1 /* 2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software Foundation, 16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 */ 18 19 #include <linux/bug.h> 20 #include <linux/completion.h> 21 #include <linux/crc-itu-t.h> 22 #include <linux/device.h> 23 #include <linux/errno.h> 24 #include <linux/firewire.h> 25 #include <linux/firewire-constants.h> 26 #include <linux/jiffies.h> 27 #include <linux/kernel.h> 28 #include <linux/kref.h> 29 #include <linux/list.h> 30 #include <linux/module.h> 31 #include <linux/mutex.h> 32 #include <linux/spinlock.h> 33 #include <linux/timer.h> 34 #include <linux/workqueue.h> 35 36 #include <asm/atomic.h> 37 #include <asm/byteorder.h> 38 39 #include "core.h" 40 41 int fw_compute_block_crc(__be32 *block) 42 { 43 int length; 44 u16 crc; 45 46 length = (be32_to_cpu(block[0]) >> 16) & 0xff; 47 crc = crc_itu_t(0, (u8 *)&block[1], length * 4); 48 *block |= cpu_to_be32(crc); 49 50 return length; 51 } 52 53 static DEFINE_MUTEX(card_mutex); 54 static LIST_HEAD(card_list); 55 56 static LIST_HEAD(descriptor_list); 57 static int descriptor_count; 58 59 static __be32 tmp_config_rom[256]; 60 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */ 61 static size_t config_rom_length = 1 + 4 + 1 + 1; 62 63 #define BIB_CRC(v) ((v) << 0) 64 #define BIB_CRC_LENGTH(v) ((v) << 16) 65 #define BIB_INFO_LENGTH(v) ((v) << 24) 66 67 #define BIB_LINK_SPEED(v) ((v) << 0) 68 #define BIB_GENERATION(v) ((v) << 4) 69 #define BIB_MAX_ROM(v) ((v) << 8) 70 #define BIB_MAX_RECEIVE(v) ((v) << 12) 71 #define BIB_CYC_CLK_ACC(v) ((v) << 16) 72 #define BIB_PMC ((1) << 27) 73 #define BIB_BMC ((1) << 28) 74 #define BIB_ISC ((1) << 29) 75 #define BIB_CMC ((1) << 30) 76 #define BIB_IMC ((1) << 31) 77 78 static void generate_config_rom(struct fw_card *card, __be32 *config_rom) 79 { 80 struct fw_descriptor *desc; 81 int i, j, k, length; 82 83 /* 84 * Initialize contents of config rom buffer. On the OHCI 85 * controller, block reads to the config rom accesses the host 86 * memory, but quadlet read access the hardware bus info block 87 * registers. That's just crack, but it means we should make 88 * sure the contents of bus info block in host memory matches 89 * the version stored in the OHCI registers. 90 */ 91 92 config_rom[0] = cpu_to_be32( 93 BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0)); 94 config_rom[1] = cpu_to_be32(0x31333934); 95 config_rom[2] = cpu_to_be32( 96 BIB_LINK_SPEED(card->link_speed) | 97 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) | 98 BIB_MAX_ROM(2) | 99 BIB_MAX_RECEIVE(card->max_receive) | 100 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC); 101 config_rom[3] = cpu_to_be32(card->guid >> 32); 102 config_rom[4] = cpu_to_be32(card->guid); 103 104 /* Generate root directory. */ 105 config_rom[6] = cpu_to_be32(0x0c0083c0); /* node capabilities */ 106 i = 7; 107 j = 7 + descriptor_count; 108 109 /* Generate root directory entries for descriptors. */ 110 list_for_each_entry (desc, &descriptor_list, link) { 111 if (desc->immediate > 0) 112 config_rom[i++] = cpu_to_be32(desc->immediate); 113 config_rom[i] = cpu_to_be32(desc->key | (j - i)); 114 i++; 115 j += desc->length; 116 } 117 118 /* Update root directory length. */ 119 config_rom[5] = cpu_to_be32((i - 5 - 1) << 16); 120 121 /* End of root directory, now copy in descriptors. */ 122 list_for_each_entry (desc, &descriptor_list, link) { 123 for (k = 0; k < desc->length; k++) 124 config_rom[i + k] = cpu_to_be32(desc->data[k]); 125 i += desc->length; 126 } 127 128 /* Calculate CRCs for all blocks in the config rom. This 129 * assumes that CRC length and info length are identical for 130 * the bus info block, which is always the case for this 131 * implementation. */ 132 for (i = 0; i < j; i += length + 1) 133 length = fw_compute_block_crc(config_rom + i); 134 135 WARN_ON(j != config_rom_length); 136 } 137 138 static void update_config_roms(void) 139 { 140 struct fw_card *card; 141 142 list_for_each_entry (card, &card_list, link) { 143 generate_config_rom(card, tmp_config_rom); 144 card->driver->set_config_rom(card, tmp_config_rom, 145 config_rom_length); 146 } 147 } 148 149 static size_t required_space(struct fw_descriptor *desc) 150 { 151 /* descriptor + entry into root dir + optional immediate entry */ 152 return desc->length + 1 + (desc->immediate > 0 ? 1 : 0); 153 } 154 155 int fw_core_add_descriptor(struct fw_descriptor *desc) 156 { 157 size_t i; 158 int ret; 159 160 /* 161 * Check descriptor is valid; the length of all blocks in the 162 * descriptor has to add up to exactly the length of the 163 * block. 164 */ 165 i = 0; 166 while (i < desc->length) 167 i += (desc->data[i] >> 16) + 1; 168 169 if (i != desc->length) 170 return -EINVAL; 171 172 mutex_lock(&card_mutex); 173 174 if (config_rom_length + required_space(desc) > 256) { 175 ret = -EBUSY; 176 } else { 177 list_add_tail(&desc->link, &descriptor_list); 178 config_rom_length += required_space(desc); 179 descriptor_count++; 180 if (desc->immediate > 0) 181 descriptor_count++; 182 update_config_roms(); 183 ret = 0; 184 } 185 186 mutex_unlock(&card_mutex); 187 188 return ret; 189 } 190 EXPORT_SYMBOL(fw_core_add_descriptor); 191 192 void fw_core_remove_descriptor(struct fw_descriptor *desc) 193 { 194 mutex_lock(&card_mutex); 195 196 list_del(&desc->link); 197 config_rom_length -= required_space(desc); 198 descriptor_count--; 199 if (desc->immediate > 0) 200 descriptor_count--; 201 update_config_roms(); 202 203 mutex_unlock(&card_mutex); 204 } 205 EXPORT_SYMBOL(fw_core_remove_descriptor); 206 207 static void allocate_broadcast_channel(struct fw_card *card, int generation) 208 { 209 int channel, bandwidth = 0; 210 211 fw_iso_resource_manage(card, generation, 1ULL << 31, &channel, 212 &bandwidth, true, card->bm_transaction_data); 213 if (channel == 31) { 214 card->broadcast_channel_allocated = true; 215 device_for_each_child(card->device, (void *)(long)generation, 216 fw_device_set_broadcast_channel); 217 } 218 } 219 220 static const char gap_count_table[] = { 221 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40 222 }; 223 224 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay) 225 { 226 fw_card_get(card); 227 if (!schedule_delayed_work(&card->work, delay)) 228 fw_card_put(card); 229 } 230 231 static void fw_card_bm_work(struct work_struct *work) 232 { 233 struct fw_card *card = container_of(work, struct fw_card, work.work); 234 struct fw_device *root_device; 235 struct fw_node *root_node; 236 unsigned long flags; 237 int root_id, new_root_id, irm_id, local_id; 238 int gap_count, generation, grace, rcode; 239 bool do_reset = false; 240 bool root_device_is_running; 241 bool root_device_is_cmc; 242 243 spin_lock_irqsave(&card->lock, flags); 244 245 if (card->local_node == NULL) { 246 spin_unlock_irqrestore(&card->lock, flags); 247 goto out_put_card; 248 } 249 250 generation = card->generation; 251 root_node = card->root_node; 252 fw_node_get(root_node); 253 root_device = root_node->data; 254 root_device_is_running = root_device && 255 atomic_read(&root_device->state) == FW_DEVICE_RUNNING; 256 root_device_is_cmc = root_device && root_device->cmc; 257 root_id = root_node->node_id; 258 irm_id = card->irm_node->node_id; 259 local_id = card->local_node->node_id; 260 261 grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8)); 262 263 if (is_next_generation(generation, card->bm_generation) || 264 (card->bm_generation != generation && grace)) { 265 /* 266 * This first step is to figure out who is IRM and 267 * then try to become bus manager. If the IRM is not 268 * well defined (e.g. does not have an active link 269 * layer or does not responds to our lock request, we 270 * will have to do a little vigilante bus management. 271 * In that case, we do a goto into the gap count logic 272 * so that when we do the reset, we still optimize the 273 * gap count. That could well save a reset in the 274 * next generation. 275 */ 276 277 if (!card->irm_node->link_on) { 278 new_root_id = local_id; 279 fw_notify("IRM has link off, making local node (%02x) root.\n", 280 new_root_id); 281 goto pick_me; 282 } 283 284 card->bm_transaction_data[0] = cpu_to_be32(0x3f); 285 card->bm_transaction_data[1] = cpu_to_be32(local_id); 286 287 spin_unlock_irqrestore(&card->lock, flags); 288 289 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, 290 irm_id, generation, SCODE_100, 291 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID, 292 card->bm_transaction_data, 293 sizeof(card->bm_transaction_data)); 294 295 if (rcode == RCODE_GENERATION) 296 /* Another bus reset, BM work has been rescheduled. */ 297 goto out; 298 299 if (rcode == RCODE_COMPLETE && 300 card->bm_transaction_data[0] != cpu_to_be32(0x3f)) { 301 302 /* Somebody else is BM. Only act as IRM. */ 303 if (local_id == irm_id) 304 allocate_broadcast_channel(card, generation); 305 306 goto out; 307 } 308 309 spin_lock_irqsave(&card->lock, flags); 310 311 if (rcode != RCODE_COMPLETE) { 312 /* 313 * The lock request failed, maybe the IRM 314 * isn't really IRM capable after all. Let's 315 * do a bus reset and pick the local node as 316 * root, and thus, IRM. 317 */ 318 new_root_id = local_id; 319 fw_notify("BM lock failed, making local node (%02x) root.\n", 320 new_root_id); 321 goto pick_me; 322 } 323 } else if (card->bm_generation != generation) { 324 /* 325 * We weren't BM in the last generation, and the last 326 * bus reset is less than 125ms ago. Reschedule this job. 327 */ 328 spin_unlock_irqrestore(&card->lock, flags); 329 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8)); 330 goto out; 331 } 332 333 /* 334 * We're bus manager for this generation, so next step is to 335 * make sure we have an active cycle master and do gap count 336 * optimization. 337 */ 338 card->bm_generation = generation; 339 340 if (root_device == NULL) { 341 /* 342 * Either link_on is false, or we failed to read the 343 * config rom. In either case, pick another root. 344 */ 345 new_root_id = local_id; 346 } else if (!root_device_is_running) { 347 /* 348 * If we haven't probed this device yet, bail out now 349 * and let's try again once that's done. 350 */ 351 spin_unlock_irqrestore(&card->lock, flags); 352 goto out; 353 } else if (root_device_is_cmc) { 354 /* 355 * FIXME: I suppose we should set the cmstr bit in the 356 * STATE_CLEAR register of this node, as described in 357 * 1394-1995, 8.4.2.6. Also, send out a force root 358 * packet for this node. 359 */ 360 new_root_id = root_id; 361 } else { 362 /* 363 * Current root has an active link layer and we 364 * successfully read the config rom, but it's not 365 * cycle master capable. 366 */ 367 new_root_id = local_id; 368 } 369 370 pick_me: 371 /* 372 * Pick a gap count from 1394a table E-1. The table doesn't cover 373 * the typically much larger 1394b beta repeater delays though. 374 */ 375 if (!card->beta_repeaters_present && 376 root_node->max_hops < ARRAY_SIZE(gap_count_table)) 377 gap_count = gap_count_table[root_node->max_hops]; 378 else 379 gap_count = 63; 380 381 /* 382 * Finally, figure out if we should do a reset or not. If we have 383 * done less than 5 resets with the same physical topology and we 384 * have either a new root or a new gap count setting, let's do it. 385 */ 386 387 if (card->bm_retries++ < 5 && 388 (card->gap_count != gap_count || new_root_id != root_id)) 389 do_reset = true; 390 391 spin_unlock_irqrestore(&card->lock, flags); 392 393 if (do_reset) { 394 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n", 395 card->index, new_root_id, gap_count); 396 fw_send_phy_config(card, new_root_id, generation, gap_count); 397 fw_core_initiate_bus_reset(card, 1); 398 /* Will allocate broadcast channel after the reset. */ 399 } else { 400 if (local_id == irm_id) 401 allocate_broadcast_channel(card, generation); 402 } 403 404 out: 405 fw_node_put(root_node); 406 out_put_card: 407 fw_card_put(card); 408 } 409 410 static void flush_timer_callback(unsigned long data) 411 { 412 struct fw_card *card = (struct fw_card *)data; 413 414 fw_flush_transactions(card); 415 } 416 417 void fw_card_initialize(struct fw_card *card, 418 const struct fw_card_driver *driver, 419 struct device *device) 420 { 421 static atomic_t index = ATOMIC_INIT(-1); 422 423 card->index = atomic_inc_return(&index); 424 card->driver = driver; 425 card->device = device; 426 card->current_tlabel = 0; 427 card->tlabel_mask = 0; 428 card->color = 0; 429 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL; 430 431 kref_init(&card->kref); 432 init_completion(&card->done); 433 INIT_LIST_HEAD(&card->transaction_list); 434 spin_lock_init(&card->lock); 435 setup_timer(&card->flush_timer, 436 flush_timer_callback, (unsigned long)card); 437 438 card->local_node = NULL; 439 440 INIT_DELAYED_WORK(&card->work, fw_card_bm_work); 441 } 442 EXPORT_SYMBOL(fw_card_initialize); 443 444 int fw_card_add(struct fw_card *card, 445 u32 max_receive, u32 link_speed, u64 guid) 446 { 447 int ret; 448 449 card->max_receive = max_receive; 450 card->link_speed = link_speed; 451 card->guid = guid; 452 453 mutex_lock(&card_mutex); 454 455 generate_config_rom(card, tmp_config_rom); 456 ret = card->driver->enable(card, tmp_config_rom, config_rom_length); 457 if (ret == 0) 458 list_add_tail(&card->link, &card_list); 459 460 mutex_unlock(&card_mutex); 461 462 return ret; 463 } 464 EXPORT_SYMBOL(fw_card_add); 465 466 467 /* 468 * The next few functions implement a dummy driver that is used once a card 469 * driver shuts down an fw_card. This allows the driver to cleanly unload, 470 * as all IO to the card will be handled (and failed) by the dummy driver 471 * instead of calling into the module. Only functions for iso context 472 * shutdown still need to be provided by the card driver. 473 */ 474 475 static int dummy_enable(struct fw_card *card, 476 const __be32 *config_rom, size_t length) 477 { 478 BUG(); 479 return -1; 480 } 481 482 static int dummy_update_phy_reg(struct fw_card *card, int address, 483 int clear_bits, int set_bits) 484 { 485 return -ENODEV; 486 } 487 488 static int dummy_set_config_rom(struct fw_card *card, 489 const __be32 *config_rom, size_t length) 490 { 491 /* 492 * We take the card out of card_list before setting the dummy 493 * driver, so this should never get called. 494 */ 495 BUG(); 496 return -1; 497 } 498 499 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet) 500 { 501 packet->callback(packet, card, -ENODEV); 502 } 503 504 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet) 505 { 506 packet->callback(packet, card, -ENODEV); 507 } 508 509 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet) 510 { 511 return -ENOENT; 512 } 513 514 static int dummy_enable_phys_dma(struct fw_card *card, 515 int node_id, int generation) 516 { 517 return -ENODEV; 518 } 519 520 static const struct fw_card_driver dummy_driver_template = { 521 .enable = dummy_enable, 522 .update_phy_reg = dummy_update_phy_reg, 523 .set_config_rom = dummy_set_config_rom, 524 .send_request = dummy_send_request, 525 .cancel_packet = dummy_cancel_packet, 526 .send_response = dummy_send_response, 527 .enable_phys_dma = dummy_enable_phys_dma, 528 }; 529 530 void fw_card_release(struct kref *kref) 531 { 532 struct fw_card *card = container_of(kref, struct fw_card, kref); 533 534 complete(&card->done); 535 } 536 537 void fw_core_remove_card(struct fw_card *card) 538 { 539 struct fw_card_driver dummy_driver = dummy_driver_template; 540 541 card->driver->update_phy_reg(card, 4, 542 PHY_LINK_ACTIVE | PHY_CONTENDER, 0); 543 fw_core_initiate_bus_reset(card, 1); 544 545 mutex_lock(&card_mutex); 546 list_del_init(&card->link); 547 mutex_unlock(&card_mutex); 548 549 /* Switch off most of the card driver interface. */ 550 dummy_driver.free_iso_context = card->driver->free_iso_context; 551 dummy_driver.stop_iso = card->driver->stop_iso; 552 card->driver = &dummy_driver; 553 554 fw_destroy_nodes(card); 555 556 /* Wait for all users, especially device workqueue jobs, to finish. */ 557 fw_card_put(card); 558 wait_for_completion(&card->done); 559 560 WARN_ON(!list_empty(&card->transaction_list)); 561 del_timer_sync(&card->flush_timer); 562 } 563 EXPORT_SYMBOL(fw_core_remove_card); 564 565 int fw_core_initiate_bus_reset(struct fw_card *card, int short_reset) 566 { 567 int reg = short_reset ? 5 : 1; 568 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET; 569 570 return card->driver->update_phy_reg(card, reg, 0, bit); 571 } 572 EXPORT_SYMBOL(fw_core_initiate_bus_reset); 573