xref: /openbmc/linux/drivers/edac/x38_edac.c (revision 7dd65feb)
1 /*
2  * Intel X38 Memory Controller kernel module
3  * Copyright (C) 2008 Cluster Computing, Inc.
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * This file is based on i3200_edac.c
9  *
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/pci_ids.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include "edac_core.h"
19 
20 #define X38_REVISION		"1.1"
21 
22 #define EDAC_MOD_STR		"x38_edac"
23 
24 #define PCI_DEVICE_ID_INTEL_X38_HB	0x29e0
25 
26 #define X38_RANKS		8
27 #define X38_RANKS_PER_CHANNEL	4
28 #define X38_CHANNELS		2
29 
30 /* Intel X38 register addresses - device 0 function 0 - DRAM Controller */
31 
32 #define X38_MCHBAR_LOW	0x48	/* MCH Memory Mapped Register BAR */
33 #define X38_MCHBAR_HIGH	0x4c
34 #define X38_MCHBAR_MASK	0xfffffc000ULL	/* bits 35:14 */
35 #define X38_MMR_WINDOW_SIZE	16384
36 
37 #define X38_TOM	0xa0	/* Top of Memory (16b)
38 				 *
39 				 * 15:10 reserved
40 				 *  9:0  total populated physical memory
41 				 */
42 #define X38_TOM_MASK	0x3ff	/* bits 9:0 */
43 #define X38_TOM_SHIFT 26	/* 64MiB grain */
44 
45 #define X38_ERRSTS	0xc8	/* Error Status Register (16b)
46 				 *
47 				 * 15    reserved
48 				 * 14    Isochronous TBWRR Run Behind FIFO Full
49 				 *       (ITCV)
50 				 * 13    Isochronous TBWRR Run Behind FIFO Put
51 				 *       (ITSTV)
52 				 * 12    reserved
53 				 * 11    MCH Thermal Sensor Event
54 				 *       for SMI/SCI/SERR (GTSE)
55 				 * 10    reserved
56 				 *  9    LOCK to non-DRAM Memory Flag (LCKF)
57 				 *  8    reserved
58 				 *  7    DRAM Throttle Flag (DTF)
59 				 *  6:2  reserved
60 				 *  1    Multi-bit DRAM ECC Error Flag (DMERR)
61 				 *  0    Single-bit DRAM ECC Error Flag (DSERR)
62 				 */
63 #define X38_ERRSTS_UE		0x0002
64 #define X38_ERRSTS_CE		0x0001
65 #define X38_ERRSTS_BITS	(X38_ERRSTS_UE | X38_ERRSTS_CE)
66 
67 
68 /* Intel  MMIO register space - device 0 function 0 - MMR space */
69 
70 #define X38_C0DRB	0x200	/* Channel 0 DRAM Rank Boundary (16b x 4)
71 				 *
72 				 * 15:10 reserved
73 				 *  9:0  Channel 0 DRAM Rank Boundary Address
74 				 */
75 #define X38_C1DRB	0x600	/* Channel 1 DRAM Rank Boundary (16b x 4) */
76 #define X38_DRB_MASK	0x3ff	/* bits 9:0 */
77 #define X38_DRB_SHIFT 26	/* 64MiB grain */
78 
79 #define X38_C0ECCERRLOG 0x280	/* Channel 0 ECC Error Log (64b)
80 				 *
81 				 * 63:48 Error Column Address (ERRCOL)
82 				 * 47:32 Error Row Address (ERRROW)
83 				 * 31:29 Error Bank Address (ERRBANK)
84 				 * 28:27 Error Rank Address (ERRRANK)
85 				 * 26:24 reserved
86 				 * 23:16 Error Syndrome (ERRSYND)
87 				 * 15: 2 reserved
88 				 *    1  Multiple Bit Error Status (MERRSTS)
89 				 *    0  Correctable Error Status (CERRSTS)
90 				 */
91 #define X38_C1ECCERRLOG 0x680	/* Channel 1 ECC Error Log (64b) */
92 #define X38_ECCERRLOG_CE	0x1
93 #define X38_ECCERRLOG_UE	0x2
94 #define X38_ECCERRLOG_RANK_BITS	0x18000000
95 #define X38_ECCERRLOG_SYNDROME_BITS	0xff0000
96 
97 #define X38_CAPID0 0xe0	/* see P.94 of spec for details */
98 
99 static int x38_channel_num;
100 
101 static int how_many_channel(struct pci_dev *pdev)
102 {
103 	unsigned char capid0_8b; /* 8th byte of CAPID0 */
104 
105 	pci_read_config_byte(pdev, X38_CAPID0 + 8, &capid0_8b);
106 	if (capid0_8b & 0x20) {	/* check DCD: Dual Channel Disable */
107 		debugf0("In single channel mode.\n");
108 		x38_channel_num = 1;
109 	} else {
110 		debugf0("In dual channel mode.\n");
111 		x38_channel_num = 2;
112 	}
113 
114 	return x38_channel_num;
115 }
116 
117 static unsigned long eccerrlog_syndrome(u64 log)
118 {
119 	return (log & X38_ECCERRLOG_SYNDROME_BITS) >> 16;
120 }
121 
122 static int eccerrlog_row(int channel, u64 log)
123 {
124 	return ((log & X38_ECCERRLOG_RANK_BITS) >> 27) |
125 		(channel * X38_RANKS_PER_CHANNEL);
126 }
127 
128 enum x38_chips {
129 	X38 = 0,
130 };
131 
132 struct x38_dev_info {
133 	const char *ctl_name;
134 };
135 
136 struct x38_error_info {
137 	u16 errsts;
138 	u16 errsts2;
139 	u64 eccerrlog[X38_CHANNELS];
140 };
141 
142 static const struct x38_dev_info x38_devs[] = {
143 	[X38] = {
144 		.ctl_name = "x38"},
145 };
146 
147 static struct pci_dev *mci_pdev;
148 static int x38_registered = 1;
149 
150 
151 static void x38_clear_error_info(struct mem_ctl_info *mci)
152 {
153 	struct pci_dev *pdev;
154 
155 	pdev = to_pci_dev(mci->dev);
156 
157 	/*
158 	 * Clear any error bits.
159 	 * (Yes, we really clear bits by writing 1 to them.)
160 	 */
161 	pci_write_bits16(pdev, X38_ERRSTS, X38_ERRSTS_BITS,
162 			 X38_ERRSTS_BITS);
163 }
164 
165 static u64 x38_readq(const void __iomem *addr)
166 {
167 	return readl(addr) | (((u64)readl(addr + 4)) << 32);
168 }
169 
170 static void x38_get_and_clear_error_info(struct mem_ctl_info *mci,
171 				 struct x38_error_info *info)
172 {
173 	struct pci_dev *pdev;
174 	void __iomem *window = mci->pvt_info;
175 
176 	pdev = to_pci_dev(mci->dev);
177 
178 	/*
179 	 * This is a mess because there is no atomic way to read all the
180 	 * registers at once and the registers can transition from CE being
181 	 * overwritten by UE.
182 	 */
183 	pci_read_config_word(pdev, X38_ERRSTS, &info->errsts);
184 	if (!(info->errsts & X38_ERRSTS_BITS))
185 		return;
186 
187 	info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
188 	if (x38_channel_num == 2)
189 		info->eccerrlog[1] = x38_readq(window + X38_C1ECCERRLOG);
190 
191 	pci_read_config_word(pdev, X38_ERRSTS, &info->errsts2);
192 
193 	/*
194 	 * If the error is the same for both reads then the first set
195 	 * of reads is valid.  If there is a change then there is a CE
196 	 * with no info and the second set of reads is valid and
197 	 * should be UE info.
198 	 */
199 	if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
200 		info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
201 		if (x38_channel_num == 2)
202 			info->eccerrlog[1] =
203 				x38_readq(window + X38_C1ECCERRLOG);
204 	}
205 
206 	x38_clear_error_info(mci);
207 }
208 
209 static void x38_process_error_info(struct mem_ctl_info *mci,
210 				struct x38_error_info *info)
211 {
212 	int channel;
213 	u64 log;
214 
215 	if (!(info->errsts & X38_ERRSTS_BITS))
216 		return;
217 
218 	if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
219 		edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
220 		info->errsts = info->errsts2;
221 	}
222 
223 	for (channel = 0; channel < x38_channel_num; channel++) {
224 		log = info->eccerrlog[channel];
225 		if (log & X38_ECCERRLOG_UE) {
226 			edac_mc_handle_ue(mci, 0, 0,
227 				eccerrlog_row(channel, log), "x38 UE");
228 		} else if (log & X38_ECCERRLOG_CE) {
229 			edac_mc_handle_ce(mci, 0, 0,
230 				eccerrlog_syndrome(log),
231 				eccerrlog_row(channel, log), 0, "x38 CE");
232 		}
233 	}
234 }
235 
236 static void x38_check(struct mem_ctl_info *mci)
237 {
238 	struct x38_error_info info;
239 
240 	debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
241 	x38_get_and_clear_error_info(mci, &info);
242 	x38_process_error_info(mci, &info);
243 }
244 
245 
246 void __iomem *x38_map_mchbar(struct pci_dev *pdev)
247 {
248 	union {
249 		u64 mchbar;
250 		struct {
251 			u32 mchbar_low;
252 			u32 mchbar_high;
253 		};
254 	} u;
255 	void __iomem *window;
256 
257 	pci_read_config_dword(pdev, X38_MCHBAR_LOW, &u.mchbar_low);
258 	pci_write_config_dword(pdev, X38_MCHBAR_LOW, u.mchbar_low | 0x1);
259 	pci_read_config_dword(pdev, X38_MCHBAR_HIGH, &u.mchbar_high);
260 	u.mchbar &= X38_MCHBAR_MASK;
261 
262 	if (u.mchbar != (resource_size_t)u.mchbar) {
263 		printk(KERN_ERR
264 			"x38: mmio space beyond accessible range (0x%llx)\n",
265 			(unsigned long long)u.mchbar);
266 		return NULL;
267 	}
268 
269 	window = ioremap_nocache(u.mchbar, X38_MMR_WINDOW_SIZE);
270 	if (!window)
271 		printk(KERN_ERR "x38: cannot map mmio space at 0x%llx\n",
272 			(unsigned long long)u.mchbar);
273 
274 	return window;
275 }
276 
277 
278 static void x38_get_drbs(void __iomem *window,
279 			u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
280 {
281 	int i;
282 
283 	for (i = 0; i < X38_RANKS_PER_CHANNEL; i++) {
284 		drbs[0][i] = readw(window + X38_C0DRB + 2*i) & X38_DRB_MASK;
285 		drbs[1][i] = readw(window + X38_C1DRB + 2*i) & X38_DRB_MASK;
286 	}
287 }
288 
289 static bool x38_is_stacked(struct pci_dev *pdev,
290 			u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
291 {
292 	u16 tom;
293 
294 	pci_read_config_word(pdev, X38_TOM, &tom);
295 	tom &= X38_TOM_MASK;
296 
297 	return drbs[X38_CHANNELS - 1][X38_RANKS_PER_CHANNEL - 1] == tom;
298 }
299 
300 static unsigned long drb_to_nr_pages(
301 			u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL],
302 			bool stacked, int channel, int rank)
303 {
304 	int n;
305 
306 	n = drbs[channel][rank];
307 	if (rank > 0)
308 		n -= drbs[channel][rank - 1];
309 	if (stacked && (channel == 1) && drbs[channel][rank] ==
310 				drbs[channel][X38_RANKS_PER_CHANNEL - 1]) {
311 		n -= drbs[0][X38_RANKS_PER_CHANNEL - 1];
312 	}
313 
314 	n <<= (X38_DRB_SHIFT - PAGE_SHIFT);
315 	return n;
316 }
317 
318 static int x38_probe1(struct pci_dev *pdev, int dev_idx)
319 {
320 	int rc;
321 	int i;
322 	struct mem_ctl_info *mci = NULL;
323 	unsigned long last_page;
324 	u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL];
325 	bool stacked;
326 	void __iomem *window;
327 
328 	debugf0("MC: %s()\n", __func__);
329 
330 	window = x38_map_mchbar(pdev);
331 	if (!window)
332 		return -ENODEV;
333 
334 	x38_get_drbs(window, drbs);
335 
336 	how_many_channel(pdev);
337 
338 	/* FIXME: unconventional pvt_info usage */
339 	mci = edac_mc_alloc(0, X38_RANKS, x38_channel_num, 0);
340 	if (!mci)
341 		return -ENOMEM;
342 
343 	debugf3("MC: %s(): init mci\n", __func__);
344 
345 	mci->dev = &pdev->dev;
346 	mci->mtype_cap = MEM_FLAG_DDR2;
347 
348 	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
349 	mci->edac_cap = EDAC_FLAG_SECDED;
350 
351 	mci->mod_name = EDAC_MOD_STR;
352 	mci->mod_ver = X38_REVISION;
353 	mci->ctl_name = x38_devs[dev_idx].ctl_name;
354 	mci->dev_name = pci_name(pdev);
355 	mci->edac_check = x38_check;
356 	mci->ctl_page_to_phys = NULL;
357 	mci->pvt_info = window;
358 
359 	stacked = x38_is_stacked(pdev, drbs);
360 
361 	/*
362 	 * The dram rank boundary (DRB) reg values are boundary addresses
363 	 * for each DRAM rank with a granularity of 64MB.  DRB regs are
364 	 * cumulative; the last one will contain the total memory
365 	 * contained in all ranks.
366 	 */
367 	last_page = -1UL;
368 	for (i = 0; i < mci->nr_csrows; i++) {
369 		unsigned long nr_pages;
370 		struct csrow_info *csrow = &mci->csrows[i];
371 
372 		nr_pages = drb_to_nr_pages(drbs, stacked,
373 			i / X38_RANKS_PER_CHANNEL,
374 			i % X38_RANKS_PER_CHANNEL);
375 
376 		if (nr_pages == 0) {
377 			csrow->mtype = MEM_EMPTY;
378 			continue;
379 		}
380 
381 		csrow->first_page = last_page + 1;
382 		last_page += nr_pages;
383 		csrow->last_page = last_page;
384 		csrow->nr_pages = nr_pages;
385 
386 		csrow->grain = nr_pages << PAGE_SHIFT;
387 		csrow->mtype = MEM_DDR2;
388 		csrow->dtype = DEV_UNKNOWN;
389 		csrow->edac_mode = EDAC_UNKNOWN;
390 	}
391 
392 	x38_clear_error_info(mci);
393 
394 	rc = -ENODEV;
395 	if (edac_mc_add_mc(mci)) {
396 		debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
397 		goto fail;
398 	}
399 
400 	/* get this far and it's successful */
401 	debugf3("MC: %s(): success\n", __func__);
402 	return 0;
403 
404 fail:
405 	iounmap(window);
406 	if (mci)
407 		edac_mc_free(mci);
408 
409 	return rc;
410 }
411 
412 static int __devinit x38_init_one(struct pci_dev *pdev,
413 				const struct pci_device_id *ent)
414 {
415 	int rc;
416 
417 	debugf0("MC: %s()\n", __func__);
418 
419 	if (pci_enable_device(pdev) < 0)
420 		return -EIO;
421 
422 	rc = x38_probe1(pdev, ent->driver_data);
423 	if (!mci_pdev)
424 		mci_pdev = pci_dev_get(pdev);
425 
426 	return rc;
427 }
428 
429 static void __devexit x38_remove_one(struct pci_dev *pdev)
430 {
431 	struct mem_ctl_info *mci;
432 
433 	debugf0("%s()\n", __func__);
434 
435 	mci = edac_mc_del_mc(&pdev->dev);
436 	if (!mci)
437 		return;
438 
439 	iounmap(mci->pvt_info);
440 
441 	edac_mc_free(mci);
442 }
443 
444 static const struct pci_device_id x38_pci_tbl[] __devinitdata = {
445 	{
446 	 PCI_VEND_DEV(INTEL, X38_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
447 	 X38},
448 	{
449 	 0,
450 	 }			/* 0 terminated list. */
451 };
452 
453 MODULE_DEVICE_TABLE(pci, x38_pci_tbl);
454 
455 static struct pci_driver x38_driver = {
456 	.name = EDAC_MOD_STR,
457 	.probe = x38_init_one,
458 	.remove = __devexit_p(x38_remove_one),
459 	.id_table = x38_pci_tbl,
460 };
461 
462 static int __init x38_init(void)
463 {
464 	int pci_rc;
465 
466 	debugf3("MC: %s()\n", __func__);
467 
468 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
469 	opstate_init();
470 
471 	pci_rc = pci_register_driver(&x38_driver);
472 	if (pci_rc < 0)
473 		goto fail0;
474 
475 	if (!mci_pdev) {
476 		x38_registered = 0;
477 		mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
478 					PCI_DEVICE_ID_INTEL_X38_HB, NULL);
479 		if (!mci_pdev) {
480 			debugf0("x38 pci_get_device fail\n");
481 			pci_rc = -ENODEV;
482 			goto fail1;
483 		}
484 
485 		pci_rc = x38_init_one(mci_pdev, x38_pci_tbl);
486 		if (pci_rc < 0) {
487 			debugf0("x38 init fail\n");
488 			pci_rc = -ENODEV;
489 			goto fail1;
490 		}
491 	}
492 
493 	return 0;
494 
495 fail1:
496 	pci_unregister_driver(&x38_driver);
497 
498 fail0:
499 	if (mci_pdev)
500 		pci_dev_put(mci_pdev);
501 
502 	return pci_rc;
503 }
504 
505 static void __exit x38_exit(void)
506 {
507 	debugf3("MC: %s()\n", __func__);
508 
509 	pci_unregister_driver(&x38_driver);
510 	if (!x38_registered) {
511 		x38_remove_one(mci_pdev);
512 		pci_dev_put(mci_pdev);
513 	}
514 }
515 
516 module_init(x38_init);
517 module_exit(x38_exit);
518 
519 MODULE_LICENSE("GPL");
520 MODULE_AUTHOR("Cluster Computing, Inc. Hitoshi Mitake");
521 MODULE_DESCRIPTION("MC support for Intel X38 memory hub controllers");
522 
523 module_param(edac_op_state, int, 0444);
524 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
525