1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Device probing and sysfs code. 4 * 5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 #include <linux/bug.h> 9 #include <linux/ctype.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/errno.h> 13 #include <linux/firewire.h> 14 #include <linux/firewire-constants.h> 15 #include <linux/idr.h> 16 #include <linux/jiffies.h> 17 #include <linux/kobject.h> 18 #include <linux/list.h> 19 #include <linux/mod_devicetable.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/random.h> 23 #include <linux/rwsem.h> 24 #include <linux/slab.h> 25 #include <linux/spinlock.h> 26 #include <linux/string.h> 27 #include <linux/workqueue.h> 28 29 #include <linux/atomic.h> 30 #include <asm/byteorder.h> 31 32 #include "core.h" 33 34 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p) 35 { 36 ci->p = p + 1; 37 ci->end = ci->p + (p[0] >> 16); 38 } 39 EXPORT_SYMBOL(fw_csr_iterator_init); 40 41 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) 42 { 43 *key = *ci->p >> 24; 44 *value = *ci->p & 0xffffff; 45 46 return ci->p++ < ci->end; 47 } 48 EXPORT_SYMBOL(fw_csr_iterator_next); 49 50 static const u32 *search_leaf(const u32 *directory, int search_key) 51 { 52 struct fw_csr_iterator ci; 53 int last_key = 0, key, value; 54 55 fw_csr_iterator_init(&ci, directory); 56 while (fw_csr_iterator_next(&ci, &key, &value)) { 57 if (last_key == search_key && 58 key == (CSR_DESCRIPTOR | CSR_LEAF)) 59 return ci.p - 1 + value; 60 61 last_key = key; 62 } 63 64 return NULL; 65 } 66 67 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size) 68 { 69 unsigned int quadlets, i; 70 char c; 71 72 if (!size || !buf) 73 return -EINVAL; 74 75 quadlets = min(block[0] >> 16, 256U); 76 if (quadlets < 2) 77 return -ENODATA; 78 79 if (block[1] != 0 || block[2] != 0) 80 /* unknown language/character set */ 81 return -ENODATA; 82 83 block += 3; 84 quadlets -= 2; 85 for (i = 0; i < quadlets * 4 && i < size - 1; i++) { 86 c = block[i / 4] >> (24 - 8 * (i % 4)); 87 if (c == '\0') 88 break; 89 buf[i] = c; 90 } 91 buf[i] = '\0'; 92 93 return i; 94 } 95 96 /** 97 * fw_csr_string() - reads a string from the configuration ROM 98 * @directory: e.g. root directory or unit directory 99 * @key: the key of the preceding directory entry 100 * @buf: where to put the string 101 * @size: size of @buf, in bytes 102 * 103 * The string is taken from a minimal ASCII text descriptor leaf after 104 * the immediate entry with @key. The string is zero-terminated. 105 * An overlong string is silently truncated such that it and the 106 * zero byte fit into @size. 107 * 108 * Returns strlen(buf) or a negative error code. 109 */ 110 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size) 111 { 112 const u32 *leaf = search_leaf(directory, key); 113 if (!leaf) 114 return -ENOENT; 115 116 return textual_leaf_to_string(leaf, buf, size); 117 } 118 EXPORT_SYMBOL(fw_csr_string); 119 120 static void get_ids(const u32 *directory, int *id) 121 { 122 struct fw_csr_iterator ci; 123 int key, value; 124 125 fw_csr_iterator_init(&ci, directory); 126 while (fw_csr_iterator_next(&ci, &key, &value)) { 127 switch (key) { 128 case CSR_VENDOR: id[0] = value; break; 129 case CSR_MODEL: id[1] = value; break; 130 case CSR_SPECIFIER_ID: id[2] = value; break; 131 case CSR_VERSION: id[3] = value; break; 132 } 133 } 134 } 135 136 static void get_modalias_ids(struct fw_unit *unit, int *id) 137 { 138 get_ids(&fw_parent_device(unit)->config_rom[5], id); 139 get_ids(unit->directory, id); 140 } 141 142 static bool match_ids(const struct ieee1394_device_id *id_table, int *id) 143 { 144 int match = 0; 145 146 if (id[0] == id_table->vendor_id) 147 match |= IEEE1394_MATCH_VENDOR_ID; 148 if (id[1] == id_table->model_id) 149 match |= IEEE1394_MATCH_MODEL_ID; 150 if (id[2] == id_table->specifier_id) 151 match |= IEEE1394_MATCH_SPECIFIER_ID; 152 if (id[3] == id_table->version) 153 match |= IEEE1394_MATCH_VERSION; 154 155 return (match & id_table->match_flags) == id_table->match_flags; 156 } 157 158 static const struct ieee1394_device_id *unit_match(struct device *dev, 159 struct device_driver *drv) 160 { 161 const struct ieee1394_device_id *id_table = 162 container_of(drv, struct fw_driver, driver)->id_table; 163 int id[] = {0, 0, 0, 0}; 164 165 get_modalias_ids(fw_unit(dev), id); 166 167 for (; id_table->match_flags != 0; id_table++) 168 if (match_ids(id_table, id)) 169 return id_table; 170 171 return NULL; 172 } 173 174 static bool is_fw_unit(struct device *dev); 175 176 static int fw_unit_match(struct device *dev, struct device_driver *drv) 177 { 178 /* We only allow binding to fw_units. */ 179 return is_fw_unit(dev) && unit_match(dev, drv) != NULL; 180 } 181 182 static int fw_unit_probe(struct device *dev) 183 { 184 struct fw_driver *driver = 185 container_of(dev->driver, struct fw_driver, driver); 186 187 return driver->probe(fw_unit(dev), unit_match(dev, dev->driver)); 188 } 189 190 static int fw_unit_remove(struct device *dev) 191 { 192 struct fw_driver *driver = 193 container_of(dev->driver, struct fw_driver, driver); 194 195 return driver->remove(fw_unit(dev)), 0; 196 } 197 198 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size) 199 { 200 int id[] = {0, 0, 0, 0}; 201 202 get_modalias_ids(unit, id); 203 204 return snprintf(buffer, buffer_size, 205 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", 206 id[0], id[1], id[2], id[3]); 207 } 208 209 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env) 210 { 211 struct fw_unit *unit = fw_unit(dev); 212 char modalias[64]; 213 214 get_modalias(unit, modalias, sizeof(modalias)); 215 216 if (add_uevent_var(env, "MODALIAS=%s", modalias)) 217 return -ENOMEM; 218 219 return 0; 220 } 221 222 struct bus_type fw_bus_type = { 223 .name = "firewire", 224 .match = fw_unit_match, 225 .probe = fw_unit_probe, 226 .remove = fw_unit_remove, 227 }; 228 EXPORT_SYMBOL(fw_bus_type); 229 230 int fw_device_enable_phys_dma(struct fw_device *device) 231 { 232 int generation = device->generation; 233 234 /* device->node_id, accessed below, must not be older than generation */ 235 smp_rmb(); 236 237 return device->card->driver->enable_phys_dma(device->card, 238 device->node_id, 239 generation); 240 } 241 EXPORT_SYMBOL(fw_device_enable_phys_dma); 242 243 struct config_rom_attribute { 244 struct device_attribute attr; 245 u32 key; 246 }; 247 248 static ssize_t show_immediate(struct device *dev, 249 struct device_attribute *dattr, char *buf) 250 { 251 struct config_rom_attribute *attr = 252 container_of(dattr, struct config_rom_attribute, attr); 253 struct fw_csr_iterator ci; 254 const u32 *dir; 255 int key, value, ret = -ENOENT; 256 257 down_read(&fw_device_rwsem); 258 259 if (is_fw_unit(dev)) 260 dir = fw_unit(dev)->directory; 261 else 262 dir = fw_device(dev)->config_rom + 5; 263 264 fw_csr_iterator_init(&ci, dir); 265 while (fw_csr_iterator_next(&ci, &key, &value)) 266 if (attr->key == key) { 267 ret = snprintf(buf, buf ? PAGE_SIZE : 0, 268 "0x%06x\n", value); 269 break; 270 } 271 272 up_read(&fw_device_rwsem); 273 274 return ret; 275 } 276 277 #define IMMEDIATE_ATTR(name, key) \ 278 { __ATTR(name, S_IRUGO, show_immediate, NULL), key } 279 280 static ssize_t show_text_leaf(struct device *dev, 281 struct device_attribute *dattr, char *buf) 282 { 283 struct config_rom_attribute *attr = 284 container_of(dattr, struct config_rom_attribute, attr); 285 const u32 *dir; 286 size_t bufsize; 287 char dummy_buf[2]; 288 int ret; 289 290 down_read(&fw_device_rwsem); 291 292 if (is_fw_unit(dev)) 293 dir = fw_unit(dev)->directory; 294 else 295 dir = fw_device(dev)->config_rom + 5; 296 297 if (buf) { 298 bufsize = PAGE_SIZE - 1; 299 } else { 300 buf = dummy_buf; 301 bufsize = 1; 302 } 303 304 ret = fw_csr_string(dir, attr->key, buf, bufsize); 305 306 if (ret >= 0) { 307 /* Strip trailing whitespace and add newline. */ 308 while (ret > 0 && isspace(buf[ret - 1])) 309 ret--; 310 strcpy(buf + ret, "\n"); 311 ret++; 312 } 313 314 up_read(&fw_device_rwsem); 315 316 return ret; 317 } 318 319 #define TEXT_LEAF_ATTR(name, key) \ 320 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } 321 322 static struct config_rom_attribute config_rom_attributes[] = { 323 IMMEDIATE_ATTR(vendor, CSR_VENDOR), 324 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), 325 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), 326 IMMEDIATE_ATTR(version, CSR_VERSION), 327 IMMEDIATE_ATTR(model, CSR_MODEL), 328 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), 329 TEXT_LEAF_ATTR(model_name, CSR_MODEL), 330 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), 331 }; 332 333 static void init_fw_attribute_group(struct device *dev, 334 struct device_attribute *attrs, 335 struct fw_attribute_group *group) 336 { 337 struct device_attribute *attr; 338 int i, j; 339 340 for (j = 0; attrs[j].attr.name != NULL; j++) 341 group->attrs[j] = &attrs[j].attr; 342 343 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { 344 attr = &config_rom_attributes[i].attr; 345 if (attr->show(dev, attr, NULL) < 0) 346 continue; 347 group->attrs[j++] = &attr->attr; 348 } 349 350 group->attrs[j] = NULL; 351 group->groups[0] = &group->group; 352 group->groups[1] = NULL; 353 group->group.attrs = group->attrs; 354 dev->groups = (const struct attribute_group **) group->groups; 355 } 356 357 static ssize_t modalias_show(struct device *dev, 358 struct device_attribute *attr, char *buf) 359 { 360 struct fw_unit *unit = fw_unit(dev); 361 int length; 362 363 length = get_modalias(unit, buf, PAGE_SIZE); 364 strcpy(buf + length, "\n"); 365 366 return length + 1; 367 } 368 369 static ssize_t rom_index_show(struct device *dev, 370 struct device_attribute *attr, char *buf) 371 { 372 struct fw_device *device = fw_device(dev->parent); 373 struct fw_unit *unit = fw_unit(dev); 374 375 return snprintf(buf, PAGE_SIZE, "%d\n", 376 (int)(unit->directory - device->config_rom)); 377 } 378 379 static struct device_attribute fw_unit_attributes[] = { 380 __ATTR_RO(modalias), 381 __ATTR_RO(rom_index), 382 __ATTR_NULL, 383 }; 384 385 static ssize_t config_rom_show(struct device *dev, 386 struct device_attribute *attr, char *buf) 387 { 388 struct fw_device *device = fw_device(dev); 389 size_t length; 390 391 down_read(&fw_device_rwsem); 392 length = device->config_rom_length * 4; 393 memcpy(buf, device->config_rom, length); 394 up_read(&fw_device_rwsem); 395 396 return length; 397 } 398 399 static ssize_t guid_show(struct device *dev, 400 struct device_attribute *attr, char *buf) 401 { 402 struct fw_device *device = fw_device(dev); 403 int ret; 404 405 down_read(&fw_device_rwsem); 406 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n", 407 device->config_rom[3], device->config_rom[4]); 408 up_read(&fw_device_rwsem); 409 410 return ret; 411 } 412 413 static ssize_t is_local_show(struct device *dev, 414 struct device_attribute *attr, char *buf) 415 { 416 struct fw_device *device = fw_device(dev); 417 418 return sprintf(buf, "%u\n", device->is_local); 419 } 420 421 static int units_sprintf(char *buf, const u32 *directory) 422 { 423 struct fw_csr_iterator ci; 424 int key, value; 425 int specifier_id = 0; 426 int version = 0; 427 428 fw_csr_iterator_init(&ci, directory); 429 while (fw_csr_iterator_next(&ci, &key, &value)) { 430 switch (key) { 431 case CSR_SPECIFIER_ID: 432 specifier_id = value; 433 break; 434 case CSR_VERSION: 435 version = value; 436 break; 437 } 438 } 439 440 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version); 441 } 442 443 static ssize_t units_show(struct device *dev, 444 struct device_attribute *attr, char *buf) 445 { 446 struct fw_device *device = fw_device(dev); 447 struct fw_csr_iterator ci; 448 int key, value, i = 0; 449 450 down_read(&fw_device_rwsem); 451 fw_csr_iterator_init(&ci, &device->config_rom[5]); 452 while (fw_csr_iterator_next(&ci, &key, &value)) { 453 if (key != (CSR_UNIT | CSR_DIRECTORY)) 454 continue; 455 i += units_sprintf(&buf[i], ci.p + value - 1); 456 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1)) 457 break; 458 } 459 up_read(&fw_device_rwsem); 460 461 if (i) 462 buf[i - 1] = '\n'; 463 464 return i; 465 } 466 467 static struct device_attribute fw_device_attributes[] = { 468 __ATTR_RO(config_rom), 469 __ATTR_RO(guid), 470 __ATTR_RO(is_local), 471 __ATTR_RO(units), 472 __ATTR_NULL, 473 }; 474 475 static int read_rom(struct fw_device *device, 476 int generation, int index, u32 *data) 477 { 478 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4; 479 int i, rcode; 480 481 /* device->node_id, accessed below, must not be older than generation */ 482 smp_rmb(); 483 484 for (i = 10; i < 100; i += 10) { 485 rcode = fw_run_transaction(device->card, 486 TCODE_READ_QUADLET_REQUEST, device->node_id, 487 generation, device->max_speed, offset, data, 4); 488 if (rcode != RCODE_BUSY) 489 break; 490 msleep(i); 491 } 492 be32_to_cpus(data); 493 494 return rcode; 495 } 496 497 #define MAX_CONFIG_ROM_SIZE 256 498 499 /* 500 * Read the bus info block, perform a speed probe, and read all of the rest of 501 * the config ROM. We do all this with a cached bus generation. If the bus 502 * generation changes under us, read_config_rom will fail and get retried. 503 * It's better to start all over in this case because the node from which we 504 * are reading the ROM may have changed the ROM during the reset. 505 * Returns either a result code or a negative error code. 506 */ 507 static int read_config_rom(struct fw_device *device, int generation) 508 { 509 struct fw_card *card = device->card; 510 const u32 *old_rom, *new_rom; 511 u32 *rom, *stack; 512 u32 sp, key; 513 int i, end, length, ret; 514 515 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE + 516 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL); 517 if (rom == NULL) 518 return -ENOMEM; 519 520 stack = &rom[MAX_CONFIG_ROM_SIZE]; 521 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE); 522 523 device->max_speed = SCODE_100; 524 525 /* First read the bus info block. */ 526 for (i = 0; i < 5; i++) { 527 ret = read_rom(device, generation, i, &rom[i]); 528 if (ret != RCODE_COMPLETE) 529 goto out; 530 /* 531 * As per IEEE1212 7.2, during initialization, devices can 532 * reply with a 0 for the first quadlet of the config 533 * rom to indicate that they are booting (for example, 534 * if the firmware is on the disk of a external 535 * harddisk). In that case we just fail, and the 536 * retry mechanism will try again later. 537 */ 538 if (i == 0 && rom[i] == 0) { 539 ret = RCODE_BUSY; 540 goto out; 541 } 542 } 543 544 device->max_speed = device->node->max_speed; 545 546 /* 547 * Determine the speed of 548 * - devices with link speed less than PHY speed, 549 * - devices with 1394b PHY (unless only connected to 1394a PHYs), 550 * - all devices if there are 1394b repeaters. 551 * Note, we cannot use the bus info block's link_spd as starting point 552 * because some buggy firmwares set it lower than necessary and because 553 * 1394-1995 nodes do not have the field. 554 */ 555 if ((rom[2] & 0x7) < device->max_speed || 556 device->max_speed == SCODE_BETA || 557 card->beta_repeaters_present) { 558 u32 dummy; 559 560 /* for S1600 and S3200 */ 561 if (device->max_speed == SCODE_BETA) 562 device->max_speed = card->link_speed; 563 564 while (device->max_speed > SCODE_100) { 565 if (read_rom(device, generation, 0, &dummy) == 566 RCODE_COMPLETE) 567 break; 568 device->max_speed--; 569 } 570 } 571 572 /* 573 * Now parse the config rom. The config rom is a recursive 574 * directory structure so we parse it using a stack of 575 * references to the blocks that make up the structure. We 576 * push a reference to the root directory on the stack to 577 * start things off. 578 */ 579 length = i; 580 sp = 0; 581 stack[sp++] = 0xc0000005; 582 while (sp > 0) { 583 /* 584 * Pop the next block reference of the stack. The 585 * lower 24 bits is the offset into the config rom, 586 * the upper 8 bits are the type of the reference the 587 * block. 588 */ 589 key = stack[--sp]; 590 i = key & 0xffffff; 591 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) { 592 ret = -ENXIO; 593 goto out; 594 } 595 596 /* Read header quadlet for the block to get the length. */ 597 ret = read_rom(device, generation, i, &rom[i]); 598 if (ret != RCODE_COMPLETE) 599 goto out; 600 end = i + (rom[i] >> 16) + 1; 601 if (end > MAX_CONFIG_ROM_SIZE) { 602 /* 603 * This block extends outside the config ROM which is 604 * a firmware bug. Ignore this whole block, i.e. 605 * simply set a fake block length of 0. 606 */ 607 fw_err(card, "skipped invalid ROM block %x at %llx\n", 608 rom[i], 609 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 610 rom[i] = 0; 611 end = i; 612 } 613 i++; 614 615 /* 616 * Now read in the block. If this is a directory 617 * block, check the entries as we read them to see if 618 * it references another block, and push it in that case. 619 */ 620 for (; i < end; i++) { 621 ret = read_rom(device, generation, i, &rom[i]); 622 if (ret != RCODE_COMPLETE) 623 goto out; 624 625 if ((key >> 30) != 3 || (rom[i] >> 30) < 2) 626 continue; 627 /* 628 * Offset points outside the ROM. May be a firmware 629 * bug or an Extended ROM entry (IEEE 1212-2001 clause 630 * 7.7.18). Simply overwrite this pointer here by a 631 * fake immediate entry so that later iterators over 632 * the ROM don't have to check offsets all the time. 633 */ 634 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) { 635 fw_err(card, 636 "skipped unsupported ROM entry %x at %llx\n", 637 rom[i], 638 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM); 639 rom[i] = 0; 640 continue; 641 } 642 stack[sp++] = i + rom[i]; 643 } 644 if (length < i) 645 length = i; 646 } 647 648 old_rom = device->config_rom; 649 new_rom = kmemdup(rom, length * 4, GFP_KERNEL); 650 if (new_rom == NULL) { 651 ret = -ENOMEM; 652 goto out; 653 } 654 655 down_write(&fw_device_rwsem); 656 device->config_rom = new_rom; 657 device->config_rom_length = length; 658 up_write(&fw_device_rwsem); 659 660 kfree(old_rom); 661 ret = RCODE_COMPLETE; 662 device->max_rec = rom[2] >> 12 & 0xf; 663 device->cmc = rom[2] >> 30 & 1; 664 device->irmc = rom[2] >> 31 & 1; 665 out: 666 kfree(rom); 667 668 return ret; 669 } 670 671 static void fw_unit_release(struct device *dev) 672 { 673 struct fw_unit *unit = fw_unit(dev); 674 675 fw_device_put(fw_parent_device(unit)); 676 kfree(unit); 677 } 678 679 static struct device_type fw_unit_type = { 680 .uevent = fw_unit_uevent, 681 .release = fw_unit_release, 682 }; 683 684 static bool is_fw_unit(struct device *dev) 685 { 686 return dev->type == &fw_unit_type; 687 } 688 689 static void create_units(struct fw_device *device) 690 { 691 struct fw_csr_iterator ci; 692 struct fw_unit *unit; 693 int key, value, i; 694 695 i = 0; 696 fw_csr_iterator_init(&ci, &device->config_rom[5]); 697 while (fw_csr_iterator_next(&ci, &key, &value)) { 698 if (key != (CSR_UNIT | CSR_DIRECTORY)) 699 continue; 700 701 /* 702 * Get the address of the unit directory and try to 703 * match the drivers id_tables against it. 704 */ 705 unit = kzalloc(sizeof(*unit), GFP_KERNEL); 706 if (unit == NULL) 707 continue; 708 709 unit->directory = ci.p + value - 1; 710 unit->device.bus = &fw_bus_type; 711 unit->device.type = &fw_unit_type; 712 unit->device.parent = &device->device; 713 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++); 714 715 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) < 716 ARRAY_SIZE(fw_unit_attributes) + 717 ARRAY_SIZE(config_rom_attributes)); 718 init_fw_attribute_group(&unit->device, 719 fw_unit_attributes, 720 &unit->attribute_group); 721 722 if (device_register(&unit->device) < 0) 723 goto skip_unit; 724 725 fw_device_get(device); 726 continue; 727 728 skip_unit: 729 kfree(unit); 730 } 731 } 732 733 static int shutdown_unit(struct device *device, void *data) 734 { 735 device_unregister(device); 736 737 return 0; 738 } 739 740 /* 741 * fw_device_rwsem acts as dual purpose mutex: 742 * - serializes accesses to fw_device_idr, 743 * - serializes accesses to fw_device.config_rom/.config_rom_length and 744 * fw_unit.directory, unless those accesses happen at safe occasions 745 */ 746 DECLARE_RWSEM(fw_device_rwsem); 747 748 DEFINE_IDR(fw_device_idr); 749 int fw_cdev_major; 750 751 struct fw_device *fw_device_get_by_devt(dev_t devt) 752 { 753 struct fw_device *device; 754 755 down_read(&fw_device_rwsem); 756 device = idr_find(&fw_device_idr, MINOR(devt)); 757 if (device) 758 fw_device_get(device); 759 up_read(&fw_device_rwsem); 760 761 return device; 762 } 763 764 struct workqueue_struct *fw_workqueue; 765 EXPORT_SYMBOL(fw_workqueue); 766 767 static void fw_schedule_device_work(struct fw_device *device, 768 unsigned long delay) 769 { 770 queue_delayed_work(fw_workqueue, &device->work, delay); 771 } 772 773 /* 774 * These defines control the retry behavior for reading the config 775 * rom. It shouldn't be necessary to tweak these; if the device 776 * doesn't respond to a config rom read within 10 seconds, it's not 777 * going to respond at all. As for the initial delay, a lot of 778 * devices will be able to respond within half a second after bus 779 * reset. On the other hand, it's not really worth being more 780 * aggressive than that, since it scales pretty well; if 10 devices 781 * are plugged in, they're all getting read within one second. 782 */ 783 784 #define MAX_RETRIES 10 785 #define RETRY_DELAY (3 * HZ) 786 #define INITIAL_DELAY (HZ / 2) 787 #define SHUTDOWN_DELAY (2 * HZ) 788 789 static void fw_device_shutdown(struct work_struct *work) 790 { 791 struct fw_device *device = 792 container_of(work, struct fw_device, work.work); 793 int minor = MINOR(device->device.devt); 794 795 if (time_before64(get_jiffies_64(), 796 device->card->reset_jiffies + SHUTDOWN_DELAY) 797 && !list_empty(&device->card->link)) { 798 fw_schedule_device_work(device, SHUTDOWN_DELAY); 799 return; 800 } 801 802 if (atomic_cmpxchg(&device->state, 803 FW_DEVICE_GONE, 804 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE) 805 return; 806 807 fw_device_cdev_remove(device); 808 device_for_each_child(&device->device, NULL, shutdown_unit); 809 device_unregister(&device->device); 810 811 down_write(&fw_device_rwsem); 812 idr_remove(&fw_device_idr, minor); 813 up_write(&fw_device_rwsem); 814 815 fw_device_put(device); 816 } 817 818 static void fw_device_release(struct device *dev) 819 { 820 struct fw_device *device = fw_device(dev); 821 struct fw_card *card = device->card; 822 unsigned long flags; 823 824 /* 825 * Take the card lock so we don't set this to NULL while a 826 * FW_NODE_UPDATED callback is being handled or while the 827 * bus manager work looks at this node. 828 */ 829 spin_lock_irqsave(&card->lock, flags); 830 device->node->data = NULL; 831 spin_unlock_irqrestore(&card->lock, flags); 832 833 fw_node_put(device->node); 834 kfree(device->config_rom); 835 kfree(device); 836 fw_card_put(card); 837 } 838 839 static struct device_type fw_device_type = { 840 .release = fw_device_release, 841 }; 842 843 static bool is_fw_device(struct device *dev) 844 { 845 return dev->type == &fw_device_type; 846 } 847 848 static int update_unit(struct device *dev, void *data) 849 { 850 struct fw_unit *unit = fw_unit(dev); 851 struct fw_driver *driver = (struct fw_driver *)dev->driver; 852 853 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { 854 device_lock(dev); 855 driver->update(unit); 856 device_unlock(dev); 857 } 858 859 return 0; 860 } 861 862 static void fw_device_update(struct work_struct *work) 863 { 864 struct fw_device *device = 865 container_of(work, struct fw_device, work.work); 866 867 fw_device_cdev_update(device); 868 device_for_each_child(&device->device, NULL, update_unit); 869 } 870 871 /* 872 * If a device was pending for deletion because its node went away but its 873 * bus info block and root directory header matches that of a newly discovered 874 * device, revive the existing fw_device. 875 * The newly allocated fw_device becomes obsolete instead. 876 */ 877 static int lookup_existing_device(struct device *dev, void *data) 878 { 879 struct fw_device *old = fw_device(dev); 880 struct fw_device *new = data; 881 struct fw_card *card = new->card; 882 int match = 0; 883 884 if (!is_fw_device(dev)) 885 return 0; 886 887 down_read(&fw_device_rwsem); /* serialize config_rom access */ 888 spin_lock_irq(&card->lock); /* serialize node access */ 889 890 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 && 891 atomic_cmpxchg(&old->state, 892 FW_DEVICE_GONE, 893 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 894 struct fw_node *current_node = new->node; 895 struct fw_node *obsolete_node = old->node; 896 897 new->node = obsolete_node; 898 new->node->data = new; 899 old->node = current_node; 900 old->node->data = old; 901 902 old->max_speed = new->max_speed; 903 old->node_id = current_node->node_id; 904 smp_wmb(); /* update node_id before generation */ 905 old->generation = card->generation; 906 old->config_rom_retries = 0; 907 fw_notice(card, "rediscovered device %s\n", dev_name(dev)); 908 909 old->workfn = fw_device_update; 910 fw_schedule_device_work(old, 0); 911 912 if (current_node == card->root_node) 913 fw_schedule_bm_work(card, 0); 914 915 match = 1; 916 } 917 918 spin_unlock_irq(&card->lock); 919 up_read(&fw_device_rwsem); 920 921 return match; 922 } 923 924 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, }; 925 926 static void set_broadcast_channel(struct fw_device *device, int generation) 927 { 928 struct fw_card *card = device->card; 929 __be32 data; 930 int rcode; 931 932 if (!card->broadcast_channel_allocated) 933 return; 934 935 /* 936 * The Broadcast_Channel Valid bit is required by nodes which want to 937 * transmit on this channel. Such transmissions are practically 938 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required 939 * to be IRM capable and have a max_rec of 8 or more. We use this fact 940 * to narrow down to which nodes we send Broadcast_Channel updates. 941 */ 942 if (!device->irmc || device->max_rec < 8) 943 return; 944 945 /* 946 * Some 1394-1995 nodes crash if this 1394a-2000 register is written. 947 * Perform a read test first. 948 */ 949 if (device->bc_implemented == BC_UNKNOWN) { 950 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST, 951 device->node_id, generation, device->max_speed, 952 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 953 &data, 4); 954 switch (rcode) { 955 case RCODE_COMPLETE: 956 if (data & cpu_to_be32(1 << 31)) { 957 device->bc_implemented = BC_IMPLEMENTED; 958 break; 959 } 960 fallthrough; /* to case address error */ 961 case RCODE_ADDRESS_ERROR: 962 device->bc_implemented = BC_UNIMPLEMENTED; 963 } 964 } 965 966 if (device->bc_implemented == BC_IMPLEMENTED) { 967 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL | 968 BROADCAST_CHANNEL_VALID); 969 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, 970 device->node_id, generation, device->max_speed, 971 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL, 972 &data, 4); 973 } 974 } 975 976 int fw_device_set_broadcast_channel(struct device *dev, void *gen) 977 { 978 if (is_fw_device(dev)) 979 set_broadcast_channel(fw_device(dev), (long)gen); 980 981 return 0; 982 } 983 984 static void fw_device_init(struct work_struct *work) 985 { 986 struct fw_device *device = 987 container_of(work, struct fw_device, work.work); 988 struct fw_card *card = device->card; 989 struct device *revived_dev; 990 int minor, ret; 991 992 /* 993 * All failure paths here set node->data to NULL, so that we 994 * don't try to do device_for_each_child() on a kfree()'d 995 * device. 996 */ 997 998 ret = read_config_rom(device, device->generation); 999 if (ret != RCODE_COMPLETE) { 1000 if (device->config_rom_retries < MAX_RETRIES && 1001 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1002 device->config_rom_retries++; 1003 fw_schedule_device_work(device, RETRY_DELAY); 1004 } else { 1005 if (device->node->link_on) 1006 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n", 1007 device->node_id, 1008 fw_rcode_string(ret)); 1009 if (device->node == card->root_node) 1010 fw_schedule_bm_work(card, 0); 1011 fw_device_release(&device->device); 1012 } 1013 return; 1014 } 1015 1016 revived_dev = device_find_child(card->device, 1017 device, lookup_existing_device); 1018 if (revived_dev) { 1019 put_device(revived_dev); 1020 fw_device_release(&device->device); 1021 1022 return; 1023 } 1024 1025 device_initialize(&device->device); 1026 1027 fw_device_get(device); 1028 down_write(&fw_device_rwsem); 1029 minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS, 1030 GFP_KERNEL); 1031 up_write(&fw_device_rwsem); 1032 1033 if (minor < 0) 1034 goto error; 1035 1036 device->device.bus = &fw_bus_type; 1037 device->device.type = &fw_device_type; 1038 device->device.parent = card->device; 1039 device->device.devt = MKDEV(fw_cdev_major, minor); 1040 dev_set_name(&device->device, "fw%d", minor); 1041 1042 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) < 1043 ARRAY_SIZE(fw_device_attributes) + 1044 ARRAY_SIZE(config_rom_attributes)); 1045 init_fw_attribute_group(&device->device, 1046 fw_device_attributes, 1047 &device->attribute_group); 1048 1049 if (device_add(&device->device)) { 1050 fw_err(card, "failed to add device\n"); 1051 goto error_with_cdev; 1052 } 1053 1054 create_units(device); 1055 1056 /* 1057 * Transition the device to running state. If it got pulled 1058 * out from under us while we did the initialization work, we 1059 * have to shut down the device again here. Normally, though, 1060 * fw_node_event will be responsible for shutting it down when 1061 * necessary. We have to use the atomic cmpxchg here to avoid 1062 * racing with the FW_NODE_DESTROYED case in 1063 * fw_node_event(). 1064 */ 1065 if (atomic_cmpxchg(&device->state, 1066 FW_DEVICE_INITIALIZING, 1067 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) { 1068 device->workfn = fw_device_shutdown; 1069 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1070 } else { 1071 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n", 1072 dev_name(&device->device), 1073 device->config_rom[3], device->config_rom[4], 1074 1 << device->max_speed); 1075 device->config_rom_retries = 0; 1076 1077 set_broadcast_channel(device, device->generation); 1078 1079 add_device_randomness(&device->config_rom[3], 8); 1080 } 1081 1082 /* 1083 * Reschedule the IRM work if we just finished reading the 1084 * root node config rom. If this races with a bus reset we 1085 * just end up running the IRM work a couple of extra times - 1086 * pretty harmless. 1087 */ 1088 if (device->node == card->root_node) 1089 fw_schedule_bm_work(card, 0); 1090 1091 return; 1092 1093 error_with_cdev: 1094 down_write(&fw_device_rwsem); 1095 idr_remove(&fw_device_idr, minor); 1096 up_write(&fw_device_rwsem); 1097 error: 1098 fw_device_put(device); /* fw_device_idr's reference */ 1099 1100 put_device(&device->device); /* our reference */ 1101 } 1102 1103 /* Reread and compare bus info block and header of root directory */ 1104 static int reread_config_rom(struct fw_device *device, int generation, 1105 bool *changed) 1106 { 1107 u32 q; 1108 int i, rcode; 1109 1110 for (i = 0; i < 6; i++) { 1111 rcode = read_rom(device, generation, i, &q); 1112 if (rcode != RCODE_COMPLETE) 1113 return rcode; 1114 1115 if (i == 0 && q == 0) 1116 /* inaccessible (see read_config_rom); retry later */ 1117 return RCODE_BUSY; 1118 1119 if (q != device->config_rom[i]) { 1120 *changed = true; 1121 return RCODE_COMPLETE; 1122 } 1123 } 1124 1125 *changed = false; 1126 return RCODE_COMPLETE; 1127 } 1128 1129 static void fw_device_refresh(struct work_struct *work) 1130 { 1131 struct fw_device *device = 1132 container_of(work, struct fw_device, work.work); 1133 struct fw_card *card = device->card; 1134 int ret, node_id = device->node_id; 1135 bool changed; 1136 1137 ret = reread_config_rom(device, device->generation, &changed); 1138 if (ret != RCODE_COMPLETE) 1139 goto failed_config_rom; 1140 1141 if (!changed) { 1142 if (atomic_cmpxchg(&device->state, 1143 FW_DEVICE_INITIALIZING, 1144 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1145 goto gone; 1146 1147 fw_device_update(work); 1148 device->config_rom_retries = 0; 1149 goto out; 1150 } 1151 1152 /* 1153 * Something changed. We keep things simple and don't investigate 1154 * further. We just destroy all previous units and create new ones. 1155 */ 1156 device_for_each_child(&device->device, NULL, shutdown_unit); 1157 1158 ret = read_config_rom(device, device->generation); 1159 if (ret != RCODE_COMPLETE) 1160 goto failed_config_rom; 1161 1162 fw_device_cdev_update(device); 1163 create_units(device); 1164 1165 /* Userspace may want to re-read attributes. */ 1166 kobject_uevent(&device->device.kobj, KOBJ_CHANGE); 1167 1168 if (atomic_cmpxchg(&device->state, 1169 FW_DEVICE_INITIALIZING, 1170 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) 1171 goto gone; 1172 1173 fw_notice(card, "refreshed device %s\n", dev_name(&device->device)); 1174 device->config_rom_retries = 0; 1175 goto out; 1176 1177 failed_config_rom: 1178 if (device->config_rom_retries < MAX_RETRIES && 1179 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) { 1180 device->config_rom_retries++; 1181 fw_schedule_device_work(device, RETRY_DELAY); 1182 return; 1183 } 1184 1185 fw_notice(card, "giving up on refresh of device %s: %s\n", 1186 dev_name(&device->device), fw_rcode_string(ret)); 1187 gone: 1188 atomic_set(&device->state, FW_DEVICE_GONE); 1189 device->workfn = fw_device_shutdown; 1190 fw_schedule_device_work(device, SHUTDOWN_DELAY); 1191 out: 1192 if (node_id == card->root_node->node_id) 1193 fw_schedule_bm_work(card, 0); 1194 } 1195 1196 static void fw_device_workfn(struct work_struct *work) 1197 { 1198 struct fw_device *device = container_of(to_delayed_work(work), 1199 struct fw_device, work); 1200 device->workfn(work); 1201 } 1202 1203 void fw_node_event(struct fw_card *card, struct fw_node *node, int event) 1204 { 1205 struct fw_device *device; 1206 1207 switch (event) { 1208 case FW_NODE_CREATED: 1209 /* 1210 * Attempt to scan the node, regardless whether its self ID has 1211 * the L (link active) flag set or not. Some broken devices 1212 * send L=0 but have an up-and-running link; others send L=1 1213 * without actually having a link. 1214 */ 1215 create: 1216 device = kzalloc(sizeof(*device), GFP_ATOMIC); 1217 if (device == NULL) 1218 break; 1219 1220 /* 1221 * Do minimal initialization of the device here, the 1222 * rest will happen in fw_device_init(). 1223 * 1224 * Attention: A lot of things, even fw_device_get(), 1225 * cannot be done before fw_device_init() finished! 1226 * You can basically just check device->state and 1227 * schedule work until then, but only while holding 1228 * card->lock. 1229 */ 1230 atomic_set(&device->state, FW_DEVICE_INITIALIZING); 1231 device->card = fw_card_get(card); 1232 device->node = fw_node_get(node); 1233 device->node_id = node->node_id; 1234 device->generation = card->generation; 1235 device->is_local = node == card->local_node; 1236 mutex_init(&device->client_list_mutex); 1237 INIT_LIST_HEAD(&device->client_list); 1238 1239 /* 1240 * Set the node data to point back to this device so 1241 * FW_NODE_UPDATED callbacks can update the node_id 1242 * and generation for the device. 1243 */ 1244 node->data = device; 1245 1246 /* 1247 * Many devices are slow to respond after bus resets, 1248 * especially if they are bus powered and go through 1249 * power-up after getting plugged in. We schedule the 1250 * first config rom scan half a second after bus reset. 1251 */ 1252 device->workfn = fw_device_init; 1253 INIT_DELAYED_WORK(&device->work, fw_device_workfn); 1254 fw_schedule_device_work(device, INITIAL_DELAY); 1255 break; 1256 1257 case FW_NODE_INITIATED_RESET: 1258 case FW_NODE_LINK_ON: 1259 device = node->data; 1260 if (device == NULL) 1261 goto create; 1262 1263 device->node_id = node->node_id; 1264 smp_wmb(); /* update node_id before generation */ 1265 device->generation = card->generation; 1266 if (atomic_cmpxchg(&device->state, 1267 FW_DEVICE_RUNNING, 1268 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) { 1269 device->workfn = fw_device_refresh; 1270 fw_schedule_device_work(device, 1271 device->is_local ? 0 : INITIAL_DELAY); 1272 } 1273 break; 1274 1275 case FW_NODE_UPDATED: 1276 device = node->data; 1277 if (device == NULL) 1278 break; 1279 1280 device->node_id = node->node_id; 1281 smp_wmb(); /* update node_id before generation */ 1282 device->generation = card->generation; 1283 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { 1284 device->workfn = fw_device_update; 1285 fw_schedule_device_work(device, 0); 1286 } 1287 break; 1288 1289 case FW_NODE_DESTROYED: 1290 case FW_NODE_LINK_OFF: 1291 if (!node->data) 1292 break; 1293 1294 /* 1295 * Destroy the device associated with the node. There 1296 * are two cases here: either the device is fully 1297 * initialized (FW_DEVICE_RUNNING) or we're in the 1298 * process of reading its config rom 1299 * (FW_DEVICE_INITIALIZING). If it is fully 1300 * initialized we can reuse device->work to schedule a 1301 * full fw_device_shutdown(). If not, there's work 1302 * scheduled to read it's config rom, and we just put 1303 * the device in shutdown state to have that code fail 1304 * to create the device. 1305 */ 1306 device = node->data; 1307 if (atomic_xchg(&device->state, 1308 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) { 1309 device->workfn = fw_device_shutdown; 1310 fw_schedule_device_work(device, 1311 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY); 1312 } 1313 break; 1314 } 1315 } 1316