xref: /openbmc/linux/drivers/edac/skx_common.c (revision f845af67)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Shared code by both skx_edac and i10nm_edac. Originally split out
5  * from the skx_edac driver.
6  *
7  * This file is linked into both skx_edac and i10nm_edac drivers. In
8  * order to avoid link errors, this file must be like a pure library
9  * without including symbols and defines which would otherwise conflict,
10  * when linked once into a module and into a built-in object, at the
11  * same time. For example, __this_module symbol references when that
12  * file is being linked into a built-in object.
13  *
14  * Copyright (c) 2018, Intel Corporation.
15  */
16 
17 #include <linux/acpi.h>
18 #include <linux/dmi.h>
19 #include <linux/adxl.h>
20 #include <acpi/nfit.h>
21 #include <asm/mce.h>
22 #include "edac_module.h"
23 #include "skx_common.h"
24 
25 static const char * const component_names[] = {
26 	[INDEX_SOCKET]		= "ProcessorSocketId",
27 	[INDEX_MEMCTRL]		= "MemoryControllerId",
28 	[INDEX_CHANNEL]		= "ChannelId",
29 	[INDEX_DIMM]		= "DimmSlotId",
30 	[INDEX_CS]		= "ChipSelect",
31 	[INDEX_NM_MEMCTRL]	= "NmMemoryControllerId",
32 	[INDEX_NM_CHANNEL]	= "NmChannelId",
33 	[INDEX_NM_DIMM]		= "NmDimmSlotId",
34 	[INDEX_NM_CS]		= "NmChipSelect",
35 };
36 
37 static int component_indices[ARRAY_SIZE(component_names)];
38 static int adxl_component_count;
39 static const char * const *adxl_component_names;
40 static u64 *adxl_values;
41 static char *adxl_msg;
42 static unsigned long adxl_nm_bitmap;
43 
44 static char skx_msg[MSG_SIZE];
45 static skx_decode_f driver_decode;
46 static skx_show_retry_log_f skx_show_retry_rd_err_log;
47 static u64 skx_tolm, skx_tohm;
48 static LIST_HEAD(dev_edac_list);
49 static bool skx_mem_cfg_2lm;
50 
51 int skx_adxl_get(void)
52 {
53 	const char * const *names;
54 	int i, j;
55 
56 	names = adxl_get_component_names();
57 	if (!names) {
58 		skx_printk(KERN_NOTICE, "No firmware support for address translation.\n");
59 		return -ENODEV;
60 	}
61 
62 	for (i = 0; i < INDEX_MAX; i++) {
63 		for (j = 0; names[j]; j++) {
64 			if (!strcmp(component_names[i], names[j])) {
65 				component_indices[i] = j;
66 
67 				if (i >= INDEX_NM_FIRST)
68 					adxl_nm_bitmap |= 1 << i;
69 
70 				break;
71 			}
72 		}
73 
74 		if (!names[j] && i < INDEX_NM_FIRST)
75 			goto err;
76 	}
77 
78 	if (skx_mem_cfg_2lm) {
79 		if (!adxl_nm_bitmap)
80 			skx_printk(KERN_NOTICE, "Not enough ADXL components for 2-level memory.\n");
81 		else
82 			edac_dbg(2, "adxl_nm_bitmap: 0x%lx\n", adxl_nm_bitmap);
83 	}
84 
85 	adxl_component_names = names;
86 	while (*names++)
87 		adxl_component_count++;
88 
89 	adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values),
90 			      GFP_KERNEL);
91 	if (!adxl_values) {
92 		adxl_component_count = 0;
93 		return -ENOMEM;
94 	}
95 
96 	adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL);
97 	if (!adxl_msg) {
98 		adxl_component_count = 0;
99 		kfree(adxl_values);
100 		return -ENOMEM;
101 	}
102 
103 	return 0;
104 err:
105 	skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ",
106 		   component_names[i]);
107 	for (j = 0; names[j]; j++)
108 		skx_printk(KERN_CONT, "%s ", names[j]);
109 	skx_printk(KERN_CONT, "\n");
110 
111 	return -ENODEV;
112 }
113 EXPORT_SYMBOL_GPL(skx_adxl_get);
114 
115 void skx_adxl_put(void)
116 {
117 	kfree(adxl_values);
118 	kfree(adxl_msg);
119 }
120 EXPORT_SYMBOL_GPL(skx_adxl_put);
121 
122 static bool skx_adxl_decode(struct decoded_addr *res, bool error_in_1st_level_mem)
123 {
124 	struct skx_dev *d;
125 	int i, len = 0;
126 
127 	if (res->addr >= skx_tohm || (res->addr >= skx_tolm &&
128 				      res->addr < BIT_ULL(32))) {
129 		edac_dbg(0, "Address 0x%llx out of range\n", res->addr);
130 		return false;
131 	}
132 
133 	if (adxl_decode(res->addr, adxl_values)) {
134 		edac_dbg(0, "Failed to decode 0x%llx\n", res->addr);
135 		return false;
136 	}
137 
138 	res->socket  = (int)adxl_values[component_indices[INDEX_SOCKET]];
139 	if (error_in_1st_level_mem) {
140 		res->imc     = (adxl_nm_bitmap & BIT_NM_MEMCTRL) ?
141 			       (int)adxl_values[component_indices[INDEX_NM_MEMCTRL]] : -1;
142 		res->channel = (adxl_nm_bitmap & BIT_NM_CHANNEL) ?
143 			       (int)adxl_values[component_indices[INDEX_NM_CHANNEL]] : -1;
144 		res->dimm    = (adxl_nm_bitmap & BIT_NM_DIMM) ?
145 			       (int)adxl_values[component_indices[INDEX_NM_DIMM]] : -1;
146 		res->cs      = (adxl_nm_bitmap & BIT_NM_CS) ?
147 			       (int)adxl_values[component_indices[INDEX_NM_CS]] : -1;
148 	} else {
149 		res->imc     = (int)adxl_values[component_indices[INDEX_MEMCTRL]];
150 		res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]];
151 		res->dimm    = (int)adxl_values[component_indices[INDEX_DIMM]];
152 		res->cs      = (int)adxl_values[component_indices[INDEX_CS]];
153 	}
154 
155 	if (res->imc > NUM_IMC - 1 || res->imc < 0) {
156 		skx_printk(KERN_ERR, "Bad imc %d\n", res->imc);
157 		return false;
158 	}
159 
160 	list_for_each_entry(d, &dev_edac_list, list) {
161 		if (d->imc[0].src_id == res->socket) {
162 			res->dev = d;
163 			break;
164 		}
165 	}
166 
167 	if (!res->dev) {
168 		skx_printk(KERN_ERR, "No device for src_id %d imc %d\n",
169 			   res->socket, res->imc);
170 		return false;
171 	}
172 
173 	for (i = 0; i < adxl_component_count; i++) {
174 		if (adxl_values[i] == ~0x0ull)
175 			continue;
176 
177 		len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx",
178 				adxl_component_names[i], adxl_values[i]);
179 		if (MSG_SIZE - len <= 0)
180 			break;
181 	}
182 
183 	res->decoded_by_adxl = true;
184 
185 	return true;
186 }
187 
188 void skx_set_mem_cfg(bool mem_cfg_2lm)
189 {
190 	skx_mem_cfg_2lm = mem_cfg_2lm;
191 }
192 EXPORT_SYMBOL_GPL(skx_set_mem_cfg);
193 
194 void skx_set_decode(skx_decode_f decode, skx_show_retry_log_f show_retry_log)
195 {
196 	driver_decode = decode;
197 	skx_show_retry_rd_err_log = show_retry_log;
198 }
199 EXPORT_SYMBOL_GPL(skx_set_decode);
200 
201 int skx_get_src_id(struct skx_dev *d, int off, u8 *id)
202 {
203 	u32 reg;
204 
205 	if (pci_read_config_dword(d->util_all, off, &reg)) {
206 		skx_printk(KERN_ERR, "Failed to read src id\n");
207 		return -ENODEV;
208 	}
209 
210 	*id = GET_BITFIELD(reg, 12, 14);
211 	return 0;
212 }
213 EXPORT_SYMBOL_GPL(skx_get_src_id);
214 
215 int skx_get_node_id(struct skx_dev *d, u8 *id)
216 {
217 	u32 reg;
218 
219 	if (pci_read_config_dword(d->util_all, 0xf4, &reg)) {
220 		skx_printk(KERN_ERR, "Failed to read node id\n");
221 		return -ENODEV;
222 	}
223 
224 	*id = GET_BITFIELD(reg, 0, 2);
225 	return 0;
226 }
227 EXPORT_SYMBOL_GPL(skx_get_node_id);
228 
229 static int get_width(u32 mtr)
230 {
231 	switch (GET_BITFIELD(mtr, 8, 9)) {
232 	case 0:
233 		return DEV_X4;
234 	case 1:
235 		return DEV_X8;
236 	case 2:
237 		return DEV_X16;
238 	}
239 	return DEV_UNKNOWN;
240 }
241 
242 /*
243  * We use the per-socket device @cfg->did to count how many sockets are present,
244  * and to detemine which PCI buses are associated with each socket. Allocate
245  * and build the full list of all the skx_dev structures that we need here.
246  */
247 int skx_get_all_bus_mappings(struct res_config *cfg, struct list_head **list)
248 {
249 	struct pci_dev *pdev, *prev;
250 	struct skx_dev *d;
251 	u32 reg;
252 	int ndev = 0;
253 
254 	prev = NULL;
255 	for (;;) {
256 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, cfg->decs_did, prev);
257 		if (!pdev)
258 			break;
259 		ndev++;
260 		d = kzalloc(sizeof(*d), GFP_KERNEL);
261 		if (!d) {
262 			pci_dev_put(pdev);
263 			return -ENOMEM;
264 		}
265 
266 		if (pci_read_config_dword(pdev, cfg->busno_cfg_offset, &reg)) {
267 			kfree(d);
268 			pci_dev_put(pdev);
269 			skx_printk(KERN_ERR, "Failed to read bus idx\n");
270 			return -ENODEV;
271 		}
272 
273 		d->bus[0] = GET_BITFIELD(reg, 0, 7);
274 		d->bus[1] = GET_BITFIELD(reg, 8, 15);
275 		if (cfg->type == SKX) {
276 			d->seg = pci_domain_nr(pdev->bus);
277 			d->bus[2] = GET_BITFIELD(reg, 16, 23);
278 			d->bus[3] = GET_BITFIELD(reg, 24, 31);
279 		} else {
280 			d->seg = GET_BITFIELD(reg, 16, 23);
281 		}
282 
283 		edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n",
284 			 d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
285 		list_add_tail(&d->list, &dev_edac_list);
286 		prev = pdev;
287 	}
288 
289 	if (list)
290 		*list = &dev_edac_list;
291 	return ndev;
292 }
293 EXPORT_SYMBOL_GPL(skx_get_all_bus_mappings);
294 
295 int skx_get_hi_lo(unsigned int did, int off[], u64 *tolm, u64 *tohm)
296 {
297 	struct pci_dev *pdev;
298 	u32 reg;
299 
300 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, NULL);
301 	if (!pdev) {
302 		edac_dbg(2, "Can't get tolm/tohm\n");
303 		return -ENODEV;
304 	}
305 
306 	if (pci_read_config_dword(pdev, off[0], &reg)) {
307 		skx_printk(KERN_ERR, "Failed to read tolm\n");
308 		goto fail;
309 	}
310 	skx_tolm = reg;
311 
312 	if (pci_read_config_dword(pdev, off[1], &reg)) {
313 		skx_printk(KERN_ERR, "Failed to read lower tohm\n");
314 		goto fail;
315 	}
316 	skx_tohm = reg;
317 
318 	if (pci_read_config_dword(pdev, off[2], &reg)) {
319 		skx_printk(KERN_ERR, "Failed to read upper tohm\n");
320 		goto fail;
321 	}
322 	skx_tohm |= (u64)reg << 32;
323 
324 	pci_dev_put(pdev);
325 	*tolm = skx_tolm;
326 	*tohm = skx_tohm;
327 	edac_dbg(2, "tolm = 0x%llx tohm = 0x%llx\n", skx_tolm, skx_tohm);
328 	return 0;
329 fail:
330 	pci_dev_put(pdev);
331 	return -ENODEV;
332 }
333 EXPORT_SYMBOL_GPL(skx_get_hi_lo);
334 
335 static int skx_get_dimm_attr(u32 reg, int lobit, int hibit, int add,
336 			     int minval, int maxval, const char *name)
337 {
338 	u32 val = GET_BITFIELD(reg, lobit, hibit);
339 
340 	if (val < minval || val > maxval) {
341 		edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg);
342 		return -EINVAL;
343 	}
344 	return val + add;
345 }
346 
347 #define numrank(reg)	skx_get_dimm_attr(reg, 12, 13, 0, 0, 2, "ranks")
348 #define numrow(reg)	skx_get_dimm_attr(reg, 2, 4, 12, 1, 6, "rows")
349 #define numcol(reg)	skx_get_dimm_attr(reg, 0, 1, 10, 0, 2, "cols")
350 
351 int skx_get_dimm_info(u32 mtr, u32 mcmtr, u32 amap, struct dimm_info *dimm,
352 		      struct skx_imc *imc, int chan, int dimmno,
353 		      struct res_config *cfg)
354 {
355 	int  banks, ranks, rows, cols, npages;
356 	enum mem_type mtype;
357 	u64 size;
358 
359 	ranks = numrank(mtr);
360 	rows = numrow(mtr);
361 	cols = imc->hbm_mc ? 6 : numcol(mtr);
362 
363 	if (imc->hbm_mc) {
364 		banks = 32;
365 		mtype = MEM_HBM2;
366 	} else if (cfg->support_ddr5 && (amap & 0x8)) {
367 		banks = 32;
368 		mtype = MEM_DDR5;
369 	} else {
370 		banks = 16;
371 		mtype = MEM_DDR4;
372 	}
373 
374 	/*
375 	 * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
376 	 */
377 	size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
378 	npages = MiB_TO_PAGES(size);
379 
380 	edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%x, col: 0x%x\n",
381 		 imc->mc, chan, dimmno, size, npages,
382 		 banks, 1 << ranks, rows, cols);
383 
384 	imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mcmtr, 0, 0);
385 	imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mcmtr, 9, 9);
386 	imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
387 	imc->chan[chan].dimms[dimmno].rowbits = rows;
388 	imc->chan[chan].dimms[dimmno].colbits = cols;
389 
390 	dimm->nr_pages = npages;
391 	dimm->grain = 32;
392 	dimm->dtype = get_width(mtr);
393 	dimm->mtype = mtype;
394 	dimm->edac_mode = EDAC_SECDED; /* likely better than this */
395 
396 	if (imc->hbm_mc)
397 		snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_HBMC#%u_Chan#%u",
398 			 imc->src_id, imc->lmc, chan);
399 	else
400 		snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
401 			 imc->src_id, imc->lmc, chan, dimmno);
402 
403 	return 1;
404 }
405 EXPORT_SYMBOL_GPL(skx_get_dimm_info);
406 
407 int skx_get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
408 			int chan, int dimmno, const char *mod_str)
409 {
410 	int smbios_handle;
411 	u32 dev_handle;
412 	u16 flags;
413 	u64 size = 0;
414 
415 	dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc,
416 						   imc->src_id, 0);
417 
418 	smbios_handle = nfit_get_smbios_id(dev_handle, &flags);
419 	if (smbios_handle == -EOPNOTSUPP) {
420 		pr_warn_once("%s: Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n", mod_str);
421 		goto unknown_size;
422 	}
423 
424 	if (smbios_handle < 0) {
425 		skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle);
426 		goto unknown_size;
427 	}
428 
429 	if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
430 		skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle);
431 		goto unknown_size;
432 	}
433 
434 	size = dmi_memdev_size(smbios_handle);
435 	if (size == ~0ull)
436 		skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n",
437 			   dev_handle, smbios_handle);
438 
439 unknown_size:
440 	dimm->nr_pages = size >> PAGE_SHIFT;
441 	dimm->grain = 32;
442 	dimm->dtype = DEV_UNKNOWN;
443 	dimm->mtype = MEM_NVDIMM;
444 	dimm->edac_mode = EDAC_SECDED; /* likely better than this */
445 
446 	edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n",
447 		 imc->mc, chan, dimmno, size >> 20, dimm->nr_pages);
448 
449 	snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
450 		 imc->src_id, imc->lmc, chan, dimmno);
451 
452 	return (size == 0 || size == ~0ull) ? 0 : 1;
453 }
454 EXPORT_SYMBOL_GPL(skx_get_nvdimm_info);
455 
456 int skx_register_mci(struct skx_imc *imc, struct pci_dev *pdev,
457 		     const char *ctl_name, const char *mod_str,
458 		     get_dimm_config_f get_dimm_config,
459 		     struct res_config *cfg)
460 {
461 	struct mem_ctl_info *mci;
462 	struct edac_mc_layer layers[2];
463 	struct skx_pvt *pvt;
464 	int rc;
465 
466 	/* Allocate a new MC control structure */
467 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
468 	layers[0].size = NUM_CHANNELS;
469 	layers[0].is_virt_csrow = false;
470 	layers[1].type = EDAC_MC_LAYER_SLOT;
471 	layers[1].size = NUM_DIMMS;
472 	layers[1].is_virt_csrow = true;
473 	mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
474 			    sizeof(struct skx_pvt));
475 
476 	if (unlikely(!mci))
477 		return -ENOMEM;
478 
479 	edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
480 
481 	/* Associate skx_dev and mci for future usage */
482 	imc->mci = mci;
483 	pvt = mci->pvt_info;
484 	pvt->imc = imc;
485 
486 	mci->ctl_name = kasprintf(GFP_KERNEL, "%s#%d IMC#%d", ctl_name,
487 				  imc->node_id, imc->lmc);
488 	if (!mci->ctl_name) {
489 		rc = -ENOMEM;
490 		goto fail0;
491 	}
492 
493 	mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM;
494 	if (cfg->support_ddr5)
495 		mci->mtype_cap |= MEM_FLAG_DDR5;
496 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
497 	mci->edac_cap = EDAC_FLAG_NONE;
498 	mci->mod_name = mod_str;
499 	mci->dev_name = pci_name(pdev);
500 	mci->ctl_page_to_phys = NULL;
501 
502 	rc = get_dimm_config(mci, cfg);
503 	if (rc < 0)
504 		goto fail;
505 
506 	/* Record ptr to the generic device */
507 	mci->pdev = &pdev->dev;
508 
509 	/* Add this new MC control structure to EDAC's list of MCs */
510 	if (unlikely(edac_mc_add_mc(mci))) {
511 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
512 		rc = -EINVAL;
513 		goto fail;
514 	}
515 
516 	return 0;
517 
518 fail:
519 	kfree(mci->ctl_name);
520 fail0:
521 	edac_mc_free(mci);
522 	imc->mci = NULL;
523 	return rc;
524 }
525 EXPORT_SYMBOL_GPL(skx_register_mci);
526 
527 static void skx_unregister_mci(struct skx_imc *imc)
528 {
529 	struct mem_ctl_info *mci = imc->mci;
530 
531 	if (!mci)
532 		return;
533 
534 	edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
535 
536 	/* Remove MC sysfs nodes */
537 	edac_mc_del_mc(mci->pdev);
538 
539 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
540 	kfree(mci->ctl_name);
541 	edac_mc_free(mci);
542 }
543 
544 static void skx_mce_output_error(struct mem_ctl_info *mci,
545 				 const struct mce *m,
546 				 struct decoded_addr *res)
547 {
548 	enum hw_event_mc_err_type tp_event;
549 	char *optype;
550 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
551 	bool overflow = GET_BITFIELD(m->status, 62, 62);
552 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
553 	bool scrub_err = false;
554 	bool recoverable;
555 	int len;
556 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
557 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
558 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
559 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
560 
561 	recoverable = GET_BITFIELD(m->status, 56, 56);
562 
563 	if (uncorrected_error) {
564 		core_err_cnt = 1;
565 		if (ripv) {
566 			tp_event = HW_EVENT_ERR_UNCORRECTED;
567 		} else {
568 			tp_event = HW_EVENT_ERR_FATAL;
569 		}
570 	} else {
571 		tp_event = HW_EVENT_ERR_CORRECTED;
572 	}
573 
574 	switch (optypenum) {
575 	case 0:
576 		optype = "generic undef request error";
577 		break;
578 	case 1:
579 		optype = "memory read error";
580 		break;
581 	case 2:
582 		optype = "memory write error";
583 		break;
584 	case 3:
585 		optype = "addr/cmd error";
586 		break;
587 	case 4:
588 		optype = "memory scrubbing error";
589 		scrub_err = true;
590 		break;
591 	default:
592 		optype = "reserved";
593 		break;
594 	}
595 
596 	if (res->decoded_by_adxl) {
597 		len = snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s",
598 			 overflow ? " OVERFLOW" : "",
599 			 (uncorrected_error && recoverable) ? " recoverable" : "",
600 			 mscod, errcode, adxl_msg);
601 	} else {
602 		len = snprintf(skx_msg, MSG_SIZE,
603 			 "%s%s err_code:0x%04x:0x%04x ProcessorSocketId:0x%x MemoryControllerId:0x%x PhysicalRankId:0x%x Row:0x%x Column:0x%x Bank:0x%x BankGroup:0x%x",
604 			 overflow ? " OVERFLOW" : "",
605 			 (uncorrected_error && recoverable) ? " recoverable" : "",
606 			 mscod, errcode,
607 			 res->socket, res->imc, res->rank,
608 			 res->row, res->column, res->bank_address, res->bank_group);
609 	}
610 
611 	if (skx_show_retry_rd_err_log)
612 		skx_show_retry_rd_err_log(res, skx_msg + len, MSG_SIZE - len, scrub_err);
613 
614 	edac_dbg(0, "%s\n", skx_msg);
615 
616 	/* Call the helper to output message */
617 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
618 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
619 			     res->channel, res->dimm, -1,
620 			     optype, skx_msg);
621 }
622 
623 static bool skx_error_in_1st_level_mem(const struct mce *m)
624 {
625 	u32 errcode;
626 
627 	if (!skx_mem_cfg_2lm)
628 		return false;
629 
630 	errcode = GET_BITFIELD(m->status, 0, 15) & MCACOD_MEM_ERR_MASK;
631 
632 	return errcode == MCACOD_EXT_MEM_ERR;
633 }
634 
635 static bool skx_error_in_mem(const struct mce *m)
636 {
637 	u32 errcode;
638 
639 	errcode = GET_BITFIELD(m->status, 0, 15) & MCACOD_MEM_ERR_MASK;
640 
641 	return (errcode == MCACOD_MEM_CTL_ERR || errcode == MCACOD_EXT_MEM_ERR);
642 }
643 
644 int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
645 			void *data)
646 {
647 	struct mce *mce = (struct mce *)data;
648 	struct decoded_addr res;
649 	struct mem_ctl_info *mci;
650 	char *type;
651 
652 	if (mce->kflags & MCE_HANDLED_CEC)
653 		return NOTIFY_DONE;
654 
655 	/* Ignore unless this is memory related with an address */
656 	if (!skx_error_in_mem(mce) || !(mce->status & MCI_STATUS_ADDRV))
657 		return NOTIFY_DONE;
658 
659 	memset(&res, 0, sizeof(res));
660 	res.mce  = mce;
661 	res.addr = mce->addr & MCI_ADDR_PHYSADDR;
662 	if (!pfn_to_online_page(res.addr >> PAGE_SHIFT) && !arch_is_platform_page(res.addr)) {
663 		pr_err("Invalid address 0x%llx in IA32_MC%d_ADDR\n", mce->addr, mce->bank);
664 		return NOTIFY_DONE;
665 	}
666 
667 	/* Try driver decoder first */
668 	if (!(driver_decode && driver_decode(&res))) {
669 		/* Then try firmware decoder (ACPI DSM methods) */
670 		if (!(adxl_component_count && skx_adxl_decode(&res, skx_error_in_1st_level_mem(mce))))
671 			return NOTIFY_DONE;
672 	}
673 
674 	mci = res.dev->imc[res.imc].mci;
675 
676 	if (!mci)
677 		return NOTIFY_DONE;
678 
679 	if (mce->mcgstatus & MCG_STATUS_MCIP)
680 		type = "Exception";
681 	else
682 		type = "Event";
683 
684 	skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
685 
686 	skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx "
687 			   "Bank %d: 0x%llx\n", mce->extcpu, type,
688 			   mce->mcgstatus, mce->bank, mce->status);
689 	skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc);
690 	skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr);
691 	skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc);
692 
693 	skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET "
694 			   "%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid,
695 			   mce->time, mce->socketid, mce->apicid);
696 
697 	skx_mce_output_error(mci, mce, &res);
698 
699 	mce->kflags |= MCE_HANDLED_EDAC;
700 	return NOTIFY_DONE;
701 }
702 EXPORT_SYMBOL_GPL(skx_mce_check_error);
703 
704 void skx_remove(void)
705 {
706 	int i, j;
707 	struct skx_dev *d, *tmp;
708 
709 	edac_dbg(0, "\n");
710 
711 	list_for_each_entry_safe(d, tmp, &dev_edac_list, list) {
712 		list_del(&d->list);
713 		for (i = 0; i < NUM_IMC; i++) {
714 			if (d->imc[i].mci)
715 				skx_unregister_mci(&d->imc[i]);
716 
717 			if (d->imc[i].mdev)
718 				pci_dev_put(d->imc[i].mdev);
719 
720 			if (d->imc[i].mbase)
721 				iounmap(d->imc[i].mbase);
722 
723 			for (j = 0; j < NUM_CHANNELS; j++) {
724 				if (d->imc[i].chan[j].cdev)
725 					pci_dev_put(d->imc[i].chan[j].cdev);
726 			}
727 		}
728 		if (d->util_all)
729 			pci_dev_put(d->util_all);
730 		if (d->pcu_cr3)
731 			pci_dev_put(d->pcu_cr3);
732 		if (d->sad_all)
733 			pci_dev_put(d->sad_all);
734 		if (d->uracu)
735 			pci_dev_put(d->uracu);
736 
737 		kfree(d);
738 	}
739 }
740 EXPORT_SYMBOL_GPL(skx_remove);
741 
742 MODULE_LICENSE("GPL v2");
743 MODULE_AUTHOR("Tony Luck");
744 MODULE_DESCRIPTION("MC Driver for Intel server processors");
745