xref: /openbmc/linux/drivers/edac/synopsys_edac.c (revision 165f2d28)
1 /*
2  * Synopsys DDR ECC Driver
3  * This driver is based on ppc4xx_edac.c drivers
4  *
5  * Copyright (C) 2012 - 2014 Xilinx, Inc.
6  *
7  * This program is free software: you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation, either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details
20  */
21 
22 #include <linux/edac.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/interrupt.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 
29 #include "edac_module.h"
30 
31 /* Number of cs_rows needed per memory controller */
32 #define SYNPS_EDAC_NR_CSROWS		1
33 
34 /* Number of channels per memory controller */
35 #define SYNPS_EDAC_NR_CHANS		1
36 
37 /* Granularity of reported error in bytes */
38 #define SYNPS_EDAC_ERR_GRAIN		1
39 
40 #define SYNPS_EDAC_MSG_SIZE		256
41 
42 #define SYNPS_EDAC_MOD_STRING		"synps_edac"
43 #define SYNPS_EDAC_MOD_VER		"1"
44 
45 /* Synopsys DDR memory controller registers that are relevant to ECC */
46 #define CTRL_OFST			0x0
47 #define T_ZQ_OFST			0xA4
48 
49 /* ECC control register */
50 #define ECC_CTRL_OFST			0xC4
51 /* ECC log register */
52 #define CE_LOG_OFST			0xC8
53 /* ECC address register */
54 #define CE_ADDR_OFST			0xCC
55 /* ECC data[31:0] register */
56 #define CE_DATA_31_0_OFST		0xD0
57 
58 /* Uncorrectable error info registers */
59 #define UE_LOG_OFST			0xDC
60 #define UE_ADDR_OFST			0xE0
61 #define UE_DATA_31_0_OFST		0xE4
62 
63 #define STAT_OFST			0xF0
64 #define SCRUB_OFST			0xF4
65 
66 /* Control register bit field definitions */
67 #define CTRL_BW_MASK			0xC
68 #define CTRL_BW_SHIFT			2
69 
70 #define DDRCTL_WDTH_16			1
71 #define DDRCTL_WDTH_32			0
72 
73 /* ZQ register bit field definitions */
74 #define T_ZQ_DDRMODE_MASK		0x2
75 
76 /* ECC control register bit field definitions */
77 #define ECC_CTRL_CLR_CE_ERR		0x2
78 #define ECC_CTRL_CLR_UE_ERR		0x1
79 
80 /* ECC correctable/uncorrectable error log register definitions */
81 #define LOG_VALID			0x1
82 #define CE_LOG_BITPOS_MASK		0xFE
83 #define CE_LOG_BITPOS_SHIFT		1
84 
85 /* ECC correctable/uncorrectable error address register definitions */
86 #define ADDR_COL_MASK			0xFFF
87 #define ADDR_ROW_MASK			0xFFFF000
88 #define ADDR_ROW_SHIFT			12
89 #define ADDR_BANK_MASK			0x70000000
90 #define ADDR_BANK_SHIFT			28
91 
92 /* ECC statistic register definitions */
93 #define STAT_UECNT_MASK			0xFF
94 #define STAT_CECNT_MASK			0xFF00
95 #define STAT_CECNT_SHIFT		8
96 
97 /* ECC scrub register definitions */
98 #define SCRUB_MODE_MASK			0x7
99 #define SCRUB_MODE_SECDED		0x4
100 
101 /* DDR ECC Quirks */
102 #define DDR_ECC_INTR_SUPPORT		BIT(0)
103 #define DDR_ECC_DATA_POISON_SUPPORT	BIT(1)
104 
105 /* ZynqMP Enhanced DDR memory controller registers that are relevant to ECC */
106 /* ECC Configuration Registers */
107 #define ECC_CFG0_OFST			0x70
108 #define ECC_CFG1_OFST			0x74
109 
110 /* ECC Status Register */
111 #define ECC_STAT_OFST			0x78
112 
113 /* ECC Clear Register */
114 #define ECC_CLR_OFST			0x7C
115 
116 /* ECC Error count Register */
117 #define ECC_ERRCNT_OFST			0x80
118 
119 /* ECC Corrected Error Address Register */
120 #define ECC_CEADDR0_OFST		0x84
121 #define ECC_CEADDR1_OFST		0x88
122 
123 /* ECC Syndrome Registers */
124 #define ECC_CSYND0_OFST			0x8C
125 #define ECC_CSYND1_OFST			0x90
126 #define ECC_CSYND2_OFST			0x94
127 
128 /* ECC Bit Mask0 Address Register */
129 #define ECC_BITMASK0_OFST		0x98
130 #define ECC_BITMASK1_OFST		0x9C
131 #define ECC_BITMASK2_OFST		0xA0
132 
133 /* ECC UnCorrected Error Address Register */
134 #define ECC_UEADDR0_OFST		0xA4
135 #define ECC_UEADDR1_OFST		0xA8
136 
137 /* ECC Syndrome Registers */
138 #define ECC_UESYND0_OFST		0xAC
139 #define ECC_UESYND1_OFST		0xB0
140 #define ECC_UESYND2_OFST		0xB4
141 
142 /* ECC Poison Address Reg */
143 #define ECC_POISON0_OFST		0xB8
144 #define ECC_POISON1_OFST		0xBC
145 
146 #define ECC_ADDRMAP0_OFFSET		0x200
147 
148 /* Control register bitfield definitions */
149 #define ECC_CTRL_BUSWIDTH_MASK		0x3000
150 #define ECC_CTRL_BUSWIDTH_SHIFT		12
151 #define ECC_CTRL_CLR_CE_ERRCNT		BIT(2)
152 #define ECC_CTRL_CLR_UE_ERRCNT		BIT(3)
153 
154 /* DDR Control Register width definitions  */
155 #define DDRCTL_EWDTH_16			2
156 #define DDRCTL_EWDTH_32			1
157 #define DDRCTL_EWDTH_64			0
158 
159 /* ECC status register definitions */
160 #define ECC_STAT_UECNT_MASK		0xF0000
161 #define ECC_STAT_UECNT_SHIFT		16
162 #define ECC_STAT_CECNT_MASK		0xF00
163 #define ECC_STAT_CECNT_SHIFT		8
164 #define ECC_STAT_BITNUM_MASK		0x7F
165 
166 /* DDR QOS Interrupt register definitions */
167 #define DDR_QOS_IRQ_STAT_OFST		0x20200
168 #define DDR_QOSUE_MASK			0x4
169 #define	DDR_QOSCE_MASK			0x2
170 #define	ECC_CE_UE_INTR_MASK		0x6
171 #define DDR_QOS_IRQ_EN_OFST		0x20208
172 #define DDR_QOS_IRQ_DB_OFST		0x2020C
173 
174 /* ECC Corrected Error Register Mask and Shifts*/
175 #define ECC_CEADDR0_RW_MASK		0x3FFFF
176 #define ECC_CEADDR0_RNK_MASK		BIT(24)
177 #define ECC_CEADDR1_BNKGRP_MASK		0x3000000
178 #define ECC_CEADDR1_BNKNR_MASK		0x70000
179 #define ECC_CEADDR1_BLKNR_MASK		0xFFF
180 #define ECC_CEADDR1_BNKGRP_SHIFT	24
181 #define ECC_CEADDR1_BNKNR_SHIFT		16
182 
183 /* ECC Poison register shifts */
184 #define ECC_POISON0_RANK_SHIFT		24
185 #define ECC_POISON0_RANK_MASK		BIT(24)
186 #define ECC_POISON0_COLUMN_SHIFT	0
187 #define ECC_POISON0_COLUMN_MASK		0xFFF
188 #define ECC_POISON1_BG_SHIFT		28
189 #define ECC_POISON1_BG_MASK		0x30000000
190 #define ECC_POISON1_BANKNR_SHIFT	24
191 #define ECC_POISON1_BANKNR_MASK		0x7000000
192 #define ECC_POISON1_ROW_SHIFT		0
193 #define ECC_POISON1_ROW_MASK		0x3FFFF
194 
195 /* DDR Memory type defines */
196 #define MEM_TYPE_DDR3			0x1
197 #define MEM_TYPE_LPDDR3			0x8
198 #define MEM_TYPE_DDR2			0x4
199 #define MEM_TYPE_DDR4			0x10
200 #define MEM_TYPE_LPDDR4			0x20
201 
202 /* DDRC Software control register */
203 #define DDRC_SWCTL			0x320
204 
205 /* DDRC ECC CE & UE poison mask */
206 #define ECC_CEPOISON_MASK		0x3
207 #define ECC_UEPOISON_MASK		0x1
208 
209 /* DDRC Device config masks */
210 #define DDRC_MSTR_CFG_MASK		0xC0000000
211 #define DDRC_MSTR_CFG_SHIFT		30
212 #define DDRC_MSTR_CFG_X4_MASK		0x0
213 #define DDRC_MSTR_CFG_X8_MASK		0x1
214 #define DDRC_MSTR_CFG_X16_MASK		0x2
215 #define DDRC_MSTR_CFG_X32_MASK		0x3
216 
217 #define DDR_MAX_ROW_SHIFT		18
218 #define DDR_MAX_COL_SHIFT		14
219 #define DDR_MAX_BANK_SHIFT		3
220 #define DDR_MAX_BANKGRP_SHIFT		2
221 
222 #define ROW_MAX_VAL_MASK		0xF
223 #define COL_MAX_VAL_MASK		0xF
224 #define BANK_MAX_VAL_MASK		0x1F
225 #define BANKGRP_MAX_VAL_MASK		0x1F
226 #define RANK_MAX_VAL_MASK		0x1F
227 
228 #define ROW_B0_BASE			6
229 #define ROW_B1_BASE			7
230 #define ROW_B2_BASE			8
231 #define ROW_B3_BASE			9
232 #define ROW_B4_BASE			10
233 #define ROW_B5_BASE			11
234 #define ROW_B6_BASE			12
235 #define ROW_B7_BASE			13
236 #define ROW_B8_BASE			14
237 #define ROW_B9_BASE			15
238 #define ROW_B10_BASE			16
239 #define ROW_B11_BASE			17
240 #define ROW_B12_BASE			18
241 #define ROW_B13_BASE			19
242 #define ROW_B14_BASE			20
243 #define ROW_B15_BASE			21
244 #define ROW_B16_BASE			22
245 #define ROW_B17_BASE			23
246 
247 #define COL_B2_BASE			2
248 #define COL_B3_BASE			3
249 #define COL_B4_BASE			4
250 #define COL_B5_BASE			5
251 #define COL_B6_BASE			6
252 #define COL_B7_BASE			7
253 #define COL_B8_BASE			8
254 #define COL_B9_BASE			9
255 #define COL_B10_BASE			10
256 #define COL_B11_BASE			11
257 #define COL_B12_BASE			12
258 #define COL_B13_BASE			13
259 
260 #define BANK_B0_BASE			2
261 #define BANK_B1_BASE			3
262 #define BANK_B2_BASE			4
263 
264 #define BANKGRP_B0_BASE			2
265 #define BANKGRP_B1_BASE			3
266 
267 #define RANK_B0_BASE			6
268 
269 /**
270  * struct ecc_error_info - ECC error log information.
271  * @row:	Row number.
272  * @col:	Column number.
273  * @bank:	Bank number.
274  * @bitpos:	Bit position.
275  * @data:	Data causing the error.
276  * @bankgrpnr:	Bank group number.
277  * @blknr:	Block number.
278  */
279 struct ecc_error_info {
280 	u32 row;
281 	u32 col;
282 	u32 bank;
283 	u32 bitpos;
284 	u32 data;
285 	u32 bankgrpnr;
286 	u32 blknr;
287 };
288 
289 /**
290  * struct synps_ecc_status - ECC status information to report.
291  * @ce_cnt:	Correctable error count.
292  * @ue_cnt:	Uncorrectable error count.
293  * @ceinfo:	Correctable error log information.
294  * @ueinfo:	Uncorrectable error log information.
295  */
296 struct synps_ecc_status {
297 	u32 ce_cnt;
298 	u32 ue_cnt;
299 	struct ecc_error_info ceinfo;
300 	struct ecc_error_info ueinfo;
301 };
302 
303 /**
304  * struct synps_edac_priv - DDR memory controller private instance data.
305  * @baseaddr:		Base address of the DDR controller.
306  * @message:		Buffer for framing the event specific info.
307  * @stat:		ECC status information.
308  * @p_data:		Platform data.
309  * @ce_cnt:		Correctable Error count.
310  * @ue_cnt:		Uncorrectable Error count.
311  * @poison_addr:	Data poison address.
312  * @row_shift:		Bit shifts for row bit.
313  * @col_shift:		Bit shifts for column bit.
314  * @bank_shift:		Bit shifts for bank bit.
315  * @bankgrp_shift:	Bit shifts for bank group bit.
316  * @rank_shift:		Bit shifts for rank bit.
317  */
318 struct synps_edac_priv {
319 	void __iomem *baseaddr;
320 	char message[SYNPS_EDAC_MSG_SIZE];
321 	struct synps_ecc_status stat;
322 	const struct synps_platform_data *p_data;
323 	u32 ce_cnt;
324 	u32 ue_cnt;
325 #ifdef CONFIG_EDAC_DEBUG
326 	ulong poison_addr;
327 	u32 row_shift[18];
328 	u32 col_shift[14];
329 	u32 bank_shift[3];
330 	u32 bankgrp_shift[2];
331 	u32 rank_shift[1];
332 #endif
333 };
334 
335 /**
336  * struct synps_platform_data -  synps platform data structure.
337  * @get_error_info:	Get EDAC error info.
338  * @get_mtype:		Get mtype.
339  * @get_dtype:		Get dtype.
340  * @get_ecc_state:	Get ECC state.
341  * @quirks:		To differentiate IPs.
342  */
343 struct synps_platform_data {
344 	int (*get_error_info)(struct synps_edac_priv *priv);
345 	enum mem_type (*get_mtype)(const void __iomem *base);
346 	enum dev_type (*get_dtype)(const void __iomem *base);
347 	bool (*get_ecc_state)(void __iomem *base);
348 	int quirks;
349 };
350 
351 /**
352  * zynq_get_error_info - Get the current ECC error info.
353  * @priv:	DDR memory controller private instance data.
354  *
355  * Return: one if there is no error, otherwise zero.
356  */
357 static int zynq_get_error_info(struct synps_edac_priv *priv)
358 {
359 	struct synps_ecc_status *p;
360 	u32 regval, clearval = 0;
361 	void __iomem *base;
362 
363 	base = priv->baseaddr;
364 	p = &priv->stat;
365 
366 	regval = readl(base + STAT_OFST);
367 	if (!regval)
368 		return 1;
369 
370 	p->ce_cnt = (regval & STAT_CECNT_MASK) >> STAT_CECNT_SHIFT;
371 	p->ue_cnt = regval & STAT_UECNT_MASK;
372 
373 	regval = readl(base + CE_LOG_OFST);
374 	if (!(p->ce_cnt && (regval & LOG_VALID)))
375 		goto ue_err;
376 
377 	p->ceinfo.bitpos = (regval & CE_LOG_BITPOS_MASK) >> CE_LOG_BITPOS_SHIFT;
378 	regval = readl(base + CE_ADDR_OFST);
379 	p->ceinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
380 	p->ceinfo.col = regval & ADDR_COL_MASK;
381 	p->ceinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
382 	p->ceinfo.data = readl(base + CE_DATA_31_0_OFST);
383 	edac_dbg(3, "CE bit position: %d data: %d\n", p->ceinfo.bitpos,
384 		 p->ceinfo.data);
385 	clearval = ECC_CTRL_CLR_CE_ERR;
386 
387 ue_err:
388 	regval = readl(base + UE_LOG_OFST);
389 	if (!(p->ue_cnt && (regval & LOG_VALID)))
390 		goto out;
391 
392 	regval = readl(base + UE_ADDR_OFST);
393 	p->ueinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
394 	p->ueinfo.col = regval & ADDR_COL_MASK;
395 	p->ueinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
396 	p->ueinfo.data = readl(base + UE_DATA_31_0_OFST);
397 	clearval |= ECC_CTRL_CLR_UE_ERR;
398 
399 out:
400 	writel(clearval, base + ECC_CTRL_OFST);
401 	writel(0x0, base + ECC_CTRL_OFST);
402 
403 	return 0;
404 }
405 
406 /**
407  * zynqmp_get_error_info - Get the current ECC error info.
408  * @priv:	DDR memory controller private instance data.
409  *
410  * Return: one if there is no error otherwise returns zero.
411  */
412 static int zynqmp_get_error_info(struct synps_edac_priv *priv)
413 {
414 	struct synps_ecc_status *p;
415 	u32 regval, clearval = 0;
416 	void __iomem *base;
417 
418 	base = priv->baseaddr;
419 	p = &priv->stat;
420 
421 	regval = readl(base + ECC_STAT_OFST);
422 	if (!regval)
423 		return 1;
424 
425 	p->ce_cnt = (regval & ECC_STAT_CECNT_MASK) >> ECC_STAT_CECNT_SHIFT;
426 	p->ue_cnt = (regval & ECC_STAT_UECNT_MASK) >> ECC_STAT_UECNT_SHIFT;
427 	if (!p->ce_cnt)
428 		goto ue_err;
429 
430 	p->ceinfo.bitpos = (regval & ECC_STAT_BITNUM_MASK);
431 
432 	regval = readl(base + ECC_CEADDR0_OFST);
433 	p->ceinfo.row = (regval & ECC_CEADDR0_RW_MASK);
434 	regval = readl(base + ECC_CEADDR1_OFST);
435 	p->ceinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
436 					ECC_CEADDR1_BNKNR_SHIFT;
437 	p->ceinfo.bankgrpnr = (regval &	ECC_CEADDR1_BNKGRP_MASK) >>
438 					ECC_CEADDR1_BNKGRP_SHIFT;
439 	p->ceinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
440 	p->ceinfo.data = readl(base + ECC_CSYND0_OFST);
441 	edac_dbg(2, "ECCCSYN0: 0x%08X ECCCSYN1: 0x%08X ECCCSYN2: 0x%08X\n",
442 		 readl(base + ECC_CSYND0_OFST), readl(base + ECC_CSYND1_OFST),
443 		 readl(base + ECC_CSYND2_OFST));
444 ue_err:
445 	if (!p->ue_cnt)
446 		goto out;
447 
448 	regval = readl(base + ECC_UEADDR0_OFST);
449 	p->ueinfo.row = (regval & ECC_CEADDR0_RW_MASK);
450 	regval = readl(base + ECC_UEADDR1_OFST);
451 	p->ueinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
452 					ECC_CEADDR1_BNKGRP_SHIFT;
453 	p->ueinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
454 					ECC_CEADDR1_BNKNR_SHIFT;
455 	p->ueinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
456 	p->ueinfo.data = readl(base + ECC_UESYND0_OFST);
457 out:
458 	clearval = ECC_CTRL_CLR_CE_ERR | ECC_CTRL_CLR_CE_ERRCNT;
459 	clearval |= ECC_CTRL_CLR_UE_ERR | ECC_CTRL_CLR_UE_ERRCNT;
460 	writel(clearval, base + ECC_CLR_OFST);
461 	writel(0x0, base + ECC_CLR_OFST);
462 
463 	return 0;
464 }
465 
466 /**
467  * handle_error - Handle Correctable and Uncorrectable errors.
468  * @mci:	EDAC memory controller instance.
469  * @p:		Synopsys ECC status structure.
470  *
471  * Handles ECC correctable and uncorrectable errors.
472  */
473 static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p)
474 {
475 	struct synps_edac_priv *priv = mci->pvt_info;
476 	struct ecc_error_info *pinf;
477 
478 	if (p->ce_cnt) {
479 		pinf = &p->ceinfo;
480 		if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
481 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
482 				 "DDR ECC error type:%s Row %d Bank %d BankGroup Number %d Block Number %d Bit Position: %d Data: 0x%08x",
483 				 "CE", pinf->row, pinf->bank,
484 				 pinf->bankgrpnr, pinf->blknr,
485 				 pinf->bitpos, pinf->data);
486 		} else {
487 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
488 				 "DDR ECC error type:%s Row %d Bank %d Col %d Bit Position: %d Data: 0x%08x",
489 				 "CE", pinf->row, pinf->bank, pinf->col,
490 				 pinf->bitpos, pinf->data);
491 		}
492 
493 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
494 				     p->ce_cnt, 0, 0, 0, 0, 0, -1,
495 				     priv->message, "");
496 	}
497 
498 	if (p->ue_cnt) {
499 		pinf = &p->ueinfo;
500 		if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
501 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
502 				 "DDR ECC error type :%s Row %d Bank %d BankGroup Number %d Block Number %d",
503 				 "UE", pinf->row, pinf->bank,
504 				 pinf->bankgrpnr, pinf->blknr);
505 		} else {
506 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
507 				 "DDR ECC error type :%s Row %d Bank %d Col %d ",
508 				 "UE", pinf->row, pinf->bank, pinf->col);
509 		}
510 
511 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
512 				     p->ue_cnt, 0, 0, 0, 0, 0, -1,
513 				     priv->message, "");
514 	}
515 
516 	memset(p, 0, sizeof(*p));
517 }
518 
519 /**
520  * intr_handler - Interrupt Handler for ECC interrupts.
521  * @irq:        IRQ number.
522  * @dev_id:     Device ID.
523  *
524  * Return: IRQ_NONE, if interrupt not set or IRQ_HANDLED otherwise.
525  */
526 static irqreturn_t intr_handler(int irq, void *dev_id)
527 {
528 	const struct synps_platform_data *p_data;
529 	struct mem_ctl_info *mci = dev_id;
530 	struct synps_edac_priv *priv;
531 	int status, regval;
532 
533 	priv = mci->pvt_info;
534 	p_data = priv->p_data;
535 
536 	regval = readl(priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
537 	regval &= (DDR_QOSCE_MASK | DDR_QOSUE_MASK);
538 	if (!(regval & ECC_CE_UE_INTR_MASK))
539 		return IRQ_NONE;
540 
541 	status = p_data->get_error_info(priv);
542 	if (status)
543 		return IRQ_NONE;
544 
545 	priv->ce_cnt += priv->stat.ce_cnt;
546 	priv->ue_cnt += priv->stat.ue_cnt;
547 	handle_error(mci, &priv->stat);
548 
549 	edac_dbg(3, "Total error count CE %d UE %d\n",
550 		 priv->ce_cnt, priv->ue_cnt);
551 	writel(regval, priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
552 	return IRQ_HANDLED;
553 }
554 
555 /**
556  * check_errors - Check controller for ECC errors.
557  * @mci:	EDAC memory controller instance.
558  *
559  * Check and post ECC errors. Called by the polling thread.
560  */
561 static void check_errors(struct mem_ctl_info *mci)
562 {
563 	const struct synps_platform_data *p_data;
564 	struct synps_edac_priv *priv;
565 	int status;
566 
567 	priv = mci->pvt_info;
568 	p_data = priv->p_data;
569 
570 	status = p_data->get_error_info(priv);
571 	if (status)
572 		return;
573 
574 	priv->ce_cnt += priv->stat.ce_cnt;
575 	priv->ue_cnt += priv->stat.ue_cnt;
576 	handle_error(mci, &priv->stat);
577 
578 	edac_dbg(3, "Total error count CE %d UE %d\n",
579 		 priv->ce_cnt, priv->ue_cnt);
580 }
581 
582 /**
583  * zynq_get_dtype - Return the controller memory width.
584  * @base:	DDR memory controller base address.
585  *
586  * Get the EDAC device type width appropriate for the current controller
587  * configuration.
588  *
589  * Return: a device type width enumeration.
590  */
591 static enum dev_type zynq_get_dtype(const void __iomem *base)
592 {
593 	enum dev_type dt;
594 	u32 width;
595 
596 	width = readl(base + CTRL_OFST);
597 	width = (width & CTRL_BW_MASK) >> CTRL_BW_SHIFT;
598 
599 	switch (width) {
600 	case DDRCTL_WDTH_16:
601 		dt = DEV_X2;
602 		break;
603 	case DDRCTL_WDTH_32:
604 		dt = DEV_X4;
605 		break;
606 	default:
607 		dt = DEV_UNKNOWN;
608 	}
609 
610 	return dt;
611 }
612 
613 /**
614  * zynqmp_get_dtype - Return the controller memory width.
615  * @base:	DDR memory controller base address.
616  *
617  * Get the EDAC device type width appropriate for the current controller
618  * configuration.
619  *
620  * Return: a device type width enumeration.
621  */
622 static enum dev_type zynqmp_get_dtype(const void __iomem *base)
623 {
624 	enum dev_type dt;
625 	u32 width;
626 
627 	width = readl(base + CTRL_OFST);
628 	width = (width & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
629 	switch (width) {
630 	case DDRCTL_EWDTH_16:
631 		dt = DEV_X2;
632 		break;
633 	case DDRCTL_EWDTH_32:
634 		dt = DEV_X4;
635 		break;
636 	case DDRCTL_EWDTH_64:
637 		dt = DEV_X8;
638 		break;
639 	default:
640 		dt = DEV_UNKNOWN;
641 	}
642 
643 	return dt;
644 }
645 
646 /**
647  * zynq_get_ecc_state - Return the controller ECC enable/disable status.
648  * @base:	DDR memory controller base address.
649  *
650  * Get the ECC enable/disable status of the controller.
651  *
652  * Return: true if enabled, otherwise false.
653  */
654 static bool zynq_get_ecc_state(void __iomem *base)
655 {
656 	enum dev_type dt;
657 	u32 ecctype;
658 
659 	dt = zynq_get_dtype(base);
660 	if (dt == DEV_UNKNOWN)
661 		return false;
662 
663 	ecctype = readl(base + SCRUB_OFST) & SCRUB_MODE_MASK;
664 	if ((ecctype == SCRUB_MODE_SECDED) && (dt == DEV_X2))
665 		return true;
666 
667 	return false;
668 }
669 
670 /**
671  * zynqmp_get_ecc_state - Return the controller ECC enable/disable status.
672  * @base:	DDR memory controller base address.
673  *
674  * Get the ECC enable/disable status for the controller.
675  *
676  * Return: a ECC status boolean i.e true/false - enabled/disabled.
677  */
678 static bool zynqmp_get_ecc_state(void __iomem *base)
679 {
680 	enum dev_type dt;
681 	u32 ecctype;
682 
683 	dt = zynqmp_get_dtype(base);
684 	if (dt == DEV_UNKNOWN)
685 		return false;
686 
687 	ecctype = readl(base + ECC_CFG0_OFST) & SCRUB_MODE_MASK;
688 	if ((ecctype == SCRUB_MODE_SECDED) &&
689 	    ((dt == DEV_X2) || (dt == DEV_X4) || (dt == DEV_X8)))
690 		return true;
691 
692 	return false;
693 }
694 
695 /**
696  * get_memsize - Read the size of the attached memory device.
697  *
698  * Return: the memory size in bytes.
699  */
700 static u32 get_memsize(void)
701 {
702 	struct sysinfo inf;
703 
704 	si_meminfo(&inf);
705 
706 	return inf.totalram * inf.mem_unit;
707 }
708 
709 /**
710  * zynq_get_mtype - Return the controller memory type.
711  * @base:	Synopsys ECC status structure.
712  *
713  * Get the EDAC memory type appropriate for the current controller
714  * configuration.
715  *
716  * Return: a memory type enumeration.
717  */
718 static enum mem_type zynq_get_mtype(const void __iomem *base)
719 {
720 	enum mem_type mt;
721 	u32 memtype;
722 
723 	memtype = readl(base + T_ZQ_OFST);
724 
725 	if (memtype & T_ZQ_DDRMODE_MASK)
726 		mt = MEM_DDR3;
727 	else
728 		mt = MEM_DDR2;
729 
730 	return mt;
731 }
732 
733 /**
734  * zynqmp_get_mtype - Returns controller memory type.
735  * @base:	Synopsys ECC status structure.
736  *
737  * Get the EDAC memory type appropriate for the current controller
738  * configuration.
739  *
740  * Return: a memory type enumeration.
741  */
742 static enum mem_type zynqmp_get_mtype(const void __iomem *base)
743 {
744 	enum mem_type mt;
745 	u32 memtype;
746 
747 	memtype = readl(base + CTRL_OFST);
748 
749 	if ((memtype & MEM_TYPE_DDR3) || (memtype & MEM_TYPE_LPDDR3))
750 		mt = MEM_DDR3;
751 	else if (memtype & MEM_TYPE_DDR2)
752 		mt = MEM_RDDR2;
753 	else if ((memtype & MEM_TYPE_LPDDR4) || (memtype & MEM_TYPE_DDR4))
754 		mt = MEM_DDR4;
755 	else
756 		mt = MEM_EMPTY;
757 
758 	return mt;
759 }
760 
761 /**
762  * init_csrows - Initialize the csrow data.
763  * @mci:	EDAC memory controller instance.
764  *
765  * Initialize the chip select rows associated with the EDAC memory
766  * controller instance.
767  */
768 static void init_csrows(struct mem_ctl_info *mci)
769 {
770 	struct synps_edac_priv *priv = mci->pvt_info;
771 	const struct synps_platform_data *p_data;
772 	struct csrow_info *csi;
773 	struct dimm_info *dimm;
774 	u32 size, row;
775 	int j;
776 
777 	p_data = priv->p_data;
778 
779 	for (row = 0; row < mci->nr_csrows; row++) {
780 		csi = mci->csrows[row];
781 		size = get_memsize();
782 
783 		for (j = 0; j < csi->nr_channels; j++) {
784 			dimm		= csi->channels[j]->dimm;
785 			dimm->edac_mode	= EDAC_FLAG_SECDED;
786 			dimm->mtype	= p_data->get_mtype(priv->baseaddr);
787 			dimm->nr_pages	= (size >> PAGE_SHIFT) / csi->nr_channels;
788 			dimm->grain	= SYNPS_EDAC_ERR_GRAIN;
789 			dimm->dtype	= p_data->get_dtype(priv->baseaddr);
790 		}
791 	}
792 }
793 
794 /**
795  * mc_init - Initialize one driver instance.
796  * @mci:	EDAC memory controller instance.
797  * @pdev:	platform device.
798  *
799  * Perform initialization of the EDAC memory controller instance and
800  * related driver-private data associated with the memory controller the
801  * instance is bound to.
802  */
803 static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev)
804 {
805 	struct synps_edac_priv *priv;
806 
807 	mci->pdev = &pdev->dev;
808 	priv = mci->pvt_info;
809 	platform_set_drvdata(pdev, mci);
810 
811 	/* Initialize controller capabilities and configuration */
812 	mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR2;
813 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
814 	mci->scrub_cap = SCRUB_HW_SRC;
815 	mci->scrub_mode = SCRUB_NONE;
816 
817 	mci->edac_cap = EDAC_FLAG_SECDED;
818 	mci->ctl_name = "synps_ddr_controller";
819 	mci->dev_name = SYNPS_EDAC_MOD_STRING;
820 	mci->mod_name = SYNPS_EDAC_MOD_VER;
821 
822 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
823 		edac_op_state = EDAC_OPSTATE_INT;
824 	} else {
825 		edac_op_state = EDAC_OPSTATE_POLL;
826 		mci->edac_check = check_errors;
827 	}
828 
829 	mci->ctl_page_to_phys = NULL;
830 
831 	init_csrows(mci);
832 }
833 
834 static void enable_intr(struct synps_edac_priv *priv)
835 {
836 	/* Enable UE/CE Interrupts */
837 	writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
838 			priv->baseaddr + DDR_QOS_IRQ_EN_OFST);
839 }
840 
841 static void disable_intr(struct synps_edac_priv *priv)
842 {
843 	/* Disable UE/CE Interrupts */
844 	writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
845 			priv->baseaddr + DDR_QOS_IRQ_DB_OFST);
846 }
847 
848 static int setup_irq(struct mem_ctl_info *mci,
849 		     struct platform_device *pdev)
850 {
851 	struct synps_edac_priv *priv = mci->pvt_info;
852 	int ret, irq;
853 
854 	irq = platform_get_irq(pdev, 0);
855 	if (irq < 0) {
856 		edac_printk(KERN_ERR, EDAC_MC,
857 			    "No IRQ %d in DT\n", irq);
858 		return irq;
859 	}
860 
861 	ret = devm_request_irq(&pdev->dev, irq, intr_handler,
862 			       0, dev_name(&pdev->dev), mci);
863 	if (ret < 0) {
864 		edac_printk(KERN_ERR, EDAC_MC, "Failed to request IRQ\n");
865 		return ret;
866 	}
867 
868 	enable_intr(priv);
869 
870 	return 0;
871 }
872 
873 static const struct synps_platform_data zynq_edac_def = {
874 	.get_error_info	= zynq_get_error_info,
875 	.get_mtype	= zynq_get_mtype,
876 	.get_dtype	= zynq_get_dtype,
877 	.get_ecc_state	= zynq_get_ecc_state,
878 	.quirks		= 0,
879 };
880 
881 static const struct synps_platform_data zynqmp_edac_def = {
882 	.get_error_info	= zynqmp_get_error_info,
883 	.get_mtype	= zynqmp_get_mtype,
884 	.get_dtype	= zynqmp_get_dtype,
885 	.get_ecc_state	= zynqmp_get_ecc_state,
886 	.quirks         = (DDR_ECC_INTR_SUPPORT
887 #ifdef CONFIG_EDAC_DEBUG
888 			  | DDR_ECC_DATA_POISON_SUPPORT
889 #endif
890 			  ),
891 };
892 
893 static const struct of_device_id synps_edac_match[] = {
894 	{
895 		.compatible = "xlnx,zynq-ddrc-a05",
896 		.data = (void *)&zynq_edac_def
897 	},
898 	{
899 		.compatible = "xlnx,zynqmp-ddrc-2.40a",
900 		.data = (void *)&zynqmp_edac_def
901 	},
902 	{
903 		/* end of table */
904 	}
905 };
906 
907 MODULE_DEVICE_TABLE(of, synps_edac_match);
908 
909 #ifdef CONFIG_EDAC_DEBUG
910 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
911 
912 /**
913  * ddr_poison_setup -	Update poison registers.
914  * @priv:		DDR memory controller private instance data.
915  *
916  * Update poison registers as per DDR mapping.
917  * Return: none.
918  */
919 static void ddr_poison_setup(struct synps_edac_priv *priv)
920 {
921 	int col = 0, row = 0, bank = 0, bankgrp = 0, rank = 0, regval;
922 	int index;
923 	ulong hif_addr = 0;
924 
925 	hif_addr = priv->poison_addr >> 3;
926 
927 	for (index = 0; index < DDR_MAX_ROW_SHIFT; index++) {
928 		if (priv->row_shift[index])
929 			row |= (((hif_addr >> priv->row_shift[index]) &
930 						BIT(0)) << index);
931 		else
932 			break;
933 	}
934 
935 	for (index = 0; index < DDR_MAX_COL_SHIFT; index++) {
936 		if (priv->col_shift[index] || index < 3)
937 			col |= (((hif_addr >> priv->col_shift[index]) &
938 						BIT(0)) << index);
939 		else
940 			break;
941 	}
942 
943 	for (index = 0; index < DDR_MAX_BANK_SHIFT; index++) {
944 		if (priv->bank_shift[index])
945 			bank |= (((hif_addr >> priv->bank_shift[index]) &
946 						BIT(0)) << index);
947 		else
948 			break;
949 	}
950 
951 	for (index = 0; index < DDR_MAX_BANKGRP_SHIFT; index++) {
952 		if (priv->bankgrp_shift[index])
953 			bankgrp |= (((hif_addr >> priv->bankgrp_shift[index])
954 						& BIT(0)) << index);
955 		else
956 			break;
957 	}
958 
959 	if (priv->rank_shift[0])
960 		rank = (hif_addr >> priv->rank_shift[0]) & BIT(0);
961 
962 	regval = (rank << ECC_POISON0_RANK_SHIFT) & ECC_POISON0_RANK_MASK;
963 	regval |= (col << ECC_POISON0_COLUMN_SHIFT) & ECC_POISON0_COLUMN_MASK;
964 	writel(regval, priv->baseaddr + ECC_POISON0_OFST);
965 
966 	regval = (bankgrp << ECC_POISON1_BG_SHIFT) & ECC_POISON1_BG_MASK;
967 	regval |= (bank << ECC_POISON1_BANKNR_SHIFT) & ECC_POISON1_BANKNR_MASK;
968 	regval |= (row << ECC_POISON1_ROW_SHIFT) & ECC_POISON1_ROW_MASK;
969 	writel(regval, priv->baseaddr + ECC_POISON1_OFST);
970 }
971 
972 static ssize_t inject_data_error_show(struct device *dev,
973 				      struct device_attribute *mattr,
974 				      char *data)
975 {
976 	struct mem_ctl_info *mci = to_mci(dev);
977 	struct synps_edac_priv *priv = mci->pvt_info;
978 
979 	return sprintf(data, "Poison0 Addr: 0x%08x\n\rPoison1 Addr: 0x%08x\n\r"
980 			"Error injection Address: 0x%lx\n\r",
981 			readl(priv->baseaddr + ECC_POISON0_OFST),
982 			readl(priv->baseaddr + ECC_POISON1_OFST),
983 			priv->poison_addr);
984 }
985 
986 static ssize_t inject_data_error_store(struct device *dev,
987 				       struct device_attribute *mattr,
988 				       const char *data, size_t count)
989 {
990 	struct mem_ctl_info *mci = to_mci(dev);
991 	struct synps_edac_priv *priv = mci->pvt_info;
992 
993 	if (kstrtoul(data, 0, &priv->poison_addr))
994 		return -EINVAL;
995 
996 	ddr_poison_setup(priv);
997 
998 	return count;
999 }
1000 
1001 static ssize_t inject_data_poison_show(struct device *dev,
1002 				       struct device_attribute *mattr,
1003 				       char *data)
1004 {
1005 	struct mem_ctl_info *mci = to_mci(dev);
1006 	struct synps_edac_priv *priv = mci->pvt_info;
1007 
1008 	return sprintf(data, "Data Poisoning: %s\n\r",
1009 			(((readl(priv->baseaddr + ECC_CFG1_OFST)) & 0x3) == 0x3)
1010 			? ("Correctable Error") : ("UnCorrectable Error"));
1011 }
1012 
1013 static ssize_t inject_data_poison_store(struct device *dev,
1014 					struct device_attribute *mattr,
1015 					const char *data, size_t count)
1016 {
1017 	struct mem_ctl_info *mci = to_mci(dev);
1018 	struct synps_edac_priv *priv = mci->pvt_info;
1019 
1020 	writel(0, priv->baseaddr + DDRC_SWCTL);
1021 	if (strncmp(data, "CE", 2) == 0)
1022 		writel(ECC_CEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1023 	else
1024 		writel(ECC_UEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1025 	writel(1, priv->baseaddr + DDRC_SWCTL);
1026 
1027 	return count;
1028 }
1029 
1030 static DEVICE_ATTR_RW(inject_data_error);
1031 static DEVICE_ATTR_RW(inject_data_poison);
1032 
1033 static int edac_create_sysfs_attributes(struct mem_ctl_info *mci)
1034 {
1035 	int rc;
1036 
1037 	rc = device_create_file(&mci->dev, &dev_attr_inject_data_error);
1038 	if (rc < 0)
1039 		return rc;
1040 	rc = device_create_file(&mci->dev, &dev_attr_inject_data_poison);
1041 	if (rc < 0)
1042 		return rc;
1043 	return 0;
1044 }
1045 
1046 static void edac_remove_sysfs_attributes(struct mem_ctl_info *mci)
1047 {
1048 	device_remove_file(&mci->dev, &dev_attr_inject_data_error);
1049 	device_remove_file(&mci->dev, &dev_attr_inject_data_poison);
1050 }
1051 
1052 static void setup_row_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1053 {
1054 	u32 addrmap_row_b2_10;
1055 	int index;
1056 
1057 	priv->row_shift[0] = (addrmap[5] & ROW_MAX_VAL_MASK) + ROW_B0_BASE;
1058 	priv->row_shift[1] = ((addrmap[5] >> 8) &
1059 			ROW_MAX_VAL_MASK) + ROW_B1_BASE;
1060 
1061 	addrmap_row_b2_10 = (addrmap[5] >> 16) & ROW_MAX_VAL_MASK;
1062 	if (addrmap_row_b2_10 != ROW_MAX_VAL_MASK) {
1063 		for (index = 2; index < 11; index++)
1064 			priv->row_shift[index] = addrmap_row_b2_10 +
1065 				index + ROW_B0_BASE;
1066 
1067 	} else {
1068 		priv->row_shift[2] = (addrmap[9] &
1069 				ROW_MAX_VAL_MASK) + ROW_B2_BASE;
1070 		priv->row_shift[3] = ((addrmap[9] >> 8) &
1071 				ROW_MAX_VAL_MASK) + ROW_B3_BASE;
1072 		priv->row_shift[4] = ((addrmap[9] >> 16) &
1073 				ROW_MAX_VAL_MASK) + ROW_B4_BASE;
1074 		priv->row_shift[5] = ((addrmap[9] >> 24) &
1075 				ROW_MAX_VAL_MASK) + ROW_B5_BASE;
1076 		priv->row_shift[6] = (addrmap[10] &
1077 				ROW_MAX_VAL_MASK) + ROW_B6_BASE;
1078 		priv->row_shift[7] = ((addrmap[10] >> 8) &
1079 				ROW_MAX_VAL_MASK) + ROW_B7_BASE;
1080 		priv->row_shift[8] = ((addrmap[10] >> 16) &
1081 				ROW_MAX_VAL_MASK) + ROW_B8_BASE;
1082 		priv->row_shift[9] = ((addrmap[10] >> 24) &
1083 				ROW_MAX_VAL_MASK) + ROW_B9_BASE;
1084 		priv->row_shift[10] = (addrmap[11] &
1085 				ROW_MAX_VAL_MASK) + ROW_B10_BASE;
1086 	}
1087 
1088 	priv->row_shift[11] = (((addrmap[5] >> 24) & ROW_MAX_VAL_MASK) ==
1089 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[5] >> 24) &
1090 				ROW_MAX_VAL_MASK) + ROW_B11_BASE);
1091 	priv->row_shift[12] = ((addrmap[6] & ROW_MAX_VAL_MASK) ==
1092 				ROW_MAX_VAL_MASK) ? 0 : ((addrmap[6] &
1093 				ROW_MAX_VAL_MASK) + ROW_B12_BASE);
1094 	priv->row_shift[13] = (((addrmap[6] >> 8) & ROW_MAX_VAL_MASK) ==
1095 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 8) &
1096 				ROW_MAX_VAL_MASK) + ROW_B13_BASE);
1097 	priv->row_shift[14] = (((addrmap[6] >> 16) & ROW_MAX_VAL_MASK) ==
1098 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 16) &
1099 				ROW_MAX_VAL_MASK) + ROW_B14_BASE);
1100 	priv->row_shift[15] = (((addrmap[6] >> 24) & ROW_MAX_VAL_MASK) ==
1101 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 24) &
1102 				ROW_MAX_VAL_MASK) + ROW_B15_BASE);
1103 	priv->row_shift[16] = ((addrmap[7] & ROW_MAX_VAL_MASK) ==
1104 				ROW_MAX_VAL_MASK) ? 0 : ((addrmap[7] &
1105 				ROW_MAX_VAL_MASK) + ROW_B16_BASE);
1106 	priv->row_shift[17] = (((addrmap[7] >> 8) & ROW_MAX_VAL_MASK) ==
1107 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[7] >> 8) &
1108 				ROW_MAX_VAL_MASK) + ROW_B17_BASE);
1109 }
1110 
1111 static void setup_column_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1112 {
1113 	u32 width, memtype;
1114 	int index;
1115 
1116 	memtype = readl(priv->baseaddr + CTRL_OFST);
1117 	width = (memtype & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
1118 
1119 	priv->col_shift[0] = 0;
1120 	priv->col_shift[1] = 1;
1121 	priv->col_shift[2] = (addrmap[2] & COL_MAX_VAL_MASK) + COL_B2_BASE;
1122 	priv->col_shift[3] = ((addrmap[2] >> 8) &
1123 			COL_MAX_VAL_MASK) + COL_B3_BASE;
1124 	priv->col_shift[4] = (((addrmap[2] >> 16) & COL_MAX_VAL_MASK) ==
1125 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 16) &
1126 					COL_MAX_VAL_MASK) + COL_B4_BASE);
1127 	priv->col_shift[5] = (((addrmap[2] >> 24) & COL_MAX_VAL_MASK) ==
1128 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 24) &
1129 					COL_MAX_VAL_MASK) + COL_B5_BASE);
1130 	priv->col_shift[6] = ((addrmap[3] & COL_MAX_VAL_MASK) ==
1131 			COL_MAX_VAL_MASK) ? 0 : ((addrmap[3] &
1132 					COL_MAX_VAL_MASK) + COL_B6_BASE);
1133 	priv->col_shift[7] = (((addrmap[3] >> 8) & COL_MAX_VAL_MASK) ==
1134 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 8) &
1135 					COL_MAX_VAL_MASK) + COL_B7_BASE);
1136 	priv->col_shift[8] = (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) ==
1137 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 16) &
1138 					COL_MAX_VAL_MASK) + COL_B8_BASE);
1139 	priv->col_shift[9] = (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) ==
1140 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 24) &
1141 					COL_MAX_VAL_MASK) + COL_B9_BASE);
1142 	if (width == DDRCTL_EWDTH_64) {
1143 		if (memtype & MEM_TYPE_LPDDR3) {
1144 			priv->col_shift[10] = ((addrmap[4] &
1145 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1146 				((addrmap[4] & COL_MAX_VAL_MASK) +
1147 				 COL_B10_BASE);
1148 			priv->col_shift[11] = (((addrmap[4] >> 8) &
1149 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1150 				(((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1151 				 COL_B11_BASE);
1152 		} else {
1153 			priv->col_shift[11] = ((addrmap[4] &
1154 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1155 				((addrmap[4] & COL_MAX_VAL_MASK) +
1156 				 COL_B10_BASE);
1157 			priv->col_shift[13] = (((addrmap[4] >> 8) &
1158 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1159 				(((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1160 				 COL_B11_BASE);
1161 		}
1162 	} else if (width == DDRCTL_EWDTH_32) {
1163 		if (memtype & MEM_TYPE_LPDDR3) {
1164 			priv->col_shift[10] = (((addrmap[3] >> 24) &
1165 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1166 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1167 				 COL_B9_BASE);
1168 			priv->col_shift[11] = ((addrmap[4] &
1169 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1170 				((addrmap[4] & COL_MAX_VAL_MASK) +
1171 				 COL_B10_BASE);
1172 		} else {
1173 			priv->col_shift[11] = (((addrmap[3] >> 24) &
1174 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1175 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1176 				 COL_B9_BASE);
1177 			priv->col_shift[13] = ((addrmap[4] &
1178 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1179 				((addrmap[4] & COL_MAX_VAL_MASK) +
1180 				 COL_B10_BASE);
1181 		}
1182 	} else {
1183 		if (memtype & MEM_TYPE_LPDDR3) {
1184 			priv->col_shift[10] = (((addrmap[3] >> 16) &
1185 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1186 				(((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1187 				 COL_B8_BASE);
1188 			priv->col_shift[11] = (((addrmap[3] >> 24) &
1189 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1190 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1191 				 COL_B9_BASE);
1192 			priv->col_shift[13] = ((addrmap[4] &
1193 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1194 				((addrmap[4] & COL_MAX_VAL_MASK) +
1195 				 COL_B10_BASE);
1196 		} else {
1197 			priv->col_shift[11] = (((addrmap[3] >> 16) &
1198 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1199 				(((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1200 				 COL_B8_BASE);
1201 			priv->col_shift[13] = (((addrmap[3] >> 24) &
1202 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1203 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1204 				 COL_B9_BASE);
1205 		}
1206 	}
1207 
1208 	if (width) {
1209 		for (index = 9; index > width; index--) {
1210 			priv->col_shift[index] = priv->col_shift[index - width];
1211 			priv->col_shift[index - width] = 0;
1212 		}
1213 	}
1214 
1215 }
1216 
1217 static void setup_bank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1218 {
1219 	priv->bank_shift[0] = (addrmap[1] & BANK_MAX_VAL_MASK) + BANK_B0_BASE;
1220 	priv->bank_shift[1] = ((addrmap[1] >> 8) &
1221 				BANK_MAX_VAL_MASK) + BANK_B1_BASE;
1222 	priv->bank_shift[2] = (((addrmap[1] >> 16) &
1223 				BANK_MAX_VAL_MASK) == BANK_MAX_VAL_MASK) ? 0 :
1224 				(((addrmap[1] >> 16) & BANK_MAX_VAL_MASK) +
1225 				 BANK_B2_BASE);
1226 
1227 }
1228 
1229 static void setup_bg_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1230 {
1231 	priv->bankgrp_shift[0] = (addrmap[8] &
1232 				BANKGRP_MAX_VAL_MASK) + BANKGRP_B0_BASE;
1233 	priv->bankgrp_shift[1] = (((addrmap[8] >> 8) & BANKGRP_MAX_VAL_MASK) ==
1234 				BANKGRP_MAX_VAL_MASK) ? 0 : (((addrmap[8] >> 8)
1235 				& BANKGRP_MAX_VAL_MASK) + BANKGRP_B1_BASE);
1236 
1237 }
1238 
1239 static void setup_rank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1240 {
1241 	priv->rank_shift[0] = ((addrmap[0] & RANK_MAX_VAL_MASK) ==
1242 				RANK_MAX_VAL_MASK) ? 0 : ((addrmap[0] &
1243 				RANK_MAX_VAL_MASK) + RANK_B0_BASE);
1244 }
1245 
1246 /**
1247  * setup_address_map -	Set Address Map by querying ADDRMAP registers.
1248  * @priv:		DDR memory controller private instance data.
1249  *
1250  * Set Address Map by querying ADDRMAP registers.
1251  *
1252  * Return: none.
1253  */
1254 static void setup_address_map(struct synps_edac_priv *priv)
1255 {
1256 	u32 addrmap[12];
1257 	int index;
1258 
1259 	for (index = 0; index < 12; index++) {
1260 		u32 addrmap_offset;
1261 
1262 		addrmap_offset = ECC_ADDRMAP0_OFFSET + (index * 4);
1263 		addrmap[index] = readl(priv->baseaddr + addrmap_offset);
1264 	}
1265 
1266 	setup_row_address_map(priv, addrmap);
1267 
1268 	setup_column_address_map(priv, addrmap);
1269 
1270 	setup_bank_address_map(priv, addrmap);
1271 
1272 	setup_bg_address_map(priv, addrmap);
1273 
1274 	setup_rank_address_map(priv, addrmap);
1275 }
1276 #endif /* CONFIG_EDAC_DEBUG */
1277 
1278 /**
1279  * mc_probe - Check controller and bind driver.
1280  * @pdev:	platform device.
1281  *
1282  * Probe a specific controller instance for binding with the driver.
1283  *
1284  * Return: 0 if the controller instance was successfully bound to the
1285  * driver; otherwise, < 0 on error.
1286  */
1287 static int mc_probe(struct platform_device *pdev)
1288 {
1289 	const struct synps_platform_data *p_data;
1290 	struct edac_mc_layer layers[2];
1291 	struct synps_edac_priv *priv;
1292 	struct mem_ctl_info *mci;
1293 	void __iomem *baseaddr;
1294 	struct resource *res;
1295 	int rc;
1296 
1297 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1298 	baseaddr = devm_ioremap_resource(&pdev->dev, res);
1299 	if (IS_ERR(baseaddr))
1300 		return PTR_ERR(baseaddr);
1301 
1302 	p_data = of_device_get_match_data(&pdev->dev);
1303 	if (!p_data)
1304 		return -ENODEV;
1305 
1306 	if (!p_data->get_ecc_state(baseaddr)) {
1307 		edac_printk(KERN_INFO, EDAC_MC, "ECC not enabled\n");
1308 		return -ENXIO;
1309 	}
1310 
1311 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
1312 	layers[0].size = SYNPS_EDAC_NR_CSROWS;
1313 	layers[0].is_virt_csrow = true;
1314 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1315 	layers[1].size = SYNPS_EDAC_NR_CHANS;
1316 	layers[1].is_virt_csrow = false;
1317 
1318 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
1319 			    sizeof(struct synps_edac_priv));
1320 	if (!mci) {
1321 		edac_printk(KERN_ERR, EDAC_MC,
1322 			    "Failed memory allocation for mc instance\n");
1323 		return -ENOMEM;
1324 	}
1325 
1326 	priv = mci->pvt_info;
1327 	priv->baseaddr = baseaddr;
1328 	priv->p_data = p_data;
1329 
1330 	mc_init(mci, pdev);
1331 
1332 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
1333 		rc = setup_irq(mci, pdev);
1334 		if (rc)
1335 			goto free_edac_mc;
1336 	}
1337 
1338 	rc = edac_mc_add_mc(mci);
1339 	if (rc) {
1340 		edac_printk(KERN_ERR, EDAC_MC,
1341 			    "Failed to register with EDAC core\n");
1342 		goto free_edac_mc;
1343 	}
1344 
1345 #ifdef CONFIG_EDAC_DEBUG
1346 	if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT) {
1347 		if (edac_create_sysfs_attributes(mci)) {
1348 			edac_printk(KERN_ERR, EDAC_MC,
1349 					"Failed to create sysfs entries\n");
1350 			goto free_edac_mc;
1351 		}
1352 	}
1353 
1354 	if (of_device_is_compatible(pdev->dev.of_node,
1355 				    "xlnx,zynqmp-ddrc-2.40a"))
1356 		setup_address_map(priv);
1357 #endif
1358 
1359 	/*
1360 	 * Start capturing the correctable and uncorrectable errors. A write of
1361 	 * 0 starts the counters.
1362 	 */
1363 	if (!(priv->p_data->quirks & DDR_ECC_INTR_SUPPORT))
1364 		writel(0x0, baseaddr + ECC_CTRL_OFST);
1365 
1366 	return rc;
1367 
1368 free_edac_mc:
1369 	edac_mc_free(mci);
1370 
1371 	return rc;
1372 }
1373 
1374 /**
1375  * mc_remove - Unbind driver from controller.
1376  * @pdev:	Platform device.
1377  *
1378  * Return: Unconditionally 0
1379  */
1380 static int mc_remove(struct platform_device *pdev)
1381 {
1382 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
1383 	struct synps_edac_priv *priv = mci->pvt_info;
1384 
1385 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
1386 		disable_intr(priv);
1387 
1388 #ifdef CONFIG_EDAC_DEBUG
1389 	if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT)
1390 		edac_remove_sysfs_attributes(mci);
1391 #endif
1392 
1393 	edac_mc_del_mc(&pdev->dev);
1394 	edac_mc_free(mci);
1395 
1396 	return 0;
1397 }
1398 
1399 static struct platform_driver synps_edac_mc_driver = {
1400 	.driver = {
1401 		   .name = "synopsys-edac",
1402 		   .of_match_table = synps_edac_match,
1403 		   },
1404 	.probe = mc_probe,
1405 	.remove = mc_remove,
1406 };
1407 
1408 module_platform_driver(synps_edac_mc_driver);
1409 
1410 MODULE_AUTHOR("Xilinx Inc");
1411 MODULE_DESCRIPTION("Synopsys DDR ECC driver");
1412 MODULE_LICENSE("GPL v2");
1413