1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Device probing and sysfs code. 4 * 5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bug.h> 9 #include <linux/ctype.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/errno.h> 13 #include <linux/firewire.h> 14 #include <linux/firewire-constants.h> 15 #include <linux/idr.h> 16 #include <linux/jiffies.h> 17 #include <linux/kobject.h> 18 #include <linux/list.h> 19 #include <linux/mod_devicetable.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/random.h> 23 #include <linux/rwsem.h> 24 #include <linux/slab.h> 25 #include <linux/spinlock.h> 26 #include <linux/string.h> 27 #include <linux/workqueue.h> 28 29 #include <linux/atomic.h> 30 #include <asm/byteorder.h> 31 32 #include "core.h" 33 34 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) 35 { 36 ci->p = p + 1; 37 ci->end = ci->p + (p[0] >> 16); 38 } 39 EXPORT_SYMBOL(fw_csr_iterator_init); 40 41 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) 42 { 43 *key = *ci->p >> 24; 44 *value = *ci->p & 0xffffff; 45 46 return ci->p++ < ci->end; 47 } 48 EXPORT_SYMBOL(fw_csr_iterator_next); 49 50 static const u32 *search_leaf(const u32 *directory, int search_key) 51 { 52 struct fw_csr_iterator ci; 53 int last_key = 0, key, value; 54 55 fw_csr_iterator_init(&ci, directory); 56 while (fw_csr_iterator_next(&ci, &key, &value)) { 57 if (last_key == search_key && 58 key == (CSR_DESCRIPTOR | CSR_LEAF)) 59 return ci.p - 1 + value; 60 61 last_key = key; 62 } 63 64 return NULL; 65 } 66 67 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) 68 { 69 unsigned int quadlets, i; 70 char c; 71 72 if (!size || !buf) 73 return -EINVAL; 74 75 quadlets = min(block[0] >> 16, 256U); 76 if (quadlets < 2) 77 return -ENODATA; 78 79 if (block[1] != 0 || block[2] != 0) 80 /* unknown language/character set */ 81 return -ENODATA; 82 83 block += 3; 84 quadlets -= 2; 85 for (i = 0; i < quadlets * 4 && i < size - 1; i++) { 86 c = block[i / 4] >> (24 - 8 * (i % 4)); 87 if (c == '\0') 88 break; 89 buf[i] = c; 90 } 91 buf[i] = '\0'; 92 93 return i; 94 } 95 96 /** 97 * fw_csr_string() - reads a string from the configuration ROM 98 * @directory: e.g. root directory or unit directory 99 * @key: the key of the preceding directory entry 100 * @buf: where to put the string 101 * @size: size of @buf, in bytes 102 * 103 * The string is taken from a minimal ASCII text descriptor leaf after 104 * the immediate entry with @key. The string is zero-terminated. 105 * An overlong string is silently truncated such that it and the 106 * zero byte fit into @size. 107 * 108 * Returns strlen(buf) or a negative error code. 109 */ 110 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) 111 { 112 const u32 *leaf = search_leaf(directory, key); 113 if (!leaf) 114 return -ENOENT; 115 116 return textual_leaf_to_string(leaf, buf, size); 117 } 118 EXPORT_SYMBOL(fw_csr_string); 119 120 static void get_ids(const u32 *directory, int *id) 121 { 122 struct fw_csr_iterator ci; 123 int key, value; 124 125 fw_csr_iterator_init(&ci, directory); 126 while (fw_csr_iterator_next(&ci, &key, &value)) { 127 switch (key) { 128 case CSR_VENDOR: id[0] = value; break; 129 case CSR_MODEL: id[1] = value; break; 130 case CSR_SPECIFIER_ID: id[2] = value; break; 131 case CSR_VERSION: id[3] = value; break; 132 } 133 } 134 } 135 136 static void get_modalias_ids(struct fw_unit *unit, int *id) 137 { 138 get_ids(&fw_parent_device(unit)->config_rom[5], id); 139 get_ids(unit->directory, id); 140 } 141 142 static bool match_ids(const struct ieee1394_device_id *id_table, int *id) 143 { 144 int match = 0; 145 146 if (id[0] == id_table->vendor_id) 147 match |= IEEE1394_MATCH_VENDOR_ID; 148 if (id[1] == id_table->model_id) 149 match |= IEEE1394_MATCH_MODEL_ID; 150 if (id[2] == id_table->specifier_id) 151 match |= IEEE1394_MATCH_SPECIFIER_ID; 152 if (id[3] == id_table->version) 153 match |= IEEE1394_MATCH_VERSION; 154 155 return (match & id_table->match_flags) == id_table->match_flags; 156 } 157 158 static const struct ieee1394_device_id *unit_match(struct device *dev, 159 struct device_driver *drv) 160 { 161 const struct ieee1394_device_id *id_table = 162 container_of(drv, struct fw_driver, driver)->id_table; 163 int id[] = {0, 0, 0, 0}; 164 165 get_modalias_ids(fw_unit(dev), id); 166 167 for (; id_table->match_flags != 0; id_table++) 168 if (match_ids(id_table, id)) 169 return id_table; 170 171 return NULL; 172 } 173 174 static bool is_fw_unit(struct device *dev); 175 176 static int fw_unit_match(struct device *dev, struct device_driver *drv) 177 { 178 /* We only allow binding to fw_units. */ 179 return is_fw_unit(dev) && unit_match(dev, drv) != NULL; 180 } 181 182 static int fw_unit_probe(struct device *dev) 183 { 184 struct fw_driver *driver = 185 container_of(dev->driver, struct fw_driver, driver); 186 187 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver)); 188 } 189 190 static int fw_unit_remove(struct device *dev) 191 { 192 struct fw_driver *driver = 193 container_of(dev->driver, struct fw_driver, driver); 194 195 driver->remove(fw_unit(dev)); 196 197 return 0; 198 } 199 200 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size) 201 { 202 int id[] = {0, 0, 0, 0}; 203 204 get_modalias_ids(unit, id); 205 206 return snprintf(buffer, buffer_size, 207 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", 208 id[0], id[1], id[2], id[3]); 209 } 210 211 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env) 212 { 213 struct fw_unit *unit = fw_unit(dev); 214 char modalias[64]; 215 216 get_modalias(unit, modalias, sizeof(modalias)); 217 218 if (add_uevent_var(env, "MODALIAS=%s", modalias)) 219 return -ENOMEM; 220 221 return 0; 222 } 223 224 struct bus_type fw_bus_type = { 225 .name = "firewire", 226 .match = fw_unit_match, 227 .probe = fw_unit_probe, 228 .remove = fw_unit_remove, 229 }; 230 EXPORT_SYMBOL(fw_bus_type); 231 232 int fw_device_enable_phys_dma(struct fw_device *device) 233 { 234 int generation = device->generation; 235 236 /* device->node_id, accessed below, must not be older than generation */ 237 smp_rmb(); 238 239 return device->card->driver->enable_phys_dma(device->card, 240 device->node_id, 241 generation); 242 } 243 EXPORT_SYMBOL(fw_device_enable_phys_dma); 244 245 struct config_rom_attribute { 246 struct device_attribute attr; 247 u32 key; 248 }; 249 250 static ssize_t show_immediate(struct device *dev, 251 struct device_attribute *dattr, char *buf) 252 { 253 struct config_rom_attribute *attr = 254 container_of(dattr, struct config_rom_attribute, attr); 255 struct fw_csr_iterator ci; 256 const u32 *dir; 257 int key, value, ret = -ENOENT; 258 259 down_read(&fw_device_rwsem); 260 261 if (is_fw_unit(dev)) 262 dir = fw_unit(dev)->directory; 263 else 264 dir = fw_device(dev)->config_rom + 5; 265 266 fw_csr_iterator_init(&ci, dir); 267 while (fw_csr_iterator_next(&ci, &key, &value)) 268 if (attr->key == key) { 269 ret = snprintf(buf, buf ? PAGE_SIZE : 0, 270 "0x%06x\n", value); 271 break; 272 } 273 274 up_read(&fw_device_rwsem); 275 276 return ret; 277 } 278 279 #define IMMEDIATE_ATTR(name, key) \ 280 { __ATTR(name, S_IRUGO, show_immediate, NULL), key } 281 282 static ssize_t show_text_leaf(struct device *dev, 283 struct device_attribute *dattr, char *buf) 284 { 285 struct config_rom_attribute *attr = 286 container_of(dattr, struct config_rom_attribute, attr); 287 const u32 *dir; 288 size_t bufsize; 289 char dummy_buf[2]; 290 int ret; 291 292 down_read(&fw_device_rwsem); 293 294 if (is_fw_unit(dev)) 295 dir = fw_unit(dev)->directory; 296 else 297 dir = fw_device(dev)->config_rom + 5; 298 299 if (buf) { 300 bufsize = PAGE_SIZE - 1; 301 } else { 302 buf = dummy_buf; 303 bufsize = 1; 304 } 305 306 ret = fw_csr_string(dir, attr->key, buf, bufsize); 307 308 if (ret >= 0) { 309 /* Strip trailing whitespace and add newline. */ 310 while (ret > 0 && isspace(buf[ret - 1])) 311 ret--; 312 strcpy(buf + ret, "\n"); 313 ret++; 314 } 315 316 up_read(&fw_device_rwsem); 317 318 return ret; 319 } 320 321 #define TEXT_LEAF_ATTR(name, key) \ 322 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } 323 324 static struct config_rom_attribute config_rom_attributes[] = { 325 IMMEDIATE_ATTR(vendor, CSR_VENDOR), 326 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), 327 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), 328 IMMEDIATE_ATTR(version, CSR_VERSION), 329 IMMEDIATE_ATTR(model, CSR_MODEL), 330 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), 331 TEXT_LEAF_ATTR(model_name, CSR_MODEL), 332 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), 333 }; 334 335 static void init_fw_attribute_group(struct device *dev, 336 struct device_attribute *attrs, 337 struct fw_attribute_group *group) 338 { 339 struct device_attribute *attr; 340 int i, j; 341 342 for (j = 0; attrs[j].attr.name != NULL; j++) 343 group->attrs[j] = &attrs[j].attr; 344 345 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { 346 attr = &config_rom_attributes[i].attr; 347 if (attr->show(dev, attr, NULL) < 0) 348 continue; 349 group->attrs[j++] = &attr->attr; 350 } 351 352 group->attrs[j] = NULL; 353 group->groups[0] = &group->group; 354 group->groups[1] = NULL; 355 group->group.attrs = group->attrs; 356 dev->groups = (const struct attribute_group **) group->groups; 357 } 358 359 static ssize_t modalias_show(struct device *dev, 360 struct device_attribute *attr, char *buf) 361 { 362 struct fw_unit *unit = fw_unit(dev); 363 int length; 364 365 length = get_modalias(unit, buf, PAGE_SIZE); 366 strcpy(buf + length, "\n"); 367 368 return length + 1; 369 } 370 371 static ssize_t rom_index_show(struct device *dev, 372 struct device_attribute *attr, char *buf) 373 { 374 struct fw_device *device = fw_device(dev->parent); 375 struct fw_unit *unit = fw_unit(dev); 376 377 return snprintf(buf, PAGE_SIZE, "%d\n", 378 (int)(unit->directory - device->config_rom)); 379 } 380 381 static struct device_attribute fw_unit_attributes[] = { 382 __ATTR_RO(modalias), 383 __ATTR_RO(rom_index), 384 __ATTR_NULL, 385 }; 386 387 static ssize_t config_rom_show(struct device *dev, 388 struct device_attribute *attr, char *buf) 389 { 390 struct fw_device *device = fw_device(dev); 391 size_t length; 392 393 down_read(&fw_device_rwsem); 394 length = device->config_rom_length * 4; 395 memcpy(buf, device->config_rom, length); 396 up_read(&fw_device_rwsem); 397 398 return length; 399 } 400 401 static ssize_t guid_show(struct device *dev, 402 struct device_attribute *attr, char *buf) 403 { 404 struct fw_device *device = fw_device(dev); 405 int ret; 406 407 down_read(&fw_device_rwsem); 408 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n", 409 device->config_rom[3], device->config_rom[4]); 410 up_read(&fw_device_rwsem); 411 412 return ret; 413 } 414 415 static ssize_t is_local_show(struct device *dev, 416 struct device_attribute *attr, char *buf) 417 { 418 struct fw_device *device = fw_device(dev); 419 420 return sprintf(buf, "%u\n", device->is_local); 421 } 422 423 static int units_sprintf(char *buf, const u32 *directory) 424 { 425 struct fw_csr_iterator ci; 426 int key, value; 427 int specifier_id = 0; 428 int version = 0; 429 430 fw_csr_iterator_init(&ci, directory); 431 while (fw_csr_iterator_next(&ci, &key, &value)) { 432 switch (key) { 433 case CSR_SPECIFIER_ID: 434 specifier_id = value; 435 break; 436 case CSR_VERSION: 437 version = value; 438 break; 439 } 440 } 441 442 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); 443 } 444 445 static ssize_t units_show(struct device *dev, 446 struct device_attribute *attr, char *buf) 447 { 448 struct fw_device *device = fw_device(dev); 449 struct fw_csr_iterator ci; 450 int key, value, i = 0; 451 452 down_read(&fw_device_rwsem); 453 fw_csr_iterator_init(&ci, &device->config_rom[5]); 454 while (fw_csr_iterator_next(&ci, &key, &value)) { 455 if (key != (CSR_UNIT | CSR_DIRECTORY)) 456 continue; 457 i += units_sprintf(&buf[i], ci.p + value - 1); 458 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) 459 break; 460 } 461 up_read(&fw_device_rwsem); 462 463 if (i) 464 buf[i - 1] = '\n'; 465 466 return i; 467 } 468 469 static struct device_attribute fw_device_attributes[] = { 470 __ATTR_RO(config_rom), 471 __ATTR_RO(guid), 472 __ATTR_RO(is_local), 473 __ATTR_RO(units), 474 __ATTR_NULL, 475 }; 476 477 static int read_rom(struct fw_device *device, 478 int generation, int index, u32 *data) 479 { 480 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4; 481 int i, rcode; 482 483 /* device->node_id, accessed below, must not be older than generation */ 484 smp_rmb(); 485 486 for (i = 10; i < 100; i += 10) { 487 rcode = fw_run_transaction(device->card, 488 TCODE_READ_QUADLET_REQUEST, device->node_id, 489 generation, device->max_speed, offset, data, 4); 490 if (rcode != RCODE_BUSY) 491 break; 492 msleep(i); 493 } 494 be32_to_cpus(data); 495 496 return rcode; 497 } 498 499 #define MAX_CONFIG_ROM_SIZE 256 500 501 /* 502 * Read the bus info block, perform a speed probe, and read all of the rest of 503 * the config ROM. We do all this with a cached bus generation. If the bus 504 * generation changes under us, read_config_rom will fail and get retried. 505 * It's better to start all over in this case because the node from which we 506 * are reading the ROM may have changed the ROM during the reset. 507 * Returns either a result code or a negative error code. 508 */ 509 static int read_config_rom(struct fw_device *device, int generation) 510 { 511 struct fw_card *card = device->card; 512 const u32 *old_rom, *new_rom; 513 u32 *rom, *stack; 514 u32 sp, key; 515 int i, end, length, ret; 516 517 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + 518 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); 519 if (rom == NULL) 520 return -ENOMEM; 521 522 stack = &rom[MAX_CONFIG_ROM_SIZE]; 523 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); 524 525 device->max_speed = SCODE_100; 526 527 /* First read the bus info block. */ 528 for (i = 0; i < 5; i++) { 529 ret = read_rom(device, generation, i, &rom[i]); 530 if (ret != RCODE_COMPLETE) 531 goto out; 532 /* 533 * As per IEEE1212 7.2, during initialization, devices can 534 * reply with a 0 for the first quadlet of the config 535 * rom to indicate that they are booting (for example, 536 * if the firmware is on the disk of a external 537 * harddisk). In that case we just fail, and the 538 * retry mechanism will try again later. 539 */ 540 if (i == 0 && rom[i] == 0) { 541 ret = RCODE_BUSY; 542 goto out; 543 } 544 } 545 546 device->max_speed = device->node->max_speed; 547 548 /* 549 * Determine the speed of 550 * - devices with link speed less than PHY speed, 551 * - devices with 1394b PHY (unless only connected to 1394a PHYs), 552 * - all devices if there are 1394b repeaters. 553 * Note, we cannot use the bus info block's link_spd as starting point 554 * because some buggy firmwares set it lower than necessary and because 555 * 1394-1995 nodes do not have the field. 556 */ 557 if ((rom[2] & 0x7) < device->max_speed || 558 device->max_speed == SCODE_BETA || 559 card->beta_repeaters_present) { 560 u32 dummy; 561 562 /* for S1600 and S3200 */ 563 if (device->max_speed == SCODE_BETA) 564 device->max_speed = card->link_speed; 565 566 while (device->max_speed > SCODE_100) { 567 if (read_rom(device, generation, 0, &dummy) == 568 RCODE_COMPLETE) 569 break; 570 device->max_speed--; 571 } 572 } 573 574 /* 575 * Now parse the config rom. The config rom is a recursive 576 * directory structure so we parse it using a stack of 577 * references to the blocks that make up the structure. We 578 * push a reference to the root directory on the stack to 579 * start things off. 580 */ 581 length = i; 582 sp = 0; 583 stack[sp++] = 0xc0000005; 584 while (sp > 0) { 585 /* 586 * Pop the next block reference of the stack. The 587 * lower 24 bits is the offset into the config rom, 588 * the upper 8 bits are the type of the reference the 589 * block. 590 */ 591 key = stack[--sp]; 592 i = key & 0xffffff; 593 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) { 594 ret = -ENXIO; 595 goto out; 596 } 597 598 /* Read header quadlet for the block to get the length. */ 599 ret = read_rom(device, generation, i, &rom[i]); 600 if (ret != RCODE_COMPLETE) 601 goto out; 602 end = i + (rom[i] >> 16) + 1; 603 if (end > MAX_CONFIG_ROM_SIZE) { 604 /* 605 * This block extends outside the config ROM which is 606 * a firmware bug. Ignore this whole block, i.e. 607 * simply set a fake block length of 0. 608 */ 609 fw_err(card, "skipped invalid ROM block %x at %llx\n", 610 rom[i], 611 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 612 rom[i] = 0; 613 end = i; 614 } 615 i++; 616 617 /* 618 * Now read in the block. If this is a directory 619 * block, check the entries as we read them to see if 620 * it references another block, and push it in that case. 621 */ 622 for (; i < end; i++) { 623 ret = read_rom(device, generation, i, &rom[i]); 624 if (ret != RCODE_COMPLETE) 625 goto out; 626 627 if ((key >> 30) != 3 || (rom[i] >> 30) < 2) 628 continue; 629 /* 630 * Offset points outside the ROM. May be a firmware 631 * bug or an Extended ROM entry (IEEE 1212-2001 clause 632 * 7.7.18). Simply overwrite this pointer here by a 633 * fake immediate entry so that later iterators over 634 * the ROM don't have to check offsets all the time. 635 */ 636 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { 637 fw_err(card, 638 "skipped unsupported ROM entry %x at %llx\n", 639 rom[i], 640 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 641 rom[i] = 0; 642 continue; 643 } 644 stack[sp++] = i + rom[i]; 645 } 646 if (length < i) 647 length = i; 648 } 649 650 old_rom = device->config_rom; 651 new_rom = kmemdup(rom, length * 4, GFP_KERNEL); 652 if (new_rom == NULL) { 653 ret = -ENOMEM; 654 goto out; 655 } 656 657 down_write(&fw_device_rwsem); 658 device->config_rom = new_rom; 659 device->config_rom_length = length; 660 up_write(&fw_device_rwsem); 661 662 kfree(old_rom); 663 ret = RCODE_COMPLETE; 664 device->max_rec = rom[2] >> 12 & 0xf; 665 device->cmc = rom[2] >> 30 & 1; 666 device->irmc = rom[2] >> 31 & 1; 667 out: 668 kfree(rom); 669 670 return ret; 671 } 672 673 static void fw_unit_release(struct device *dev) 674 { 675 struct fw_unit *unit = fw_unit(dev); 676 677 fw_device_put(fw_parent_device(unit)); 678 kfree(unit); 679 } 680 681 static struct device_type fw_unit_type = { 682 .uevent = fw_unit_uevent, 683 .release = fw_unit_release, 684 }; 685 686 static bool is_fw_unit(struct device *dev) 687 { 688 return dev->type == &fw_unit_type; 689 } 690 691 static void create_units(struct fw_device *device) 692 { 693 struct fw_csr_iterator ci; 694 struct fw_unit *unit; 695 int key, value, i; 696 697 i = 0; 698 fw_csr_iterator_init(&ci, &device->config_rom[5]); 699 while (fw_csr_iterator_next(&ci, &key, &value)) { 700 if (key != (CSR_UNIT | CSR_DIRECTORY)) 701 continue; 702 703 /* 704 * Get the address of the unit directory and try to 705 * match the drivers id_tables against it. 706 */ 707 unit = kzalloc(sizeof(*unit), GFP_KERNEL); 708 if (unit == NULL) 709 continue; 710 711 unit->directory = ci.p + value - 1; 712 unit->device.bus = &fw_bus_type; 713 unit->device.type = &fw_unit_type; 714 unit->device.parent = &device->device; 715 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); 716 717 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < 718 ARRAY_SIZE(fw_unit_attributes) + 719 ARRAY_SIZE(config_rom_attributes)); 720 init_fw_attribute_group(&unit->device, 721 fw_unit_attributes, 722 &unit->attribute_group); 723 724 if (device_register(&unit->device) < 0) 725 goto skip_unit; 726 727 fw_device_get(device); 728 continue; 729 730 skip_unit: 731 kfree(unit); 732 } 733 } 734 735 static int shutdown_unit(struct device *device, void *data) 736 { 737 device_unregister(device); 738 739 return 0; 740 } 741 742 /* 743 * fw_device_rwsem acts as dual purpose mutex: 744 * - serializes accesses to fw_device_idr, 745 * - serializes accesses to fw_device.config_rom/.config_rom_length and 746 * fw_unit.directory, unless those accesses happen at safe occasions 747 */ 748 DECLARE_RWSEM(fw_device_rwsem); 749 750 DEFINE_IDR(fw_device_idr); 751 int fw_cdev_major; 752 753 struct fw_device *fw_device_get_by_devt(dev_t devt) 754 { 755 struct fw_device *device; 756 757 down_read(&fw_device_rwsem); 758 device = idr_find(&fw_device_idr, MINOR(devt)); 759 if (device) 760 fw_device_get(device); 761 up_read(&fw_device_rwsem); 762 763 return device; 764 } 765 766 struct workqueue_struct *fw_workqueue; 767 EXPORT_SYMBOL(fw_workqueue); 768 769 static void fw_schedule_device_work(struct fw_device *device, 770 unsigned long delay) 771 { 772 queue_delayed_work(fw_workqueue, &device->work, delay); 773 } 774 775 /* 776 * These defines control the retry behavior for reading the config 777 * rom. It shouldn't be necessary to tweak these; if the device 778 * doesn't respond to a config rom read within 10 seconds, it's not 779 * going to respond at all. As for the initial delay, a lot of 780 * devices will be able to respond within half a second after bus 781 * reset. On the other hand, it's not really worth being more 782 * aggressive than that, since it scales pretty well; if 10 devices 783 * are plugged in, they're all getting read within one second. 784 */ 785 786 #define MAX_RETRIES 10 787 #define RETRY_DELAY (3 * HZ) 788 #define INITIAL_DELAY (HZ / 2) 789 #define SHUTDOWN_DELAY (2 * HZ) 790 791 static void fw_device_shutdown(struct work_struct *work) 792 { 793 struct fw_device *device = 794 container_of(work, struct fw_device, work.work); 795 int minor = MINOR(device->device.devt); 796 797 if (time_before64(get_jiffies_64(), 798 device->card->reset_jiffies + SHUTDOWN_DELAY) 799 && !list_empty(&device->card->link)) { 800 fw_schedule_device_work(device, SHUTDOWN_DELAY); 801 return; 802 } 803 804 if (atomic_cmpxchg(&device->state, 805 FW_DEVICE_GONE, 806 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) 807 return; 808 809 fw_device_cdev_remove(device); 810 device_for_each_child(&device->device, NULL, shutdown_unit); 811 device_unregister(&device->device); 812 813 down_write(&fw_device_rwsem); 814 idr_remove(&fw_device_idr, minor); 815 up_write(&fw_device_rwsem); 816 817 fw_device_put(device); 818 } 819 820 static void fw_device_release(struct device *dev) 821 { 822 struct fw_device *device = fw_device(dev); 823 struct fw_card *card = device->card; 824 unsigned long flags; 825 826 /* 827 * Take the card lock so we don't set this to NULL while a 828 * FW_NODE_UPDATED callback is being handled or while the 829 * bus manager work looks at this node. 830 */ 831 spin_lock_irqsave(&card->lock, flags); 832 device->node->data = NULL; 833 spin_unlock_irqrestore(&card->lock, flags); 834 835 fw_node_put(device->node); 836 kfree(device->config_rom); 837 kfree(device); 838 fw_card_put(card); 839 } 840 841 static struct device_type fw_device_type = { 842 .release = fw_device_release, 843 }; 844 845 static bool is_fw_device(struct device *dev) 846 { 847 return dev->type == &fw_device_type; 848 } 849 850 static int update_unit(struct device *dev, void *data) 851 { 852 struct fw_unit *unit = fw_unit(dev); 853 struct fw_driver *driver = (struct fw_driver *)dev->driver; 854 855 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { 856 device_lock(dev); 857 driver->update(unit); 858 device_unlock(dev); 859 } 860 861 return 0; 862 } 863 864 static void fw_device_update(struct work_struct *work) 865 { 866 struct fw_device *device = 867 container_of(work, struct fw_device, work.work); 868 869 fw_device_cdev_update(device); 870 device_for_each_child(&device->device, NULL, update_unit); 871 } 872 873 /* 874 * If a device was pending for deletion because its node went away but its 875 * bus info block and root directory header matches that of a newly discovered 876 * device, revive the existing fw_device. 877 * The newly allocated fw_device becomes obsolete instead. 878 */ 879 static int lookup_existing_device(struct device *dev, void *data) 880 { 881 struct fw_device *old = fw_device(dev); 882 struct fw_device *new = data; 883 struct fw_card *card = new->card; 884 int match = 0; 885 886 if (!is_fw_device(dev)) 887 return 0; 888 889 down_read(&fw_device_rwsem); /* serialize config_rom access */ 890 spin_lock_irq(&card->lock); /* serialize node access */ 891 892 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 && 893 atomic_cmpxchg(&old->state, 894 FW_DEVICE_GONE, 895 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 896 struct fw_node *current_node = new->node; 897 struct fw_node *obsolete_node = old->node; 898 899 new->node = obsolete_node; 900 new->node->data = new; 901 old->node = current_node; 902 old->node->data = old; 903 904 old->max_speed = new->max_speed; 905 old->node_id = current_node->node_id; 906 smp_wmb(); /* update node_id before generation */ 907 old->generation = card->generation; 908 old->config_rom_retries = 0; 909 fw_notice(card, "rediscovered device %s\n", dev_name(dev)); 910 911 old->workfn = fw_device_update; 912 fw_schedule_device_work(old, 0); 913 914 if (current_node == card->root_node) 915 fw_schedule_bm_work(card, 0); 916 917 match = 1; 918 } 919 920 spin_unlock_irq(&card->lock); 921 up_read(&fw_device_rwsem); 922 923 return match; 924 } 925 926 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; 927 928 static void set_broadcast_channel(struct fw_device *device, int generation) 929 { 930 struct fw_card *card = device->card; 931 __be32 data; 932 int rcode; 933 934 if (!card->broadcast_channel_allocated) 935 return; 936 937 /* 938 * The Broadcast_Channel Valid bit is required by nodes which want to 939 * transmit on this channel. Such transmissions are practically 940 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required 941 * to be IRM capable and have a max_rec of 8 or more. We use this fact 942 * to narrow down to which nodes we send Broadcast_Channel updates. 943 */ 944 if (!device->irmc || device->max_rec < 8) 945 return; 946 947 /* 948 * Some 1394-1995 nodes crash if this 1394a-2000 register is written. 949 * Perform a read test first. 950 */ 951 if (device->bc_implemented == BC_UNKNOWN) { 952 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, 953 device->node_id, generation, device->max_speed, 954 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 955 &data, 4); 956 switch (rcode) { 957 case RCODE_COMPLETE: 958 if (data & cpu_to_be32(1 << 31)) { 959 device->bc_implemented = BC_IMPLEMENTED; 960 break; 961 } 962 fallthrough; /* to case address error */ 963 case RCODE_ADDRESS_ERROR: 964 device->bc_implemented = BC_UNIMPLEMENTED; 965 } 966 } 967 968 if (device->bc_implemented == BC_IMPLEMENTED) { 969 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | 970 BROADCAST_CHANNEL_VALID); 971 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, 972 device->node_id, generation, device->max_speed, 973 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 974 &data, 4); 975 } 976 } 977 978 int fw_device_set_broadcast_channel(struct device *dev, void *gen) 979 { 980 if (is_fw_device(dev)) 981 set_broadcast_channel(fw_device(dev), (long)gen); 982 983 return 0; 984 } 985 986 static void fw_device_init(struct work_struct *work) 987 { 988 struct fw_device *device = 989 container_of(work, struct fw_device, work.work); 990 struct fw_card *card = device->card; 991 struct device *revived_dev; 992 int minor, ret; 993 994 /* 995 * All failure paths here set node->data to NULL, so that we 996 * don't try to do device_for_each_child() on a kfree()'d 997 * device. 998 */ 999 1000 ret = read_config_rom(device, device->generation); 1001 if (ret != RCODE_COMPLETE) { 1002 if (device->config_rom_retries < MAX_RETRIES && 1003 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1004 device->config_rom_retries++; 1005 fw_schedule_device_work(device, RETRY_DELAY); 1006 } else { 1007 if (device->node->link_on) 1008 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n", 1009 device->node_id, 1010 fw_rcode_string(ret)); 1011 if (device->node == card->root_node) 1012 fw_schedule_bm_work(card, 0); 1013 fw_device_release(&device->device); 1014 } 1015 return; 1016 } 1017 1018 revived_dev = device_find_child(card->device, 1019 device, lookup_existing_device); 1020 if (revived_dev) { 1021 put_device(revived_dev); 1022 fw_device_release(&device->device); 1023 1024 return; 1025 } 1026 1027 device_initialize(&device->device); 1028 1029 fw_device_get(device); 1030 down_write(&fw_device_rwsem); 1031 minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS, 1032 GFP_KERNEL); 1033 up_write(&fw_device_rwsem); 1034 1035 if (minor < 0) 1036 goto error; 1037 1038 device->device.bus = &fw_bus_type; 1039 device->device.type = &fw_device_type; 1040 device->device.parent = card->device; 1041 device->device.devt = MKDEV(fw_cdev_major, minor); 1042 dev_set_name(&device->device, "fw%d", minor); 1043 1044 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < 1045 ARRAY_SIZE(fw_device_attributes) + 1046 ARRAY_SIZE(config_rom_attributes)); 1047 init_fw_attribute_group(&device->device, 1048 fw_device_attributes, 1049 &device->attribute_group); 1050 1051 if (device_add(&device->device)) { 1052 fw_err(card, "failed to add device\n"); 1053 goto error_with_cdev; 1054 } 1055 1056 create_units(device); 1057 1058 /* 1059 * Transition the device to running state. If it got pulled 1060 * out from under us while we did the initialization work, we 1061 * have to shut down the device again here. Normally, though, 1062 * fw_node_event will be responsible for shutting it down when 1063 * necessary. We have to use the atomic cmpxchg here to avoid 1064 * racing with the FW_NODE_DESTROYED case in 1065 * fw_node_event(). 1066 */ 1067 if (atomic_cmpxchg(&device->state, 1068 FW_DEVICE_INITIALIZING, 1069 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 1070 device->workfn = fw_device_shutdown; 1071 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1072 } else { 1073 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n", 1074 dev_name(&device->device), 1075 device->config_rom[3], device->config_rom[4], 1076 1 << device->max_speed); 1077 device->config_rom_retries = 0; 1078 1079 set_broadcast_channel(device, device->generation); 1080 1081 add_device_randomness(&device->config_rom[3], 8); 1082 } 1083 1084 /* 1085 * Reschedule the IRM work if we just finished reading the 1086 * root node config rom. If this races with a bus reset we 1087 * just end up running the IRM work a couple of extra times - 1088 * pretty harmless. 1089 */ 1090 if (device->node == card->root_node) 1091 fw_schedule_bm_work(card, 0); 1092 1093 return; 1094 1095 error_with_cdev: 1096 down_write(&fw_device_rwsem); 1097 idr_remove(&fw_device_idr, minor); 1098 up_write(&fw_device_rwsem); 1099 error: 1100 fw_device_put(device); /* fw_device_idr's reference */ 1101 1102 put_device(&device->device); /* our reference */ 1103 } 1104 1105 /* Reread and compare bus info block and header of root directory */ 1106 static int reread_config_rom(struct fw_device *device, int generation, 1107 bool *changed) 1108 { 1109 u32 q; 1110 int i, rcode; 1111 1112 for (i = 0; i < 6; i++) { 1113 rcode = read_rom(device, generation, i, &q); 1114 if (rcode != RCODE_COMPLETE) 1115 return rcode; 1116 1117 if (i == 0 && q == 0) 1118 /* inaccessible (see read_config_rom); retry later */ 1119 return RCODE_BUSY; 1120 1121 if (q != device->config_rom[i]) { 1122 *changed = true; 1123 return RCODE_COMPLETE; 1124 } 1125 } 1126 1127 *changed = false; 1128 return RCODE_COMPLETE; 1129 } 1130 1131 static void fw_device_refresh(struct work_struct *work) 1132 { 1133 struct fw_device *device = 1134 container_of(work, struct fw_device, work.work); 1135 struct fw_card *card = device->card; 1136 int ret, node_id = device->node_id; 1137 bool changed; 1138 1139 ret = reread_config_rom(device, device->generation, &changed); 1140 if (ret != RCODE_COMPLETE) 1141 goto failed_config_rom; 1142 1143 if (!changed) { 1144 if (atomic_cmpxchg(&device->state, 1145 FW_DEVICE_INITIALIZING, 1146 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1147 goto gone; 1148 1149 fw_device_update(work); 1150 device->config_rom_retries = 0; 1151 goto out; 1152 } 1153 1154 /* 1155 * Something changed. We keep things simple and don't investigate 1156 * further. We just destroy all previous units and create new ones. 1157 */ 1158 device_for_each_child(&device->device, NULL, shutdown_unit); 1159 1160 ret = read_config_rom(device, device->generation); 1161 if (ret != RCODE_COMPLETE) 1162 goto failed_config_rom; 1163 1164 fw_device_cdev_update(device); 1165 create_units(device); 1166 1167 /* Userspace may want to re-read attributes. */ 1168 kobject_uevent(&device->device.kobj, KOBJ_CHANGE); 1169 1170 if (atomic_cmpxchg(&device->state, 1171 FW_DEVICE_INITIALIZING, 1172 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1173 goto gone; 1174 1175 fw_notice(card, "refreshed device %s\n", dev_name(&device->device)); 1176 device->config_rom_retries = 0; 1177 goto out; 1178 1179 failed_config_rom: 1180 if (device->config_rom_retries < MAX_RETRIES && 1181 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1182 device->config_rom_retries++; 1183 fw_schedule_device_work(device, RETRY_DELAY); 1184 return; 1185 } 1186 1187 fw_notice(card, "giving up on refresh of device %s: %s\n", 1188 dev_name(&device->device), fw_rcode_string(ret)); 1189 gone: 1190 atomic_set(&device->state, FW_DEVICE_GONE); 1191 device->workfn = fw_device_shutdown; 1192 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1193 out: 1194 if (node_id == card->root_node->node_id) 1195 fw_schedule_bm_work(card, 0); 1196 } 1197 1198 static void fw_device_workfn(struct work_struct *work) 1199 { 1200 struct fw_device *device = container_of(to_delayed_work(work), 1201 struct fw_device, work); 1202 device->workfn(work); 1203 } 1204 1205 void fw_node_event(struct fw_card *card, struct fw_node *node, int event) 1206 { 1207 struct fw_device *device; 1208 1209 switch (event) { 1210 case FW_NODE_CREATED: 1211 /* 1212 * Attempt to scan the node, regardless whether its self ID has 1213 * the L (link active) flag set or not. Some broken devices 1214 * send L=0 but have an up-and-running link; others send L=1 1215 * without actually having a link. 1216 */ 1217 create: 1218 device = kzalloc(sizeof(*device), GFP_ATOMIC); 1219 if (device == NULL) 1220 break; 1221 1222 /* 1223 * Do minimal initialization of the device here, the 1224 * rest will happen in fw_device_init(). 1225 * 1226 * Attention: A lot of things, even fw_device_get(), 1227 * cannot be done before fw_device_init() finished! 1228 * You can basically just check device->state and 1229 * schedule work until then, but only while holding 1230 * card->lock. 1231 */ 1232 atomic_set(&device->state, FW_DEVICE_INITIALIZING); 1233 device->card = fw_card_get(card); 1234 device->node = fw_node_get(node); 1235 device->node_id = node->node_id; 1236 device->generation = card->generation; 1237 device->is_local = node == card->local_node; 1238 mutex_init(&device->client_list_mutex); 1239 INIT_LIST_HEAD(&device->client_list); 1240 1241 /* 1242 * Set the node data to point back to this device so 1243 * FW_NODE_UPDATED callbacks can update the node_id 1244 * and generation for the device. 1245 */ 1246 node->data = device; 1247 1248 /* 1249 * Many devices are slow to respond after bus resets, 1250 * especially if they are bus powered and go through 1251 * power-up after getting plugged in. We schedule the 1252 * first config rom scan half a second after bus reset. 1253 */ 1254 device->workfn = fw_device_init; 1255 INIT_DELAYED_WORK(&device->work, fw_device_workfn); 1256 fw_schedule_device_work(device, INITIAL_DELAY); 1257 break; 1258 1259 case FW_NODE_INITIATED_RESET: 1260 case FW_NODE_LINK_ON: 1261 device = node->data; 1262 if (device == NULL) 1263 goto create; 1264 1265 device->node_id = node->node_id; 1266 smp_wmb(); /* update node_id before generation */ 1267 device->generation = card->generation; 1268 if (atomic_cmpxchg(&device->state, 1269 FW_DEVICE_RUNNING, 1270 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { 1271 device->workfn = fw_device_refresh; 1272 fw_schedule_device_work(device, 1273 device->is_local ? 0 : INITIAL_DELAY); 1274 } 1275 break; 1276 1277 case FW_NODE_UPDATED: 1278 device = node->data; 1279 if (device == NULL) 1280 break; 1281 1282 device->node_id = node->node_id; 1283 smp_wmb(); /* update node_id before generation */ 1284 device->generation = card->generation; 1285 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { 1286 device->workfn = fw_device_update; 1287 fw_schedule_device_work(device, 0); 1288 } 1289 break; 1290 1291 case FW_NODE_DESTROYED: 1292 case FW_NODE_LINK_OFF: 1293 if (!node->data) 1294 break; 1295 1296 /* 1297 * Destroy the device associated with the node. There 1298 * are two cases here: either the device is fully 1299 * initialized (FW_DEVICE_RUNNING) or we're in the 1300 * process of reading its config rom 1301 * (FW_DEVICE_INITIALIZING). If it is fully 1302 * initialized we can reuse device->work to schedule a 1303 * full fw_device_shutdown(). If not, there's work 1304 * scheduled to read it's config rom, and we just put 1305 * the device in shutdown state to have that code fail 1306 * to create the device. 1307 */ 1308 device = node->data; 1309 if (atomic_xchg(&device->state, 1310 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { 1311 device->workfn = fw_device_shutdown; 1312 fw_schedule_device_work(device, 1313 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); 1314 } 1315 break; 1316 } 1317 } 1318