xref: /openbmc/linux/drivers/edac/synopsys_edac.c (revision f16fe2d3)
1 /*
2  * Synopsys DDR ECC Driver
3  * This driver is based on ppc4xx_edac.c drivers
4  *
5  * Copyright (C) 2012 - 2014 Xilinx, Inc.
6  *
7  * This program is free software: you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation, either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details
20  */
21 
22 #include <linux/edac.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/interrupt.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 
29 #include "edac_module.h"
30 
31 /* Number of cs_rows needed per memory controller */
32 #define SYNPS_EDAC_NR_CSROWS		1
33 
34 /* Number of channels per memory controller */
35 #define SYNPS_EDAC_NR_CHANS		1
36 
37 /* Granularity of reported error in bytes */
38 #define SYNPS_EDAC_ERR_GRAIN		1
39 
40 #define SYNPS_EDAC_MSG_SIZE		256
41 
42 #define SYNPS_EDAC_MOD_STRING		"synps_edac"
43 #define SYNPS_EDAC_MOD_VER		"1"
44 
45 /* Synopsys DDR memory controller registers that are relevant to ECC */
46 #define CTRL_OFST			0x0
47 #define T_ZQ_OFST			0xA4
48 
49 /* ECC control register */
50 #define ECC_CTRL_OFST			0xC4
51 /* ECC log register */
52 #define CE_LOG_OFST			0xC8
53 /* ECC address register */
54 #define CE_ADDR_OFST			0xCC
55 /* ECC data[31:0] register */
56 #define CE_DATA_31_0_OFST		0xD0
57 
58 /* Uncorrectable error info registers */
59 #define UE_LOG_OFST			0xDC
60 #define UE_ADDR_OFST			0xE0
61 #define UE_DATA_31_0_OFST		0xE4
62 
63 #define STAT_OFST			0xF0
64 #define SCRUB_OFST			0xF4
65 
66 /* Control register bit field definitions */
67 #define CTRL_BW_MASK			0xC
68 #define CTRL_BW_SHIFT			2
69 
70 #define DDRCTL_WDTH_16			1
71 #define DDRCTL_WDTH_32			0
72 
73 /* ZQ register bit field definitions */
74 #define T_ZQ_DDRMODE_MASK		0x2
75 
76 /* ECC control register bit field definitions */
77 #define ECC_CTRL_CLR_CE_ERR		0x2
78 #define ECC_CTRL_CLR_UE_ERR		0x1
79 
80 /* ECC correctable/uncorrectable error log register definitions */
81 #define LOG_VALID			0x1
82 #define CE_LOG_BITPOS_MASK		0xFE
83 #define CE_LOG_BITPOS_SHIFT		1
84 
85 /* ECC correctable/uncorrectable error address register definitions */
86 #define ADDR_COL_MASK			0xFFF
87 #define ADDR_ROW_MASK			0xFFFF000
88 #define ADDR_ROW_SHIFT			12
89 #define ADDR_BANK_MASK			0x70000000
90 #define ADDR_BANK_SHIFT			28
91 
92 /* ECC statistic register definitions */
93 #define STAT_UECNT_MASK			0xFF
94 #define STAT_CECNT_MASK			0xFF00
95 #define STAT_CECNT_SHIFT		8
96 
97 /* ECC scrub register definitions */
98 #define SCRUB_MODE_MASK			0x7
99 #define SCRUB_MODE_SECDED		0x4
100 
101 /* DDR ECC Quirks */
102 #define DDR_ECC_INTR_SUPPORT		BIT(0)
103 #define DDR_ECC_DATA_POISON_SUPPORT	BIT(1)
104 #define DDR_ECC_INTR_SELF_CLEAR		BIT(2)
105 
106 /* ZynqMP Enhanced DDR memory controller registers that are relevant to ECC */
107 /* ECC Configuration Registers */
108 #define ECC_CFG0_OFST			0x70
109 #define ECC_CFG1_OFST			0x74
110 
111 /* ECC Status Register */
112 #define ECC_STAT_OFST			0x78
113 
114 /* ECC Clear Register */
115 #define ECC_CLR_OFST			0x7C
116 
117 /* ECC Error count Register */
118 #define ECC_ERRCNT_OFST			0x80
119 
120 /* ECC Corrected Error Address Register */
121 #define ECC_CEADDR0_OFST		0x84
122 #define ECC_CEADDR1_OFST		0x88
123 
124 /* ECC Syndrome Registers */
125 #define ECC_CSYND0_OFST			0x8C
126 #define ECC_CSYND1_OFST			0x90
127 #define ECC_CSYND2_OFST			0x94
128 
129 /* ECC Bit Mask0 Address Register */
130 #define ECC_BITMASK0_OFST		0x98
131 #define ECC_BITMASK1_OFST		0x9C
132 #define ECC_BITMASK2_OFST		0xA0
133 
134 /* ECC UnCorrected Error Address Register */
135 #define ECC_UEADDR0_OFST		0xA4
136 #define ECC_UEADDR1_OFST		0xA8
137 
138 /* ECC Syndrome Registers */
139 #define ECC_UESYND0_OFST		0xAC
140 #define ECC_UESYND1_OFST		0xB0
141 #define ECC_UESYND2_OFST		0xB4
142 
143 /* ECC Poison Address Reg */
144 #define ECC_POISON0_OFST		0xB8
145 #define ECC_POISON1_OFST		0xBC
146 
147 #define ECC_ADDRMAP0_OFFSET		0x200
148 
149 /* Control register bitfield definitions */
150 #define ECC_CTRL_BUSWIDTH_MASK		0x3000
151 #define ECC_CTRL_BUSWIDTH_SHIFT		12
152 #define ECC_CTRL_CLR_CE_ERRCNT		BIT(2)
153 #define ECC_CTRL_CLR_UE_ERRCNT		BIT(3)
154 
155 /* DDR Control Register width definitions  */
156 #define DDRCTL_EWDTH_16			2
157 #define DDRCTL_EWDTH_32			1
158 #define DDRCTL_EWDTH_64			0
159 
160 /* ECC status register definitions */
161 #define ECC_STAT_UECNT_MASK		0xF0000
162 #define ECC_STAT_UECNT_SHIFT		16
163 #define ECC_STAT_CECNT_MASK		0xF00
164 #define ECC_STAT_CECNT_SHIFT		8
165 #define ECC_STAT_BITNUM_MASK		0x7F
166 
167 /* DDR QOS Interrupt register definitions */
168 #define DDR_QOS_IRQ_STAT_OFST		0x20200
169 #define DDR_QOSUE_MASK			0x4
170 #define	DDR_QOSCE_MASK			0x2
171 #define	ECC_CE_UE_INTR_MASK		0x6
172 #define DDR_QOS_IRQ_EN_OFST		0x20208
173 #define DDR_QOS_IRQ_DB_OFST		0x2020C
174 
175 /* DDR QOS Interrupt register definitions */
176 #define DDR_UE_MASK			BIT(9)
177 #define DDR_CE_MASK			BIT(8)
178 
179 /* ECC Corrected Error Register Mask and Shifts*/
180 #define ECC_CEADDR0_RW_MASK		0x3FFFF
181 #define ECC_CEADDR0_RNK_MASK		BIT(24)
182 #define ECC_CEADDR1_BNKGRP_MASK		0x3000000
183 #define ECC_CEADDR1_BNKNR_MASK		0x70000
184 #define ECC_CEADDR1_BLKNR_MASK		0xFFF
185 #define ECC_CEADDR1_BNKGRP_SHIFT	24
186 #define ECC_CEADDR1_BNKNR_SHIFT		16
187 
188 /* ECC Poison register shifts */
189 #define ECC_POISON0_RANK_SHIFT		24
190 #define ECC_POISON0_RANK_MASK		BIT(24)
191 #define ECC_POISON0_COLUMN_SHIFT	0
192 #define ECC_POISON0_COLUMN_MASK		0xFFF
193 #define ECC_POISON1_BG_SHIFT		28
194 #define ECC_POISON1_BG_MASK		0x30000000
195 #define ECC_POISON1_BANKNR_SHIFT	24
196 #define ECC_POISON1_BANKNR_MASK		0x7000000
197 #define ECC_POISON1_ROW_SHIFT		0
198 #define ECC_POISON1_ROW_MASK		0x3FFFF
199 
200 /* DDR Memory type defines */
201 #define MEM_TYPE_DDR3			0x1
202 #define MEM_TYPE_LPDDR3			0x8
203 #define MEM_TYPE_DDR2			0x4
204 #define MEM_TYPE_DDR4			0x10
205 #define MEM_TYPE_LPDDR4			0x20
206 
207 /* DDRC Software control register */
208 #define DDRC_SWCTL			0x320
209 
210 /* DDRC ECC CE & UE poison mask */
211 #define ECC_CEPOISON_MASK		0x3
212 #define ECC_UEPOISON_MASK		0x1
213 
214 /* DDRC Device config masks */
215 #define DDRC_MSTR_CFG_MASK		0xC0000000
216 #define DDRC_MSTR_CFG_SHIFT		30
217 #define DDRC_MSTR_CFG_X4_MASK		0x0
218 #define DDRC_MSTR_CFG_X8_MASK		0x1
219 #define DDRC_MSTR_CFG_X16_MASK		0x2
220 #define DDRC_MSTR_CFG_X32_MASK		0x3
221 
222 #define DDR_MAX_ROW_SHIFT		18
223 #define DDR_MAX_COL_SHIFT		14
224 #define DDR_MAX_BANK_SHIFT		3
225 #define DDR_MAX_BANKGRP_SHIFT		2
226 
227 #define ROW_MAX_VAL_MASK		0xF
228 #define COL_MAX_VAL_MASK		0xF
229 #define BANK_MAX_VAL_MASK		0x1F
230 #define BANKGRP_MAX_VAL_MASK		0x1F
231 #define RANK_MAX_VAL_MASK		0x1F
232 
233 #define ROW_B0_BASE			6
234 #define ROW_B1_BASE			7
235 #define ROW_B2_BASE			8
236 #define ROW_B3_BASE			9
237 #define ROW_B4_BASE			10
238 #define ROW_B5_BASE			11
239 #define ROW_B6_BASE			12
240 #define ROW_B7_BASE			13
241 #define ROW_B8_BASE			14
242 #define ROW_B9_BASE			15
243 #define ROW_B10_BASE			16
244 #define ROW_B11_BASE			17
245 #define ROW_B12_BASE			18
246 #define ROW_B13_BASE			19
247 #define ROW_B14_BASE			20
248 #define ROW_B15_BASE			21
249 #define ROW_B16_BASE			22
250 #define ROW_B17_BASE			23
251 
252 #define COL_B2_BASE			2
253 #define COL_B3_BASE			3
254 #define COL_B4_BASE			4
255 #define COL_B5_BASE			5
256 #define COL_B6_BASE			6
257 #define COL_B7_BASE			7
258 #define COL_B8_BASE			8
259 #define COL_B9_BASE			9
260 #define COL_B10_BASE			10
261 #define COL_B11_BASE			11
262 #define COL_B12_BASE			12
263 #define COL_B13_BASE			13
264 
265 #define BANK_B0_BASE			2
266 #define BANK_B1_BASE			3
267 #define BANK_B2_BASE			4
268 
269 #define BANKGRP_B0_BASE			2
270 #define BANKGRP_B1_BASE			3
271 
272 #define RANK_B0_BASE			6
273 
274 /**
275  * struct ecc_error_info - ECC error log information.
276  * @row:	Row number.
277  * @col:	Column number.
278  * @bank:	Bank number.
279  * @bitpos:	Bit position.
280  * @data:	Data causing the error.
281  * @bankgrpnr:	Bank group number.
282  * @blknr:	Block number.
283  */
284 struct ecc_error_info {
285 	u32 row;
286 	u32 col;
287 	u32 bank;
288 	u32 bitpos;
289 	u32 data;
290 	u32 bankgrpnr;
291 	u32 blknr;
292 };
293 
294 /**
295  * struct synps_ecc_status - ECC status information to report.
296  * @ce_cnt:	Correctable error count.
297  * @ue_cnt:	Uncorrectable error count.
298  * @ceinfo:	Correctable error log information.
299  * @ueinfo:	Uncorrectable error log information.
300  */
301 struct synps_ecc_status {
302 	u32 ce_cnt;
303 	u32 ue_cnt;
304 	struct ecc_error_info ceinfo;
305 	struct ecc_error_info ueinfo;
306 };
307 
308 /**
309  * struct synps_edac_priv - DDR memory controller private instance data.
310  * @baseaddr:		Base address of the DDR controller.
311  * @message:		Buffer for framing the event specific info.
312  * @stat:		ECC status information.
313  * @p_data:		Platform data.
314  * @ce_cnt:		Correctable Error count.
315  * @ue_cnt:		Uncorrectable Error count.
316  * @poison_addr:	Data poison address.
317  * @row_shift:		Bit shifts for row bit.
318  * @col_shift:		Bit shifts for column bit.
319  * @bank_shift:		Bit shifts for bank bit.
320  * @bankgrp_shift:	Bit shifts for bank group bit.
321  * @rank_shift:		Bit shifts for rank bit.
322  */
323 struct synps_edac_priv {
324 	void __iomem *baseaddr;
325 	char message[SYNPS_EDAC_MSG_SIZE];
326 	struct synps_ecc_status stat;
327 	const struct synps_platform_data *p_data;
328 	u32 ce_cnt;
329 	u32 ue_cnt;
330 #ifdef CONFIG_EDAC_DEBUG
331 	ulong poison_addr;
332 	u32 row_shift[18];
333 	u32 col_shift[14];
334 	u32 bank_shift[3];
335 	u32 bankgrp_shift[2];
336 	u32 rank_shift[1];
337 #endif
338 };
339 
340 /**
341  * struct synps_platform_data -  synps platform data structure.
342  * @get_error_info:	Get EDAC error info.
343  * @get_mtype:		Get mtype.
344  * @get_dtype:		Get dtype.
345  * @get_ecc_state:	Get ECC state.
346  * @quirks:		To differentiate IPs.
347  */
348 struct synps_platform_data {
349 	int (*get_error_info)(struct synps_edac_priv *priv);
350 	enum mem_type (*get_mtype)(const void __iomem *base);
351 	enum dev_type (*get_dtype)(const void __iomem *base);
352 	bool (*get_ecc_state)(void __iomem *base);
353 	int quirks;
354 };
355 
356 /**
357  * zynq_get_error_info - Get the current ECC error info.
358  * @priv:	DDR memory controller private instance data.
359  *
360  * Return: one if there is no error, otherwise zero.
361  */
362 static int zynq_get_error_info(struct synps_edac_priv *priv)
363 {
364 	struct synps_ecc_status *p;
365 	u32 regval, clearval = 0;
366 	void __iomem *base;
367 
368 	base = priv->baseaddr;
369 	p = &priv->stat;
370 
371 	regval = readl(base + STAT_OFST);
372 	if (!regval)
373 		return 1;
374 
375 	p->ce_cnt = (regval & STAT_CECNT_MASK) >> STAT_CECNT_SHIFT;
376 	p->ue_cnt = regval & STAT_UECNT_MASK;
377 
378 	regval = readl(base + CE_LOG_OFST);
379 	if (!(p->ce_cnt && (regval & LOG_VALID)))
380 		goto ue_err;
381 
382 	p->ceinfo.bitpos = (regval & CE_LOG_BITPOS_MASK) >> CE_LOG_BITPOS_SHIFT;
383 	regval = readl(base + CE_ADDR_OFST);
384 	p->ceinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
385 	p->ceinfo.col = regval & ADDR_COL_MASK;
386 	p->ceinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
387 	p->ceinfo.data = readl(base + CE_DATA_31_0_OFST);
388 	edac_dbg(3, "CE bit position: %d data: %d\n", p->ceinfo.bitpos,
389 		 p->ceinfo.data);
390 	clearval = ECC_CTRL_CLR_CE_ERR;
391 
392 ue_err:
393 	regval = readl(base + UE_LOG_OFST);
394 	if (!(p->ue_cnt && (regval & LOG_VALID)))
395 		goto out;
396 
397 	regval = readl(base + UE_ADDR_OFST);
398 	p->ueinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
399 	p->ueinfo.col = regval & ADDR_COL_MASK;
400 	p->ueinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
401 	p->ueinfo.data = readl(base + UE_DATA_31_0_OFST);
402 	clearval |= ECC_CTRL_CLR_UE_ERR;
403 
404 out:
405 	writel(clearval, base + ECC_CTRL_OFST);
406 	writel(0x0, base + ECC_CTRL_OFST);
407 
408 	return 0;
409 }
410 
411 /**
412  * zynqmp_get_error_info - Get the current ECC error info.
413  * @priv:	DDR memory controller private instance data.
414  *
415  * Return: one if there is no error otherwise returns zero.
416  */
417 static int zynqmp_get_error_info(struct synps_edac_priv *priv)
418 {
419 	struct synps_ecc_status *p;
420 	u32 regval, clearval = 0;
421 	void __iomem *base;
422 
423 	base = priv->baseaddr;
424 	p = &priv->stat;
425 
426 	regval = readl(base + ECC_STAT_OFST);
427 	if (!regval)
428 		return 1;
429 
430 	p->ce_cnt = (regval & ECC_STAT_CECNT_MASK) >> ECC_STAT_CECNT_SHIFT;
431 	p->ue_cnt = (regval & ECC_STAT_UECNT_MASK) >> ECC_STAT_UECNT_SHIFT;
432 	if (!p->ce_cnt)
433 		goto ue_err;
434 
435 	p->ceinfo.bitpos = (regval & ECC_STAT_BITNUM_MASK);
436 
437 	regval = readl(base + ECC_CEADDR0_OFST);
438 	p->ceinfo.row = (regval & ECC_CEADDR0_RW_MASK);
439 	regval = readl(base + ECC_CEADDR1_OFST);
440 	p->ceinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
441 					ECC_CEADDR1_BNKNR_SHIFT;
442 	p->ceinfo.bankgrpnr = (regval &	ECC_CEADDR1_BNKGRP_MASK) >>
443 					ECC_CEADDR1_BNKGRP_SHIFT;
444 	p->ceinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
445 	p->ceinfo.data = readl(base + ECC_CSYND0_OFST);
446 	edac_dbg(2, "ECCCSYN0: 0x%08X ECCCSYN1: 0x%08X ECCCSYN2: 0x%08X\n",
447 		 readl(base + ECC_CSYND0_OFST), readl(base + ECC_CSYND1_OFST),
448 		 readl(base + ECC_CSYND2_OFST));
449 ue_err:
450 	if (!p->ue_cnt)
451 		goto out;
452 
453 	regval = readl(base + ECC_UEADDR0_OFST);
454 	p->ueinfo.row = (regval & ECC_CEADDR0_RW_MASK);
455 	regval = readl(base + ECC_UEADDR1_OFST);
456 	p->ueinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
457 					ECC_CEADDR1_BNKGRP_SHIFT;
458 	p->ueinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
459 					ECC_CEADDR1_BNKNR_SHIFT;
460 	p->ueinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
461 	p->ueinfo.data = readl(base + ECC_UESYND0_OFST);
462 out:
463 	clearval = ECC_CTRL_CLR_CE_ERR | ECC_CTRL_CLR_CE_ERRCNT;
464 	clearval |= ECC_CTRL_CLR_UE_ERR | ECC_CTRL_CLR_UE_ERRCNT;
465 	writel(clearval, base + ECC_CLR_OFST);
466 	writel(0x0, base + ECC_CLR_OFST);
467 
468 	return 0;
469 }
470 
471 /**
472  * handle_error - Handle Correctable and Uncorrectable errors.
473  * @mci:	EDAC memory controller instance.
474  * @p:		Synopsys ECC status structure.
475  *
476  * Handles ECC correctable and uncorrectable errors.
477  */
478 static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p)
479 {
480 	struct synps_edac_priv *priv = mci->pvt_info;
481 	struct ecc_error_info *pinf;
482 
483 	if (p->ce_cnt) {
484 		pinf = &p->ceinfo;
485 		if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
486 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
487 				 "DDR ECC error type:%s Row %d Bank %d BankGroup Number %d Block Number %d Bit Position: %d Data: 0x%08x",
488 				 "CE", pinf->row, pinf->bank,
489 				 pinf->bankgrpnr, pinf->blknr,
490 				 pinf->bitpos, pinf->data);
491 		} else {
492 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
493 				 "DDR ECC error type:%s Row %d Bank %d Col %d Bit Position: %d Data: 0x%08x",
494 				 "CE", pinf->row, pinf->bank, pinf->col,
495 				 pinf->bitpos, pinf->data);
496 		}
497 
498 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
499 				     p->ce_cnt, 0, 0, 0, 0, 0, -1,
500 				     priv->message, "");
501 	}
502 
503 	if (p->ue_cnt) {
504 		pinf = &p->ueinfo;
505 		if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
506 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
507 				 "DDR ECC error type :%s Row %d Bank %d BankGroup Number %d Block Number %d",
508 				 "UE", pinf->row, pinf->bank,
509 				 pinf->bankgrpnr, pinf->blknr);
510 		} else {
511 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
512 				 "DDR ECC error type :%s Row %d Bank %d Col %d ",
513 				 "UE", pinf->row, pinf->bank, pinf->col);
514 		}
515 
516 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
517 				     p->ue_cnt, 0, 0, 0, 0, 0, -1,
518 				     priv->message, "");
519 	}
520 
521 	memset(p, 0, sizeof(*p));
522 }
523 
524 /**
525  * intr_handler - Interrupt Handler for ECC interrupts.
526  * @irq:        IRQ number.
527  * @dev_id:     Device ID.
528  *
529  * Return: IRQ_NONE, if interrupt not set or IRQ_HANDLED otherwise.
530  */
531 static irqreturn_t intr_handler(int irq, void *dev_id)
532 {
533 	const struct synps_platform_data *p_data;
534 	struct mem_ctl_info *mci = dev_id;
535 	struct synps_edac_priv *priv;
536 	int status, regval;
537 
538 	priv = mci->pvt_info;
539 	p_data = priv->p_data;
540 
541 	/*
542 	 * v3.0 of the controller has the ce/ue bits cleared automatically,
543 	 * so this condition does not apply.
544 	 */
545 	if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)) {
546 		regval = readl(priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
547 		regval &= (DDR_QOSCE_MASK | DDR_QOSUE_MASK);
548 		if (!(regval & ECC_CE_UE_INTR_MASK))
549 			return IRQ_NONE;
550 	}
551 
552 	status = p_data->get_error_info(priv);
553 	if (status)
554 		return IRQ_NONE;
555 
556 	priv->ce_cnt += priv->stat.ce_cnt;
557 	priv->ue_cnt += priv->stat.ue_cnt;
558 	handle_error(mci, &priv->stat);
559 
560 	edac_dbg(3, "Total error count CE %d UE %d\n",
561 		 priv->ce_cnt, priv->ue_cnt);
562 	/* v3.0 of the controller does not have this register */
563 	if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR))
564 		writel(regval, priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
565 	return IRQ_HANDLED;
566 }
567 
568 /**
569  * check_errors - Check controller for ECC errors.
570  * @mci:	EDAC memory controller instance.
571  *
572  * Check and post ECC errors. Called by the polling thread.
573  */
574 static void check_errors(struct mem_ctl_info *mci)
575 {
576 	const struct synps_platform_data *p_data;
577 	struct synps_edac_priv *priv;
578 	int status;
579 
580 	priv = mci->pvt_info;
581 	p_data = priv->p_data;
582 
583 	status = p_data->get_error_info(priv);
584 	if (status)
585 		return;
586 
587 	priv->ce_cnt += priv->stat.ce_cnt;
588 	priv->ue_cnt += priv->stat.ue_cnt;
589 	handle_error(mci, &priv->stat);
590 
591 	edac_dbg(3, "Total error count CE %d UE %d\n",
592 		 priv->ce_cnt, priv->ue_cnt);
593 }
594 
595 /**
596  * zynq_get_dtype - Return the controller memory width.
597  * @base:	DDR memory controller base address.
598  *
599  * Get the EDAC device type width appropriate for the current controller
600  * configuration.
601  *
602  * Return: a device type width enumeration.
603  */
604 static enum dev_type zynq_get_dtype(const void __iomem *base)
605 {
606 	enum dev_type dt;
607 	u32 width;
608 
609 	width = readl(base + CTRL_OFST);
610 	width = (width & CTRL_BW_MASK) >> CTRL_BW_SHIFT;
611 
612 	switch (width) {
613 	case DDRCTL_WDTH_16:
614 		dt = DEV_X2;
615 		break;
616 	case DDRCTL_WDTH_32:
617 		dt = DEV_X4;
618 		break;
619 	default:
620 		dt = DEV_UNKNOWN;
621 	}
622 
623 	return dt;
624 }
625 
626 /**
627  * zynqmp_get_dtype - Return the controller memory width.
628  * @base:	DDR memory controller base address.
629  *
630  * Get the EDAC device type width appropriate for the current controller
631  * configuration.
632  *
633  * Return: a device type width enumeration.
634  */
635 static enum dev_type zynqmp_get_dtype(const void __iomem *base)
636 {
637 	enum dev_type dt;
638 	u32 width;
639 
640 	width = readl(base + CTRL_OFST);
641 	width = (width & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
642 	switch (width) {
643 	case DDRCTL_EWDTH_16:
644 		dt = DEV_X2;
645 		break;
646 	case DDRCTL_EWDTH_32:
647 		dt = DEV_X4;
648 		break;
649 	case DDRCTL_EWDTH_64:
650 		dt = DEV_X8;
651 		break;
652 	default:
653 		dt = DEV_UNKNOWN;
654 	}
655 
656 	return dt;
657 }
658 
659 /**
660  * zynq_get_ecc_state - Return the controller ECC enable/disable status.
661  * @base:	DDR memory controller base address.
662  *
663  * Get the ECC enable/disable status of the controller.
664  *
665  * Return: true if enabled, otherwise false.
666  */
667 static bool zynq_get_ecc_state(void __iomem *base)
668 {
669 	enum dev_type dt;
670 	u32 ecctype;
671 
672 	dt = zynq_get_dtype(base);
673 	if (dt == DEV_UNKNOWN)
674 		return false;
675 
676 	ecctype = readl(base + SCRUB_OFST) & SCRUB_MODE_MASK;
677 	if ((ecctype == SCRUB_MODE_SECDED) && (dt == DEV_X2))
678 		return true;
679 
680 	return false;
681 }
682 
683 /**
684  * zynqmp_get_ecc_state - Return the controller ECC enable/disable status.
685  * @base:	DDR memory controller base address.
686  *
687  * Get the ECC enable/disable status for the controller.
688  *
689  * Return: a ECC status boolean i.e true/false - enabled/disabled.
690  */
691 static bool zynqmp_get_ecc_state(void __iomem *base)
692 {
693 	enum dev_type dt;
694 	u32 ecctype;
695 
696 	dt = zynqmp_get_dtype(base);
697 	if (dt == DEV_UNKNOWN)
698 		return false;
699 
700 	ecctype = readl(base + ECC_CFG0_OFST) & SCRUB_MODE_MASK;
701 	if ((ecctype == SCRUB_MODE_SECDED) &&
702 	    ((dt == DEV_X2) || (dt == DEV_X4) || (dt == DEV_X8)))
703 		return true;
704 
705 	return false;
706 }
707 
708 /**
709  * get_memsize - Read the size of the attached memory device.
710  *
711  * Return: the memory size in bytes.
712  */
713 static u32 get_memsize(void)
714 {
715 	struct sysinfo inf;
716 
717 	si_meminfo(&inf);
718 
719 	return inf.totalram * inf.mem_unit;
720 }
721 
722 /**
723  * zynq_get_mtype - Return the controller memory type.
724  * @base:	Synopsys ECC status structure.
725  *
726  * Get the EDAC memory type appropriate for the current controller
727  * configuration.
728  *
729  * Return: a memory type enumeration.
730  */
731 static enum mem_type zynq_get_mtype(const void __iomem *base)
732 {
733 	enum mem_type mt;
734 	u32 memtype;
735 
736 	memtype = readl(base + T_ZQ_OFST);
737 
738 	if (memtype & T_ZQ_DDRMODE_MASK)
739 		mt = MEM_DDR3;
740 	else
741 		mt = MEM_DDR2;
742 
743 	return mt;
744 }
745 
746 /**
747  * zynqmp_get_mtype - Returns controller memory type.
748  * @base:	Synopsys ECC status structure.
749  *
750  * Get the EDAC memory type appropriate for the current controller
751  * configuration.
752  *
753  * Return: a memory type enumeration.
754  */
755 static enum mem_type zynqmp_get_mtype(const void __iomem *base)
756 {
757 	enum mem_type mt;
758 	u32 memtype;
759 
760 	memtype = readl(base + CTRL_OFST);
761 
762 	if ((memtype & MEM_TYPE_DDR3) || (memtype & MEM_TYPE_LPDDR3))
763 		mt = MEM_DDR3;
764 	else if (memtype & MEM_TYPE_DDR2)
765 		mt = MEM_RDDR2;
766 	else if ((memtype & MEM_TYPE_LPDDR4) || (memtype & MEM_TYPE_DDR4))
767 		mt = MEM_DDR4;
768 	else
769 		mt = MEM_EMPTY;
770 
771 	return mt;
772 }
773 
774 /**
775  * init_csrows - Initialize the csrow data.
776  * @mci:	EDAC memory controller instance.
777  *
778  * Initialize the chip select rows associated with the EDAC memory
779  * controller instance.
780  */
781 static void init_csrows(struct mem_ctl_info *mci)
782 {
783 	struct synps_edac_priv *priv = mci->pvt_info;
784 	const struct synps_platform_data *p_data;
785 	struct csrow_info *csi;
786 	struct dimm_info *dimm;
787 	u32 size, row;
788 	int j;
789 
790 	p_data = priv->p_data;
791 
792 	for (row = 0; row < mci->nr_csrows; row++) {
793 		csi = mci->csrows[row];
794 		size = get_memsize();
795 
796 		for (j = 0; j < csi->nr_channels; j++) {
797 			dimm		= csi->channels[j]->dimm;
798 			dimm->edac_mode	= EDAC_SECDED;
799 			dimm->mtype	= p_data->get_mtype(priv->baseaddr);
800 			dimm->nr_pages	= (size >> PAGE_SHIFT) / csi->nr_channels;
801 			dimm->grain	= SYNPS_EDAC_ERR_GRAIN;
802 			dimm->dtype	= p_data->get_dtype(priv->baseaddr);
803 		}
804 	}
805 }
806 
807 /**
808  * mc_init - Initialize one driver instance.
809  * @mci:	EDAC memory controller instance.
810  * @pdev:	platform device.
811  *
812  * Perform initialization of the EDAC memory controller instance and
813  * related driver-private data associated with the memory controller the
814  * instance is bound to.
815  */
816 static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev)
817 {
818 	struct synps_edac_priv *priv;
819 
820 	mci->pdev = &pdev->dev;
821 	priv = mci->pvt_info;
822 	platform_set_drvdata(pdev, mci);
823 
824 	/* Initialize controller capabilities and configuration */
825 	mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR2;
826 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
827 	mci->scrub_cap = SCRUB_HW_SRC;
828 	mci->scrub_mode = SCRUB_NONE;
829 
830 	mci->edac_cap = EDAC_FLAG_SECDED;
831 	mci->ctl_name = "synps_ddr_controller";
832 	mci->dev_name = SYNPS_EDAC_MOD_STRING;
833 	mci->mod_name = SYNPS_EDAC_MOD_VER;
834 
835 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
836 		edac_op_state = EDAC_OPSTATE_INT;
837 	} else {
838 		edac_op_state = EDAC_OPSTATE_POLL;
839 		mci->edac_check = check_errors;
840 	}
841 
842 	mci->ctl_page_to_phys = NULL;
843 
844 	init_csrows(mci);
845 }
846 
847 static void enable_intr(struct synps_edac_priv *priv)
848 {
849 	/* Enable UE/CE Interrupts */
850 	if (priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)
851 		writel(DDR_UE_MASK | DDR_CE_MASK,
852 		       priv->baseaddr + ECC_CLR_OFST);
853 	else
854 		writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
855 		       priv->baseaddr + DDR_QOS_IRQ_EN_OFST);
856 
857 }
858 
859 static void disable_intr(struct synps_edac_priv *priv)
860 {
861 	/* Disable UE/CE Interrupts */
862 	writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
863 			priv->baseaddr + DDR_QOS_IRQ_DB_OFST);
864 }
865 
866 static int setup_irq(struct mem_ctl_info *mci,
867 		     struct platform_device *pdev)
868 {
869 	struct synps_edac_priv *priv = mci->pvt_info;
870 	int ret, irq;
871 
872 	irq = platform_get_irq(pdev, 0);
873 	if (irq < 0) {
874 		edac_printk(KERN_ERR, EDAC_MC,
875 			    "No IRQ %d in DT\n", irq);
876 		return irq;
877 	}
878 
879 	ret = devm_request_irq(&pdev->dev, irq, intr_handler,
880 			       0, dev_name(&pdev->dev), mci);
881 	if (ret < 0) {
882 		edac_printk(KERN_ERR, EDAC_MC, "Failed to request IRQ\n");
883 		return ret;
884 	}
885 
886 	enable_intr(priv);
887 
888 	return 0;
889 }
890 
891 static const struct synps_platform_data zynq_edac_def = {
892 	.get_error_info	= zynq_get_error_info,
893 	.get_mtype	= zynq_get_mtype,
894 	.get_dtype	= zynq_get_dtype,
895 	.get_ecc_state	= zynq_get_ecc_state,
896 	.quirks		= 0,
897 };
898 
899 static const struct synps_platform_data zynqmp_edac_def = {
900 	.get_error_info	= zynqmp_get_error_info,
901 	.get_mtype	= zynqmp_get_mtype,
902 	.get_dtype	= zynqmp_get_dtype,
903 	.get_ecc_state	= zynqmp_get_ecc_state,
904 	.quirks         = (DDR_ECC_INTR_SUPPORT
905 #ifdef CONFIG_EDAC_DEBUG
906 			  | DDR_ECC_DATA_POISON_SUPPORT
907 #endif
908 			  ),
909 };
910 
911 static const struct synps_platform_data synopsys_edac_def = {
912 	.get_error_info	= zynqmp_get_error_info,
913 	.get_mtype	= zynqmp_get_mtype,
914 	.get_dtype	= zynqmp_get_dtype,
915 	.get_ecc_state	= zynqmp_get_ecc_state,
916 	.quirks         = (DDR_ECC_INTR_SUPPORT | DDR_ECC_INTR_SELF_CLEAR
917 #ifdef CONFIG_EDAC_DEBUG
918 			  | DDR_ECC_DATA_POISON_SUPPORT
919 #endif
920 			  ),
921 };
922 
923 
924 static const struct of_device_id synps_edac_match[] = {
925 	{
926 		.compatible = "xlnx,zynq-ddrc-a05",
927 		.data = (void *)&zynq_edac_def
928 	},
929 	{
930 		.compatible = "xlnx,zynqmp-ddrc-2.40a",
931 		.data = (void *)&zynqmp_edac_def
932 	},
933 	{
934 		.compatible = "snps,ddrc-3.80a",
935 		.data = (void *)&synopsys_edac_def
936 	},
937 	{
938 		/* end of table */
939 	}
940 };
941 
942 MODULE_DEVICE_TABLE(of, synps_edac_match);
943 
944 #ifdef CONFIG_EDAC_DEBUG
945 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
946 
947 /**
948  * ddr_poison_setup -	Update poison registers.
949  * @priv:		DDR memory controller private instance data.
950  *
951  * Update poison registers as per DDR mapping.
952  * Return: none.
953  */
954 static void ddr_poison_setup(struct synps_edac_priv *priv)
955 {
956 	int col = 0, row = 0, bank = 0, bankgrp = 0, rank = 0, regval;
957 	int index;
958 	ulong hif_addr = 0;
959 
960 	hif_addr = priv->poison_addr >> 3;
961 
962 	for (index = 0; index < DDR_MAX_ROW_SHIFT; index++) {
963 		if (priv->row_shift[index])
964 			row |= (((hif_addr >> priv->row_shift[index]) &
965 						BIT(0)) << index);
966 		else
967 			break;
968 	}
969 
970 	for (index = 0; index < DDR_MAX_COL_SHIFT; index++) {
971 		if (priv->col_shift[index] || index < 3)
972 			col |= (((hif_addr >> priv->col_shift[index]) &
973 						BIT(0)) << index);
974 		else
975 			break;
976 	}
977 
978 	for (index = 0; index < DDR_MAX_BANK_SHIFT; index++) {
979 		if (priv->bank_shift[index])
980 			bank |= (((hif_addr >> priv->bank_shift[index]) &
981 						BIT(0)) << index);
982 		else
983 			break;
984 	}
985 
986 	for (index = 0; index < DDR_MAX_BANKGRP_SHIFT; index++) {
987 		if (priv->bankgrp_shift[index])
988 			bankgrp |= (((hif_addr >> priv->bankgrp_shift[index])
989 						& BIT(0)) << index);
990 		else
991 			break;
992 	}
993 
994 	if (priv->rank_shift[0])
995 		rank = (hif_addr >> priv->rank_shift[0]) & BIT(0);
996 
997 	regval = (rank << ECC_POISON0_RANK_SHIFT) & ECC_POISON0_RANK_MASK;
998 	regval |= (col << ECC_POISON0_COLUMN_SHIFT) & ECC_POISON0_COLUMN_MASK;
999 	writel(regval, priv->baseaddr + ECC_POISON0_OFST);
1000 
1001 	regval = (bankgrp << ECC_POISON1_BG_SHIFT) & ECC_POISON1_BG_MASK;
1002 	regval |= (bank << ECC_POISON1_BANKNR_SHIFT) & ECC_POISON1_BANKNR_MASK;
1003 	regval |= (row << ECC_POISON1_ROW_SHIFT) & ECC_POISON1_ROW_MASK;
1004 	writel(regval, priv->baseaddr + ECC_POISON1_OFST);
1005 }
1006 
1007 static ssize_t inject_data_error_show(struct device *dev,
1008 				      struct device_attribute *mattr,
1009 				      char *data)
1010 {
1011 	struct mem_ctl_info *mci = to_mci(dev);
1012 	struct synps_edac_priv *priv = mci->pvt_info;
1013 
1014 	return sprintf(data, "Poison0 Addr: 0x%08x\n\rPoison1 Addr: 0x%08x\n\r"
1015 			"Error injection Address: 0x%lx\n\r",
1016 			readl(priv->baseaddr + ECC_POISON0_OFST),
1017 			readl(priv->baseaddr + ECC_POISON1_OFST),
1018 			priv->poison_addr);
1019 }
1020 
1021 static ssize_t inject_data_error_store(struct device *dev,
1022 				       struct device_attribute *mattr,
1023 				       const char *data, size_t count)
1024 {
1025 	struct mem_ctl_info *mci = to_mci(dev);
1026 	struct synps_edac_priv *priv = mci->pvt_info;
1027 
1028 	if (kstrtoul(data, 0, &priv->poison_addr))
1029 		return -EINVAL;
1030 
1031 	ddr_poison_setup(priv);
1032 
1033 	return count;
1034 }
1035 
1036 static ssize_t inject_data_poison_show(struct device *dev,
1037 				       struct device_attribute *mattr,
1038 				       char *data)
1039 {
1040 	struct mem_ctl_info *mci = to_mci(dev);
1041 	struct synps_edac_priv *priv = mci->pvt_info;
1042 
1043 	return sprintf(data, "Data Poisoning: %s\n\r",
1044 			(((readl(priv->baseaddr + ECC_CFG1_OFST)) & 0x3) == 0x3)
1045 			? ("Correctable Error") : ("UnCorrectable Error"));
1046 }
1047 
1048 static ssize_t inject_data_poison_store(struct device *dev,
1049 					struct device_attribute *mattr,
1050 					const char *data, size_t count)
1051 {
1052 	struct mem_ctl_info *mci = to_mci(dev);
1053 	struct synps_edac_priv *priv = mci->pvt_info;
1054 
1055 	writel(0, priv->baseaddr + DDRC_SWCTL);
1056 	if (strncmp(data, "CE", 2) == 0)
1057 		writel(ECC_CEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1058 	else
1059 		writel(ECC_UEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1060 	writel(1, priv->baseaddr + DDRC_SWCTL);
1061 
1062 	return count;
1063 }
1064 
1065 static DEVICE_ATTR_RW(inject_data_error);
1066 static DEVICE_ATTR_RW(inject_data_poison);
1067 
1068 static int edac_create_sysfs_attributes(struct mem_ctl_info *mci)
1069 {
1070 	int rc;
1071 
1072 	rc = device_create_file(&mci->dev, &dev_attr_inject_data_error);
1073 	if (rc < 0)
1074 		return rc;
1075 	rc = device_create_file(&mci->dev, &dev_attr_inject_data_poison);
1076 	if (rc < 0)
1077 		return rc;
1078 	return 0;
1079 }
1080 
1081 static void edac_remove_sysfs_attributes(struct mem_ctl_info *mci)
1082 {
1083 	device_remove_file(&mci->dev, &dev_attr_inject_data_error);
1084 	device_remove_file(&mci->dev, &dev_attr_inject_data_poison);
1085 }
1086 
1087 static void setup_row_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1088 {
1089 	u32 addrmap_row_b2_10;
1090 	int index;
1091 
1092 	priv->row_shift[0] = (addrmap[5] & ROW_MAX_VAL_MASK) + ROW_B0_BASE;
1093 	priv->row_shift[1] = ((addrmap[5] >> 8) &
1094 			ROW_MAX_VAL_MASK) + ROW_B1_BASE;
1095 
1096 	addrmap_row_b2_10 = (addrmap[5] >> 16) & ROW_MAX_VAL_MASK;
1097 	if (addrmap_row_b2_10 != ROW_MAX_VAL_MASK) {
1098 		for (index = 2; index < 11; index++)
1099 			priv->row_shift[index] = addrmap_row_b2_10 +
1100 				index + ROW_B0_BASE;
1101 
1102 	} else {
1103 		priv->row_shift[2] = (addrmap[9] &
1104 				ROW_MAX_VAL_MASK) + ROW_B2_BASE;
1105 		priv->row_shift[3] = ((addrmap[9] >> 8) &
1106 				ROW_MAX_VAL_MASK) + ROW_B3_BASE;
1107 		priv->row_shift[4] = ((addrmap[9] >> 16) &
1108 				ROW_MAX_VAL_MASK) + ROW_B4_BASE;
1109 		priv->row_shift[5] = ((addrmap[9] >> 24) &
1110 				ROW_MAX_VAL_MASK) + ROW_B5_BASE;
1111 		priv->row_shift[6] = (addrmap[10] &
1112 				ROW_MAX_VAL_MASK) + ROW_B6_BASE;
1113 		priv->row_shift[7] = ((addrmap[10] >> 8) &
1114 				ROW_MAX_VAL_MASK) + ROW_B7_BASE;
1115 		priv->row_shift[8] = ((addrmap[10] >> 16) &
1116 				ROW_MAX_VAL_MASK) + ROW_B8_BASE;
1117 		priv->row_shift[9] = ((addrmap[10] >> 24) &
1118 				ROW_MAX_VAL_MASK) + ROW_B9_BASE;
1119 		priv->row_shift[10] = (addrmap[11] &
1120 				ROW_MAX_VAL_MASK) + ROW_B10_BASE;
1121 	}
1122 
1123 	priv->row_shift[11] = (((addrmap[5] >> 24) & ROW_MAX_VAL_MASK) ==
1124 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[5] >> 24) &
1125 				ROW_MAX_VAL_MASK) + ROW_B11_BASE);
1126 	priv->row_shift[12] = ((addrmap[6] & ROW_MAX_VAL_MASK) ==
1127 				ROW_MAX_VAL_MASK) ? 0 : ((addrmap[6] &
1128 				ROW_MAX_VAL_MASK) + ROW_B12_BASE);
1129 	priv->row_shift[13] = (((addrmap[6] >> 8) & ROW_MAX_VAL_MASK) ==
1130 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 8) &
1131 				ROW_MAX_VAL_MASK) + ROW_B13_BASE);
1132 	priv->row_shift[14] = (((addrmap[6] >> 16) & ROW_MAX_VAL_MASK) ==
1133 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 16) &
1134 				ROW_MAX_VAL_MASK) + ROW_B14_BASE);
1135 	priv->row_shift[15] = (((addrmap[6] >> 24) & ROW_MAX_VAL_MASK) ==
1136 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 24) &
1137 				ROW_MAX_VAL_MASK) + ROW_B15_BASE);
1138 	priv->row_shift[16] = ((addrmap[7] & ROW_MAX_VAL_MASK) ==
1139 				ROW_MAX_VAL_MASK) ? 0 : ((addrmap[7] &
1140 				ROW_MAX_VAL_MASK) + ROW_B16_BASE);
1141 	priv->row_shift[17] = (((addrmap[7] >> 8) & ROW_MAX_VAL_MASK) ==
1142 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[7] >> 8) &
1143 				ROW_MAX_VAL_MASK) + ROW_B17_BASE);
1144 }
1145 
1146 static void setup_column_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1147 {
1148 	u32 width, memtype;
1149 	int index;
1150 
1151 	memtype = readl(priv->baseaddr + CTRL_OFST);
1152 	width = (memtype & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
1153 
1154 	priv->col_shift[0] = 0;
1155 	priv->col_shift[1] = 1;
1156 	priv->col_shift[2] = (addrmap[2] & COL_MAX_VAL_MASK) + COL_B2_BASE;
1157 	priv->col_shift[3] = ((addrmap[2] >> 8) &
1158 			COL_MAX_VAL_MASK) + COL_B3_BASE;
1159 	priv->col_shift[4] = (((addrmap[2] >> 16) & COL_MAX_VAL_MASK) ==
1160 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 16) &
1161 					COL_MAX_VAL_MASK) + COL_B4_BASE);
1162 	priv->col_shift[5] = (((addrmap[2] >> 24) & COL_MAX_VAL_MASK) ==
1163 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 24) &
1164 					COL_MAX_VAL_MASK) + COL_B5_BASE);
1165 	priv->col_shift[6] = ((addrmap[3] & COL_MAX_VAL_MASK) ==
1166 			COL_MAX_VAL_MASK) ? 0 : ((addrmap[3] &
1167 					COL_MAX_VAL_MASK) + COL_B6_BASE);
1168 	priv->col_shift[7] = (((addrmap[3] >> 8) & COL_MAX_VAL_MASK) ==
1169 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 8) &
1170 					COL_MAX_VAL_MASK) + COL_B7_BASE);
1171 	priv->col_shift[8] = (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) ==
1172 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 16) &
1173 					COL_MAX_VAL_MASK) + COL_B8_BASE);
1174 	priv->col_shift[9] = (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) ==
1175 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 24) &
1176 					COL_MAX_VAL_MASK) + COL_B9_BASE);
1177 	if (width == DDRCTL_EWDTH_64) {
1178 		if (memtype & MEM_TYPE_LPDDR3) {
1179 			priv->col_shift[10] = ((addrmap[4] &
1180 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1181 				((addrmap[4] & COL_MAX_VAL_MASK) +
1182 				 COL_B10_BASE);
1183 			priv->col_shift[11] = (((addrmap[4] >> 8) &
1184 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1185 				(((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1186 				 COL_B11_BASE);
1187 		} else {
1188 			priv->col_shift[11] = ((addrmap[4] &
1189 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1190 				((addrmap[4] & COL_MAX_VAL_MASK) +
1191 				 COL_B10_BASE);
1192 			priv->col_shift[13] = (((addrmap[4] >> 8) &
1193 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1194 				(((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1195 				 COL_B11_BASE);
1196 		}
1197 	} else if (width == DDRCTL_EWDTH_32) {
1198 		if (memtype & MEM_TYPE_LPDDR3) {
1199 			priv->col_shift[10] = (((addrmap[3] >> 24) &
1200 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1201 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1202 				 COL_B9_BASE);
1203 			priv->col_shift[11] = ((addrmap[4] &
1204 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1205 				((addrmap[4] & COL_MAX_VAL_MASK) +
1206 				 COL_B10_BASE);
1207 		} else {
1208 			priv->col_shift[11] = (((addrmap[3] >> 24) &
1209 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1210 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1211 				 COL_B9_BASE);
1212 			priv->col_shift[13] = ((addrmap[4] &
1213 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1214 				((addrmap[4] & COL_MAX_VAL_MASK) +
1215 				 COL_B10_BASE);
1216 		}
1217 	} else {
1218 		if (memtype & MEM_TYPE_LPDDR3) {
1219 			priv->col_shift[10] = (((addrmap[3] >> 16) &
1220 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1221 				(((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1222 				 COL_B8_BASE);
1223 			priv->col_shift[11] = (((addrmap[3] >> 24) &
1224 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1225 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1226 				 COL_B9_BASE);
1227 			priv->col_shift[13] = ((addrmap[4] &
1228 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1229 				((addrmap[4] & COL_MAX_VAL_MASK) +
1230 				 COL_B10_BASE);
1231 		} else {
1232 			priv->col_shift[11] = (((addrmap[3] >> 16) &
1233 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1234 				(((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1235 				 COL_B8_BASE);
1236 			priv->col_shift[13] = (((addrmap[3] >> 24) &
1237 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1238 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1239 				 COL_B9_BASE);
1240 		}
1241 	}
1242 
1243 	if (width) {
1244 		for (index = 9; index > width; index--) {
1245 			priv->col_shift[index] = priv->col_shift[index - width];
1246 			priv->col_shift[index - width] = 0;
1247 		}
1248 	}
1249 
1250 }
1251 
1252 static void setup_bank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1253 {
1254 	priv->bank_shift[0] = (addrmap[1] & BANK_MAX_VAL_MASK) + BANK_B0_BASE;
1255 	priv->bank_shift[1] = ((addrmap[1] >> 8) &
1256 				BANK_MAX_VAL_MASK) + BANK_B1_BASE;
1257 	priv->bank_shift[2] = (((addrmap[1] >> 16) &
1258 				BANK_MAX_VAL_MASK) == BANK_MAX_VAL_MASK) ? 0 :
1259 				(((addrmap[1] >> 16) & BANK_MAX_VAL_MASK) +
1260 				 BANK_B2_BASE);
1261 
1262 }
1263 
1264 static void setup_bg_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1265 {
1266 	priv->bankgrp_shift[0] = (addrmap[8] &
1267 				BANKGRP_MAX_VAL_MASK) + BANKGRP_B0_BASE;
1268 	priv->bankgrp_shift[1] = (((addrmap[8] >> 8) & BANKGRP_MAX_VAL_MASK) ==
1269 				BANKGRP_MAX_VAL_MASK) ? 0 : (((addrmap[8] >> 8)
1270 				& BANKGRP_MAX_VAL_MASK) + BANKGRP_B1_BASE);
1271 
1272 }
1273 
1274 static void setup_rank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1275 {
1276 	priv->rank_shift[0] = ((addrmap[0] & RANK_MAX_VAL_MASK) ==
1277 				RANK_MAX_VAL_MASK) ? 0 : ((addrmap[0] &
1278 				RANK_MAX_VAL_MASK) + RANK_B0_BASE);
1279 }
1280 
1281 /**
1282  * setup_address_map -	Set Address Map by querying ADDRMAP registers.
1283  * @priv:		DDR memory controller private instance data.
1284  *
1285  * Set Address Map by querying ADDRMAP registers.
1286  *
1287  * Return: none.
1288  */
1289 static void setup_address_map(struct synps_edac_priv *priv)
1290 {
1291 	u32 addrmap[12];
1292 	int index;
1293 
1294 	for (index = 0; index < 12; index++) {
1295 		u32 addrmap_offset;
1296 
1297 		addrmap_offset = ECC_ADDRMAP0_OFFSET + (index * 4);
1298 		addrmap[index] = readl(priv->baseaddr + addrmap_offset);
1299 	}
1300 
1301 	setup_row_address_map(priv, addrmap);
1302 
1303 	setup_column_address_map(priv, addrmap);
1304 
1305 	setup_bank_address_map(priv, addrmap);
1306 
1307 	setup_bg_address_map(priv, addrmap);
1308 
1309 	setup_rank_address_map(priv, addrmap);
1310 }
1311 #endif /* CONFIG_EDAC_DEBUG */
1312 
1313 /**
1314  * mc_probe - Check controller and bind driver.
1315  * @pdev:	platform device.
1316  *
1317  * Probe a specific controller instance for binding with the driver.
1318  *
1319  * Return: 0 if the controller instance was successfully bound to the
1320  * driver; otherwise, < 0 on error.
1321  */
1322 static int mc_probe(struct platform_device *pdev)
1323 {
1324 	const struct synps_platform_data *p_data;
1325 	struct edac_mc_layer layers[2];
1326 	struct synps_edac_priv *priv;
1327 	struct mem_ctl_info *mci;
1328 	void __iomem *baseaddr;
1329 	struct resource *res;
1330 	int rc;
1331 
1332 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1333 	baseaddr = devm_ioremap_resource(&pdev->dev, res);
1334 	if (IS_ERR(baseaddr))
1335 		return PTR_ERR(baseaddr);
1336 
1337 	p_data = of_device_get_match_data(&pdev->dev);
1338 	if (!p_data)
1339 		return -ENODEV;
1340 
1341 	if (!p_data->get_ecc_state(baseaddr)) {
1342 		edac_printk(KERN_INFO, EDAC_MC, "ECC not enabled\n");
1343 		return -ENXIO;
1344 	}
1345 
1346 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
1347 	layers[0].size = SYNPS_EDAC_NR_CSROWS;
1348 	layers[0].is_virt_csrow = true;
1349 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1350 	layers[1].size = SYNPS_EDAC_NR_CHANS;
1351 	layers[1].is_virt_csrow = false;
1352 
1353 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
1354 			    sizeof(struct synps_edac_priv));
1355 	if (!mci) {
1356 		edac_printk(KERN_ERR, EDAC_MC,
1357 			    "Failed memory allocation for mc instance\n");
1358 		return -ENOMEM;
1359 	}
1360 
1361 	priv = mci->pvt_info;
1362 	priv->baseaddr = baseaddr;
1363 	priv->p_data = p_data;
1364 
1365 	mc_init(mci, pdev);
1366 
1367 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
1368 		rc = setup_irq(mci, pdev);
1369 		if (rc)
1370 			goto free_edac_mc;
1371 	}
1372 
1373 	rc = edac_mc_add_mc(mci);
1374 	if (rc) {
1375 		edac_printk(KERN_ERR, EDAC_MC,
1376 			    "Failed to register with EDAC core\n");
1377 		goto free_edac_mc;
1378 	}
1379 
1380 #ifdef CONFIG_EDAC_DEBUG
1381 	if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT) {
1382 		rc = edac_create_sysfs_attributes(mci);
1383 		if (rc) {
1384 			edac_printk(KERN_ERR, EDAC_MC,
1385 					"Failed to create sysfs entries\n");
1386 			goto free_edac_mc;
1387 		}
1388 	}
1389 
1390 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
1391 		setup_address_map(priv);
1392 #endif
1393 
1394 	/*
1395 	 * Start capturing the correctable and uncorrectable errors. A write of
1396 	 * 0 starts the counters.
1397 	 */
1398 	if (!(priv->p_data->quirks & DDR_ECC_INTR_SUPPORT))
1399 		writel(0x0, baseaddr + ECC_CTRL_OFST);
1400 
1401 	return rc;
1402 
1403 free_edac_mc:
1404 	edac_mc_free(mci);
1405 
1406 	return rc;
1407 }
1408 
1409 /**
1410  * mc_remove - Unbind driver from controller.
1411  * @pdev:	Platform device.
1412  *
1413  * Return: Unconditionally 0
1414  */
1415 static int mc_remove(struct platform_device *pdev)
1416 {
1417 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
1418 	struct synps_edac_priv *priv = mci->pvt_info;
1419 
1420 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
1421 		disable_intr(priv);
1422 
1423 #ifdef CONFIG_EDAC_DEBUG
1424 	if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT)
1425 		edac_remove_sysfs_attributes(mci);
1426 #endif
1427 
1428 	edac_mc_del_mc(&pdev->dev);
1429 	edac_mc_free(mci);
1430 
1431 	return 0;
1432 }
1433 
1434 static struct platform_driver synps_edac_mc_driver = {
1435 	.driver = {
1436 		   .name = "synopsys-edac",
1437 		   .of_match_table = synps_edac_match,
1438 		   },
1439 	.probe = mc_probe,
1440 	.remove = mc_remove,
1441 };
1442 
1443 module_platform_driver(synps_edac_mc_driver);
1444 
1445 MODULE_AUTHOR("Xilinx Inc");
1446 MODULE_DESCRIPTION("Synopsys DDR ECC driver");
1447 MODULE_LICENSE("GPL v2");
1448