1 /* 2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software Foundation, 16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 */ 18 19 #include <linux/bug.h> 20 #include <linux/completion.h> 21 #include <linux/crc-itu-t.h> 22 #include <linux/device.h> 23 #include <linux/errno.h> 24 #include <linux/firewire.h> 25 #include <linux/firewire-constants.h> 26 #include <linux/jiffies.h> 27 #include <linux/kernel.h> 28 #include <linux/kref.h> 29 #include <linux/list.h> 30 #include <linux/module.h> 31 #include <linux/mutex.h> 32 #include <linux/spinlock.h> 33 #include <linux/workqueue.h> 34 35 #include <linux/atomic.h> 36 #include <asm/byteorder.h> 37 38 #include "core.h" 39 40 int fw_compute_block_crc(__be32 *block) 41 { 42 int length; 43 u16 crc; 44 45 length = (be32_to_cpu(block[0]) >> 16) & 0xff; 46 crc = crc_itu_t(0, (u8 *)&block[1], length * 4); 47 *block |= cpu_to_be32(crc); 48 49 return length; 50 } 51 52 static DEFINE_MUTEX(card_mutex); 53 static LIST_HEAD(card_list); 54 55 static LIST_HEAD(descriptor_list); 56 static int descriptor_count; 57 58 static __be32 tmp_config_rom[256]; 59 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */ 60 static size_t config_rom_length = 1 + 4 + 1 + 1; 61 62 #define BIB_CRC(v) ((v) << 0) 63 #define BIB_CRC_LENGTH(v) ((v) << 16) 64 #define BIB_INFO_LENGTH(v) ((v) << 24) 65 #define BIB_BUS_NAME 0x31333934 /* "1394" */ 66 #define BIB_LINK_SPEED(v) ((v) << 0) 67 #define BIB_GENERATION(v) ((v) << 4) 68 #define BIB_MAX_ROM(v) ((v) << 8) 69 #define BIB_MAX_RECEIVE(v) ((v) << 12) 70 #define BIB_CYC_CLK_ACC(v) ((v) << 16) 71 #define BIB_PMC ((1) << 27) 72 #define BIB_BMC ((1) << 28) 73 #define BIB_ISC ((1) << 29) 74 #define BIB_CMC ((1) << 30) 75 #define BIB_IRMC ((1) << 31) 76 #define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */ 77 78 /* 79 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms), 80 * but we have to make it longer because there are many devices whose firmware 81 * is just too slow for that. 82 */ 83 #define DEFAULT_SPLIT_TIMEOUT (2 * 8000) 84 85 #define CANON_OUI 0x000085 86 87 static void generate_config_rom(struct fw_card *card, __be32 *config_rom) 88 { 89 struct fw_descriptor *desc; 90 int i, j, k, length; 91 92 /* 93 * Initialize contents of config rom buffer. On the OHCI 94 * controller, block reads to the config rom accesses the host 95 * memory, but quadlet read access the hardware bus info block 96 * registers. That's just crack, but it means we should make 97 * sure the contents of bus info block in host memory matches 98 * the version stored in the OHCI registers. 99 */ 100 101 config_rom[0] = cpu_to_be32( 102 BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0)); 103 config_rom[1] = cpu_to_be32(BIB_BUS_NAME); 104 config_rom[2] = cpu_to_be32( 105 BIB_LINK_SPEED(card->link_speed) | 106 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) | 107 BIB_MAX_ROM(2) | 108 BIB_MAX_RECEIVE(card->max_receive) | 109 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC); 110 config_rom[3] = cpu_to_be32(card->guid >> 32); 111 config_rom[4] = cpu_to_be32(card->guid); 112 113 /* Generate root directory. */ 114 config_rom[6] = cpu_to_be32(NODE_CAPABILITIES); 115 i = 7; 116 j = 7 + descriptor_count; 117 118 /* Generate root directory entries for descriptors. */ 119 list_for_each_entry (desc, &descriptor_list, link) { 120 if (desc->immediate > 0) 121 config_rom[i++] = cpu_to_be32(desc->immediate); 122 config_rom[i] = cpu_to_be32(desc->key | (j - i)); 123 i++; 124 j += desc->length; 125 } 126 127 /* Update root directory length. */ 128 config_rom[5] = cpu_to_be32((i - 5 - 1) << 16); 129 130 /* End of root directory, now copy in descriptors. */ 131 list_for_each_entry (desc, &descriptor_list, link) { 132 for (k = 0; k < desc->length; k++) 133 config_rom[i + k] = cpu_to_be32(desc->data[k]); 134 i += desc->length; 135 } 136 137 /* Calculate CRCs for all blocks in the config rom. This 138 * assumes that CRC length and info length are identical for 139 * the bus info block, which is always the case for this 140 * implementation. */ 141 for (i = 0; i < j; i += length + 1) 142 length = fw_compute_block_crc(config_rom + i); 143 144 WARN_ON(j != config_rom_length); 145 } 146 147 static void update_config_roms(void) 148 { 149 struct fw_card *card; 150 151 list_for_each_entry (card, &card_list, link) { 152 generate_config_rom(card, tmp_config_rom); 153 card->driver->set_config_rom(card, tmp_config_rom, 154 config_rom_length); 155 } 156 } 157 158 static size_t required_space(struct fw_descriptor *desc) 159 { 160 /* descriptor + entry into root dir + optional immediate entry */ 161 return desc->length + 1 + (desc->immediate > 0 ? 1 : 0); 162 } 163 164 int fw_core_add_descriptor(struct fw_descriptor *desc) 165 { 166 size_t i; 167 int ret; 168 169 /* 170 * Check descriptor is valid; the length of all blocks in the 171 * descriptor has to add up to exactly the length of the 172 * block. 173 */ 174 i = 0; 175 while (i < desc->length) 176 i += (desc->data[i] >> 16) + 1; 177 178 if (i != desc->length) 179 return -EINVAL; 180 181 mutex_lock(&card_mutex); 182 183 if (config_rom_length + required_space(desc) > 256) { 184 ret = -EBUSY; 185 } else { 186 list_add_tail(&desc->link, &descriptor_list); 187 config_rom_length += required_space(desc); 188 descriptor_count++; 189 if (desc->immediate > 0) 190 descriptor_count++; 191 update_config_roms(); 192 ret = 0; 193 } 194 195 mutex_unlock(&card_mutex); 196 197 return ret; 198 } 199 EXPORT_SYMBOL(fw_core_add_descriptor); 200 201 void fw_core_remove_descriptor(struct fw_descriptor *desc) 202 { 203 mutex_lock(&card_mutex); 204 205 list_del(&desc->link); 206 config_rom_length -= required_space(desc); 207 descriptor_count--; 208 if (desc->immediate > 0) 209 descriptor_count--; 210 update_config_roms(); 211 212 mutex_unlock(&card_mutex); 213 } 214 EXPORT_SYMBOL(fw_core_remove_descriptor); 215 216 static int reset_bus(struct fw_card *card, bool short_reset) 217 { 218 int reg = short_reset ? 5 : 1; 219 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET; 220 221 return card->driver->update_phy_reg(card, reg, 0, bit); 222 } 223 224 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset) 225 { 226 /* We don't try hard to sort out requests of long vs. short resets. */ 227 card->br_short = short_reset; 228 229 /* Use an arbitrary short delay to combine multiple reset requests. */ 230 fw_card_get(card); 231 if (!queue_delayed_work(fw_workqueue, &card->br_work, 232 delayed ? DIV_ROUND_UP(HZ, 100) : 0)) 233 fw_card_put(card); 234 } 235 EXPORT_SYMBOL(fw_schedule_bus_reset); 236 237 static void br_work(struct work_struct *work) 238 { 239 struct fw_card *card = container_of(work, struct fw_card, br_work.work); 240 241 /* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */ 242 if (card->reset_jiffies != 0 && 243 time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) { 244 if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ)) 245 fw_card_put(card); 246 return; 247 } 248 249 fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation, 250 FW_PHY_CONFIG_CURRENT_GAP_COUNT); 251 reset_bus(card, card->br_short); 252 fw_card_put(card); 253 } 254 255 static void allocate_broadcast_channel(struct fw_card *card, int generation) 256 { 257 int channel, bandwidth = 0; 258 259 if (!card->broadcast_channel_allocated) { 260 fw_iso_resource_manage(card, generation, 1ULL << 31, 261 &channel, &bandwidth, true); 262 if (channel != 31) { 263 fw_notify("failed to allocate broadcast channel\n"); 264 return; 265 } 266 card->broadcast_channel_allocated = true; 267 } 268 269 device_for_each_child(card->device, (void *)(long)generation, 270 fw_device_set_broadcast_channel); 271 } 272 273 static const char gap_count_table[] = { 274 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40 275 }; 276 277 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay) 278 { 279 fw_card_get(card); 280 if (!schedule_delayed_work(&card->bm_work, delay)) 281 fw_card_put(card); 282 } 283 284 static void bm_work(struct work_struct *work) 285 { 286 struct fw_card *card = container_of(work, struct fw_card, bm_work.work); 287 struct fw_device *root_device, *irm_device; 288 struct fw_node *root_node; 289 int root_id, new_root_id, irm_id, bm_id, local_id; 290 int gap_count, generation, grace, rcode; 291 bool do_reset = false; 292 bool root_device_is_running; 293 bool root_device_is_cmc; 294 bool irm_is_1394_1995_only; 295 bool keep_this_irm; 296 __be32 transaction_data[2]; 297 298 spin_lock_irq(&card->lock); 299 300 if (card->local_node == NULL) { 301 spin_unlock_irq(&card->lock); 302 goto out_put_card; 303 } 304 305 generation = card->generation; 306 307 root_node = card->root_node; 308 fw_node_get(root_node); 309 root_device = root_node->data; 310 root_device_is_running = root_device && 311 atomic_read(&root_device->state) == FW_DEVICE_RUNNING; 312 root_device_is_cmc = root_device && root_device->cmc; 313 314 irm_device = card->irm_node->data; 315 irm_is_1394_1995_only = irm_device && irm_device->config_rom && 316 (irm_device->config_rom[2] & 0x000000f0) == 0; 317 318 /* Canon MV5i works unreliably if it is not root node. */ 319 keep_this_irm = irm_device && irm_device->config_rom && 320 irm_device->config_rom[3] >> 8 == CANON_OUI; 321 322 root_id = root_node->node_id; 323 irm_id = card->irm_node->node_id; 324 local_id = card->local_node->node_id; 325 326 grace = time_after64(get_jiffies_64(), 327 card->reset_jiffies + DIV_ROUND_UP(HZ, 8)); 328 329 if ((is_next_generation(generation, card->bm_generation) && 330 !card->bm_abdicate) || 331 (card->bm_generation != generation && grace)) { 332 /* 333 * This first step is to figure out who is IRM and 334 * then try to become bus manager. If the IRM is not 335 * well defined (e.g. does not have an active link 336 * layer or does not responds to our lock request, we 337 * will have to do a little vigilante bus management. 338 * In that case, we do a goto into the gap count logic 339 * so that when we do the reset, we still optimize the 340 * gap count. That could well save a reset in the 341 * next generation. 342 */ 343 344 if (!card->irm_node->link_on) { 345 new_root_id = local_id; 346 fw_notify("%s, making local node (%02x) root.\n", 347 "IRM has link off", new_root_id); 348 goto pick_me; 349 } 350 351 if (irm_is_1394_1995_only && !keep_this_irm) { 352 new_root_id = local_id; 353 fw_notify("%s, making local node (%02x) root.\n", 354 "IRM is not 1394a compliant", new_root_id); 355 goto pick_me; 356 } 357 358 transaction_data[0] = cpu_to_be32(0x3f); 359 transaction_data[1] = cpu_to_be32(local_id); 360 361 spin_unlock_irq(&card->lock); 362 363 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, 364 irm_id, generation, SCODE_100, 365 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID, 366 transaction_data, 8); 367 368 if (rcode == RCODE_GENERATION) 369 /* Another bus reset, BM work has been rescheduled. */ 370 goto out; 371 372 bm_id = be32_to_cpu(transaction_data[0]); 373 374 spin_lock_irq(&card->lock); 375 if (rcode == RCODE_COMPLETE && generation == card->generation) 376 card->bm_node_id = 377 bm_id == 0x3f ? local_id : 0xffc0 | bm_id; 378 spin_unlock_irq(&card->lock); 379 380 if (rcode == RCODE_COMPLETE && bm_id != 0x3f) { 381 /* Somebody else is BM. Only act as IRM. */ 382 if (local_id == irm_id) 383 allocate_broadcast_channel(card, generation); 384 385 goto out; 386 } 387 388 if (rcode == RCODE_SEND_ERROR) { 389 /* 390 * We have been unable to send the lock request due to 391 * some local problem. Let's try again later and hope 392 * that the problem has gone away by then. 393 */ 394 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8)); 395 goto out; 396 } 397 398 spin_lock_irq(&card->lock); 399 400 if (rcode != RCODE_COMPLETE && !keep_this_irm) { 401 /* 402 * The lock request failed, maybe the IRM 403 * isn't really IRM capable after all. Let's 404 * do a bus reset and pick the local node as 405 * root, and thus, IRM. 406 */ 407 new_root_id = local_id; 408 fw_notify("%s, making local node (%02x) root.\n", 409 "BM lock failed", new_root_id); 410 goto pick_me; 411 } 412 } else if (card->bm_generation != generation) { 413 /* 414 * We weren't BM in the last generation, and the last 415 * bus reset is less than 125ms ago. Reschedule this job. 416 */ 417 spin_unlock_irq(&card->lock); 418 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8)); 419 goto out; 420 } 421 422 /* 423 * We're bus manager for this generation, so next step is to 424 * make sure we have an active cycle master and do gap count 425 * optimization. 426 */ 427 card->bm_generation = generation; 428 429 if (root_device == NULL) { 430 /* 431 * Either link_on is false, or we failed to read the 432 * config rom. In either case, pick another root. 433 */ 434 new_root_id = local_id; 435 } else if (!root_device_is_running) { 436 /* 437 * If we haven't probed this device yet, bail out now 438 * and let's try again once that's done. 439 */ 440 spin_unlock_irq(&card->lock); 441 goto out; 442 } else if (root_device_is_cmc) { 443 /* 444 * We will send out a force root packet for this 445 * node as part of the gap count optimization. 446 */ 447 new_root_id = root_id; 448 } else { 449 /* 450 * Current root has an active link layer and we 451 * successfully read the config rom, but it's not 452 * cycle master capable. 453 */ 454 new_root_id = local_id; 455 } 456 457 pick_me: 458 /* 459 * Pick a gap count from 1394a table E-1. The table doesn't cover 460 * the typically much larger 1394b beta repeater delays though. 461 */ 462 if (!card->beta_repeaters_present && 463 root_node->max_hops < ARRAY_SIZE(gap_count_table)) 464 gap_count = gap_count_table[root_node->max_hops]; 465 else 466 gap_count = 63; 467 468 /* 469 * Finally, figure out if we should do a reset or not. If we have 470 * done less than 5 resets with the same physical topology and we 471 * have either a new root or a new gap count setting, let's do it. 472 */ 473 474 if (card->bm_retries++ < 5 && 475 (card->gap_count != gap_count || new_root_id != root_id)) 476 do_reset = true; 477 478 spin_unlock_irq(&card->lock); 479 480 if (do_reset) { 481 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n", 482 card->index, new_root_id, gap_count); 483 fw_send_phy_config(card, new_root_id, generation, gap_count); 484 reset_bus(card, true); 485 /* Will allocate broadcast channel after the reset. */ 486 goto out; 487 } 488 489 if (root_device_is_cmc) { 490 /* 491 * Make sure that the cycle master sends cycle start packets. 492 */ 493 transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR); 494 rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, 495 root_id, generation, SCODE_100, 496 CSR_REGISTER_BASE + CSR_STATE_SET, 497 transaction_data, 4); 498 if (rcode == RCODE_GENERATION) 499 goto out; 500 } 501 502 if (local_id == irm_id) 503 allocate_broadcast_channel(card, generation); 504 505 out: 506 fw_node_put(root_node); 507 out_put_card: 508 fw_card_put(card); 509 } 510 511 void fw_card_initialize(struct fw_card *card, 512 const struct fw_card_driver *driver, 513 struct device *device) 514 { 515 static atomic_t index = ATOMIC_INIT(-1); 516 517 card->index = atomic_inc_return(&index); 518 card->driver = driver; 519 card->device = device; 520 card->current_tlabel = 0; 521 card->tlabel_mask = 0; 522 card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000; 523 card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19; 524 card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT; 525 card->split_timeout_jiffies = 526 DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000); 527 card->color = 0; 528 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL; 529 530 kref_init(&card->kref); 531 init_completion(&card->done); 532 INIT_LIST_HEAD(&card->transaction_list); 533 INIT_LIST_HEAD(&card->phy_receiver_list); 534 spin_lock_init(&card->lock); 535 536 card->local_node = NULL; 537 538 INIT_DELAYED_WORK(&card->br_work, br_work); 539 INIT_DELAYED_WORK(&card->bm_work, bm_work); 540 } 541 EXPORT_SYMBOL(fw_card_initialize); 542 543 int fw_card_add(struct fw_card *card, 544 u32 max_receive, u32 link_speed, u64 guid) 545 { 546 int ret; 547 548 card->max_receive = max_receive; 549 card->link_speed = link_speed; 550 card->guid = guid; 551 552 mutex_lock(&card_mutex); 553 554 generate_config_rom(card, tmp_config_rom); 555 ret = card->driver->enable(card, tmp_config_rom, config_rom_length); 556 if (ret == 0) 557 list_add_tail(&card->link, &card_list); 558 559 mutex_unlock(&card_mutex); 560 561 return ret; 562 } 563 EXPORT_SYMBOL(fw_card_add); 564 565 /* 566 * The next few functions implement a dummy driver that is used once a card 567 * driver shuts down an fw_card. This allows the driver to cleanly unload, 568 * as all IO to the card will be handled (and failed) by the dummy driver 569 * instead of calling into the module. Only functions for iso context 570 * shutdown still need to be provided by the card driver. 571 * 572 * .read/write_csr() should never be called anymore after the dummy driver 573 * was bound since they are only used within request handler context. 574 * .set_config_rom() is never called since the card is taken out of card_list 575 * before switching to the dummy driver. 576 */ 577 578 static int dummy_read_phy_reg(struct fw_card *card, int address) 579 { 580 return -ENODEV; 581 } 582 583 static int dummy_update_phy_reg(struct fw_card *card, int address, 584 int clear_bits, int set_bits) 585 { 586 return -ENODEV; 587 } 588 589 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet) 590 { 591 packet->callback(packet, card, RCODE_CANCELLED); 592 } 593 594 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet) 595 { 596 packet->callback(packet, card, RCODE_CANCELLED); 597 } 598 599 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet) 600 { 601 return -ENOENT; 602 } 603 604 static int dummy_enable_phys_dma(struct fw_card *card, 605 int node_id, int generation) 606 { 607 return -ENODEV; 608 } 609 610 static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card, 611 int type, int channel, size_t header_size) 612 { 613 return ERR_PTR(-ENODEV); 614 } 615 616 static int dummy_start_iso(struct fw_iso_context *ctx, 617 s32 cycle, u32 sync, u32 tags) 618 { 619 return -ENODEV; 620 } 621 622 static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels) 623 { 624 return -ENODEV; 625 } 626 627 static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p, 628 struct fw_iso_buffer *buffer, unsigned long payload) 629 { 630 return -ENODEV; 631 } 632 633 static void dummy_flush_queue_iso(struct fw_iso_context *ctx) 634 { 635 } 636 637 static const struct fw_card_driver dummy_driver_template = { 638 .read_phy_reg = dummy_read_phy_reg, 639 .update_phy_reg = dummy_update_phy_reg, 640 .send_request = dummy_send_request, 641 .send_response = dummy_send_response, 642 .cancel_packet = dummy_cancel_packet, 643 .enable_phys_dma = dummy_enable_phys_dma, 644 .allocate_iso_context = dummy_allocate_iso_context, 645 .start_iso = dummy_start_iso, 646 .set_iso_channels = dummy_set_iso_channels, 647 .queue_iso = dummy_queue_iso, 648 .flush_queue_iso = dummy_flush_queue_iso, 649 }; 650 651 void fw_card_release(struct kref *kref) 652 { 653 struct fw_card *card = container_of(kref, struct fw_card, kref); 654 655 complete(&card->done); 656 } 657 658 void fw_core_remove_card(struct fw_card *card) 659 { 660 struct fw_card_driver dummy_driver = dummy_driver_template; 661 662 card->driver->update_phy_reg(card, 4, 663 PHY_LINK_ACTIVE | PHY_CONTENDER, 0); 664 fw_schedule_bus_reset(card, false, true); 665 666 mutex_lock(&card_mutex); 667 list_del_init(&card->link); 668 mutex_unlock(&card_mutex); 669 670 /* Switch off most of the card driver interface. */ 671 dummy_driver.free_iso_context = card->driver->free_iso_context; 672 dummy_driver.stop_iso = card->driver->stop_iso; 673 card->driver = &dummy_driver; 674 675 fw_destroy_nodes(card); 676 677 /* Wait for all users, especially device workqueue jobs, to finish. */ 678 fw_card_put(card); 679 wait_for_completion(&card->done); 680 681 WARN_ON(!list_empty(&card->transaction_list)); 682 } 683 EXPORT_SYMBOL(fw_core_remove_card); 684