xref: /openbmc/linux/drivers/firewire/core-card.c (revision b6dcefde)
1 /*
2  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  */
18 
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/crc-itu-t.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/jiffies.h>
27 #include <linux/kernel.h>
28 #include <linux/kref.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/spinlock.h>
33 #include <linux/timer.h>
34 #include <linux/workqueue.h>
35 
36 #include <asm/atomic.h>
37 #include <asm/byteorder.h>
38 
39 #include "core.h"
40 
41 int fw_compute_block_crc(__be32 *block)
42 {
43 	int length;
44 	u16 crc;
45 
46 	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
47 	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
48 	*block |= cpu_to_be32(crc);
49 
50 	return length;
51 }
52 
53 static DEFINE_MUTEX(card_mutex);
54 static LIST_HEAD(card_list);
55 
56 static LIST_HEAD(descriptor_list);
57 static int descriptor_count;
58 
59 static __be32 tmp_config_rom[256];
60 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
61 static size_t config_rom_length = 1 + 4 + 1 + 1;
62 
63 #define BIB_CRC(v)		((v) <<  0)
64 #define BIB_CRC_LENGTH(v)	((v) << 16)
65 #define BIB_INFO_LENGTH(v)	((v) << 24)
66 
67 #define BIB_LINK_SPEED(v)	((v) <<  0)
68 #define BIB_GENERATION(v)	((v) <<  4)
69 #define BIB_MAX_ROM(v)		((v) <<  8)
70 #define BIB_MAX_RECEIVE(v)	((v) << 12)
71 #define BIB_CYC_CLK_ACC(v)	((v) << 16)
72 #define BIB_PMC			((1) << 27)
73 #define BIB_BMC			((1) << 28)
74 #define BIB_ISC			((1) << 29)
75 #define BIB_CMC			((1) << 30)
76 #define BIB_IMC			((1) << 31)
77 
78 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
79 {
80 	struct fw_descriptor *desc;
81 	int i, j, k, length;
82 
83 	/*
84 	 * Initialize contents of config rom buffer.  On the OHCI
85 	 * controller, block reads to the config rom accesses the host
86 	 * memory, but quadlet read access the hardware bus info block
87 	 * registers.  That's just crack, but it means we should make
88 	 * sure the contents of bus info block in host memory matches
89 	 * the version stored in the OHCI registers.
90 	 */
91 
92 	config_rom[0] = cpu_to_be32(
93 		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
94 	config_rom[1] = cpu_to_be32(0x31333934);
95 	config_rom[2] = cpu_to_be32(
96 		BIB_LINK_SPEED(card->link_speed) |
97 		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
98 		BIB_MAX_ROM(2) |
99 		BIB_MAX_RECEIVE(card->max_receive) |
100 		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC);
101 	config_rom[3] = cpu_to_be32(card->guid >> 32);
102 	config_rom[4] = cpu_to_be32(card->guid);
103 
104 	/* Generate root directory. */
105 	config_rom[6] = cpu_to_be32(0x0c0083c0); /* node capabilities */
106 	i = 7;
107 	j = 7 + descriptor_count;
108 
109 	/* Generate root directory entries for descriptors. */
110 	list_for_each_entry (desc, &descriptor_list, link) {
111 		if (desc->immediate > 0)
112 			config_rom[i++] = cpu_to_be32(desc->immediate);
113 		config_rom[i] = cpu_to_be32(desc->key | (j - i));
114 		i++;
115 		j += desc->length;
116 	}
117 
118 	/* Update root directory length. */
119 	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
120 
121 	/* End of root directory, now copy in descriptors. */
122 	list_for_each_entry (desc, &descriptor_list, link) {
123 		for (k = 0; k < desc->length; k++)
124 			config_rom[i + k] = cpu_to_be32(desc->data[k]);
125 		i += desc->length;
126 	}
127 
128 	/* Calculate CRCs for all blocks in the config rom.  This
129 	 * assumes that CRC length and info length are identical for
130 	 * the bus info block, which is always the case for this
131 	 * implementation. */
132 	for (i = 0; i < j; i += length + 1)
133 		length = fw_compute_block_crc(config_rom + i);
134 
135 	WARN_ON(j != config_rom_length);
136 }
137 
138 static void update_config_roms(void)
139 {
140 	struct fw_card *card;
141 
142 	list_for_each_entry (card, &card_list, link) {
143 		generate_config_rom(card, tmp_config_rom);
144 		card->driver->set_config_rom(card, tmp_config_rom,
145 					     config_rom_length);
146 	}
147 }
148 
149 static size_t required_space(struct fw_descriptor *desc)
150 {
151 	/* descriptor + entry into root dir + optional immediate entry */
152 	return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
153 }
154 
155 int fw_core_add_descriptor(struct fw_descriptor *desc)
156 {
157 	size_t i;
158 	int ret;
159 
160 	/*
161 	 * Check descriptor is valid; the length of all blocks in the
162 	 * descriptor has to add up to exactly the length of the
163 	 * block.
164 	 */
165 	i = 0;
166 	while (i < desc->length)
167 		i += (desc->data[i] >> 16) + 1;
168 
169 	if (i != desc->length)
170 		return -EINVAL;
171 
172 	mutex_lock(&card_mutex);
173 
174 	if (config_rom_length + required_space(desc) > 256) {
175 		ret = -EBUSY;
176 	} else {
177 		list_add_tail(&desc->link, &descriptor_list);
178 		config_rom_length += required_space(desc);
179 		descriptor_count++;
180 		if (desc->immediate > 0)
181 			descriptor_count++;
182 		update_config_roms();
183 		ret = 0;
184 	}
185 
186 	mutex_unlock(&card_mutex);
187 
188 	return ret;
189 }
190 EXPORT_SYMBOL(fw_core_add_descriptor);
191 
192 void fw_core_remove_descriptor(struct fw_descriptor *desc)
193 {
194 	mutex_lock(&card_mutex);
195 
196 	list_del(&desc->link);
197 	config_rom_length -= required_space(desc);
198 	descriptor_count--;
199 	if (desc->immediate > 0)
200 		descriptor_count--;
201 	update_config_roms();
202 
203 	mutex_unlock(&card_mutex);
204 }
205 EXPORT_SYMBOL(fw_core_remove_descriptor);
206 
207 static void allocate_broadcast_channel(struct fw_card *card, int generation)
208 {
209 	int channel, bandwidth = 0;
210 
211 	fw_iso_resource_manage(card, generation, 1ULL << 31, &channel,
212 			       &bandwidth, true, card->bm_transaction_data);
213 	if (channel == 31) {
214 		card->broadcast_channel_allocated = true;
215 		device_for_each_child(card->device, (void *)(long)generation,
216 				      fw_device_set_broadcast_channel);
217 	}
218 }
219 
220 static const char gap_count_table[] = {
221 	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
222 };
223 
224 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
225 {
226 	fw_card_get(card);
227 	if (!schedule_delayed_work(&card->work, delay))
228 		fw_card_put(card);
229 }
230 
231 static void fw_card_bm_work(struct work_struct *work)
232 {
233 	struct fw_card *card = container_of(work, struct fw_card, work.work);
234 	struct fw_device *root_device;
235 	struct fw_node *root_node;
236 	unsigned long flags;
237 	int root_id, new_root_id, irm_id, local_id;
238 	int gap_count, generation, grace, rcode;
239 	bool do_reset = false;
240 	bool root_device_is_running;
241 	bool root_device_is_cmc;
242 
243 	spin_lock_irqsave(&card->lock, flags);
244 
245 	if (card->local_node == NULL) {
246 		spin_unlock_irqrestore(&card->lock, flags);
247 		goto out_put_card;
248 	}
249 
250 	generation = card->generation;
251 	root_node = card->root_node;
252 	fw_node_get(root_node);
253 	root_device = root_node->data;
254 	root_device_is_running = root_device &&
255 			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
256 	root_device_is_cmc = root_device && root_device->cmc;
257 	root_id  = root_node->node_id;
258 	irm_id   = card->irm_node->node_id;
259 	local_id = card->local_node->node_id;
260 
261 	grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
262 
263 	if (is_next_generation(generation, card->bm_generation) ||
264 	    (card->bm_generation != generation && grace)) {
265 		/*
266 		 * This first step is to figure out who is IRM and
267 		 * then try to become bus manager.  If the IRM is not
268 		 * well defined (e.g. does not have an active link
269 		 * layer or does not responds to our lock request, we
270 		 * will have to do a little vigilante bus management.
271 		 * In that case, we do a goto into the gap count logic
272 		 * so that when we do the reset, we still optimize the
273 		 * gap count.  That could well save a reset in the
274 		 * next generation.
275 		 */
276 
277 		if (!card->irm_node->link_on) {
278 			new_root_id = local_id;
279 			fw_notify("IRM has link off, making local node (%02x) root.\n",
280 				  new_root_id);
281 			goto pick_me;
282 		}
283 
284 		card->bm_transaction_data[0] = cpu_to_be32(0x3f);
285 		card->bm_transaction_data[1] = cpu_to_be32(local_id);
286 
287 		spin_unlock_irqrestore(&card->lock, flags);
288 
289 		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
290 				irm_id, generation, SCODE_100,
291 				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
292 				card->bm_transaction_data,
293 				sizeof(card->bm_transaction_data));
294 
295 		if (rcode == RCODE_GENERATION)
296 			/* Another bus reset, BM work has been rescheduled. */
297 			goto out;
298 
299 		if (rcode == RCODE_COMPLETE &&
300 		    card->bm_transaction_data[0] != cpu_to_be32(0x3f)) {
301 
302 			/* Somebody else is BM.  Only act as IRM. */
303 			if (local_id == irm_id)
304 				allocate_broadcast_channel(card, generation);
305 
306 			goto out;
307 		}
308 
309 		spin_lock_irqsave(&card->lock, flags);
310 
311 		if (rcode != RCODE_COMPLETE) {
312 			/*
313 			 * The lock request failed, maybe the IRM
314 			 * isn't really IRM capable after all. Let's
315 			 * do a bus reset and pick the local node as
316 			 * root, and thus, IRM.
317 			 */
318 			new_root_id = local_id;
319 			fw_notify("BM lock failed, making local node (%02x) root.\n",
320 				  new_root_id);
321 			goto pick_me;
322 		}
323 	} else if (card->bm_generation != generation) {
324 		/*
325 		 * We weren't BM in the last generation, and the last
326 		 * bus reset is less than 125ms ago.  Reschedule this job.
327 		 */
328 		spin_unlock_irqrestore(&card->lock, flags);
329 		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
330 		goto out;
331 	}
332 
333 	/*
334 	 * We're bus manager for this generation, so next step is to
335 	 * make sure we have an active cycle master and do gap count
336 	 * optimization.
337 	 */
338 	card->bm_generation = generation;
339 
340 	if (root_device == NULL) {
341 		/*
342 		 * Either link_on is false, or we failed to read the
343 		 * config rom.  In either case, pick another root.
344 		 */
345 		new_root_id = local_id;
346 	} else if (!root_device_is_running) {
347 		/*
348 		 * If we haven't probed this device yet, bail out now
349 		 * and let's try again once that's done.
350 		 */
351 		spin_unlock_irqrestore(&card->lock, flags);
352 		goto out;
353 	} else if (root_device_is_cmc) {
354 		/*
355 		 * FIXME: I suppose we should set the cmstr bit in the
356 		 * STATE_CLEAR register of this node, as described in
357 		 * 1394-1995, 8.4.2.6.  Also, send out a force root
358 		 * packet for this node.
359 		 */
360 		new_root_id = root_id;
361 	} else {
362 		/*
363 		 * Current root has an active link layer and we
364 		 * successfully read the config rom, but it's not
365 		 * cycle master capable.
366 		 */
367 		new_root_id = local_id;
368 	}
369 
370  pick_me:
371 	/*
372 	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
373 	 * the typically much larger 1394b beta repeater delays though.
374 	 */
375 	if (!card->beta_repeaters_present &&
376 	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
377 		gap_count = gap_count_table[root_node->max_hops];
378 	else
379 		gap_count = 63;
380 
381 	/*
382 	 * Finally, figure out if we should do a reset or not.  If we have
383 	 * done less than 5 resets with the same physical topology and we
384 	 * have either a new root or a new gap count setting, let's do it.
385 	 */
386 
387 	if (card->bm_retries++ < 5 &&
388 	    (card->gap_count != gap_count || new_root_id != root_id))
389 		do_reset = true;
390 
391 	spin_unlock_irqrestore(&card->lock, flags);
392 
393 	if (do_reset) {
394 		fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
395 			  card->index, new_root_id, gap_count);
396 		fw_send_phy_config(card, new_root_id, generation, gap_count);
397 		fw_core_initiate_bus_reset(card, 1);
398 		/* Will allocate broadcast channel after the reset. */
399 	} else {
400 		if (local_id == irm_id)
401 			allocate_broadcast_channel(card, generation);
402 	}
403 
404  out:
405 	fw_node_put(root_node);
406  out_put_card:
407 	fw_card_put(card);
408 }
409 
410 static void flush_timer_callback(unsigned long data)
411 {
412 	struct fw_card *card = (struct fw_card *)data;
413 
414 	fw_flush_transactions(card);
415 }
416 
417 void fw_card_initialize(struct fw_card *card,
418 			const struct fw_card_driver *driver,
419 			struct device *device)
420 {
421 	static atomic_t index = ATOMIC_INIT(-1);
422 
423 	card->index = atomic_inc_return(&index);
424 	card->driver = driver;
425 	card->device = device;
426 	card->current_tlabel = 0;
427 	card->tlabel_mask = 0;
428 	card->color = 0;
429 	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
430 
431 	kref_init(&card->kref);
432 	init_completion(&card->done);
433 	INIT_LIST_HEAD(&card->transaction_list);
434 	spin_lock_init(&card->lock);
435 	setup_timer(&card->flush_timer,
436 		    flush_timer_callback, (unsigned long)card);
437 
438 	card->local_node = NULL;
439 
440 	INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
441 }
442 EXPORT_SYMBOL(fw_card_initialize);
443 
444 int fw_card_add(struct fw_card *card,
445 		u32 max_receive, u32 link_speed, u64 guid)
446 {
447 	int ret;
448 
449 	card->max_receive = max_receive;
450 	card->link_speed = link_speed;
451 	card->guid = guid;
452 
453 	mutex_lock(&card_mutex);
454 
455 	generate_config_rom(card, tmp_config_rom);
456 	ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
457 	if (ret == 0)
458 		list_add_tail(&card->link, &card_list);
459 
460 	mutex_unlock(&card_mutex);
461 
462 	return ret;
463 }
464 EXPORT_SYMBOL(fw_card_add);
465 
466 
467 /*
468  * The next few functions implement a dummy driver that is used once a card
469  * driver shuts down an fw_card.  This allows the driver to cleanly unload,
470  * as all IO to the card will be handled (and failed) by the dummy driver
471  * instead of calling into the module.  Only functions for iso context
472  * shutdown still need to be provided by the card driver.
473  */
474 
475 static int dummy_enable(struct fw_card *card,
476 			const __be32 *config_rom, size_t length)
477 {
478 	BUG();
479 	return -1;
480 }
481 
482 static int dummy_update_phy_reg(struct fw_card *card, int address,
483 				int clear_bits, int set_bits)
484 {
485 	return -ENODEV;
486 }
487 
488 static int dummy_set_config_rom(struct fw_card *card,
489 				const __be32 *config_rom, size_t length)
490 {
491 	/*
492 	 * We take the card out of card_list before setting the dummy
493 	 * driver, so this should never get called.
494 	 */
495 	BUG();
496 	return -1;
497 }
498 
499 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
500 {
501 	packet->callback(packet, card, -ENODEV);
502 }
503 
504 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
505 {
506 	packet->callback(packet, card, -ENODEV);
507 }
508 
509 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
510 {
511 	return -ENOENT;
512 }
513 
514 static int dummy_enable_phys_dma(struct fw_card *card,
515 				 int node_id, int generation)
516 {
517 	return -ENODEV;
518 }
519 
520 static const struct fw_card_driver dummy_driver_template = {
521 	.enable          = dummy_enable,
522 	.update_phy_reg  = dummy_update_phy_reg,
523 	.set_config_rom  = dummy_set_config_rom,
524 	.send_request    = dummy_send_request,
525 	.cancel_packet   = dummy_cancel_packet,
526 	.send_response   = dummy_send_response,
527 	.enable_phys_dma = dummy_enable_phys_dma,
528 };
529 
530 void fw_card_release(struct kref *kref)
531 {
532 	struct fw_card *card = container_of(kref, struct fw_card, kref);
533 
534 	complete(&card->done);
535 }
536 
537 void fw_core_remove_card(struct fw_card *card)
538 {
539 	struct fw_card_driver dummy_driver = dummy_driver_template;
540 
541 	card->driver->update_phy_reg(card, 4,
542 				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
543 	fw_core_initiate_bus_reset(card, 1);
544 
545 	mutex_lock(&card_mutex);
546 	list_del_init(&card->link);
547 	mutex_unlock(&card_mutex);
548 
549 	/* Switch off most of the card driver interface. */
550 	dummy_driver.free_iso_context	= card->driver->free_iso_context;
551 	dummy_driver.stop_iso		= card->driver->stop_iso;
552 	card->driver = &dummy_driver;
553 
554 	fw_destroy_nodes(card);
555 
556 	/* Wait for all users, especially device workqueue jobs, to finish. */
557 	fw_card_put(card);
558 	wait_for_completion(&card->done);
559 
560 	WARN_ON(!list_empty(&card->transaction_list));
561 	del_timer_sync(&card->flush_timer);
562 }
563 EXPORT_SYMBOL(fw_core_remove_card);
564 
565 int fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
566 {
567 	int reg = short_reset ? 5 : 1;
568 	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
569 
570 	return card->driver->update_phy_reg(card, reg, 0, bit);
571 }
572 EXPORT_SYMBOL(fw_core_initiate_bus_reset);
573