1 /* 2 * Device probing and sysfs code. 3 * 4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 #include <linux/bug.h> 22 #include <linux/ctype.h> 23 #include <linux/delay.h> 24 #include <linux/device.h> 25 #include <linux/errno.h> 26 #include <linux/firewire.h> 27 #include <linux/firewire-constants.h> 28 #include <linux/idr.h> 29 #include <linux/jiffies.h> 30 #include <linux/kobject.h> 31 #include <linux/list.h> 32 #include <linux/mod_devicetable.h> 33 #include <linux/module.h> 34 #include <linux/mutex.h> 35 #include <linux/random.h> 36 #include <linux/rwsem.h> 37 #include <linux/slab.h> 38 #include <linux/spinlock.h> 39 #include <linux/string.h> 40 #include <linux/workqueue.h> 41 42 #include <linux/atomic.h> 43 #include <asm/byteorder.h> 44 45 #include "core.h" 46 47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) 48 { 49 ci->p = p + 1; 50 ci->end = ci->p + (p[0] >> 16); 51 } 52 EXPORT_SYMBOL(fw_csr_iterator_init); 53 54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) 55 { 56 *key = *ci->p >> 24; 57 *value = *ci->p & 0xffffff; 58 59 return ci->p++ < ci->end; 60 } 61 EXPORT_SYMBOL(fw_csr_iterator_next); 62 63 static const u32 *search_leaf(const u32 *directory, int search_key) 64 { 65 struct fw_csr_iterator ci; 66 int last_key = 0, key, value; 67 68 fw_csr_iterator_init(&ci, directory); 69 while (fw_csr_iterator_next(&ci, &key, &value)) { 70 if (last_key == search_key && 71 key == (CSR_DESCRIPTOR | CSR_LEAF)) 72 return ci.p - 1 + value; 73 74 last_key = key; 75 } 76 77 return NULL; 78 } 79 80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) 81 { 82 unsigned int quadlets, i; 83 char c; 84 85 if (!size || !buf) 86 return -EINVAL; 87 88 quadlets = min(block[0] >> 16, 256U); 89 if (quadlets < 2) 90 return -ENODATA; 91 92 if (block[1] != 0 || block[2] != 0) 93 /* unknown language/character set */ 94 return -ENODATA; 95 96 block += 3; 97 quadlets -= 2; 98 for (i = 0; i < quadlets * 4 && i < size - 1; i++) { 99 c = block[i / 4] >> (24 - 8 * (i % 4)); 100 if (c == '\0') 101 break; 102 buf[i] = c; 103 } 104 buf[i] = '\0'; 105 106 return i; 107 } 108 109 /** 110 * fw_csr_string() - reads a string from the configuration ROM 111 * @directory: e.g. root directory or unit directory 112 * @key: the key of the preceding directory entry 113 * @buf: where to put the string 114 * @size: size of @buf, in bytes 115 * 116 * The string is taken from a minimal ASCII text descriptor leaf after 117 * the immediate entry with @key. The string is zero-terminated. 118 * Returns strlen(buf) or a negative error code. 119 */ 120 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) 121 { 122 const u32 *leaf = search_leaf(directory, key); 123 if (!leaf) 124 return -ENOENT; 125 126 return textual_leaf_to_string(leaf, buf, size); 127 } 128 EXPORT_SYMBOL(fw_csr_string); 129 130 static void get_ids(const u32 *directory, int *id) 131 { 132 struct fw_csr_iterator ci; 133 int key, value; 134 135 fw_csr_iterator_init(&ci, directory); 136 while (fw_csr_iterator_next(&ci, &key, &value)) { 137 switch (key) { 138 case CSR_VENDOR: id[0] = value; break; 139 case CSR_MODEL: id[1] = value; break; 140 case CSR_SPECIFIER_ID: id[2] = value; break; 141 case CSR_VERSION: id[3] = value; break; 142 } 143 } 144 } 145 146 static void get_modalias_ids(struct fw_unit *unit, int *id) 147 { 148 get_ids(&fw_parent_device(unit)->config_rom[5], id); 149 get_ids(unit->directory, id); 150 } 151 152 static bool match_ids(const struct ieee1394_device_id *id_table, int *id) 153 { 154 int match = 0; 155 156 if (id[0] == id_table->vendor_id) 157 match |= IEEE1394_MATCH_VENDOR_ID; 158 if (id[1] == id_table->model_id) 159 match |= IEEE1394_MATCH_MODEL_ID; 160 if (id[2] == id_table->specifier_id) 161 match |= IEEE1394_MATCH_SPECIFIER_ID; 162 if (id[3] == id_table->version) 163 match |= IEEE1394_MATCH_VERSION; 164 165 return (match & id_table->match_flags) == id_table->match_flags; 166 } 167 168 static const struct ieee1394_device_id *unit_match(struct device *dev, 169 struct device_driver *drv) 170 { 171 const struct ieee1394_device_id *id_table = 172 container_of(drv, struct fw_driver, driver)->id_table; 173 int id[] = {0, 0, 0, 0}; 174 175 get_modalias_ids(fw_unit(dev), id); 176 177 for (; id_table->match_flags != 0; id_table++) 178 if (match_ids(id_table, id)) 179 return id_table; 180 181 return NULL; 182 } 183 184 static bool is_fw_unit(struct device *dev); 185 186 static int fw_unit_match(struct device *dev, struct device_driver *drv) 187 { 188 /* We only allow binding to fw_units. */ 189 return is_fw_unit(dev) && unit_match(dev, drv) != NULL; 190 } 191 192 static int fw_unit_probe(struct device *dev) 193 { 194 struct fw_driver *driver = 195 container_of(dev->driver, struct fw_driver, driver); 196 197 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver)); 198 } 199 200 static int fw_unit_remove(struct device *dev) 201 { 202 struct fw_driver *driver = 203 container_of(dev->driver, struct fw_driver, driver); 204 205 return driver->remove(fw_unit(dev)), 0; 206 } 207 208 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size) 209 { 210 int id[] = {0, 0, 0, 0}; 211 212 get_modalias_ids(unit, id); 213 214 return snprintf(buffer, buffer_size, 215 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", 216 id[0], id[1], id[2], id[3]); 217 } 218 219 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env) 220 { 221 struct fw_unit *unit = fw_unit(dev); 222 char modalias[64]; 223 224 get_modalias(unit, modalias, sizeof(modalias)); 225 226 if (add_uevent_var(env, "MODALIAS=%s", modalias)) 227 return -ENOMEM; 228 229 return 0; 230 } 231 232 struct bus_type fw_bus_type = { 233 .name = "firewire", 234 .match = fw_unit_match, 235 .probe = fw_unit_probe, 236 .remove = fw_unit_remove, 237 }; 238 EXPORT_SYMBOL(fw_bus_type); 239 240 int fw_device_enable_phys_dma(struct fw_device *device) 241 { 242 int generation = device->generation; 243 244 /* device->node_id, accessed below, must not be older than generation */ 245 smp_rmb(); 246 247 return device->card->driver->enable_phys_dma(device->card, 248 device->node_id, 249 generation); 250 } 251 EXPORT_SYMBOL(fw_device_enable_phys_dma); 252 253 struct config_rom_attribute { 254 struct device_attribute attr; 255 u32 key; 256 }; 257 258 static ssize_t show_immediate(struct device *dev, 259 struct device_attribute *dattr, char *buf) 260 { 261 struct config_rom_attribute *attr = 262 container_of(dattr, struct config_rom_attribute, attr); 263 struct fw_csr_iterator ci; 264 const u32 *dir; 265 int key, value, ret = -ENOENT; 266 267 down_read(&fw_device_rwsem); 268 269 if (is_fw_unit(dev)) 270 dir = fw_unit(dev)->directory; 271 else 272 dir = fw_device(dev)->config_rom + 5; 273 274 fw_csr_iterator_init(&ci, dir); 275 while (fw_csr_iterator_next(&ci, &key, &value)) 276 if (attr->key == key) { 277 ret = snprintf(buf, buf ? PAGE_SIZE : 0, 278 "0x%06x\n", value); 279 break; 280 } 281 282 up_read(&fw_device_rwsem); 283 284 return ret; 285 } 286 287 #define IMMEDIATE_ATTR(name, key) \ 288 { __ATTR(name, S_IRUGO, show_immediate, NULL), key } 289 290 static ssize_t show_text_leaf(struct device *dev, 291 struct device_attribute *dattr, char *buf) 292 { 293 struct config_rom_attribute *attr = 294 container_of(dattr, struct config_rom_attribute, attr); 295 const u32 *dir; 296 size_t bufsize; 297 char dummy_buf[2]; 298 int ret; 299 300 down_read(&fw_device_rwsem); 301 302 if (is_fw_unit(dev)) 303 dir = fw_unit(dev)->directory; 304 else 305 dir = fw_device(dev)->config_rom + 5; 306 307 if (buf) { 308 bufsize = PAGE_SIZE - 1; 309 } else { 310 buf = dummy_buf; 311 bufsize = 1; 312 } 313 314 ret = fw_csr_string(dir, attr->key, buf, bufsize); 315 316 if (ret >= 0) { 317 /* Strip trailing whitespace and add newline. */ 318 while (ret > 0 && isspace(buf[ret - 1])) 319 ret--; 320 strcpy(buf + ret, "\n"); 321 ret++; 322 } 323 324 up_read(&fw_device_rwsem); 325 326 return ret; 327 } 328 329 #define TEXT_LEAF_ATTR(name, key) \ 330 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } 331 332 static struct config_rom_attribute config_rom_attributes[] = { 333 IMMEDIATE_ATTR(vendor, CSR_VENDOR), 334 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), 335 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), 336 IMMEDIATE_ATTR(version, CSR_VERSION), 337 IMMEDIATE_ATTR(model, CSR_MODEL), 338 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), 339 TEXT_LEAF_ATTR(model_name, CSR_MODEL), 340 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), 341 }; 342 343 static void init_fw_attribute_group(struct device *dev, 344 struct device_attribute *attrs, 345 struct fw_attribute_group *group) 346 { 347 struct device_attribute *attr; 348 int i, j; 349 350 for (j = 0; attrs[j].attr.name != NULL; j++) 351 group->attrs[j] = &attrs[j].attr; 352 353 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { 354 attr = &config_rom_attributes[i].attr; 355 if (attr->show(dev, attr, NULL) < 0) 356 continue; 357 group->attrs[j++] = &attr->attr; 358 } 359 360 group->attrs[j] = NULL; 361 group->groups[0] = &group->group; 362 group->groups[1] = NULL; 363 group->group.attrs = group->attrs; 364 dev->groups = (const struct attribute_group **) group->groups; 365 } 366 367 static ssize_t modalias_show(struct device *dev, 368 struct device_attribute *attr, char *buf) 369 { 370 struct fw_unit *unit = fw_unit(dev); 371 int length; 372 373 length = get_modalias(unit, buf, PAGE_SIZE); 374 strcpy(buf + length, "\n"); 375 376 return length + 1; 377 } 378 379 static ssize_t rom_index_show(struct device *dev, 380 struct device_attribute *attr, char *buf) 381 { 382 struct fw_device *device = fw_device(dev->parent); 383 struct fw_unit *unit = fw_unit(dev); 384 385 return snprintf(buf, PAGE_SIZE, "%d\n", 386 (int)(unit->directory - device->config_rom)); 387 } 388 389 static struct device_attribute fw_unit_attributes[] = { 390 __ATTR_RO(modalias), 391 __ATTR_RO(rom_index), 392 __ATTR_NULL, 393 }; 394 395 static ssize_t config_rom_show(struct device *dev, 396 struct device_attribute *attr, char *buf) 397 { 398 struct fw_device *device = fw_device(dev); 399 size_t length; 400 401 down_read(&fw_device_rwsem); 402 length = device->config_rom_length * 4; 403 memcpy(buf, device->config_rom, length); 404 up_read(&fw_device_rwsem); 405 406 return length; 407 } 408 409 static ssize_t guid_show(struct device *dev, 410 struct device_attribute *attr, char *buf) 411 { 412 struct fw_device *device = fw_device(dev); 413 int ret; 414 415 down_read(&fw_device_rwsem); 416 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n", 417 device->config_rom[3], device->config_rom[4]); 418 up_read(&fw_device_rwsem); 419 420 return ret; 421 } 422 423 static ssize_t is_local_show(struct device *dev, 424 struct device_attribute *attr, char *buf) 425 { 426 struct fw_device *device = fw_device(dev); 427 428 return sprintf(buf, "%u\n", device->is_local); 429 } 430 431 static int units_sprintf(char *buf, const u32 *directory) 432 { 433 struct fw_csr_iterator ci; 434 int key, value; 435 int specifier_id = 0; 436 int version = 0; 437 438 fw_csr_iterator_init(&ci, directory); 439 while (fw_csr_iterator_next(&ci, &key, &value)) { 440 switch (key) { 441 case CSR_SPECIFIER_ID: 442 specifier_id = value; 443 break; 444 case CSR_VERSION: 445 version = value; 446 break; 447 } 448 } 449 450 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); 451 } 452 453 static ssize_t units_show(struct device *dev, 454 struct device_attribute *attr, char *buf) 455 { 456 struct fw_device *device = fw_device(dev); 457 struct fw_csr_iterator ci; 458 int key, value, i = 0; 459 460 down_read(&fw_device_rwsem); 461 fw_csr_iterator_init(&ci, &device->config_rom[5]); 462 while (fw_csr_iterator_next(&ci, &key, &value)) { 463 if (key != (CSR_UNIT | CSR_DIRECTORY)) 464 continue; 465 i += units_sprintf(&buf[i], ci.p + value - 1); 466 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) 467 break; 468 } 469 up_read(&fw_device_rwsem); 470 471 if (i) 472 buf[i - 1] = '\n'; 473 474 return i; 475 } 476 477 static struct device_attribute fw_device_attributes[] = { 478 __ATTR_RO(config_rom), 479 __ATTR_RO(guid), 480 __ATTR_RO(is_local), 481 __ATTR_RO(units), 482 __ATTR_NULL, 483 }; 484 485 static int read_rom(struct fw_device *device, 486 int generation, int index, u32 *data) 487 { 488 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4; 489 int i, rcode; 490 491 /* device->node_id, accessed below, must not be older than generation */ 492 smp_rmb(); 493 494 for (i = 10; i < 100; i += 10) { 495 rcode = fw_run_transaction(device->card, 496 TCODE_READ_QUADLET_REQUEST, device->node_id, 497 generation, device->max_speed, offset, data, 4); 498 if (rcode != RCODE_BUSY) 499 break; 500 msleep(i); 501 } 502 be32_to_cpus(data); 503 504 return rcode; 505 } 506 507 #define MAX_CONFIG_ROM_SIZE 256 508 509 /* 510 * Read the bus info block, perform a speed probe, and read all of the rest of 511 * the config ROM. We do all this with a cached bus generation. If the bus 512 * generation changes under us, read_config_rom will fail and get retried. 513 * It's better to start all over in this case because the node from which we 514 * are reading the ROM may have changed the ROM during the reset. 515 * Returns either a result code or a negative error code. 516 */ 517 static int read_config_rom(struct fw_device *device, int generation) 518 { 519 struct fw_card *card = device->card; 520 const u32 *old_rom, *new_rom; 521 u32 *rom, *stack; 522 u32 sp, key; 523 int i, end, length, ret; 524 525 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + 526 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); 527 if (rom == NULL) 528 return -ENOMEM; 529 530 stack = &rom[MAX_CONFIG_ROM_SIZE]; 531 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); 532 533 device->max_speed = SCODE_100; 534 535 /* First read the bus info block. */ 536 for (i = 0; i < 5; i++) { 537 ret = read_rom(device, generation, i, &rom[i]); 538 if (ret != RCODE_COMPLETE) 539 goto out; 540 /* 541 * As per IEEE1212 7.2, during initialization, devices can 542 * reply with a 0 for the first quadlet of the config 543 * rom to indicate that they are booting (for example, 544 * if the firmware is on the disk of a external 545 * harddisk). In that case we just fail, and the 546 * retry mechanism will try again later. 547 */ 548 if (i == 0 && rom[i] == 0) { 549 ret = RCODE_BUSY; 550 goto out; 551 } 552 } 553 554 device->max_speed = device->node->max_speed; 555 556 /* 557 * Determine the speed of 558 * - devices with link speed less than PHY speed, 559 * - devices with 1394b PHY (unless only connected to 1394a PHYs), 560 * - all devices if there are 1394b repeaters. 561 * Note, we cannot use the bus info block's link_spd as starting point 562 * because some buggy firmwares set it lower than necessary and because 563 * 1394-1995 nodes do not have the field. 564 */ 565 if ((rom[2] & 0x7) < device->max_speed || 566 device->max_speed == SCODE_BETA || 567 card->beta_repeaters_present) { 568 u32 dummy; 569 570 /* for S1600 and S3200 */ 571 if (device->max_speed == SCODE_BETA) 572 device->max_speed = card->link_speed; 573 574 while (device->max_speed > SCODE_100) { 575 if (read_rom(device, generation, 0, &dummy) == 576 RCODE_COMPLETE) 577 break; 578 device->max_speed--; 579 } 580 } 581 582 /* 583 * Now parse the config rom. The config rom is a recursive 584 * directory structure so we parse it using a stack of 585 * references to the blocks that make up the structure. We 586 * push a reference to the root directory on the stack to 587 * start things off. 588 */ 589 length = i; 590 sp = 0; 591 stack[sp++] = 0xc0000005; 592 while (sp > 0) { 593 /* 594 * Pop the next block reference of the stack. The 595 * lower 24 bits is the offset into the config rom, 596 * the upper 8 bits are the type of the reference the 597 * block. 598 */ 599 key = stack[--sp]; 600 i = key & 0xffffff; 601 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) { 602 ret = -ENXIO; 603 goto out; 604 } 605 606 /* Read header quadlet for the block to get the length. */ 607 ret = read_rom(device, generation, i, &rom[i]); 608 if (ret != RCODE_COMPLETE) 609 goto out; 610 end = i + (rom[i] >> 16) + 1; 611 if (end > MAX_CONFIG_ROM_SIZE) { 612 /* 613 * This block extends outside the config ROM which is 614 * a firmware bug. Ignore this whole block, i.e. 615 * simply set a fake block length of 0. 616 */ 617 fw_err(card, "skipped invalid ROM block %x at %llx\n", 618 rom[i], 619 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 620 rom[i] = 0; 621 end = i; 622 } 623 i++; 624 625 /* 626 * Now read in the block. If this is a directory 627 * block, check the entries as we read them to see if 628 * it references another block, and push it in that case. 629 */ 630 for (; i < end; i++) { 631 ret = read_rom(device, generation, i, &rom[i]); 632 if (ret != RCODE_COMPLETE) 633 goto out; 634 635 if ((key >> 30) != 3 || (rom[i] >> 30) < 2) 636 continue; 637 /* 638 * Offset points outside the ROM. May be a firmware 639 * bug or an Extended ROM entry (IEEE 1212-2001 clause 640 * 7.7.18). Simply overwrite this pointer here by a 641 * fake immediate entry so that later iterators over 642 * the ROM don't have to check offsets all the time. 643 */ 644 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { 645 fw_err(card, 646 "skipped unsupported ROM entry %x at %llx\n", 647 rom[i], 648 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 649 rom[i] = 0; 650 continue; 651 } 652 stack[sp++] = i + rom[i]; 653 } 654 if (length < i) 655 length = i; 656 } 657 658 old_rom = device->config_rom; 659 new_rom = kmemdup(rom, length * 4, GFP_KERNEL); 660 if (new_rom == NULL) { 661 ret = -ENOMEM; 662 goto out; 663 } 664 665 down_write(&fw_device_rwsem); 666 device->config_rom = new_rom; 667 device->config_rom_length = length; 668 up_write(&fw_device_rwsem); 669 670 kfree(old_rom); 671 ret = RCODE_COMPLETE; 672 device->max_rec = rom[2] >> 12 & 0xf; 673 device->cmc = rom[2] >> 30 & 1; 674 device->irmc = rom[2] >> 31 & 1; 675 out: 676 kfree(rom); 677 678 return ret; 679 } 680 681 static void fw_unit_release(struct device *dev) 682 { 683 struct fw_unit *unit = fw_unit(dev); 684 685 fw_device_put(fw_parent_device(unit)); 686 kfree(unit); 687 } 688 689 static struct device_type fw_unit_type = { 690 .uevent = fw_unit_uevent, 691 .release = fw_unit_release, 692 }; 693 694 static bool is_fw_unit(struct device *dev) 695 { 696 return dev->type == &fw_unit_type; 697 } 698 699 static void create_units(struct fw_device *device) 700 { 701 struct fw_csr_iterator ci; 702 struct fw_unit *unit; 703 int key, value, i; 704 705 i = 0; 706 fw_csr_iterator_init(&ci, &device->config_rom[5]); 707 while (fw_csr_iterator_next(&ci, &key, &value)) { 708 if (key != (CSR_UNIT | CSR_DIRECTORY)) 709 continue; 710 711 /* 712 * Get the address of the unit directory and try to 713 * match the drivers id_tables against it. 714 */ 715 unit = kzalloc(sizeof(*unit), GFP_KERNEL); 716 if (unit == NULL) 717 continue; 718 719 unit->directory = ci.p + value - 1; 720 unit->device.bus = &fw_bus_type; 721 unit->device.type = &fw_unit_type; 722 unit->device.parent = &device->device; 723 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); 724 725 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < 726 ARRAY_SIZE(fw_unit_attributes) + 727 ARRAY_SIZE(config_rom_attributes)); 728 init_fw_attribute_group(&unit->device, 729 fw_unit_attributes, 730 &unit->attribute_group); 731 732 if (device_register(&unit->device) < 0) 733 goto skip_unit; 734 735 fw_device_get(device); 736 continue; 737 738 skip_unit: 739 kfree(unit); 740 } 741 } 742 743 static int shutdown_unit(struct device *device, void *data) 744 { 745 device_unregister(device); 746 747 return 0; 748 } 749 750 /* 751 * fw_device_rwsem acts as dual purpose mutex: 752 * - serializes accesses to fw_device_idr, 753 * - serializes accesses to fw_device.config_rom/.config_rom_length and 754 * fw_unit.directory, unless those accesses happen at safe occasions 755 */ 756 DECLARE_RWSEM(fw_device_rwsem); 757 758 DEFINE_IDR(fw_device_idr); 759 int fw_cdev_major; 760 761 struct fw_device *fw_device_get_by_devt(dev_t devt) 762 { 763 struct fw_device *device; 764 765 down_read(&fw_device_rwsem); 766 device = idr_find(&fw_device_idr, MINOR(devt)); 767 if (device) 768 fw_device_get(device); 769 up_read(&fw_device_rwsem); 770 771 return device; 772 } 773 774 struct workqueue_struct *fw_workqueue; 775 EXPORT_SYMBOL(fw_workqueue); 776 777 static void fw_schedule_device_work(struct fw_device *device, 778 unsigned long delay) 779 { 780 queue_delayed_work(fw_workqueue, &device->work, delay); 781 } 782 783 /* 784 * These defines control the retry behavior for reading the config 785 * rom. It shouldn't be necessary to tweak these; if the device 786 * doesn't respond to a config rom read within 10 seconds, it's not 787 * going to respond at all. As for the initial delay, a lot of 788 * devices will be able to respond within half a second after bus 789 * reset. On the other hand, it's not really worth being more 790 * aggressive than that, since it scales pretty well; if 10 devices 791 * are plugged in, they're all getting read within one second. 792 */ 793 794 #define MAX_RETRIES 10 795 #define RETRY_DELAY (3 * HZ) 796 #define INITIAL_DELAY (HZ / 2) 797 #define SHUTDOWN_DELAY (2 * HZ) 798 799 static void fw_device_shutdown(struct work_struct *work) 800 { 801 struct fw_device *device = 802 container_of(work, struct fw_device, work.work); 803 int minor = MINOR(device->device.devt); 804 805 if (time_before64(get_jiffies_64(), 806 device->card->reset_jiffies + SHUTDOWN_DELAY) 807 && !list_empty(&device->card->link)) { 808 fw_schedule_device_work(device, SHUTDOWN_DELAY); 809 return; 810 } 811 812 if (atomic_cmpxchg(&device->state, 813 FW_DEVICE_GONE, 814 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) 815 return; 816 817 fw_device_cdev_remove(device); 818 device_for_each_child(&device->device, NULL, shutdown_unit); 819 device_unregister(&device->device); 820 821 down_write(&fw_device_rwsem); 822 idr_remove(&fw_device_idr, minor); 823 up_write(&fw_device_rwsem); 824 825 fw_device_put(device); 826 } 827 828 static void fw_device_release(struct device *dev) 829 { 830 struct fw_device *device = fw_device(dev); 831 struct fw_card *card = device->card; 832 unsigned long flags; 833 834 /* 835 * Take the card lock so we don't set this to NULL while a 836 * FW_NODE_UPDATED callback is being handled or while the 837 * bus manager work looks at this node. 838 */ 839 spin_lock_irqsave(&card->lock, flags); 840 device->node->data = NULL; 841 spin_unlock_irqrestore(&card->lock, flags); 842 843 fw_node_put(device->node); 844 kfree(device->config_rom); 845 kfree(device); 846 fw_card_put(card); 847 } 848 849 static struct device_type fw_device_type = { 850 .release = fw_device_release, 851 }; 852 853 static bool is_fw_device(struct device *dev) 854 { 855 return dev->type == &fw_device_type; 856 } 857 858 static int update_unit(struct device *dev, void *data) 859 { 860 struct fw_unit *unit = fw_unit(dev); 861 struct fw_driver *driver = (struct fw_driver *)dev->driver; 862 863 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { 864 device_lock(dev); 865 driver->update(unit); 866 device_unlock(dev); 867 } 868 869 return 0; 870 } 871 872 static void fw_device_update(struct work_struct *work) 873 { 874 struct fw_device *device = 875 container_of(work, struct fw_device, work.work); 876 877 fw_device_cdev_update(device); 878 device_for_each_child(&device->device, NULL, update_unit); 879 } 880 881 /* 882 * If a device was pending for deletion because its node went away but its 883 * bus info block and root directory header matches that of a newly discovered 884 * device, revive the existing fw_device. 885 * The newly allocated fw_device becomes obsolete instead. 886 */ 887 static int lookup_existing_device(struct device *dev, void *data) 888 { 889 struct fw_device *old = fw_device(dev); 890 struct fw_device *new = data; 891 struct fw_card *card = new->card; 892 int match = 0; 893 894 if (!is_fw_device(dev)) 895 return 0; 896 897 down_read(&fw_device_rwsem); /* serialize config_rom access */ 898 spin_lock_irq(&card->lock); /* serialize node access */ 899 900 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 && 901 atomic_cmpxchg(&old->state, 902 FW_DEVICE_GONE, 903 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 904 struct fw_node *current_node = new->node; 905 struct fw_node *obsolete_node = old->node; 906 907 new->node = obsolete_node; 908 new->node->data = new; 909 old->node = current_node; 910 old->node->data = old; 911 912 old->max_speed = new->max_speed; 913 old->node_id = current_node->node_id; 914 smp_wmb(); /* update node_id before generation */ 915 old->generation = card->generation; 916 old->config_rom_retries = 0; 917 fw_notice(card, "rediscovered device %s\n", dev_name(dev)); 918 919 old->workfn = fw_device_update; 920 fw_schedule_device_work(old, 0); 921 922 if (current_node == card->root_node) 923 fw_schedule_bm_work(card, 0); 924 925 match = 1; 926 } 927 928 spin_unlock_irq(&card->lock); 929 up_read(&fw_device_rwsem); 930 931 return match; 932 } 933 934 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; 935 936 static void set_broadcast_channel(struct fw_device *device, int generation) 937 { 938 struct fw_card *card = device->card; 939 __be32 data; 940 int rcode; 941 942 if (!card->broadcast_channel_allocated) 943 return; 944 945 /* 946 * The Broadcast_Channel Valid bit is required by nodes which want to 947 * transmit on this channel. Such transmissions are practically 948 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required 949 * to be IRM capable and have a max_rec of 8 or more. We use this fact 950 * to narrow down to which nodes we send Broadcast_Channel updates. 951 */ 952 if (!device->irmc || device->max_rec < 8) 953 return; 954 955 /* 956 * Some 1394-1995 nodes crash if this 1394a-2000 register is written. 957 * Perform a read test first. 958 */ 959 if (device->bc_implemented == BC_UNKNOWN) { 960 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, 961 device->node_id, generation, device->max_speed, 962 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 963 &data, 4); 964 switch (rcode) { 965 case RCODE_COMPLETE: 966 if (data & cpu_to_be32(1 << 31)) { 967 device->bc_implemented = BC_IMPLEMENTED; 968 break; 969 } 970 /* else fall through to case address error */ 971 case RCODE_ADDRESS_ERROR: 972 device->bc_implemented = BC_UNIMPLEMENTED; 973 } 974 } 975 976 if (device->bc_implemented == BC_IMPLEMENTED) { 977 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | 978 BROADCAST_CHANNEL_VALID); 979 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, 980 device->node_id, generation, device->max_speed, 981 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 982 &data, 4); 983 } 984 } 985 986 int fw_device_set_broadcast_channel(struct device *dev, void *gen) 987 { 988 if (is_fw_device(dev)) 989 set_broadcast_channel(fw_device(dev), (long)gen); 990 991 return 0; 992 } 993 994 static void fw_device_init(struct work_struct *work) 995 { 996 struct fw_device *device = 997 container_of(work, struct fw_device, work.work); 998 struct fw_card *card = device->card; 999 struct device *revived_dev; 1000 int minor, ret; 1001 1002 /* 1003 * All failure paths here set node->data to NULL, so that we 1004 * don't try to do device_for_each_child() on a kfree()'d 1005 * device. 1006 */ 1007 1008 ret = read_config_rom(device, device->generation); 1009 if (ret != RCODE_COMPLETE) { 1010 if (device->config_rom_retries < MAX_RETRIES && 1011 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1012 device->config_rom_retries++; 1013 fw_schedule_device_work(device, RETRY_DELAY); 1014 } else { 1015 if (device->node->link_on) 1016 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n", 1017 device->node_id, 1018 fw_rcode_string(ret)); 1019 if (device->node == card->root_node) 1020 fw_schedule_bm_work(card, 0); 1021 fw_device_release(&device->device); 1022 } 1023 return; 1024 } 1025 1026 revived_dev = device_find_child(card->device, 1027 device, lookup_existing_device); 1028 if (revived_dev) { 1029 put_device(revived_dev); 1030 fw_device_release(&device->device); 1031 1032 return; 1033 } 1034 1035 device_initialize(&device->device); 1036 1037 fw_device_get(device); 1038 down_write(&fw_device_rwsem); 1039 minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS, 1040 GFP_KERNEL); 1041 up_write(&fw_device_rwsem); 1042 1043 if (minor < 0) 1044 goto error; 1045 1046 device->device.bus = &fw_bus_type; 1047 device->device.type = &fw_device_type; 1048 device->device.parent = card->device; 1049 device->device.devt = MKDEV(fw_cdev_major, minor); 1050 dev_set_name(&device->device, "fw%d", minor); 1051 1052 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < 1053 ARRAY_SIZE(fw_device_attributes) + 1054 ARRAY_SIZE(config_rom_attributes)); 1055 init_fw_attribute_group(&device->device, 1056 fw_device_attributes, 1057 &device->attribute_group); 1058 1059 if (device_add(&device->device)) { 1060 fw_err(card, "failed to add device\n"); 1061 goto error_with_cdev; 1062 } 1063 1064 create_units(device); 1065 1066 /* 1067 * Transition the device to running state. If it got pulled 1068 * out from under us while we did the intialization work, we 1069 * have to shut down the device again here. Normally, though, 1070 * fw_node_event will be responsible for shutting it down when 1071 * necessary. We have to use the atomic cmpxchg here to avoid 1072 * racing with the FW_NODE_DESTROYED case in 1073 * fw_node_event(). 1074 */ 1075 if (atomic_cmpxchg(&device->state, 1076 FW_DEVICE_INITIALIZING, 1077 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 1078 device->workfn = fw_device_shutdown; 1079 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1080 } else { 1081 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n", 1082 dev_name(&device->device), 1083 device->config_rom[3], device->config_rom[4], 1084 1 << device->max_speed); 1085 device->config_rom_retries = 0; 1086 1087 set_broadcast_channel(device, device->generation); 1088 1089 add_device_randomness(&device->config_rom[3], 8); 1090 } 1091 1092 /* 1093 * Reschedule the IRM work if we just finished reading the 1094 * root node config rom. If this races with a bus reset we 1095 * just end up running the IRM work a couple of extra times - 1096 * pretty harmless. 1097 */ 1098 if (device->node == card->root_node) 1099 fw_schedule_bm_work(card, 0); 1100 1101 return; 1102 1103 error_with_cdev: 1104 down_write(&fw_device_rwsem); 1105 idr_remove(&fw_device_idr, minor); 1106 up_write(&fw_device_rwsem); 1107 error: 1108 fw_device_put(device); /* fw_device_idr's reference */ 1109 1110 put_device(&device->device); /* our reference */ 1111 } 1112 1113 /* Reread and compare bus info block and header of root directory */ 1114 static int reread_config_rom(struct fw_device *device, int generation, 1115 bool *changed) 1116 { 1117 u32 q; 1118 int i, rcode; 1119 1120 for (i = 0; i < 6; i++) { 1121 rcode = read_rom(device, generation, i, &q); 1122 if (rcode != RCODE_COMPLETE) 1123 return rcode; 1124 1125 if (i == 0 && q == 0) 1126 /* inaccessible (see read_config_rom); retry later */ 1127 return RCODE_BUSY; 1128 1129 if (q != device->config_rom[i]) { 1130 *changed = true; 1131 return RCODE_COMPLETE; 1132 } 1133 } 1134 1135 *changed = false; 1136 return RCODE_COMPLETE; 1137 } 1138 1139 static void fw_device_refresh(struct work_struct *work) 1140 { 1141 struct fw_device *device = 1142 container_of(work, struct fw_device, work.work); 1143 struct fw_card *card = device->card; 1144 int ret, node_id = device->node_id; 1145 bool changed; 1146 1147 ret = reread_config_rom(device, device->generation, &changed); 1148 if (ret != RCODE_COMPLETE) 1149 goto failed_config_rom; 1150 1151 if (!changed) { 1152 if (atomic_cmpxchg(&device->state, 1153 FW_DEVICE_INITIALIZING, 1154 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1155 goto gone; 1156 1157 fw_device_update(work); 1158 device->config_rom_retries = 0; 1159 goto out; 1160 } 1161 1162 /* 1163 * Something changed. We keep things simple and don't investigate 1164 * further. We just destroy all previous units and create new ones. 1165 */ 1166 device_for_each_child(&device->device, NULL, shutdown_unit); 1167 1168 ret = read_config_rom(device, device->generation); 1169 if (ret != RCODE_COMPLETE) 1170 goto failed_config_rom; 1171 1172 fw_device_cdev_update(device); 1173 create_units(device); 1174 1175 /* Userspace may want to re-read attributes. */ 1176 kobject_uevent(&device->device.kobj, KOBJ_CHANGE); 1177 1178 if (atomic_cmpxchg(&device->state, 1179 FW_DEVICE_INITIALIZING, 1180 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1181 goto gone; 1182 1183 fw_notice(card, "refreshed device %s\n", dev_name(&device->device)); 1184 device->config_rom_retries = 0; 1185 goto out; 1186 1187 failed_config_rom: 1188 if (device->config_rom_retries < MAX_RETRIES && 1189 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1190 device->config_rom_retries++; 1191 fw_schedule_device_work(device, RETRY_DELAY); 1192 return; 1193 } 1194 1195 fw_notice(card, "giving up on refresh of device %s: %s\n", 1196 dev_name(&device->device), fw_rcode_string(ret)); 1197 gone: 1198 atomic_set(&device->state, FW_DEVICE_GONE); 1199 device->workfn = fw_device_shutdown; 1200 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1201 out: 1202 if (node_id == card->root_node->node_id) 1203 fw_schedule_bm_work(card, 0); 1204 } 1205 1206 static void fw_device_workfn(struct work_struct *work) 1207 { 1208 struct fw_device *device = container_of(to_delayed_work(work), 1209 struct fw_device, work); 1210 device->workfn(work); 1211 } 1212 1213 void fw_node_event(struct fw_card *card, struct fw_node *node, int event) 1214 { 1215 struct fw_device *device; 1216 1217 switch (event) { 1218 case FW_NODE_CREATED: 1219 /* 1220 * Attempt to scan the node, regardless whether its self ID has 1221 * the L (link active) flag set or not. Some broken devices 1222 * send L=0 but have an up-and-running link; others send L=1 1223 * without actually having a link. 1224 */ 1225 create: 1226 device = kzalloc(sizeof(*device), GFP_ATOMIC); 1227 if (device == NULL) 1228 break; 1229 1230 /* 1231 * Do minimal intialization of the device here, the 1232 * rest will happen in fw_device_init(). 1233 * 1234 * Attention: A lot of things, even fw_device_get(), 1235 * cannot be done before fw_device_init() finished! 1236 * You can basically just check device->state and 1237 * schedule work until then, but only while holding 1238 * card->lock. 1239 */ 1240 atomic_set(&device->state, FW_DEVICE_INITIALIZING); 1241 device->card = fw_card_get(card); 1242 device->node = fw_node_get(node); 1243 device->node_id = node->node_id; 1244 device->generation = card->generation; 1245 device->is_local = node == card->local_node; 1246 mutex_init(&device->client_list_mutex); 1247 INIT_LIST_HEAD(&device->client_list); 1248 1249 /* 1250 * Set the node data to point back to this device so 1251 * FW_NODE_UPDATED callbacks can update the node_id 1252 * and generation for the device. 1253 */ 1254 node->data = device; 1255 1256 /* 1257 * Many devices are slow to respond after bus resets, 1258 * especially if they are bus powered and go through 1259 * power-up after getting plugged in. We schedule the 1260 * first config rom scan half a second after bus reset. 1261 */ 1262 device->workfn = fw_device_init; 1263 INIT_DELAYED_WORK(&device->work, fw_device_workfn); 1264 fw_schedule_device_work(device, INITIAL_DELAY); 1265 break; 1266 1267 case FW_NODE_INITIATED_RESET: 1268 case FW_NODE_LINK_ON: 1269 device = node->data; 1270 if (device == NULL) 1271 goto create; 1272 1273 device->node_id = node->node_id; 1274 smp_wmb(); /* update node_id before generation */ 1275 device->generation = card->generation; 1276 if (atomic_cmpxchg(&device->state, 1277 FW_DEVICE_RUNNING, 1278 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { 1279 device->workfn = fw_device_refresh; 1280 fw_schedule_device_work(device, 1281 device->is_local ? 0 : INITIAL_DELAY); 1282 } 1283 break; 1284 1285 case FW_NODE_UPDATED: 1286 device = node->data; 1287 if (device == NULL) 1288 break; 1289 1290 device->node_id = node->node_id; 1291 smp_wmb(); /* update node_id before generation */ 1292 device->generation = card->generation; 1293 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { 1294 device->workfn = fw_device_update; 1295 fw_schedule_device_work(device, 0); 1296 } 1297 break; 1298 1299 case FW_NODE_DESTROYED: 1300 case FW_NODE_LINK_OFF: 1301 if (!node->data) 1302 break; 1303 1304 /* 1305 * Destroy the device associated with the node. There 1306 * are two cases here: either the device is fully 1307 * initialized (FW_DEVICE_RUNNING) or we're in the 1308 * process of reading its config rom 1309 * (FW_DEVICE_INITIALIZING). If it is fully 1310 * initialized we can reuse device->work to schedule a 1311 * full fw_device_shutdown(). If not, there's work 1312 * scheduled to read it's config rom, and we just put 1313 * the device in shutdown state to have that code fail 1314 * to create the device. 1315 */ 1316 device = node->data; 1317 if (atomic_xchg(&device->state, 1318 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { 1319 device->workfn = fw_device_shutdown; 1320 fw_schedule_device_work(device, 1321 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); 1322 } 1323 break; 1324 } 1325 } 1326