
1282 		}
1283 		break;
1284 
1285 	case FW_NODE_UPDATED:
1286 		device = node->data;
1287 		if (device == NULL)
1288 			break;
1289 
1290 		device->node_id = node->node_id;
1291 		smp_wmb();  /* update node_id before generation */
1292 		device->generation = card->generation;
1293 		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1294 			device->workfn = fw_device_update;
1295 			fw_schedule_device_work(device, 0);
1296 		}
1297 		break;
1298 
1299 	case FW_NODE_DESTROYED:
1300 	case FW_NODE_LINK_OFF:
1301 		if (!node->data)
1302 			break;
1303 
1304 		/*
1305 		 * Destroy the device associated with the node.  There
1306 		 * are two cases here: either the device is fully
1307 		 * initialized (FW_DEVICE_RUNNING) or we're in the
1308 		 * process of reading its config rom
1309 		 * (FW_DEVICE_INITIALIZING).  If it is fully
1310 		 * initialized we can reuse device->work to schedule a
1311 		 * full fw_device_shutdown().  If not, there's work
1312 		 * scheduled to read it's config rom, and we just put
1313 		 * the device in shutdown state to have that code fail
1314 		 * to create the device.
1315 		 */
1316 		device = node->data;
1317 		if (atomic_xchg(&device->state,
1318 				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1319 			device->workfn = fw_device_shutdown;
1320 			fw_schedule_device_work(device,
1321 				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1322 		}
1323 		break;
1324 	}
1325 }
1326