xref: /openbmc/linux/drivers/firewire/core-card.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  */
18 
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/crc-itu-t.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/jiffies.h>
27 #include <linux/kernel.h>
28 #include <linux/kref.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/spinlock.h>
33 #include <linux/workqueue.h>
34 
35 #include <asm/atomic.h>
36 #include <asm/byteorder.h>
37 
38 #include "core.h"
39 
40 int fw_compute_block_crc(__be32 *block)
41 {
42 	int length;
43 	u16 crc;
44 
45 	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
46 	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
47 	*block |= cpu_to_be32(crc);
48 
49 	return length;
50 }
51 
52 static DEFINE_MUTEX(card_mutex);
53 static LIST_HEAD(card_list);
54 
55 static LIST_HEAD(descriptor_list);
56 static int descriptor_count;
57 
58 static __be32 tmp_config_rom[256];
59 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
60 static size_t config_rom_length = 1 + 4 + 1 + 1;
61 
62 #define BIB_CRC(v)		((v) <<  0)
63 #define BIB_CRC_LENGTH(v)	((v) << 16)
64 #define BIB_INFO_LENGTH(v)	((v) << 24)
65 #define BIB_BUS_NAME		0x31333934 /* "1394" */
66 #define BIB_LINK_SPEED(v)	((v) <<  0)
67 #define BIB_GENERATION(v)	((v) <<  4)
68 #define BIB_MAX_ROM(v)		((v) <<  8)
69 #define BIB_MAX_RECEIVE(v)	((v) << 12)
70 #define BIB_CYC_CLK_ACC(v)	((v) << 16)
71 #define BIB_PMC			((1) << 27)
72 #define BIB_BMC			((1) << 28)
73 #define BIB_ISC			((1) << 29)
74 #define BIB_CMC			((1) << 30)
75 #define BIB_IRMC		((1) << 31)
76 #define NODE_CAPABILITIES	0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
77 
78 #define CANON_OUI		0x000085
79 
80 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
81 {
82 	struct fw_descriptor *desc;
83 	int i, j, k, length;
84 
85 	/*
86 	 * Initialize contents of config rom buffer.  On the OHCI
87 	 * controller, block reads to the config rom accesses the host
88 	 * memory, but quadlet read access the hardware bus info block
89 	 * registers.  That's just crack, but it means we should make
90 	 * sure the contents of bus info block in host memory matches
91 	 * the version stored in the OHCI registers.
92 	 */
93 
94 	config_rom[0] = cpu_to_be32(
95 		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
96 	config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
97 	config_rom[2] = cpu_to_be32(
98 		BIB_LINK_SPEED(card->link_speed) |
99 		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
100 		BIB_MAX_ROM(2) |
101 		BIB_MAX_RECEIVE(card->max_receive) |
102 		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
103 	config_rom[3] = cpu_to_be32(card->guid >> 32);
104 	config_rom[4] = cpu_to_be32(card->guid);
105 
106 	/* Generate root directory. */
107 	config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
108 	i = 7;
109 	j = 7 + descriptor_count;
110 
111 	/* Generate root directory entries for descriptors. */
112 	list_for_each_entry (desc, &descriptor_list, link) {
113 		if (desc->immediate > 0)
114 			config_rom[i++] = cpu_to_be32(desc->immediate);
115 		config_rom[i] = cpu_to_be32(desc->key | (j - i));
116 		i++;
117 		j += desc->length;
118 	}
119 
120 	/* Update root directory length. */
121 	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
122 
123 	/* End of root directory, now copy in descriptors. */
124 	list_for_each_entry (desc, &descriptor_list, link) {
125 		for (k = 0; k < desc->length; k++)
126 			config_rom[i + k] = cpu_to_be32(desc->data[k]);
127 		i += desc->length;
128 	}
129 
130 	/* Calculate CRCs for all blocks in the config rom.  This
131 	 * assumes that CRC length and info length are identical for
132 	 * the bus info block, which is always the case for this
133 	 * implementation. */
134 	for (i = 0; i < j; i += length + 1)
135 		length = fw_compute_block_crc(config_rom + i);
136 
137 	WARN_ON(j != config_rom_length);
138 }
139 
140 static void update_config_roms(void)
141 {
142 	struct fw_card *card;
143 
144 	list_for_each_entry (card, &card_list, link) {
145 		generate_config_rom(card, tmp_config_rom);
146 		card->driver->set_config_rom(card, tmp_config_rom,
147 					     config_rom_length);
148 	}
149 }
150 
151 static size_t required_space(struct fw_descriptor *desc)
152 {
153 	/* descriptor + entry into root dir + optional immediate entry */
154 	return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
155 }
156 
157 int fw_core_add_descriptor(struct fw_descriptor *desc)
158 {
159 	size_t i;
160 	int ret;
161 
162 	/*
163 	 * Check descriptor is valid; the length of all blocks in the
164 	 * descriptor has to add up to exactly the length of the
165 	 * block.
166 	 */
167 	i = 0;
168 	while (i < desc->length)
169 		i += (desc->data[i] >> 16) + 1;
170 
171 	if (i != desc->length)
172 		return -EINVAL;
173 
174 	mutex_lock(&card_mutex);
175 
176 	if (config_rom_length + required_space(desc) > 256) {
177 		ret = -EBUSY;
178 	} else {
179 		list_add_tail(&desc->link, &descriptor_list);
180 		config_rom_length += required_space(desc);
181 		descriptor_count++;
182 		if (desc->immediate > 0)
183 			descriptor_count++;
184 		update_config_roms();
185 		ret = 0;
186 	}
187 
188 	mutex_unlock(&card_mutex);
189 
190 	return ret;
191 }
192 EXPORT_SYMBOL(fw_core_add_descriptor);
193 
194 void fw_core_remove_descriptor(struct fw_descriptor *desc)
195 {
196 	mutex_lock(&card_mutex);
197 
198 	list_del(&desc->link);
199 	config_rom_length -= required_space(desc);
200 	descriptor_count--;
201 	if (desc->immediate > 0)
202 		descriptor_count--;
203 	update_config_roms();
204 
205 	mutex_unlock(&card_mutex);
206 }
207 EXPORT_SYMBOL(fw_core_remove_descriptor);
208 
209 static int reset_bus(struct fw_card *card, bool short_reset)
210 {
211 	int reg = short_reset ? 5 : 1;
212 	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
213 
214 	return card->driver->update_phy_reg(card, reg, 0, bit);
215 }
216 
217 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
218 {
219 	/* We don't try hard to sort out requests of long vs. short resets. */
220 	card->br_short = short_reset;
221 
222 	/* Use an arbitrary short delay to combine multiple reset requests. */
223 	fw_card_get(card);
224 	if (!schedule_delayed_work(&card->br_work,
225 				   delayed ? DIV_ROUND_UP(HZ, 100) : 0))
226 		fw_card_put(card);
227 }
228 EXPORT_SYMBOL(fw_schedule_bus_reset);
229 
230 static void br_work(struct work_struct *work)
231 {
232 	struct fw_card *card = container_of(work, struct fw_card, br_work.work);
233 
234 	/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
235 	if (card->reset_jiffies != 0 &&
236 	    time_is_after_jiffies(card->reset_jiffies + 2 * HZ)) {
237 		if (!schedule_delayed_work(&card->br_work, 2 * HZ))
238 			fw_card_put(card);
239 		return;
240 	}
241 
242 	fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
243 			   FW_PHY_CONFIG_CURRENT_GAP_COUNT);
244 	reset_bus(card, card->br_short);
245 	fw_card_put(card);
246 }
247 
248 static void allocate_broadcast_channel(struct fw_card *card, int generation)
249 {
250 	int channel, bandwidth = 0;
251 
252 	if (!card->broadcast_channel_allocated) {
253 		fw_iso_resource_manage(card, generation, 1ULL << 31,
254 				       &channel, &bandwidth, true,
255 				       card->bm_transaction_data);
256 		if (channel != 31) {
257 			fw_notify("failed to allocate broadcast channel\n");
258 			return;
259 		}
260 		card->broadcast_channel_allocated = true;
261 	}
262 
263 	device_for_each_child(card->device, (void *)(long)generation,
264 			      fw_device_set_broadcast_channel);
265 }
266 
267 static const char gap_count_table[] = {
268 	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
269 };
270 
271 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
272 {
273 	fw_card_get(card);
274 	if (!schedule_delayed_work(&card->bm_work, delay))
275 		fw_card_put(card);
276 }
277 
278 static void bm_work(struct work_struct *work)
279 {
280 	struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
281 	struct fw_device *root_device, *irm_device;
282 	struct fw_node *root_node;
283 	int root_id, new_root_id, irm_id, bm_id, local_id;
284 	int gap_count, generation, grace, rcode;
285 	bool do_reset = false;
286 	bool root_device_is_running;
287 	bool root_device_is_cmc;
288 	bool irm_is_1394_1995_only;
289 	bool keep_this_irm;
290 
291 	spin_lock_irq(&card->lock);
292 
293 	if (card->local_node == NULL) {
294 		spin_unlock_irq(&card->lock);
295 		goto out_put_card;
296 	}
297 
298 	generation = card->generation;
299 
300 	root_node = card->root_node;
301 	fw_node_get(root_node);
302 	root_device = root_node->data;
303 	root_device_is_running = root_device &&
304 			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
305 	root_device_is_cmc = root_device && root_device->cmc;
306 
307 	irm_device = card->irm_node->data;
308 	irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
309 			(irm_device->config_rom[2] & 0x000000f0) == 0;
310 
311 	/* Canon MV5i works unreliably if it is not root node. */
312 	keep_this_irm = irm_device && irm_device->config_rom &&
313 			irm_device->config_rom[3] >> 8 == CANON_OUI;
314 
315 	root_id  = root_node->node_id;
316 	irm_id   = card->irm_node->node_id;
317 	local_id = card->local_node->node_id;
318 
319 	grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
320 
321 	if ((is_next_generation(generation, card->bm_generation) &&
322 	     !card->bm_abdicate) ||
323 	    (card->bm_generation != generation && grace)) {
324 		/*
325 		 * This first step is to figure out who is IRM and
326 		 * then try to become bus manager.  If the IRM is not
327 		 * well defined (e.g. does not have an active link
328 		 * layer or does not responds to our lock request, we
329 		 * will have to do a little vigilante bus management.
330 		 * In that case, we do a goto into the gap count logic
331 		 * so that when we do the reset, we still optimize the
332 		 * gap count.  That could well save a reset in the
333 		 * next generation.
334 		 */
335 
336 		if (!card->irm_node->link_on) {
337 			new_root_id = local_id;
338 			fw_notify("%s, making local node (%02x) root.\n",
339 				  "IRM has link off", new_root_id);
340 			goto pick_me;
341 		}
342 
343 		if (irm_is_1394_1995_only && !keep_this_irm) {
344 			new_root_id = local_id;
345 			fw_notify("%s, making local node (%02x) root.\n",
346 				  "IRM is not 1394a compliant", new_root_id);
347 			goto pick_me;
348 		}
349 
350 		card->bm_transaction_data[0] = cpu_to_be32(0x3f);
351 		card->bm_transaction_data[1] = cpu_to_be32(local_id);
352 
353 		spin_unlock_irq(&card->lock);
354 
355 		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
356 				irm_id, generation, SCODE_100,
357 				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
358 				card->bm_transaction_data, 8);
359 
360 		if (rcode == RCODE_GENERATION)
361 			/* Another bus reset, BM work has been rescheduled. */
362 			goto out;
363 
364 		bm_id = be32_to_cpu(card->bm_transaction_data[0]);
365 
366 		spin_lock_irq(&card->lock);
367 		if (rcode == RCODE_COMPLETE && generation == card->generation)
368 			card->bm_node_id =
369 			    bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
370 		spin_unlock_irq(&card->lock);
371 
372 		if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
373 			/* Somebody else is BM.  Only act as IRM. */
374 			if (local_id == irm_id)
375 				allocate_broadcast_channel(card, generation);
376 
377 			goto out;
378 		}
379 
380 		if (rcode == RCODE_SEND_ERROR) {
381 			/*
382 			 * We have been unable to send the lock request due to
383 			 * some local problem.  Let's try again later and hope
384 			 * that the problem has gone away by then.
385 			 */
386 			fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
387 			goto out;
388 		}
389 
390 		spin_lock_irq(&card->lock);
391 
392 		if (rcode != RCODE_COMPLETE && !keep_this_irm) {
393 			/*
394 			 * The lock request failed, maybe the IRM
395 			 * isn't really IRM capable after all. Let's
396 			 * do a bus reset and pick the local node as
397 			 * root, and thus, IRM.
398 			 */
399 			new_root_id = local_id;
400 			fw_notify("%s, making local node (%02x) root.\n",
401 				  "BM lock failed", new_root_id);
402 			goto pick_me;
403 		}
404 	} else if (card->bm_generation != generation) {
405 		/*
406 		 * We weren't BM in the last generation, and the last
407 		 * bus reset is less than 125ms ago.  Reschedule this job.
408 		 */
409 		spin_unlock_irq(&card->lock);
410 		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
411 		goto out;
412 	}
413 
414 	/*
415 	 * We're bus manager for this generation, so next step is to
416 	 * make sure we have an active cycle master and do gap count
417 	 * optimization.
418 	 */
419 	card->bm_generation = generation;
420 
421 	if (root_device == NULL) {
422 		/*
423 		 * Either link_on is false, or we failed to read the
424 		 * config rom.  In either case, pick another root.
425 		 */
426 		new_root_id = local_id;
427 	} else if (!root_device_is_running) {
428 		/*
429 		 * If we haven't probed this device yet, bail out now
430 		 * and let's try again once that's done.
431 		 */
432 		spin_unlock_irq(&card->lock);
433 		goto out;
434 	} else if (root_device_is_cmc) {
435 		/*
436 		 * We will send out a force root packet for this
437 		 * node as part of the gap count optimization.
438 		 */
439 		new_root_id = root_id;
440 	} else {
441 		/*
442 		 * Current root has an active link layer and we
443 		 * successfully read the config rom, but it's not
444 		 * cycle master capable.
445 		 */
446 		new_root_id = local_id;
447 	}
448 
449  pick_me:
450 	/*
451 	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
452 	 * the typically much larger 1394b beta repeater delays though.
453 	 */
454 	if (!card->beta_repeaters_present &&
455 	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
456 		gap_count = gap_count_table[root_node->max_hops];
457 	else
458 		gap_count = 63;
459 
460 	/*
461 	 * Finally, figure out if we should do a reset or not.  If we have
462 	 * done less than 5 resets with the same physical topology and we
463 	 * have either a new root or a new gap count setting, let's do it.
464 	 */
465 
466 	if (card->bm_retries++ < 5 &&
467 	    (card->gap_count != gap_count || new_root_id != root_id))
468 		do_reset = true;
469 
470 	spin_unlock_irq(&card->lock);
471 
472 	if (do_reset) {
473 		fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
474 			  card->index, new_root_id, gap_count);
475 		fw_send_phy_config(card, new_root_id, generation, gap_count);
476 		reset_bus(card, true);
477 		/* Will allocate broadcast channel after the reset. */
478 		goto out;
479 	}
480 
481 	if (root_device_is_cmc) {
482 		/*
483 		 * Make sure that the cycle master sends cycle start packets.
484 		 */
485 		card->bm_transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
486 		rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
487 				root_id, generation, SCODE_100,
488 				CSR_REGISTER_BASE + CSR_STATE_SET,
489 				card->bm_transaction_data, 4);
490 		if (rcode == RCODE_GENERATION)
491 			goto out;
492 	}
493 
494 	if (local_id == irm_id)
495 		allocate_broadcast_channel(card, generation);
496 
497  out:
498 	fw_node_put(root_node);
499  out_put_card:
500 	fw_card_put(card);
501 }
502 
503 void fw_card_initialize(struct fw_card *card,
504 			const struct fw_card_driver *driver,
505 			struct device *device)
506 {
507 	static atomic_t index = ATOMIC_INIT(-1);
508 
509 	card->index = atomic_inc_return(&index);
510 	card->driver = driver;
511 	card->device = device;
512 	card->current_tlabel = 0;
513 	card->tlabel_mask = 0;
514 	card->split_timeout_hi = 0;
515 	card->split_timeout_lo = 800 << 19;
516 	card->split_timeout_cycles = 800;
517 	card->split_timeout_jiffies = DIV_ROUND_UP(HZ, 10);
518 	card->color = 0;
519 	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
520 
521 	kref_init(&card->kref);
522 	init_completion(&card->done);
523 	INIT_LIST_HEAD(&card->transaction_list);
524 	INIT_LIST_HEAD(&card->phy_receiver_list);
525 	spin_lock_init(&card->lock);
526 
527 	card->local_node = NULL;
528 
529 	INIT_DELAYED_WORK(&card->br_work, br_work);
530 	INIT_DELAYED_WORK(&card->bm_work, bm_work);
531 }
532 EXPORT_SYMBOL(fw_card_initialize);
533 
534 int fw_card_add(struct fw_card *card,
535 		u32 max_receive, u32 link_speed, u64 guid)
536 {
537 	int ret;
538 
539 	card->max_receive = max_receive;
540 	card->link_speed = link_speed;
541 	card->guid = guid;
542 
543 	mutex_lock(&card_mutex);
544 
545 	generate_config_rom(card, tmp_config_rom);
546 	ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
547 	if (ret == 0)
548 		list_add_tail(&card->link, &card_list);
549 
550 	mutex_unlock(&card_mutex);
551 
552 	return ret;
553 }
554 EXPORT_SYMBOL(fw_card_add);
555 
556 /*
557  * The next few functions implement a dummy driver that is used once a card
558  * driver shuts down an fw_card.  This allows the driver to cleanly unload,
559  * as all IO to the card will be handled (and failed) by the dummy driver
560  * instead of calling into the module.  Only functions for iso context
561  * shutdown still need to be provided by the card driver.
562  *
563  * .read/write_csr() should never be called anymore after the dummy driver
564  * was bound since they are only used within request handler context.
565  * .set_config_rom() is never called since the card is taken out of card_list
566  * before switching to the dummy driver.
567  */
568 
569 static int dummy_read_phy_reg(struct fw_card *card, int address)
570 {
571 	return -ENODEV;
572 }
573 
574 static int dummy_update_phy_reg(struct fw_card *card, int address,
575 				int clear_bits, int set_bits)
576 {
577 	return -ENODEV;
578 }
579 
580 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
581 {
582 	packet->callback(packet, card, RCODE_CANCELLED);
583 }
584 
585 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
586 {
587 	packet->callback(packet, card, RCODE_CANCELLED);
588 }
589 
590 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
591 {
592 	return -ENOENT;
593 }
594 
595 static int dummy_enable_phys_dma(struct fw_card *card,
596 				 int node_id, int generation)
597 {
598 	return -ENODEV;
599 }
600 
601 static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
602 				int type, int channel, size_t header_size)
603 {
604 	return ERR_PTR(-ENODEV);
605 }
606 
607 static int dummy_start_iso(struct fw_iso_context *ctx,
608 			   s32 cycle, u32 sync, u32 tags)
609 {
610 	return -ENODEV;
611 }
612 
613 static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
614 {
615 	return -ENODEV;
616 }
617 
618 static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
619 			   struct fw_iso_buffer *buffer, unsigned long payload)
620 {
621 	return -ENODEV;
622 }
623 
624 static const struct fw_card_driver dummy_driver_template = {
625 	.read_phy_reg		= dummy_read_phy_reg,
626 	.update_phy_reg		= dummy_update_phy_reg,
627 	.send_request		= dummy_send_request,
628 	.send_response		= dummy_send_response,
629 	.cancel_packet		= dummy_cancel_packet,
630 	.enable_phys_dma	= dummy_enable_phys_dma,
631 	.allocate_iso_context	= dummy_allocate_iso_context,
632 	.start_iso		= dummy_start_iso,
633 	.set_iso_channels	= dummy_set_iso_channels,
634 	.queue_iso		= dummy_queue_iso,
635 };
636 
637 void fw_card_release(struct kref *kref)
638 {
639 	struct fw_card *card = container_of(kref, struct fw_card, kref);
640 
641 	complete(&card->done);
642 }
643 
644 void fw_core_remove_card(struct fw_card *card)
645 {
646 	struct fw_card_driver dummy_driver = dummy_driver_template;
647 
648 	card->driver->update_phy_reg(card, 4,
649 				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
650 	fw_schedule_bus_reset(card, false, true);
651 
652 	mutex_lock(&card_mutex);
653 	list_del_init(&card->link);
654 	mutex_unlock(&card_mutex);
655 
656 	/* Switch off most of the card driver interface. */
657 	dummy_driver.free_iso_context	= card->driver->free_iso_context;
658 	dummy_driver.stop_iso		= card->driver->stop_iso;
659 	card->driver = &dummy_driver;
660 
661 	fw_destroy_nodes(card);
662 
663 	/* Wait for all users, especially device workqueue jobs, to finish. */
664 	fw_card_put(card);
665 	wait_for_completion(&card->done);
666 
667 	WARN_ON(!list_empty(&card->transaction_list));
668 }
669 EXPORT_SYMBOL(fw_core_remove_card);
670