xref: /openbmc/linux/drivers/firewire/core-card.c (revision a09d2831)
1 /*
2  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  */
18 
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/crc-itu-t.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/jiffies.h>
27 #include <linux/kernel.h>
28 #include <linux/kref.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/spinlock.h>
33 #include <linux/timer.h>
34 #include <linux/workqueue.h>
35 
36 #include <asm/atomic.h>
37 #include <asm/byteorder.h>
38 
39 #include "core.h"
40 
41 int fw_compute_block_crc(__be32 *block)
42 {
43 	int length;
44 	u16 crc;
45 
46 	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
47 	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
48 	*block |= cpu_to_be32(crc);
49 
50 	return length;
51 }
52 
53 static DEFINE_MUTEX(card_mutex);
54 static LIST_HEAD(card_list);
55 
56 static LIST_HEAD(descriptor_list);
57 static int descriptor_count;
58 
59 static __be32 tmp_config_rom[256];
60 
61 #define BIB_CRC(v)		((v) <<  0)
62 #define BIB_CRC_LENGTH(v)	((v) << 16)
63 #define BIB_INFO_LENGTH(v)	((v) << 24)
64 
65 #define BIB_LINK_SPEED(v)	((v) <<  0)
66 #define BIB_GENERATION(v)	((v) <<  4)
67 #define BIB_MAX_ROM(v)		((v) <<  8)
68 #define BIB_MAX_RECEIVE(v)	((v) << 12)
69 #define BIB_CYC_CLK_ACC(v)	((v) << 16)
70 #define BIB_PMC			((1) << 27)
71 #define BIB_BMC			((1) << 28)
72 #define BIB_ISC			((1) << 29)
73 #define BIB_CMC			((1) << 30)
74 #define BIB_IMC			((1) << 31)
75 
76 static size_t generate_config_rom(struct fw_card *card, __be32 *config_rom)
77 {
78 	struct fw_descriptor *desc;
79 	int i, j, k, length;
80 
81 	/*
82 	 * Initialize contents of config rom buffer.  On the OHCI
83 	 * controller, block reads to the config rom accesses the host
84 	 * memory, but quadlet read access the hardware bus info block
85 	 * registers.  That's just crack, but it means we should make
86 	 * sure the contents of bus info block in host memory matches
87 	 * the version stored in the OHCI registers.
88 	 */
89 
90 	config_rom[0] = cpu_to_be32(
91 		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
92 	config_rom[1] = cpu_to_be32(0x31333934);
93 	config_rom[2] = cpu_to_be32(
94 		BIB_LINK_SPEED(card->link_speed) |
95 		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
96 		BIB_MAX_ROM(2) |
97 		BIB_MAX_RECEIVE(card->max_receive) |
98 		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC);
99 	config_rom[3] = cpu_to_be32(card->guid >> 32);
100 	config_rom[4] = cpu_to_be32(card->guid);
101 
102 	/* Generate root directory. */
103 	config_rom[6] = cpu_to_be32(0x0c0083c0); /* node capabilities */
104 	i = 7;
105 	j = 7 + descriptor_count;
106 
107 	/* Generate root directory entries for descriptors. */
108 	list_for_each_entry (desc, &descriptor_list, link) {
109 		if (desc->immediate > 0)
110 			config_rom[i++] = cpu_to_be32(desc->immediate);
111 		config_rom[i] = cpu_to_be32(desc->key | (j - i));
112 		i++;
113 		j += desc->length;
114 	}
115 
116 	/* Update root directory length. */
117 	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
118 
119 	/* End of root directory, now copy in descriptors. */
120 	list_for_each_entry (desc, &descriptor_list, link) {
121 		for (k = 0; k < desc->length; k++)
122 			config_rom[i + k] = cpu_to_be32(desc->data[k]);
123 		i += desc->length;
124 	}
125 
126 	/* Calculate CRCs for all blocks in the config rom.  This
127 	 * assumes that CRC length and info length are identical for
128 	 * the bus info block, which is always the case for this
129 	 * implementation. */
130 	for (i = 0; i < j; i += length + 1)
131 		length = fw_compute_block_crc(config_rom + i);
132 
133 	return j;
134 }
135 
136 static void update_config_roms(void)
137 {
138 	struct fw_card *card;
139 	size_t length;
140 
141 	list_for_each_entry (card, &card_list, link) {
142 		length = generate_config_rom(card, tmp_config_rom);
143 		card->driver->set_config_rom(card, tmp_config_rom, length);
144 	}
145 }
146 
147 int fw_core_add_descriptor(struct fw_descriptor *desc)
148 {
149 	size_t i;
150 
151 	/*
152 	 * Check descriptor is valid; the length of all blocks in the
153 	 * descriptor has to add up to exactly the length of the
154 	 * block.
155 	 */
156 	i = 0;
157 	while (i < desc->length)
158 		i += (desc->data[i] >> 16) + 1;
159 
160 	if (i != desc->length)
161 		return -EINVAL;
162 
163 	mutex_lock(&card_mutex);
164 
165 	list_add_tail(&desc->link, &descriptor_list);
166 	descriptor_count++;
167 	if (desc->immediate > 0)
168 		descriptor_count++;
169 	update_config_roms();
170 
171 	mutex_unlock(&card_mutex);
172 
173 	return 0;
174 }
175 EXPORT_SYMBOL(fw_core_add_descriptor);
176 
177 void fw_core_remove_descriptor(struct fw_descriptor *desc)
178 {
179 	mutex_lock(&card_mutex);
180 
181 	list_del(&desc->link);
182 	descriptor_count--;
183 	if (desc->immediate > 0)
184 		descriptor_count--;
185 	update_config_roms();
186 
187 	mutex_unlock(&card_mutex);
188 }
189 EXPORT_SYMBOL(fw_core_remove_descriptor);
190 
191 static void allocate_broadcast_channel(struct fw_card *card, int generation)
192 {
193 	int channel, bandwidth = 0;
194 
195 	fw_iso_resource_manage(card, generation, 1ULL << 31, &channel,
196 			       &bandwidth, true, card->bm_transaction_data);
197 	if (channel == 31) {
198 		card->broadcast_channel_allocated = true;
199 		device_for_each_child(card->device, (void *)(long)generation,
200 				      fw_device_set_broadcast_channel);
201 	}
202 }
203 
204 static const char gap_count_table[] = {
205 	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
206 };
207 
208 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
209 {
210 	fw_card_get(card);
211 	if (!schedule_delayed_work(&card->work, delay))
212 		fw_card_put(card);
213 }
214 
215 static void fw_card_bm_work(struct work_struct *work)
216 {
217 	struct fw_card *card = container_of(work, struct fw_card, work.work);
218 	struct fw_device *root_device;
219 	struct fw_node *root_node;
220 	unsigned long flags;
221 	int root_id, new_root_id, irm_id, local_id;
222 	int gap_count, generation, grace, rcode;
223 	bool do_reset = false;
224 	bool root_device_is_running;
225 	bool root_device_is_cmc;
226 
227 	spin_lock_irqsave(&card->lock, flags);
228 
229 	if (card->local_node == NULL) {
230 		spin_unlock_irqrestore(&card->lock, flags);
231 		goto out_put_card;
232 	}
233 
234 	generation = card->generation;
235 	root_node = card->root_node;
236 	fw_node_get(root_node);
237 	root_device = root_node->data;
238 	root_device_is_running = root_device &&
239 			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
240 	root_device_is_cmc = root_device && root_device->cmc;
241 	root_id  = root_node->node_id;
242 	irm_id   = card->irm_node->node_id;
243 	local_id = card->local_node->node_id;
244 
245 	grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
246 
247 	if (is_next_generation(generation, card->bm_generation) ||
248 	    (card->bm_generation != generation && grace)) {
249 		/*
250 		 * This first step is to figure out who is IRM and
251 		 * then try to become bus manager.  If the IRM is not
252 		 * well defined (e.g. does not have an active link
253 		 * layer or does not responds to our lock request, we
254 		 * will have to do a little vigilante bus management.
255 		 * In that case, we do a goto into the gap count logic
256 		 * so that when we do the reset, we still optimize the
257 		 * gap count.  That could well save a reset in the
258 		 * next generation.
259 		 */
260 
261 		if (!card->irm_node->link_on) {
262 			new_root_id = local_id;
263 			fw_notify("IRM has link off, making local node (%02x) root.\n",
264 				  new_root_id);
265 			goto pick_me;
266 		}
267 
268 		card->bm_transaction_data[0] = cpu_to_be32(0x3f);
269 		card->bm_transaction_data[1] = cpu_to_be32(local_id);
270 
271 		spin_unlock_irqrestore(&card->lock, flags);
272 
273 		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
274 				irm_id, generation, SCODE_100,
275 				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
276 				card->bm_transaction_data,
277 				sizeof(card->bm_transaction_data));
278 
279 		if (rcode == RCODE_GENERATION)
280 			/* Another bus reset, BM work has been rescheduled. */
281 			goto out;
282 
283 		if (rcode == RCODE_COMPLETE &&
284 		    card->bm_transaction_data[0] != cpu_to_be32(0x3f)) {
285 
286 			/* Somebody else is BM.  Only act as IRM. */
287 			if (local_id == irm_id)
288 				allocate_broadcast_channel(card, generation);
289 
290 			goto out;
291 		}
292 
293 		spin_lock_irqsave(&card->lock, flags);
294 
295 		if (rcode != RCODE_COMPLETE) {
296 			/*
297 			 * The lock request failed, maybe the IRM
298 			 * isn't really IRM capable after all. Let's
299 			 * do a bus reset and pick the local node as
300 			 * root, and thus, IRM.
301 			 */
302 			new_root_id = local_id;
303 			fw_notify("BM lock failed, making local node (%02x) root.\n",
304 				  new_root_id);
305 			goto pick_me;
306 		}
307 	} else if (card->bm_generation != generation) {
308 		/*
309 		 * We weren't BM in the last generation, and the last
310 		 * bus reset is less than 125ms ago.  Reschedule this job.
311 		 */
312 		spin_unlock_irqrestore(&card->lock, flags);
313 		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
314 		goto out;
315 	}
316 
317 	/*
318 	 * We're bus manager for this generation, so next step is to
319 	 * make sure we have an active cycle master and do gap count
320 	 * optimization.
321 	 */
322 	card->bm_generation = generation;
323 
324 	if (root_device == NULL) {
325 		/*
326 		 * Either link_on is false, or we failed to read the
327 		 * config rom.  In either case, pick another root.
328 		 */
329 		new_root_id = local_id;
330 	} else if (!root_device_is_running) {
331 		/*
332 		 * If we haven't probed this device yet, bail out now
333 		 * and let's try again once that's done.
334 		 */
335 		spin_unlock_irqrestore(&card->lock, flags);
336 		goto out;
337 	} else if (root_device_is_cmc) {
338 		/*
339 		 * FIXME: I suppose we should set the cmstr bit in the
340 		 * STATE_CLEAR register of this node, as described in
341 		 * 1394-1995, 8.4.2.6.  Also, send out a force root
342 		 * packet for this node.
343 		 */
344 		new_root_id = root_id;
345 	} else {
346 		/*
347 		 * Current root has an active link layer and we
348 		 * successfully read the config rom, but it's not
349 		 * cycle master capable.
350 		 */
351 		new_root_id = local_id;
352 	}
353 
354  pick_me:
355 	/*
356 	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
357 	 * the typically much larger 1394b beta repeater delays though.
358 	 */
359 	if (!card->beta_repeaters_present &&
360 	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
361 		gap_count = gap_count_table[root_node->max_hops];
362 	else
363 		gap_count = 63;
364 
365 	/*
366 	 * Finally, figure out if we should do a reset or not.  If we have
367 	 * done less than 5 resets with the same physical topology and we
368 	 * have either a new root or a new gap count setting, let's do it.
369 	 */
370 
371 	if (card->bm_retries++ < 5 &&
372 	    (card->gap_count != gap_count || new_root_id != root_id))
373 		do_reset = true;
374 
375 	spin_unlock_irqrestore(&card->lock, flags);
376 
377 	if (do_reset) {
378 		fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
379 			  card->index, new_root_id, gap_count);
380 		fw_send_phy_config(card, new_root_id, generation, gap_count);
381 		fw_core_initiate_bus_reset(card, 1);
382 		/* Will allocate broadcast channel after the reset. */
383 	} else {
384 		if (local_id == irm_id)
385 			allocate_broadcast_channel(card, generation);
386 	}
387 
388  out:
389 	fw_node_put(root_node);
390  out_put_card:
391 	fw_card_put(card);
392 }
393 
394 static void flush_timer_callback(unsigned long data)
395 {
396 	struct fw_card *card = (struct fw_card *)data;
397 
398 	fw_flush_transactions(card);
399 }
400 
401 void fw_card_initialize(struct fw_card *card,
402 			const struct fw_card_driver *driver,
403 			struct device *device)
404 {
405 	static atomic_t index = ATOMIC_INIT(-1);
406 
407 	card->index = atomic_inc_return(&index);
408 	card->driver = driver;
409 	card->device = device;
410 	card->current_tlabel = 0;
411 	card->tlabel_mask = 0;
412 	card->color = 0;
413 	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
414 
415 	kref_init(&card->kref);
416 	init_completion(&card->done);
417 	INIT_LIST_HEAD(&card->transaction_list);
418 	spin_lock_init(&card->lock);
419 	setup_timer(&card->flush_timer,
420 		    flush_timer_callback, (unsigned long)card);
421 
422 	card->local_node = NULL;
423 
424 	INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
425 }
426 EXPORT_SYMBOL(fw_card_initialize);
427 
428 int fw_card_add(struct fw_card *card,
429 		u32 max_receive, u32 link_speed, u64 guid)
430 {
431 	size_t length;
432 	int ret;
433 
434 	card->max_receive = max_receive;
435 	card->link_speed = link_speed;
436 	card->guid = guid;
437 
438 	mutex_lock(&card_mutex);
439 
440 	length = generate_config_rom(card, tmp_config_rom);
441 	ret = card->driver->enable(card, tmp_config_rom, length);
442 	if (ret == 0)
443 		list_add_tail(&card->link, &card_list);
444 
445 	mutex_unlock(&card_mutex);
446 
447 	return ret;
448 }
449 EXPORT_SYMBOL(fw_card_add);
450 
451 
452 /*
453  * The next few functions implement a dummy driver that is used once a card
454  * driver shuts down an fw_card.  This allows the driver to cleanly unload,
455  * as all IO to the card will be handled (and failed) by the dummy driver
456  * instead of calling into the module.  Only functions for iso context
457  * shutdown still need to be provided by the card driver.
458  */
459 
460 static int dummy_enable(struct fw_card *card,
461 			const __be32 *config_rom, size_t length)
462 {
463 	BUG();
464 	return -1;
465 }
466 
467 static int dummy_update_phy_reg(struct fw_card *card, int address,
468 				int clear_bits, int set_bits)
469 {
470 	return -ENODEV;
471 }
472 
473 static int dummy_set_config_rom(struct fw_card *card,
474 				const __be32 *config_rom, size_t length)
475 {
476 	/*
477 	 * We take the card out of card_list before setting the dummy
478 	 * driver, so this should never get called.
479 	 */
480 	BUG();
481 	return -1;
482 }
483 
484 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
485 {
486 	packet->callback(packet, card, -ENODEV);
487 }
488 
489 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
490 {
491 	packet->callback(packet, card, -ENODEV);
492 }
493 
494 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
495 {
496 	return -ENOENT;
497 }
498 
499 static int dummy_enable_phys_dma(struct fw_card *card,
500 				 int node_id, int generation)
501 {
502 	return -ENODEV;
503 }
504 
505 static const struct fw_card_driver dummy_driver_template = {
506 	.enable          = dummy_enable,
507 	.update_phy_reg  = dummy_update_phy_reg,
508 	.set_config_rom  = dummy_set_config_rom,
509 	.send_request    = dummy_send_request,
510 	.cancel_packet   = dummy_cancel_packet,
511 	.send_response   = dummy_send_response,
512 	.enable_phys_dma = dummy_enable_phys_dma,
513 };
514 
515 void fw_card_release(struct kref *kref)
516 {
517 	struct fw_card *card = container_of(kref, struct fw_card, kref);
518 
519 	complete(&card->done);
520 }
521 
522 void fw_core_remove_card(struct fw_card *card)
523 {
524 	struct fw_card_driver dummy_driver = dummy_driver_template;
525 
526 	card->driver->update_phy_reg(card, 4,
527 				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
528 	fw_core_initiate_bus_reset(card, 1);
529 
530 	mutex_lock(&card_mutex);
531 	list_del_init(&card->link);
532 	mutex_unlock(&card_mutex);
533 
534 	/* Switch off most of the card driver interface. */
535 	dummy_driver.free_iso_context	= card->driver->free_iso_context;
536 	dummy_driver.stop_iso		= card->driver->stop_iso;
537 	card->driver = &dummy_driver;
538 
539 	fw_destroy_nodes(card);
540 
541 	/* Wait for all users, especially device workqueue jobs, to finish. */
542 	fw_card_put(card);
543 	wait_for_completion(&card->done);
544 
545 	WARN_ON(!list_empty(&card->transaction_list));
546 	del_timer_sync(&card->flush_timer);
547 }
548 EXPORT_SYMBOL(fw_core_remove_card);
549 
550 int fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
551 {
552 	int reg = short_reset ? 5 : 1;
553 	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
554 
555 	return card->driver->update_phy_reg(card, reg, 0, bit);
556 }
557 EXPORT_SYMBOL(fw_core_initiate_bus_reset);
558